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I
A Theorem of Roe and Strichartz on Rn



I
A brief history

I J. Roe, 1980 : Let {fk}k∈Z be a doubly infinite sequence of functions on
R such that

d

dx
fk = fk+1 and ∥fk∥L∞(R) ≤ M, for all k ∈ Z.

Then f0(x) = ae ix + be−ix , for all x ∈ R.

I Observation : Roe’s theorem characterizes eigenfunction of the operator
d2/dx2 with eigenvalue −1.

I R. S. Strichartz, 1993 : Let {fk}k∈Z be a doubly infinite sequence of
functions on Rn satisfying

∆Rn fk = fk+1 and ∥fk∥L∞(Rn) ≤ M, for all k ∈ Z.

Then f0 is an eigenfunction of ∆Rn with eigenvalue −1.

I If ∆Rn fk = A fk+1 for some A ∈ C×, then ∆Rn f0 = −|A|f0.
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I
Extensions to abstract spaces

I Strichartz proved that an exact analogue holds for the sublaplacian on the
Heisenberg group.

I S. Bagchi, A. Kumar and S. Sen (2023) extended this result to
connected, simply connected two-step nilpotent Lie groups.

I Strichartz also demonstrated by counterexamples that an exact analogue
of the result is not true on the hyperbolic 3-space.

I P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions
of Strichartz’s theorem for the Laplace-Beltrami operator on noncompact
type Riemannian symmetric spaces of rank one.

Question
Does a precise analogue of Strichartz’s theorem apply to the combinatorial
Laplacian L on a homogeneous tree X ?
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I
Homogeneous Trees



I
Homogeneous trees

I A homogeneous tree X of degree q+ 1 is a connected graph with no loops
in which every vertex is adjacent to q + 1 other vertices.

I When q = 1, X can be identified with the group of all integers, whose
geometric and analytic properties differ from those of higher-degree
homogeneous trees.

I Therefore, we shall assume q ≥ 2.

I We fix an arbitrary reference point o in X.

I The boundary Ω is identified with the set of all infinite geodesic rays
starting at o.
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I
Pictorial representation

Homogeneous trees of degree 3 and 4 can be represented as follows:

o

ω

(a) q = 2

o

ω

(b) q = 3
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I
The Laplacian

I X is a metric-measure space, endowed with the counting measure # and
the standard graph distance d .

I For x ∈ X and n ∈ Z+, B(x , n) and S(x , n) will respectively denote the
ball and the sphere centered at x and of radius n.

I Exponential Volume Growth : For all x ∈ X and n ∈ Z+,

#B(x , n) ≍ #S(x , n) ≍ qn.

I The Laplacian : Let u be a complex-valued function defined on X.

Lu(x) = u(x)− 1
q + 1

∑
y :d(x,y)=1

u(y).
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I
Strichartz’s Theorem for L on X



I
The elementary spherical functions

I For z ∈ C, the elementary spherical function ϕz is defined as

ϕz(x) =

∫
Ω

p1/2+iz(x , ω) dν(ω),

where p(x , ω) denotes the Poisson kernel on X and ν denotes the unique
probability measure on Ω.

I Symmetry and Periodicity : ϕz(x) = ϕ−z(x) = ϕz+τ (x), where
τ = 2π/ log q.

I Radial : ϕz(x) = ϕz(y), whenever d(o, x) = d(o, y).

I Eigenfunction : Lϕz(x) = γ(z) ϕz(x), where

γ(z) = 1 − q1/2+iz + q1/2−iz

q + 1
.

I Fact : ϕz ∈ L∞(X) if and only if z ∈ C satisfies |ℑz | ≤ 1/2.
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I
L∞-point spectrum of L

I L∞-point spectrum of L : {γ(z) : z ∈ C and |ℑz | ≤ 1/2}.

I Unlike the L∞-point spectrum of ∆Rn which is the one-dimensional
interval (−∞, 0], the L∞-point spectrum of L is an elliptic region in the
complex plane centered around the point 1.

{γ(z) : z ∈ C and |ℑz | ≤ 1/2}

x

y

(0, 0) (1, 0) (2, 0)

{w ∈ C : |w | = 1}

(−1, 0)

9



I
L∞-point spectrum of L

I L∞-point spectrum of L : {γ(z) : z ∈ C and |ℑz | ≤ 1/2}.

