

A theorem of Strichartz for multipliers on homogeneous trees

Sumit Kumar Rano

Indian Institute of Science Education and Research Bhopal, India

(Based on a joint work with R. P. Sarkar)

Analysis and Probability Research Group (APRG) Seminar

Department of Mathematics

Indian Institute of Science

29th January, 2025

Overview of the Talk

A Theorem of Roe and Strichartz on \mathbb{R}^n

Homogeneous Trees

Strichartz's Theorem for the Laplacian on Homogeneous Trees

Strichartz's Theorem for Multipliers on Homogeneous Trees

Notable Consequences

A Theorem of Roe and Strichartz on \mathbb{R}^n

A brief history

- **J. Roe, 1980 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$\frac{d}{dx} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.$$

A brief history

- **J. Roe, 1980 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$\frac{d}{dx} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

A brief history

- **J. Roe, 1980 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$\frac{d}{dx} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- **Observation :** Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1 .

A brief history

- **J. Roe, 1980 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$\frac{d}{dx} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- **Observation :** Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1 .
- **R. S. Strichartz, 1993 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R}^n satisfying

$$\Delta_{\mathbb{R}^n} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R}^n)} \leq M, \text{ for all } k \in \mathbb{Z}.$$

A brief history

- **J. Roe, 1980 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$\frac{d}{dx} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- **Observation :** Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1 .
- **R. S. Strichartz, 1993 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R}^n satisfying

$$\Delta_{\mathbb{R}^n} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R}^n)} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then f_0 is an eigenfunction of $\Delta_{\mathbb{R}^n}$ with eigenvalue -1 .

A brief history

- **J. Roe, 1980 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$\frac{d}{dx} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- **Observation :** Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1 .

- **R. S. Strichartz, 1993 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R}^n satisfying

$$\Delta_{\mathbb{R}^n} f_k = f_{k+1} \text{ and } \|f_k\|_{L^\infty(\mathbb{R}^n)} \leq M, \text{ for all } k \in \mathbb{Z}.$$

Then f_0 is an eigenfunction of $\Delta_{\mathbb{R}^n}$ with eigenvalue -1 .

- If $\Delta_{\mathbb{R}^n} f_k = A f_{k+1}$ for some $A \in \mathbb{C}^\times$, then $\Delta_{\mathbb{R}^n} f_0 = -|A|f_0$.

Extensions to abstract spaces

- Strichartz proved that **an exact analogue holds** for the **sublaplacian** on the Heisenberg group.

Extensions to abstract spaces

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.
- P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions of Strichartz's theorem for the Laplace-Beltrami operator on noncompact type Riemannian symmetric spaces of rank one.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.
- P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions of Strichartz's theorem for the Laplace-Beltrami operator on noncompact type Riemannian symmetric spaces of rank one.

Question

Does a precise analogue of Strichartz's theorem apply to the combinatorial Laplacian \mathcal{L} on a homogeneous tree \mathcal{X} ?

Homogeneous Trees

Homogeneous trees

- ★ A homogeneous tree \mathcal{X} of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.

Homogeneous trees

- A homogeneous tree \mathcal{X} of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- When $q = 1$, \mathcal{X} can be identified with [the group of all integers](#), whose geometric and analytic properties differ from those of higher-degree homogeneous trees.

- ★ A homogeneous tree \mathcal{X} of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- ★ When $q = 1$, \mathcal{X} can be identified with [the group of all integers](#), whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- ★ Therefore, we shall assume $q \geq 2$.

- ★ A homogeneous tree \mathcal{X} of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- ★ When $q = 1$, \mathcal{X} can be identified with **the group of all integers**, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- ★ Therefore, we shall assume $q \geq 2$.
- ★ We fix an **arbitrary reference point** o in \mathcal{X} .

- A homogeneous tree \mathcal{X} of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- When $q = 1$, \mathcal{X} can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- Therefore, we shall assume $q \geq 2$.
- We fix an arbitrary reference point o in \mathcal{X} .
- The boundary Ω is identified with the set of all infinite geodesic rays starting at o .

Pictorial representation

Homogeneous trees of degree 3 and 4 can be represented as follows:

Pictorial representation

Homogeneous trees of degree 3 and 4 can be represented as follows:

Pictorial representation

Homogeneous trees of degree 3 and 4 can be represented as follows:

(a) $q = 2$

(b) $q = 3$

The Laplacian

- \mathcal{X} is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d .

The Laplacian

- \mathcal{X} is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d .
- For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .

The Laplacian

- \mathcal{X} is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d .
- For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

$$\#B(x, n) \asymp \#S(x, n) \asymp q^n.$$

The Laplacian

- \mathcal{X} is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d .
- For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,
$$\#B(x, n) \asymp \#S(x, n) \asymp q^n.$$
- The Laplacian : Let u be a complex-valued function defined on \mathcal{X} .

