liers on homogeneous trees

Rano

and Research Bhopal, India

th R. P. Sarkar)

Sroup (APRG) Seminar

nematics

Science

025 A theorem of Strichartz for multipliers on homogeneous trees

Sumit Kumar Rano

Indian Institute of Science Education and Research Bhopal, India

(Based on a joint work with R. P. Sarkar)

Analysis and Probability Research Group (APRG) Seminar

Department of Mathematics

Indian Institute of Science

29th January, 2025

[A Theorem of Roe and Strichartz on](#page-2-0) \mathbb{R}^n

[Homogeneous Trees](#page-14-0)

omogeneous Trees
ogeneous Trees
2 [Strichartz's Theorem for the Laplacian on Homogeneous Trees](#page-28-0)

[Strichartz's Theorem for Multipliers on Homogeneous Trees](#page-62-0)

[Notable Consequences](#page-104-0)

Strichartz on \mathbb{R}^n [A Theorem of Roe and Strichartz on](#page-2-0) \mathbb{R}^n

A brief history

■ J. Roe, 1980 : Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on R such that

$$
\frac{d}{dx}f_k = f_{k+1} \text{ and } \|f_k\|_{L^{\infty}(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.
$$

A brief history

***** J. Roe, 1980 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on R such that

$$
\frac{d}{dx}f_k = f_{k+1} \text{ and } ||f_k||_{L^{\infty}(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.
$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

infinite sequence of functions on
 $\lambda(x) \leq M$, for all $k \in \mathbb{Z}$.

R.

Zes eigenfunction of the operator
 $\lambda(x) = \lambda(x) + \lambda(x)$ **I. Roe, 1980** : Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on R such that

$$
\frac{d}{dx}f_k = f_{k+1} \text{ and } ||f_k||_{L^{\infty}(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.
$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

* Observation : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.

infinite sequence of functions on
 λ_k) $\leq M$, for all $k \in \mathbb{Z}$.

R.

Zes eigenfunction of the operator

a doubly infinite sequence of
 λ_k ⁿ) $\leq M$, for all $k \in \mathbb{Z}$. **E** J. Roe, 1980 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on R such that

$$
\frac{d}{dx}f_k = f_{k+1} \text{ and } ||f_k||_{L^{\infty}(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.
$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- \bullet Observation : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.
- **E** R. S. Strichartz, 1993 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R}^n satisfying

 $\Delta_{\mathbb{R}^n} f_k = f_{k+1}$ and $||f_k||_{L^{\infty}(\mathbb{R}^n)} \leq M$, for all $k \in \mathbb{Z}$.

infinite sequence of functions on
 λ_k) $\leq M$, for all $k \in \mathbb{Z}$.

R.

Zes eigenfunction of the operator

a doubly infinite sequence of
 λ_k ⁿ) $\leq M$, for all $k \in \mathbb{Z}$.

eigenvalue -1 . **I. Roe, 1980** : Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on R such that

$$
\frac{d}{dx}f_k = f_{k+1} \text{ and } ||f_k||_{L^{\infty}(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.
$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- \bullet Observation : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.
- **E** R. S. Strichartz, 1993 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R}^n satisfying

 $\Delta_{\mathbb{R}^n} f_k = f_{k+1}$ and $||f_k||_{L^{\infty}(\mathbb{R}^n)} \leq M$, for all $k \in \mathbb{Z}$.

Then f_0 is an eigenfunction of $\Delta_{\mathbb{R}^n}$ with eigenvalue -1.

infinite sequence of functions on
 λ_k) $\leq M$, for all $k \in \mathbb{Z}$.

R.

zes eigenfunction of the operator

a doubly infinite sequence of
 λ_k
 λ_k of $\leq M$, for all $k \in \mathbb{Z}$.

a eigenvalue -1 .

eigenvalue $-$ **I. Roe, 1980** : Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on R such that

$$
\frac{d}{dx}f_k = f_{k+1} \text{ and } ||f_k||_{L^{\infty}(\mathbb{R})} \leq M, \text{ for all } k \in \mathbb{Z}.
$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- \bullet Observation : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.
- **E** R. S. Strichartz, 1993 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R}^n satisfying

 $\Delta_{\mathbb{R}^n} f_k = f_{k+1}$ and $||f_k||_{L^{\infty}(\mathbb{R}^n)} \leq M$, for all $k \in \mathbb{Z}$.

Then f_0 is an eigenfunction of $\Delta_{\mathbb{R}^n}$ with eigenvalue -1.

■ If $\Delta_{\mathbb{R}^n} f_k = A f_{k+1}$ for some $A \in \mathbb{C}^\times$, then $\Delta_{\mathbb{R}^n} f_0 = -|A| f_0$.

re holds for the sublaplacian on the **Exerchartz** proved that an exact analogue holds for the sublaplacian on the Heisenberg group.