I Unlike the L∞-point spectrum of ∆Rn which is the one-dimensional
interval (−∞, 0], the L∞-point spectrum of L is an elliptic region in the
complex plane centered around the point 1.

{γ(z) : z ∈ C and |ℑz | ≤ 1/2}

x

y

(0, 0) (1, 0) (2, 0)

{w ∈ C : |w | = 1}

(−1, 0)

9



I
Counterexample

I Choose two points z1, z2 in {z ∈ C : |ℑz | ≤ 1/2} such that

γ(z1) ̸= γ(z2) and |γ(z1)| = |γ(z2)| = 1.

I Consider the doubly infinite sequence {fk}k∈Z as follows :

fk(x) = γ(z1)
kϕz1(x) + γ(z2)

kϕz2(x), x ∈ X.

I ∥fk∥L∞(X) ≤ ∥ϕz1∥L∞(X) + ∥ϕz2∥L∞(X) ≤ 2.

I Lfk(x) = γ(z1)
kLϕz1(x) + γ(z2)

kLϕz2(x) = fk+1(x).

I Therefore {fk}k∈Z satisfies all the hypothesis of Strichartz’s theorem.

I However, f0 fails to be an eigenfunction of L.
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I However, f0 fails to be an eigenfunction of L.
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I
Size estimates of ϕz

I Notations for today : Let 1 < p ≤ 2. Then

I p′ denotes the conjugate exponent p/(p − 1).

I δp′ =
1
p′ −

1
2 .

I Sp = {z ∈ C : |ℑz | ≤ |δp′ |}.

I Assumption : p′ = ∞ when p = 1.

I δ∞ = −1/2 and S1 = {z ∈ C : |ℑz | ≤ 1/2}.

I Observation : δ2 = 0 and S2 = R.

I Weak Lp-estimates of ϕz :

I For 1 ≤ p < 2, ϕz ∈ Lp′,∞(X) if and only if z ∈ Sp.

I ϕz ∈ L2,∞(X) if and only if z ∈ R \ (τ/2)Z.
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I
Lp

′,∞-point spectrum of L, for 1 ≤ p ≤ 2

γ(Sp)

x

y

(1, 0)γ(iδp′) γ(τ/2 + iδp′)

{w ∈ C : |w | = 1}

(−1, 0)

{w ∈ C : |w | = γ(τ/2 + iδp′)}

{w ∈ C : |w | = γ(iδp′)} γ(S2)
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I
Strichartz’s theorem for L

I S. K. Rano, 2022 : Let {fk}k∈Z be a doubly infinite sequence of functions
on X satisfying

∥fk∥L∞(X) ≤ M and Lfk = A fk+1, for all k ∈ Z,

where A ∈ C satisfies |A| = γ(τ/2 + iδ∞). Then Lf0 = γ(τ/2 + iδ∞)f0.

I S. K. Rano, 2022 : Let 1 < p < 2. Suppose that {fk}k∈Z is a bi-infinite
sequence of functions on X such that ∥fk∥Lp′,∞(X) ≤ M, for all k ∈ Z.

I If Lfk = A fk+1 for all k ∈ Z+, where A ∈ C satisfies |A| = γ(iδp′),
then Lf0 = γ(iδp′)f0.

I If Lf−k = A f−k+1 for all k ∈ N, where A ∈ C satisfies
|A| = γ(τ/2 + iδp′), then Lf0 = γ(τ/2 + iδp′)f0.
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I
The case p = 2

I S. K. Rano, 2022 : Let {fk}k∈Z be a bi-infinite sequence of functions on
X satisfying

∥fk∥L2,∞(X) ≤ M and Lfk = A fk+1, for all k ∈ Z,

where A ∈ C is such that

|A| ∈ (1 − b, 1 + b), b =
2
√
q

q + 1
,

then Lf0 = |A|f0.

Question
What happens if we replace L with polynomials of L, the spherical averages
on X, or the heat operator on X ?