The Laplacian

- \mathcal{X} is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d .
- For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

$$\#B(x, n) \asymp \#S(x, n) \asymp q^n.$$

- The Laplacian : Let u be a complex-valued function defined on \mathcal{X} .

$$\mathcal{L}u(x) = u(x) - \frac{1}{q+1} \sum_{y: d(x, y) = 1} u(y).$$

Strichartz's Theorem for \mathcal{L} on \mathcal{X}

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) \, d\nu(\omega),$$

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

- Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

- Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

- Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.
- Eigenfunction : $\mathcal{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

- Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.
- Eigenfunction : $\mathcal{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

$$\gamma(z) = 1 - \frac{q^{1/2+iz} + q^{1/2-iz}}{q+1}.$$

The elementary spherical functions

- For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x, \omega) d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

- Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.
- Eigenfunction : $\mathcal{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

$$\gamma(z) = 1 - \frac{q^{1/2+iz} + q^{1/2-iz}}{q + 1}.$$

- Fact : $\phi_z \in L^\infty(\mathcal{X})$ if and only if $z \in \mathbb{C}$ satisfies $|\Im z| \leq 1/2$.

L^∞ -point spectrum of \mathcal{L}

- * L^∞ -point spectrum of \mathcal{L} : $\{\gamma(z) : z \in \mathbb{C} \text{ and } |\Im z| \leq 1/2\}$.
- * Unlike the L^∞ -point spectrum of $\Delta_{\mathbb{R}^n}$ which is the one-dimensional interval $(-\infty, 0]$, the L^∞ -point spectrum of \mathcal{L} is an elliptic region in the complex plane centered around the point 1.

L^∞ -point spectrum of \mathcal{L}

- * L^∞ -point spectrum of \mathcal{L} : $\{\gamma(z) : z \in \mathbb{C} \text{ and } |\Im z| \leq 1/2\}$.
- * Unlike the L^∞ -point spectrum of $\Delta_{\mathbb{R}^n}$ which is the one-dimensional interval $(-\infty, 0]$, the L^∞ -point spectrum of \mathcal{L} is an elliptic region in the complex plane centered around the point 1.

Counterexample

- Choose two points z_1, z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that

$$\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$$

Counterexample

- Choose two points z_1, z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that

$$\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$$

- Consider the **doubly infinite sequence** $\{f_k\}_{k \in \mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$$

Counterexample

- Choose two points z_1, z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that

$$\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$$

- Consider the **doubly infinite sequence** $\{f_k\}_{k \in \mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$$

- $\|f_k\|_{L^\infty(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^\infty(\mathcal{X})} + \|\phi_{z_2}\|_{L^\infty(\mathcal{X})} \leq 2.$

Counterexample

- Choose two points z_1, z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that

$$\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$$

- Consider the **doubly infinite sequence** $\{f_k\}_{k \in \mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$$

- $\|f_k\|_{L^\infty(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^\infty(\mathcal{X})} + \|\phi_{z_2}\|_{L^\infty(\mathcal{X})} \leq 2.$

- $\mathcal{L}f_k(x) = \gamma(z_1)^k \mathcal{L}\phi_{z_1}(x) + \gamma(z_2)^k \mathcal{L}\phi_{z_2}(x) = f_{k+1}(x).$

Counterexample

- Choose two points z_1, z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that

$$\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$$

- Consider the **doubly infinite sequence** $\{f_k\}_{k \in \mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$$

- $\|f_k\|_{L^\infty(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^\infty(\mathcal{X})} + \|\phi_{z_2}\|_{L^\infty(\mathcal{X})} \leq 2.$

- $\mathcal{L}f_k(x) = \gamma(z_1)^k \mathcal{L}\phi_{z_1}(x) + \gamma(z_2)^k \mathcal{L}\phi_{z_2}(x) = f_{k+1}(x).$

- Therefore $\{f_k\}_{k \in \mathbb{Z}}$ **satisfies all the hypothesis** of Strichartz's theorem.

Counterexample

- Choose two points z_1, z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that

$$\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$$

- Consider the **doubly infinite sequence** $\{f_k\}_{k \in \mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$$

- $\|f_k\|_{L^\infty(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^\infty(\mathcal{X})} + \|\phi_{z_2}\|_{L^\infty(\mathcal{X})} \leq 2.$

- $\mathcal{L}f_k(x) = \gamma(z_1)^k \mathcal{L}\phi_{z_1}(x) + \gamma(z_2)^k \mathcal{L}\phi_{z_2}(x) = f_{k+1}(x).$

- Therefore $\{f_k\}_{k \in \mathbb{Z}}$ **satisfies all the hypothesis** of Strichartz's theorem.

- However, f_0 **fails to be an eigenfunction** of \mathcal{L} .

Size estimates of ϕ_z

★ **Notations for today** : Let $1 < p \leq 2$. Then

- p' denotes **the conjugate exponent** $p/(p - 1)$.
- $\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$.
- $S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}$.

Size estimates of ϕ_z

- ✿ **Notations for today** : Let $1 < p \leq 2$. Then
 - ✿ p' denotes **the conjugate exponent** $p/(p - 1)$.
 - ✿ $\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$.
 - ✿ $S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}$.
- ✿ **Assumption** : $p' = \infty$ when $p = 1$.
- ✿ $\delta_\infty = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \leq 1/2\}$.