- \bullet Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- * S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.

- e holds for the sublaplacian on the

I) extended this result to

Ilpotent Lie groups.

Intervalse that an exact analogue

Intervalse 3-space. \bullet Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- * S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- * Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.

- \bullet Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- * S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- * Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.
- e holds for the sublaplacian on the

(i) extended this result to

(ilpotent Lie groups.

rexamples that an exact analogue

lic 3-space.

(2014) provided modified versions

Beltrami operator on noncompact

ank one. [★] P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions of Strichartz's theorem for the Laplace-Beltrami operator on noncompact type Riemannian symmetric spaces of rank one.

- \bullet Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- ^{*} S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- * Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.
- e holds for the sublaplacian on the

(i) extended this result to

(ilpotent Lie groups.

rexamples that an exact analogue

lic 3-space.

(2014) provided modified versions

Beltrami operator on noncompact

ank one.

orem ap [★] P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions of Strichartz's theorem for the Laplace-Beltrami operator on noncompact type Riemannian symmetric spaces of rank one.

Question

Does a precise analogue of Strichartz's theorem apply to the combinatorial Laplacian $\mathscr L$ on a homogeneous tree $\mathscr X$?

[Homogeneous Trees](#page-14-0)

I

A homogeneous tree X of degree $q+1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.

- A homogeneous tree X of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- is a connected graph with no loops

I other vertices.

the group of all integers, whose

from those of higher-degree

states of the state of the \bullet When $q = 1$, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- A homogeneous tree X of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- is a connected graph with no loops

I other vertices.

the group of all integers, whose

from those of higher-degree

states of the state of the \bullet When $q = 1$, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- \blacktriangleright Therefore, we shall assume $q > 2$.
- A homogeneous tree X of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- is a connected graph with no loops

I other vertices.

the group of all integers, whose

from those of higher-degree

2. \bullet When $q = 1$, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- \blacktriangleright Therefore, we shall assume $q > 2$.
- \bullet We fix an arbitrary reference point o in \mathcal{X} .
- A homogeneous tree X of degree $q + 1$ is a connected graph with no loops in which every vertex is adjacent to $q + 1$ other vertices.
- is a connected graph with no loops

I other vertices.

the group of all integers, whose

from those of higher-degree
 $\mathcal X$.
 $\mathcal X$.

et of all infinite geodesic rays \bullet When $q = 1$, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- \blacktriangleright Therefore, we shall assume $q > 2$.
- \bullet We fix an arbitrary reference point o in \mathcal{X} .
- **The boundary** Ω **is identified with the set of all infinite geodesic rays** starting at o.

Homogeneous trees of degree 3 and 4 can be represented as follows:

Homogeneous trees of degree 3 and 4 can be represented as follows:

Homogeneous trees of degree 3 and 4 can be represented as follows:

 $\cdot \mathscr{X}$ is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d.

- with the counting measure $\#$ and
x, n) will respectively denote the
f radius n. \cdot $\mathscr X$ is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d.
- \bullet For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- with the counting measure $\#$ and
 (x, n) will respectively denote the

f radius *n*.
 $\in \mathcal{X}$ and $n \in \mathbb{Z}_+$,
 $(x, n) \asymp q^n$. \cdot $\mathscr X$ is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d.
- \bullet For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- \blacktriangleright Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

 $\#B(x, n) \asymp \#S(x, n) \asymp q^n$.

- with the counting measure $\#$ and
 (x, n) will respectively denote the

f radius *n*.
 $\in \mathcal{X}$ and $n \in \mathbb{Z}_+$,
 $(x, n) \asymp q^n$.

ued function defined on \mathcal{X} . \cdot $\mathscr X$ is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d.
- \bullet For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- \blacktriangleright Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

$$
\#B(x,n)\asymp \#S(x,n)\asymp q^n.
$$

The Laplacian : Let u be a complex-valued function defined on \mathcal{X} .

- with the counting measure # and
 x, n) will respectively denote the

f radius *n*.
 $\in \mathcal{X}$ and $n \in \mathbb{Z}_+$,
 $(x, n) \asymp q^n$.

ued function defined on \mathcal{X} .
 $\frac{1}{1} \sum_{y:d(x,y)=1} u(y)$. \cdot $\mathscr X$ is a metric-measure space, endowed with the counting measure $\#$ and the standard graph distance d.
- \bullet For $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$, $B(x, n)$ and $S(x, n)$ will respectively denote the ball and the sphere centered at x and of radius n .
- \blacktriangleright Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

$$
\#B(x,n)\asymp \#S(x,n)\asymp q^n.
$$

The Laplacian : Let u be a complex-valued function defined on \mathcal{X} .

$$
\mathscr{L} u(x) = u(x) - \frac{1}{q+1} \sum_{y:d(x,y)=1} u(y).
$$

 $\Gamma \nsubseteq \text{On } \mathcal{X}$ [Strichartz's Theorem for](#page-28-0) $\mathscr L$ on $\mathscr X$

 \blacktriangleright For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x) = \int_{\Omega} \rho^{1/2+iz}(x,\omega) d\nu(\omega),
$$

 \bullet For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x)=\int\limits_{\Omega} \rho^{1/2+iz}(x,\omega) d\nu(\omega),
$$

where $p(x, \omega)$ denotes the Poisson kernel on $\mathcal X$ and ν denotes the unique probability measure on Ω.