I We shall specifically focus on extending the above results for multipliers
when 1 ≤ p < 2.
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I
Strichartz’s Theorem for Multipliers



I
Fourier transforms on X

I The spherical transform f̂ of a finitely supported radial function f on X is
defined by the formula

f̂ (z) =
∑
x∈X

f (x) ϕz(x), where z ∈ C.

I Symmetry and Periodicity : f̂ (z) = f̂ (−z) = f̂ (z + τ).

I The Helgason-Fourier transform f̃ of a finitely supported function f on X

is a function on C× Ω defined by the formula

f̃ (z , ω) =
∑
x∈X

f (x) p1/2+iz(x , ω).

I Periodicity : f̃ (z , ω) = f̃ (z + τ, ω).

I If f is radial, then f̃ (z , ω) = f̂ (z), for all ω ∈ Ω.
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I
Lp-Schwartz spaces on X, 1 ≤ p ≤ 2

I Schwartz spaces Sp(X) : Space of all functions ϕ on X for which

νp,m(ϕ) = sup
x∈X

(1 + |x |)m q|x|/p |ϕ(x)| <∞, for all m ∈ Z+.

I Sp(X) forms a Fréchet space w.r.t. the countable semi-norms νp,m(·).

Definition
Let m be an even, τ -periodic, bounded measurable function on R. An
operator Θ defined as

Θf (x) = cX

∫
T

∫
Ω

m(z) f̃ (z , ω) p1/2−iz(x , ω) |c(z)|−2 dν(ω) dz ,

is said to be a multiplier on Sp(X) with symbol m(z) if, for every semi-norm
νp,m2(·) of Sp(X), there exists a semi-norm νp,m1(·) of Sp(X) and a constant
Cm1,m2 > 0 such that

νp,m2(Θf ) ≤ Cm1,m2 νp,m1(f ), for all f ∈ Sp(X).

16
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I
Characterization of multipliers on the Schwartz spaces

I The space H(Sp) : Space of all such functions ψ : Sp → C which satisfy
the following properties:

I ψ is even and τ -periodic on Sp.

I ψ is analytic in the interior of Sp.

I ψ and all its derivatives extend continuously on the boundary of Sp.

Proposition ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 ≤ p < 2. Then the following are equivalent.

(a) The operator Θ is a multiplier on Sp(X) with symbol m(z).

(b) m is in H(Sp).
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I
Important examples of multipliers

I The Laplacian L is a multiplier on Sp(X) with symbol γ(z).

I For any polynomial P, P(L) is a multiplier on Sp(X) with symbol
P ◦ γ(z).

I For every ξ ∈ C, the complex-time heat operator eξL defines a multiplier
on Sp(X) with symbol eξγ(z).

I The spherical averaging operators Sn is a multiplier on Sp(X) with
symbol ϕz(n).

I The ball averaging operators Bn is a multiplier on Sp(X) with symbol
ψz(n), where

ψz(n) =
1

#B(o, n)

n∑
j=0

#S(o, j) ϕz(j), for all n ∈ Z+.

18
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I
Strichartz’s theorem on L revisited

I Assume 1 < p < 2.

I Recall : The Laplacian L is a multiplier on Sp(X) with symbol γ(z).

I The Lp′,∞-point spectrum of L is the range of the holomorphic map
z 7→ γ(z) with domain Sp.

I Strichartz’s theorem : Let {fk}k∈Z+ be an infinite sequence of functions
on X satisfying

∥fk∥Lp′,∞(X) ≤ M and Lfk = A fk+1, for all k ∈ Z+,

where A ∈ C× satisfies

|A| = min{|γ(z)| : z ∈ Sp} = γ(iδp′).

I Observation : The range of γ intersects {w ∈ C : |w | = |A|} at only one
point, namely, γ(iδp′).
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I
Strichartz’s theorem on L revisited

I Strichartz’s theorem : Let {f−k}k∈Z+ be an infinite sequence of functions
on X satisfying

∥f−k∥Lp′,∞(X) ≤ M and Lf−k = A f−k+1, for all k ∈ N,

where A ∈ C× satisfies |A| = max{|γ(z)| : z ∈ Sp} = γ(τ/2 + iδp′).