Size estimates of ϕ_z

- ✿ **Notations for today** : Let $1 < p \leq 2$. Then
 - ✿ p' denotes **the conjugate exponent** $p/(p - 1)$.
 - ✿ $\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$.
 - ✿ $S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}$.
- ✿ **Assumption** : $p' = \infty$ when $p = 1$.
- ✿ $\delta_\infty = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \leq 1/2\}$.
- ✿ **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.

Size estimates of ϕ_z

- ✿ **Notations for today** : Let $1 < p \leq 2$. Then
 - ✿ p' denotes **the conjugate exponent** $p/(p-1)$.
 - ✿ $\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$.
 - ✿ $S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}$.
- ✿ **Assumption** : $p' = \infty$ when $p = 1$.
- ✿ $\delta_\infty = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \leq 1/2\}$.
- ✿ **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- ✿ **Weak L^p -estimates of ϕ_z** :

Size estimates of ϕ_z

- ⊕ **Notations for today** : Let $1 < p \leq 2$. Then
 - ⊕ p' denotes **the conjugate exponent** $p/(p-1)$.
 - ⊕ $\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$.
 - ⊕ $S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}$.
- ⊕ **Assumption** : $p' = \infty$ when $p = 1$.
- ⊕ $\delta_\infty = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \leq 1/2\}$.
- ⊕ **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- ⊕ **Weak L^p -estimates of ϕ_z** :
 - ⊕ For $1 \leq p < 2$, $\phi_z \in L^{p', \infty}(\mathcal{X})$ if and only if $z \in S_p$.

Size estimates of ϕ_z

- ⊕ **Notations for today** : Let $1 < p \leq 2$. Then
 - ⊕ p' denotes **the conjugate exponent** $p/(p-1)$.
 - ⊕ $\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$.
 - ⊕ $S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}$.
- ⊕ **Assumption** : $p' = \infty$ when $p = 1$.
- ⊕ $\delta_\infty = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \leq 1/2\}$.
- ⊕ **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- ⊕ **Weak L^p -estimates of ϕ_z** :
 - ⊕ For $1 \leq p < 2$, $\phi_z \in L^{p', \infty}(\mathcal{X})$ if and only if $z \in S_p$.
 - ⊕ $\phi_z \in L^{2, \infty}(\mathcal{X})$ if and only if $z \in \mathbb{R} \setminus (\tau/2)\mathbb{Z}$.

$L^{p',\infty}$ -point spectrum of \mathcal{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of \mathcal{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of \mathcal{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of \mathcal{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of \mathcal{L} , for $1 \leq p \leq 2$

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^\infty(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_\infty)$. Then $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_\infty)f_0$.

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^\infty(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_\infty)$. Then $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_\infty)f_0$.

- **S. K. Rano, 2022 :** Let $1 < p < 2$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathcal{X} such that $\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M$, for all $k \in \mathbb{Z}$.

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^\infty(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_\infty)$. Then $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_\infty)f_0$.

- **S. K. Rano, 2022 :** Let $1 < p < 2$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathcal{X} such that $\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M$, for all $k \in \mathbb{Z}$.

- If $\mathcal{L}f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(i\delta_{p'})$, then $\mathcal{L}f_0 = \gamma(i\delta_{p'})f_0$.

Strichartz's theorem for \mathcal{L}

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^\infty(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_\infty)$. Then $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_\infty)f_0$.

- **S. K. Rano, 2022 :** Let $1 < p < 2$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathcal{X} such that $\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M$, for all $k \in \mathbb{Z}$.

- If $\mathcal{L}f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(i\delta_{p'})$, then $\mathcal{L}f_0 = \gamma(i\delta_{p'})f_0$.
- If $\mathcal{L}f_{-k} = A f_{-k+1}$ for all $k \in \mathbb{N}$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{p'})$, then $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.

The case $p = 2$

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{2,\infty}(\mathcal{X})} \leq M \quad \text{and} \quad \mathcal{L}f_k = A f_{k+1}, \quad \text{for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ is such that

$$|A| \in (1 - b, 1 + b), \quad b = \frac{2\sqrt{q}}{q + 1},$$

then $\mathcal{L}f_0 = |A|f_0$.

The case $p = 2$

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{2,\infty}(\mathcal{X})} \leq M \quad \text{and} \quad \mathcal{L}f_k = A f_{k+1}, \quad \text{for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ is such that

$$|A| \in (1 - b, 1 + b), \quad b = \frac{2\sqrt{q}}{q + 1},$$

then $\mathcal{L}f_0 = |A|f_0$.

Question

What happens if we replace \mathcal{L} with polynomials of \mathcal{L} , the spherical averages on \mathcal{X} , or the heat operator on \mathcal{X} ?

The case $p = 2$

- **S. K. Rano, 2022 :** Let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{2,\infty}(\mathcal{X})} \leq M \quad \text{and} \quad \mathcal{L}f_k = A f_{k+1}, \quad \text{for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ is such that

$$|A| \in (1 - b, 1 + b), \quad b = \frac{2\sqrt{q}}{q + 1},$$

then $\mathcal{L}f_0 = |A|f_0$.

Question

What happens if we replace \mathcal{L} with polynomials of \mathcal{L} , the spherical averages on \mathcal{X} , or the heat operator on \mathcal{X} ?

- We shall specifically focus on extending the above results for multipliers when $1 \leq p < 2$.

Strichartz's Theorem for Multipliers

- The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.$$

- The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.$$

- Symmetry and Periodicity : $\widehat{f}(z) = \widehat{f}(-z) = \widehat{f}(z + \tau)$.

- The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.$$

- Symmetry and Periodicity : $\widehat{f}(z) = \widehat{f}(-z) = \widehat{f}(z + \tau)$.
- The Helgason-Fourier transform \widetilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$\widetilde{f}(z, \omega) = \sum_{x \in \mathcal{X}} f(x) p^{1/2+iz}(x, \omega).$$

- The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.$$

- Symmetry and Periodicity : $\widehat{f}(z) = \widehat{f}(-z) = \widehat{f}(z + \tau)$.
- The Helgason-Fourier transform \widetilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$\widetilde{f}(z, \omega) = \sum_{x \in \mathcal{X}} f(x) p^{1/2+iz}(x, \omega).$$

- Periodicity : $\widetilde{f}(z, \omega) = \widetilde{f}(z + \tau, \omega)$.

- The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.$$

- Symmetry and Periodicity : $\widehat{f}(z) = \widehat{f}(-z) = \widehat{f}(z + \tau)$.
- The Helgason-Fourier transform \widetilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$\widetilde{f}(z, \omega) = \sum_{x \in \mathcal{X}} f(x) p^{1/2+iz}(x, \omega).$$

- Periodicity : $\widetilde{f}(z, \omega) = \widetilde{f}(z + \tau, \omega)$.
- If f is radial, then $\widetilde{f}(z, \omega) = \widehat{f}(z)$, for all $\omega \in \Omega$.

L^p -Schwartz spaces on \mathcal{X} , $1 \leq p \leq 2$

- **Schwartz spaces $\mathcal{S}_p(\mathcal{X})$** : Space of all functions ϕ on \mathcal{X} for which

$$\nu_{p,m}(\phi) = \sup_{x \in \mathcal{X}} (1 + |x|)^m q^{|x|/p} |\phi(x)| < \infty, \quad \text{for all } m \in \mathbb{Z}_+.$$

L^p -Schwartz spaces on \mathcal{X} , $1 \leq p \leq 2$

- **Schwartz spaces $\mathcal{S}_p(\mathcal{X})$** : Space of all functions ϕ on \mathcal{X} for which

$$\nu_{p,m}(\phi) = \sup_{x \in \mathcal{X}} (1 + |x|)^m q^{|x|/p} |\phi(x)| < \infty, \quad \text{for all } m \in \mathbb{Z}_+.$$

- $\mathcal{S}_p(\mathcal{X})$ forms a **Fréchet space** w.r.t. the **countable semi-norms** $\nu_{p,m}(\cdot)$.

- **Schwartz spaces $\mathcal{S}_p(\mathcal{X})$** : Space of all functions ϕ on \mathcal{X} for which

$$\nu_{p,m}(\phi) = \sup_{x \in \mathcal{X}} (1 + |x|)^m \, q^{|x|/p} \, |\phi(x)| < \infty, \quad \text{for all } m \in \mathbb{Z}_+.$$

- $\mathcal{S}_p(\mathcal{X})$ forms a **Fréchet space** w.r.t. the **countable semi-norms** $\nu_{p,m}(\cdot)$.

Definition

Let m be an even, τ -periodic, bounded measurable function on \mathbb{R} . An operator Θ defined as

$$\Theta f(x) = c_{\mathcal{X}} \int_{\mathbb{T}} \int_{\Omega} m(z) \, \tilde{f}(z, \omega) \, p^{1/2-iz}(x, \omega) \, |c(z)|^{-2} \, d\nu(\omega) \, dz,$$

is said to be a **multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$** if, for every semi-norm $\nu_{p,m_2}(\cdot)$ of $\mathcal{S}_p(\mathcal{X})$, there exists a semi-norm $\nu_{p,m_1}(\cdot)$ of $\mathcal{S}_p(\mathcal{X})$ and a constant $C_{m_1, m_2} > 0$ such that

$$\nu_{p,m_2}(\Theta f) \leq C_{m_1, m_2} \, \nu_{p,m_1}(f), \quad \text{for all } f \in \mathcal{S}_p(\mathcal{X}).$$

Characterization of multipliers on the Schwartz spaces

- * The space $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \rightarrow \mathbb{C}$ which satisfy the following properties:

Characterization of multipliers on the Schwartz spaces

- * The space $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \rightarrow \mathbb{C}$ which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .

Characterization of multipliers on the Schwartz spaces

- * The space $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \rightarrow \mathbb{C}$ which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .
 - * ψ is analytic in the interior of S_p .