I Observation : The range of γ intersects {w ∈ C : |w | = |A|} at only one
point, namely, γ(τ/2 + iδp′).

I Conclusion : Lf0 = γ(iδp′)f0 or Lf0 = γ(τ/2 + iδp′)f0.

I General Set-Up : Let Θ be a multiplier on Sp(X) with symbol m(z).
Suppose that A ∈ C× satisfies

|A| = max{|m(z)| : z ∈ Sp}.

I Difficulty : The range of m may intersect {w ∈ C : |w | = |A|} at more
than one point.
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I
Pictorial representation

I Multiplier : I −L. Symbol : m(z) = 1 − γ(z).

x

y

(0, 0)

m(iδp′)m(τ/2 + iδp′)

m(Sp), 1 ≤ p < 2

{w ∈ C : |w | = m(iδp′)}
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I
Strichartz’s theorem for multipliers I

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 ≤ p < 2. Let Θ be a multiplier on Sp(X) with symbol m(z) satisfying
m(z) ̸= 0 for some z ∈ Sp. Suppose that {fk}k∈Z is a bi-infinite sequence of
functions on X satisfying

∥fk∥Lp′,∞(X) ≤ M and Θfk = A fk+1, for all k ∈ Z.

Assume further that

(a) |A| = max{|m(z)| : z ∈ Sp}.

(b) The range of m intersects {w ∈ C : |w | = |A|} at finitely many distinct
points A1, . . . ,Aj .

Then f0 can be uniquely written as

f0 = f0,1 + f0,2 + · · ·+ f0,j ,

for some f0,i ∈ Lp′,∞(X), satisfying

Θf0,i = Ai f0,i , for all i = 1, . . . , j .
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I
Strichartz’s theorem for multipliers II

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 ≤ p < 2. Let Θ be a multiplier on Sp(X) associated with symbol m(z)

satisfying m(z) ̸= 0 for all z ∈ Sp. Suppose that {fk}k∈Z+ is a bi-infinite
sequence of functions on X satisfying

∥fk∥Lp′,∞(X) ≤ M and Θfk = A fk+1, for all k ∈ Z+.

Assume further that

(a) |A| = min{|m(z)| : z ∈ Sp}.

(b) The range of m intersects {w ∈ C : |w | = |A|} at finitely many distinct
points A1, . . . ,Aj .

Then f0 can be uniquely written as

f0 = f0,1 + f0,2 + · · ·+ f0,j ,

for some f0,i ∈ Lp′,∞(X), satisfying

Θf0,i = Ai f0,i , for all i = 1, . . . , j .
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I
Strichartz’s theorem for multipliers III

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 ≤ p < 2. Let Θ be a multiplier on Sp(X) associated with symbol m(z)

satisfying m(z) ̸= 0 for all z ∈ Sp. Suppose that {f−k}k∈Z+ is a bi-infinite
sequence of functions on X satisfying

∥f−k∥Lp′,∞(X) ≤ M and Θf−k = A f−k+1, for all k ∈ N.

Assume further that

(a) |A| = max{|m(z)| : z ∈ Sp}.

(b) The range of m intersects {w ∈ C : |w | = |A|} at finitely many distinct
points A1, . . . ,Aj .

Then f0 can be uniquely written as

f0 = f0,1 + f0,2 + · · ·+ f0,j ,

for some f0,i ∈ Lp′,∞(X), satisfying

Θf0,i = Ai f0,i , for all i = 1, . . . , j .

24



I
Functions of the Laplacian

Question
Can we further decompose the eigenfunctions of the multiplier Θ to
eigenfunctions of the Laplacian L on X ?

I YES ! If the multipliers are functions of the Laplacian.

I Let Ψ be a nonconstant holomorphic function defined on a connected
open set containing γ(Sp).

I Then, Ψ ◦ γ is in H(Sp).

I Hence, Ψ ◦ γ corresponds to a multiplier on Sp(X), which will be denoted
by Ψ(L).