Characterization of multipliers on the Schwartz spaces

- * The space $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \rightarrow \mathbb{C}$ which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .
 - * ψ is analytic in the interior of S_p .
 - * ψ and all its derivatives extend continuously on the boundary of S_p .

Characterization of multipliers on the Schwartz spaces

- * The space $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \rightarrow \mathbb{C}$ which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .
 - * ψ is analytic in the interior of S_p .
 - * ψ and all its derivatives extend continuously on the boundary of S_p .

Proposition (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

Let $1 \leq p < 2$. Then the following are equivalent.

- (a) The operator Θ is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$.
- (b) m is in $\mathcal{H}(S_p)$.

Important examples of multipliers

- The Laplacian \mathcal{L} is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.

Important examples of multipliers

- The Laplacian \mathcal{L} is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.
- For any polynomial P , $P(\mathcal{L})$ is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $P \circ \gamma(z)$.

Important examples of multipliers

- The Laplacian \mathcal{L} is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $\gamma(z)$.
- For any polynomial P , $P(\mathcal{L})$ is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $P \circ \gamma(z)$.
- For every $\xi \in \mathbb{C}$, the complex-time heat operator $e^{\xi \mathcal{L}}$ defines a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $e^{\xi \gamma(z)}$.

Important examples of multipliers

- The Laplacian \mathcal{L} is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $\gamma(z)$.
- For any polynomial P , $P(\mathcal{L})$ is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $P \circ \gamma(z)$.
- For every $\xi \in \mathbb{C}$, the complex-time heat operator $e^{\xi \mathcal{L}}$ defines a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $e^{\xi \gamma(z)}$.
- The spherical averaging operators \mathcal{S}_n is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $\phi_z(n)$.

Important examples of multipliers

- The Laplacian \mathcal{L} is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $\gamma(z)$.
- For any polynomial P , $P(\mathcal{L})$ is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $P \circ \gamma(z)$.
- For every $\xi \in \mathbb{C}$, the complex-time heat operator $e^{\xi \mathcal{L}}$ defines a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $e^{\xi \gamma(z)}$.
- The spherical averaging operators \mathcal{S}_n is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $\phi_z(n)$.
- The ball averaging operators \mathcal{B}_n is a **multiplier** on $\mathcal{S}_p(\mathcal{X})$ with **symbol** $\psi_z(n)$, where

$$\psi_z(n) = \frac{1}{\#B(o, n)} \sum_{j=0}^n \#S(o, j) \phi_z(j), \quad \text{for all } n \in \mathbb{Z}_+.$$

Strichartz's theorem on \mathcal{L} revisited

- ★ Assume $1 < p < 2$.

Strichartz's theorem on \mathcal{L} revisited

- ★ Assume $1 < p < 2$.
- ★ Recall : The Laplacian \mathcal{L} is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.

- Assume $1 < p < 2$.
- Recall : The Laplacian \mathcal{L} is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.
- The $L^{p',\infty}$ -point spectrum of \mathcal{L} is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .

- Assume $1 < p < 2$.
- Recall : The Laplacian \mathcal{L} is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.
- The $L^{p',\infty}$ -point spectrum of \mathcal{L} is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- **Strichartz's theorem** : Let $\{f_k\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}_+,$$

- Assume $1 < p < 2$.
- Recall : The Laplacian \mathcal{L} is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.
- The $L^{p',\infty}$ -point spectrum of \mathcal{L} is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- **Strichartz's theorem** : Let $\{f_k\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}_+,$$

where $A \in \mathbb{C}^\times$ satisfies

$$|A| = \min\{|\gamma(z)| : z \in S_p\} = \gamma(i\delta_{p'}).$$

Strichartz's theorem on \mathcal{L} revisited

- ★ Assume $1 < p < 2$.
- ★ Recall : The Laplacian \mathcal{L} is a **multiplier on $\mathcal{S}_p(\mathcal{X})$** with **symbol $\gamma(z)$** .
- ★ The $L^{p',\infty}(\mathcal{X})$ -point spectrum of \mathcal{L} is the **range of the holomorphic map $z \mapsto \gamma(z)$** with domain S_p .
- ★ **Strichartz's theorem** : Let $\{f_k\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}_+,$$

where $A \in \mathbb{C}^\times$ satisfies

$$|A| = \min\{|\gamma(z)| : z \in S_p\} = \gamma(i\delta_{p'}).$$

- ★ **Observation** : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at **only one point**, namely, $\gamma(i\delta_{p'})$.

- Strichartz's theorem : Let $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N},$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- **Strichartz's theorem :** Let $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N},$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- **Observation :** The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at **only one point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.

- Strichartz's theorem : Let $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p', \infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N},$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at **only one point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.
- Conclusion : $\mathcal{L}f_0 = \gamma(i\delta_{p'})f_0$ or $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.

- Strichartz's theorem : Let $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N},$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at **only one point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.
- Conclusion : $\mathcal{L}f_0 = \gamma(i\delta_{p'})f_0$ or $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.
- General Set-Up : Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$. Suppose that $A \in \mathbb{C}^\times$ satisfies

$$|A| = \max\{|m(z)| : z \in S_p\}.$$

- Strichartz's theorem : Let $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \mathcal{L}f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N},$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at **only one point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.
- Conclusion : $\mathcal{L}f_0 = \gamma(i\delta_{p'})f_0$ or $\mathcal{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.
- General Set-Up : Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$. Suppose that $A \in \mathbb{C}^\times$ satisfies

$$|A| = \max\{|m(z)| : z \in S_p\}.$$

- Difficulty : The range of m may intersect $\{w \in \mathbb{C} : |w| = |A|\}$ at **more than one point**.

Pictorial representation

★ Multiplier : $I - \mathcal{L}$.

Symbol : $m(z) = 1 - \gamma(z)$.

Pictorial representation

★ Multiplier : $I - \mathcal{L}$.

Symbol : $m(z) = 1 - \gamma(z)$.

Strichartz's theorem for multipliers I

Theorem (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

Let $1 \leq p < 2$. Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$ satisfying $m(z) \neq 0$ for some $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Theta f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}.$$

Assume further that

- $|A| = \max\{|m(z)| : z \in S_p\}$.
- The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \dots, A_j .

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \dots + f_{0,j},$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\Theta f_{0,i} = A_i f_{0,i}, \text{ for all } i = 1, \dots, j.$$

Strichartz's theorem for multipliers II

Theorem (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

Let $1 \leq p < 2$. Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ associated with symbol $m(z)$ satisfying $m(z) \neq 0$ for all $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Theta f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}_+.$$

Assume further that

- $|A| = \min\{|m(z)| : z \in S_p\}$.
- The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \dots, A_j .

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \dots + f_{0,j},$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\Theta f_{0,i} = A_i f_{0,i}, \text{ for all } i = 1, \dots, j.$$

Strichartz's theorem for multipliers III

Theorem (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

Let $1 \leq p < 2$. Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ associated with symbol $m(z)$ satisfying $m(z) \neq 0$ for all $z \in S_p$. Suppose that $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Theta f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N}.$$

Assume further that

- $|A| = \max\{|m(z)| : z \in S_p\}$.
- The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \dots, A_j .

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \dots + f_{0,j},$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\Theta f_{0,i} = A_i f_{0,i}, \text{ for all } i = 1, \dots, j.$$

Question

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathcal{L} on \mathcal{X} ?

Question

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathcal{L} on \mathcal{X} ?

- ✿ YES ! If the multipliers are **functions of the Laplacian**.

Question

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathcal{L} on \mathcal{X} ?

- ✖ YES ! If the multipliers are **functions of the Laplacian**.
- ✖ Let Ψ be a **nonconstant holomorphic function** defined on a connected open set containing $\gamma(S_p)$.
- ✖ Then, $\Psi \circ \gamma$ is in $\mathcal{H}(S_p)$.
- ✖ Hence, $\Psi \circ \gamma$ corresponds to a **multiplier on $\mathcal{S}_p(\mathcal{X})$** , which will be **denoted by $\Psi(\mathcal{L})$** .

Question

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathcal{L} on \mathcal{X} ?

- ✖ YES ! If the multipliers are **functions of the Laplacian**.
- ✖ Let Ψ be a **nonconstant holomorphic function** defined on a connected open set containing $\gamma(S_p)$.
- ✖ Then, $\Psi \circ \gamma$ is in $\mathcal{H}(S_p)$.
- ✖ Hence, $\Psi \circ \gamma$ corresponds to a **multiplier on $\mathcal{S}_p(\mathcal{X})$** , which will be **denoted by $\Psi(\mathcal{L})$** .
- ✖ **Key examples** : Polynomials of \mathcal{L} , the spherical and the ball averages on \mathcal{X} , the heat operator on \mathcal{X} .

Strichartz's theorem for $\Psi(\mathcal{L})$ I

Theorem (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

For $1 \leq p < 2$. Let $\Psi(\mathcal{L})$ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ associated with the symbol $\Psi \circ \gamma$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Psi(\mathcal{L})f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}.$$

Assume further that

- $|A| = \max\{|\Psi \circ \gamma(z)| : z \in S_p\}$.
- The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,m} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\mathcal{L}f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) f_{0,m}, \text{ for all } m = 1, \dots, j,$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{p'})| = |A|$.

Strichartz's theorem for $\Psi(\mathcal{L})$ II

Theorem (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

For $1 \leq p < 2$. Let $\Psi(\mathcal{L})$ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\Psi \circ \gamma$ such that $\Psi \circ \gamma(z) \neq 0$ for all $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Psi(\mathcal{L})f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}_+.$$

Assume further that

- $|A| = \min\{|\Psi \circ \gamma(z)| : z \in S_p\}$.
- The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,m} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\mathcal{L}f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) f_{0,m}, \text{ for all } m = 1, \dots, j,$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{p'})| = |A|$.