I Key examples : Polynomials of L, the spherical and the ball averages on
X, the heat operator on X.
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I
Strichartz’s theorem for Ψ(L) I

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

For 1 ≤ p < 2. Let Ψ(L) be a multiplier on Sp(X) associated with the
symbol Ψ ◦ γ. Suppose that {fk}k∈Z is a bi-infinite sequence of functions on
X satisfying

∥fk∥Lp′,∞(X) ≤ M and Ψ(L)fk = A fk+1, for all k ∈ Z.

Assume further that

(a) |A| = max{|Ψ ◦ γ(z)| : z ∈ Sp}.

(b) The range of Ψ ◦ γ intersects {w ∈ C : |w | = |A|} at finitely many distinct
points.

Then f0 can be uniquely written as

f0 = f0,1 + f0,2 + · · ·+ f0,j ,

for some f0,m ∈ Lp′,∞(X), satisfying

Lf0,m = γ(αm + iδp′) f0,m, for all m = 1, . . . , j ,

where −τ/2 < αm ≤ τ/2 are distinct and |Ψ ◦ γ(αm + iδp′)| = |A|.
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I
Strichartz’s theorem for Ψ(L) II

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

For 1 ≤ p < 2. Let Ψ(L) be a multiplier on Sp(X) with symbol Ψ ◦ γ such
that Ψ ◦ γ(z) ̸= 0 for all z ∈ Sp. Suppose that {fk}k∈Z+ is a bi-infinite
sequence of functions on X satisfying

∥fk∥Lp′,∞(X) ≤ M and Ψ(L)fk = A fk+1, for all k ∈ Z+.

Assume further that

(a) |A| = min{|Ψ ◦ γ(z)| : z ∈ Sp}.

(b) The range of Ψ ◦ γ intersects {w ∈ C : |w | = |A|} at finitely many distinct
points.

Then f0 can be uniquely written as

f0 = f0,1 + f0,2 + · · ·+ f0,j ,

for some f0,m ∈ Lp′,∞(X), satisfying

Lf0,m = γ(αm + iδp′) f0,m, for all m = 1, . . . , j ,

where −τ/2 < αm ≤ τ/2 are distinct and |Ψ ◦ γ(αm + iδp′)| = |A|.
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I
Strichartz’s theorem for Ψ(L) III

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

For 1 ≤ p < 2. Let Ψ(L) be a multiplier on Sp(X) with symbol Ψ ◦ γ such
that Ψ ◦ γ(z) ̸= 0 for all z ∈ Sp. Suppose that {f−k}k∈Z+ is a bi-infinite
sequence of functions on X satisfying

∥f−k∥Lp′,∞(X) ≤ M and Ψ(L)f−k = A f−k+1, for all k ∈ N.

Assume further that

(a) |A| = max{|Ψ ◦ γ(z)| : z ∈ Sp}.

(b) The range of Ψ ◦ γ intersects {w ∈ C : |w | = |A|} at finitely many distinct
points.

Then f0 can be uniquely written as

f0 = f0,1 + f0,2 + · · ·+ f0,j ,

for some f0,m ∈ Lp′,∞(X), satisfying

Lf0,m = γ(αm + iδp′) f0,m, for all m = 1, . . . , j ,

where −τ/2 < αm ≤ τ/2 are distinct and |Ψ ◦ γ(αm + iδp′)| = |A|.
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I
Notable Consequences



I
Spherical averages on X

I Let χS(o,n) denote the indicator function of the sphere S(o, n).

I The spherical average of a function f over S(x , n) is given by

Snf (x) =
1

#S(o, n)
f ∗ χS(o,n)(x) =

1
#S(o, n)

∑
y∈S(x,n)

f (y).

I Observation : S0f = f and S1f = f −Lf .

I Fact : For n ≥ 2,

Snf =
q + 1
q

Sn−1(S1f )−
1
q

Sn−2f .

I Therefore, Sn = Pn(L), where Pn is a polynomial of degree n.

I Symbol : z 7→ ϕz(n).
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I
Strichartz’s theorem for spherical averages on X

I The maximum modulus of z 7→ ϕz(n) is ϕiδp′ (n) = −ϕτ/2+iδp′
(n).

I Attained at z1 = iδp′ and z2 = τ/2 + iδp′ .

I The range of z 7→ ϕz(n) contains zero.