Strichartz's theorem for $\Psi(\mathcal{L})$ III

Theorem (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

For $1 \leq p < 2$. Let $\Psi(\mathcal{L})$ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $\Psi \circ \gamma$ such that $\Psi \circ \gamma(z) \neq 0$ for all $z \in S_p$. Suppose that $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Psi(\mathcal{L})f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N}.$$

Assume further that

- (a) $|A| = \max\{|\Psi \circ \gamma(z)| : z \in S_p\}$.
- (b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,m} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\mathcal{L}f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) f_{0,m}, \text{ for all } m = 1, \dots, j,$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{p'})| = |A|$.

Notable Consequences

Spherical averages on \mathcal{X}

- Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o, n)$.

Spherical averages on \mathcal{X}

- Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o, n)$.
- The spherical average of a function f over $S(x, n)$ is given by

$$\mathcal{S}_n f(x) = \frac{1}{\#S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\#S(o, n)} \sum_{y \in S(x, n)} f(y).$$

Spherical averages on \mathcal{X}

- Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- The spherical average of a function f over $S(x,n)$ is given by

$$\mathcal{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

- Observation :** $\mathcal{S}_0 f = f$ and $\mathcal{S}_1 f = f - \mathcal{L}f$.

Spherical averages on \mathcal{X}

- Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- The spherical average of a function f over $S(x,n)$ is given by

$$\mathcal{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

- Observation :** $\mathcal{S}_0 f = f$ and $\mathcal{S}_1 f = f - \mathcal{L}f$.
- Fact :** For $n \geq 2$,

$$\mathcal{S}_n f = \frac{q+1}{q} \mathcal{S}_{n-1}(\mathcal{S}_1 f) - \frac{1}{q} \mathcal{S}_{n-2} f.$$

Spherical averages on \mathcal{X}

- Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o, n)$.
- The spherical average of a function f over $S(x, n)$ is given by

$$\mathcal{S}_n f(x) = \frac{1}{\#S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\#S(o, n)} \sum_{y \in S(x, n)} f(y).$$

- Observation :** $\mathcal{S}_0 f = f$ and $\mathcal{S}_1 f = f - \mathcal{L}f$.
- Fact :** For $n \geq 2$,

$$\mathcal{S}_n f = \frac{q+1}{q} \mathcal{S}_{n-1}(\mathcal{S}_1 f) - \frac{1}{q} \mathcal{S}_{n-2} f.$$

- Therefore, $\mathcal{S}_n = P_n(\mathcal{L})$, where P_n is a polynomial of degree n .

Spherical averages on \mathcal{X}

- Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o, n)$.
- The spherical average of a function f over $S(x, n)$ is given by

$$\mathcal{S}_n f(x) = \frac{1}{\#S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\#S(o, n)} \sum_{y \in S(x, n)} f(y).$$

- Observation :** $\mathcal{S}_0 f = f$ and $\mathcal{S}_1 f = f - \mathcal{L}f$.
- Fact :** For $n \geq 2$,

$$\mathcal{S}_n f = \frac{q+1}{q} \mathcal{S}_{n-1}(\mathcal{S}_1 f) - \frac{1}{q} \mathcal{S}_{n-2} f.$$

- Therefore, $\mathcal{S}_n = P_n(\mathcal{L})$, where P_n is a polynomial of degree n .
- Symbol :** $z \mapsto \phi_z(n)$.

Strichartz's theorem for spherical averages on \mathcal{X}

- The maximum modulus of $z \mapsto \phi_z(n)$ is $\phi_{i\delta_{p'}}(n) = -\phi_{\tau/2+i\delta_{p'}}(n)$.
- Attained at $z_1 = i\delta_{p'}$ and $z_2 = \tau/2 + i\delta_{p'}$.
- The range of $z \mapsto \phi_z(n)$ contains zero.

Corollary

Fix $n \in \mathbb{N}$. For $1 \leq p < 2$, let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M \quad \text{and} \quad \mathcal{S}_n f_k = A f_{k+1}, \quad \text{for all } k \in \mathbb{Z},$$

where $A \in \mathbb{C}$ satisfies $|A| = \phi_{i\delta_{p'}}(n)$. Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2},$$

for some $f_{0,1}, f_{0,2} \in L^{p',\infty}(\mathcal{X})$ satisfying

$$\mathcal{S} f_{0,1} = \gamma(i\delta_{p'}) f_{0,1} \quad \text{and} \quad \mathcal{S} f_{0,2} = \gamma(\tau/2 + i\delta_{p'}) f_{0,2}.$$

The heat operator on \mathcal{X}

- For $\xi \in \mathbb{C}^\times$, the complex-time heat operator \mathcal{H}_ξ is defined by

$$\mathcal{H}_\xi f(x) = f * h_\xi(x),$$

where h_ξ denotes the heat kernel on \mathcal{X} .

The heat operator on \mathcal{X}

- For $\xi \in \mathbb{C}^\times$, the complex-time heat operator \mathcal{H}_ξ is defined by

$$\mathcal{H}_\xi f(x) = f * h_\xi(x),$$

where h_ξ denotes the heat kernel on \mathcal{X} .

- Symbol : $\widehat{h}_\xi(z) = e^{\xi\gamma(z)}$.

The heat operator on \mathcal{X}

- For $\xi \in \mathbb{C}^\times$, the complex-time heat operator \mathcal{H}_ξ is defined by

$$\mathcal{H}_\xi f(x) = f * h_\xi(x),$$

where h_ξ denotes the heat kernel on \mathcal{X} .

- Symbol : $\widehat{h}_\xi(z) = e^{\xi\gamma(z)}$.
- The range of $z \mapsto e^{\xi\gamma(z)}$ does not contain zero.

The heat operator on \mathcal{X}

- For $\xi \in \mathbb{C}^\times$, the complex-time heat operator \mathcal{H}_ξ is defined by

$$\mathcal{H}_\xi f(x) = f * h_\xi(x),$$

where h_ξ denotes the heat kernel on \mathcal{X} .

- Symbol : $\widehat{h}_\xi(z) = e^{\xi\gamma(z)}$.
- The range of $z \mapsto e^{\xi\gamma(z)}$ does not contain zero.
- For $1 \leq p < 2$, we define

$$\Phi_p(\xi) = (1 - \gamma(i\delta_{p'})) \cdot ((\Re \xi)^2 + \tanh^2(\delta_{p'} \log q)(\Im \xi)^2)^{1/2}.$$

The heat operator on \mathcal{X}

- For $\xi \in \mathbb{C}^\times$, the complex-time heat operator \mathcal{H}_ξ is defined by

$$\mathcal{H}_\xi f(x) = f * h_\xi(x),$$

where h_ξ denotes the heat kernel on \mathcal{X} .

- Symbol : $\widehat{h}_\xi(z) = e^{\xi\gamma(z)}$.
- The range of $z \mapsto e^{\xi\gamma(z)}$ does not contain zero.
- For $1 \leq p < 2$, we define

$$\Phi_p(\xi) = (1 - \gamma(i\delta_{p'})) \cdot ((\Re\xi)^2 + \tanh^2(\delta_{p'} \log q)(\Im\xi)^2)^{1/2}.$$

- The maximum modulus : $\exp\{\Re\xi + \Phi_p(\xi)\}$.
- The minimum modulus : $\exp\{\Re\xi - \Phi_p(\xi)\}$.

Strichartz's theorem for the heat operator on \mathcal{X}

- Let $\beta_j, j = 1, 2$, denote the unique points in $(-\tau/2, \tau/2]$ satisfying

$$\Phi_p(\xi) \cos \beta_j = (-1)^j \Re \xi \cdot (1 - \gamma(i\delta_{p'})), \quad \Phi_p(\xi) \sin \beta_j = (-1)^j \Im \xi \cdot \gamma(\tau/4 + i\delta_{p'}).$$

- Maximum and minimum modulus are attained at $z_1 = \beta_1 + i\delta_{p'}$ and $z_2 = \beta_2 + i\delta_{p'}$, respectively.

Corollary

Fix $\xi \in \mathbb{C}^\times$. For $1 \leq p < 2$, let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} such that $\|f_k\|_{L^{p', \infty}(\mathcal{X})} \leq M$ for all $k \in \mathbb{Z}$.

- If $\mathcal{H}_\xi f_{-k} = A f_{-k+1}$ for all $k \in \mathbb{N}$, where $A \in \mathbb{C}$ satisfies $|A| = \exp\{\Re \xi + \Phi_p(\xi)\}$, then $\mathcal{L} f_0 = \gamma(z_1) f_0$, where $z_1 = \beta_1 + i\delta_{p'}$ and β_1 is as above.
- If $\mathcal{H}_\xi f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \exp\{\Re \xi - \Phi_p(\xi)\}$, then $\mathcal{L} f_0 = \gamma(z_2) f_0$, where $z_2 = \beta_2 + i\delta_{p'}$ and β_2 is as above.

References

- S. Bagchi, A. Kumar and S. Sen
Roe-Strichartz theorem on two-step nilpotent Lie groups
Math. Nachr., 296 (7): 2691–2700, 2023.
- R. Howard and M. Reese
Characterization of eigenfunctions by boundedness conditions
Canad. Math. Bull., 35 (2): 204–213, 1992.
- P. Kumar, S. K. Ray and R. P. Sarkar
Characterization of almost L^p -eigenfunctions of the Laplace-Beltrami operator
Trans. Amer. Math. Soc., 366 (6): 3191–3225, 2014.
- M. Naik and R. P. Sarkar
Characterization of eigenfunctions of the Laplace-Beltrami operator using Fourier multipliers
J. Funct. Anal., 279 (11): 108737, 43 pp., 2020.

References

- **S. K. Rano**
A theorem of Roe and Strichartz on homogeneous trees
Forum Math., 34 (1): 115–136, 2022.
- **S. K. Rano and R. P. Sarkar**
A theorem of Strichartz for multipliers on homogeneous trees
Math. Z., 309 (1): Paper No. 2, 2025.
- **J. Roe**
A characterization of the sine function
Math. Proc. Cambridge Philos. Soc., 87 (1): 69–73, 1980.
- **R. S. Strichartz**
Characterization of eigenfunctions of the Laplacian by boundedness conditions
Trans. Amer. Math. Soc., 338 (2): 971–979, 1993.

Thank You !