Corollary

Fix n ∈ N. For 1 ≤ p < 2, let {fk}k∈Z be a bi-infinite sequence of functions
on X satisfying

∥fk∥Lp′,∞(X) ≤ M and Snfk = A fk+1, for all k ∈ Z,

where A ∈ C satisfies |A| = ϕiδp′ (n). Then f0 can be uniquely written as

f0 = f0,1 + f0,2,

for some f0,1, f0,2 ∈ Lp′,∞(X) satisfying

Lf0,1 = γ(iδp′) f0,1 and Lf0,2 = γ(τ/2 + iδp′) f0,2.
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I
The heat operator on X

I For ξ ∈ C×, the complex-time heat operator Hξ is defined by

Hξf (x) = f ∗ hξ(x),

where hξ denotes the heat kernel on X.

I Symbol : ĥξ(z) = eξγ(z).

I The range of z 7→ eξγ(z) does not contains zero.

I For 1 ≤ p < 2, we define

Φp(ξ) = (1 − γ(iδp′)) · ((ℜξ)2 + tanh2(δp′ log q)(ℑξ)2)1/2.

I The maximum modulus : exp{ℜξ +Φp(ξ)}.

I The minimum modulus : exp{ℜξ − Φp(ξ)}.
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I Symbol : ĥξ(z) = eξγ(z).

I The range of z 7→ eξγ(z) does not contains zero.

I For 1 ≤ p < 2, we define

Φp(ξ) = (1 − γ(iδp′)) · ((ℜξ)2 + tanh2(δp′ log q)(ℑξ)2)1/2.

I The maximum modulus : exp{ℜξ +Φp(ξ)}.

I The minimum modulus : exp{ℜξ − Φp(ξ)}.

31



I
The heat operator on X

I For ξ ∈ C×, the complex-time heat operator Hξ is defined by

Hξf (x) = f ∗ hξ(x),

where hξ denotes the heat kernel on X.

I Symbol : ĥξ(z) = eξγ(z).

I The range of z 7→ eξγ(z) does not contains zero.

I For 1 ≤ p < 2, we define

Φp(ξ) = (1 − γ(iδp′)) · ((ℜξ)2 + tanh2(δp′ log q)(ℑξ)2)1/2.

I The maximum modulus : exp{ℜξ +Φp(ξ)}.

I The minimum modulus : exp{ℜξ − Φp(ξ)}.

31



I
The heat operator on X

I For ξ ∈ C×, the complex-time heat operator Hξ is defined by

Hξf (x) = f ∗ hξ(x),

where hξ denotes the heat kernel on X.

I Symbol : ĥξ(z) = eξγ(z).

I The range of z 7→ eξγ(z) does not contains zero.

I For 1 ≤ p < 2, we define

Φp(ξ) = (1 − γ(iδp′)) · ((ℜξ)2 + tanh2(δp′ log q)(ℑξ)2)1/2.

I The maximum modulus : exp{ℜξ +Φp(ξ)}.

I The minimum modulus : exp{ℜξ − Φp(ξ)}.
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Strichartz’s theorem for the heat operator on X

I Let βj , j = 1, 2, denote the unique points in (−τ/2, τ/2] satisfying

Φp(ξ) cosβj = (−1)jℜξ·(1−γ(iδp′)), Φp(ξ) sinβj = (−1)jℑξ·γ(τ/4+iδp′).

I Maximum and minumim modulus are attained at z1 = β1 + iδp′ and
z2 = β2 + iδp′ , respectively.

Corollary

Fix ξ ∈ C×. For 1 ≤ p < 2, let {fk}k∈Z be a bi-infinite sequence of functions
on X such that ∥fk∥Lp′,∞(X) ≤ M for all k ∈ Z.

(a) If Hξf−k = A f−k+1 for all k ∈ N, where A ∈ C satisfies |A| = exp{ℜξ +
Φp(ξ)}, then Lf0 = γ(z1)f0, where z1 = β1 + iδp′ and β1 is as above.

(b) If Hξfk = A fk+1 for all k ∈ Z+, where A ∈ C satisfies |A| = exp{ℜξ −
Φp(ξ)}, then Lf0 = γ(z2)f0, where z2 = β2 + iδp′ and β2 is as above.
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