 \blacktriangleright For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x)=\int\limits_{\Omega} \rho^{1/2+iz}(x,\omega) d\nu(\omega),
$$

ction ϕ_z is defined as
 $(x, \omega) d\nu(\omega)$,

el on $\mathcal X$ and ν denotes the unique
 $\phi_z(x) = \phi_{z+\tau}(x)$, where where $p(x, \omega)$ denotes the Poisson kernel on $\mathcal X$ and ν denotes the unique probability measure on Ω.

E Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi / \log q$.

 \blacktriangleright For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x)=\int\limits_{\Omega} \rho^{1/2+iz}(x,\omega) d\nu(\omega),
$$

ction ϕ_z is defined as
 $(x, \omega) d\nu(\omega)$,

el on $\mathcal X$ and ν denotes the unique
 $\psi_z(x) = \phi_{z+\tau}(x)$, where
 $\psi(x) = d(o, y)$. where $p(x, \omega)$ denotes the Poisson kernel on $\mathcal X$ and ν denotes the unique probability measure on Ω.

- **E** Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi / \log q$.
- \triangleq Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.

 \blacktriangleright For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x)=\int\limits_{\Omega}p^{1/2+iz}(x,\omega)\ d\nu(\omega),
$$

ction ϕ_z is defined as
 $(x, \omega) d\nu(\omega)$,

el on $\mathcal X$ and ν denotes the unique
 $\psi_z(x) = \phi_{z+\tau}(x)$, where
 $(x) = d(o, y)$.

where where $p(x, \omega)$ denotes the Poisson kernel on $\mathcal X$ and ν denotes the unique probability measure on Ω.

- **E** Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi / \log q$.
- \triangleq Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.
- **Eigenfunction** : $\mathscr{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

 \blacktriangleright For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x)=\int\limits_{\Omega} \rho^{1/2+iz}(x,\omega) d\nu(\omega),
$$

ction ϕ_z is defined as
 $(x, \omega) d\nu(\omega)$,

el on $\mathcal X$ and ν denotes the unique
 $\psi_z(x) = \phi_{z+\tau}(x)$, where
 $x) = d(o, y)$.

where
 $\psi_z = \frac{iz}{q+1} + q^{1/2 - iz}$. where $p(x, \omega)$ denotes the Poisson kernel on $\mathcal X$ and ν denotes the unique probability measure on Ω.

- **E** Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi / \log q$.
- **E** Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.
- **Eigenfunction** : $\mathscr{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

$$
\gamma(z) = 1 - \frac{q^{1/2+i z} + q^{1/2-i z}}{q+1}.
$$

 \blacktriangleright For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$
\phi_z(x)=\int\limits_{\Omega}p^{1/2+iz}(x,\omega)\ d\nu(\omega),
$$

ction ϕ_z is defined as
 $(x, \omega) d\nu(\omega)$,

el on $\mathcal X$ and ν denotes the unique
 $\psi_z(x) = \phi_{z+\tau}(x)$, where
 $x) = d(o, y)$.

where
 $\psi_z = \frac{iz}{q+1} + q^{1/2 - iz}$,
 $\psi_z = \frac{1}{q+1}$.
 $\psi_z = \frac{1}{2}$ and $\psi_z = \frac{1}{2}$. where $p(x, \omega)$ denotes the Poisson kernel on $\mathcal X$ and ν denotes the unique probability measure on Ω.

- **E** Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi / \log q$.
- **E** Radial : $\phi_z(x) = \phi_z(y)$, whenever $d(o, x) = d(o, y)$.
- **Eigenfunction** : $\mathscr{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

$$
\gamma(z) = 1 - \frac{q^{1/2 + iz} + q^{1/2 - iz}}{q + 1}.
$$

***** Fact : $\phi_z \in L^\infty(\mathcal{X})$ if and only if $z \in \mathbb{C}$ satisfies $|\Im z| \leq 1/2$.
L[∞]-point spectrum of $\mathscr L$

- \bullet L[∞]-point spectrum of \mathscr{L} : { $\gamma(z)$: $z \in \mathbb{C}$ and $|\Im z| \leq 1/2$ }.
- \bullet Unlike the L[∞]-point spectrum of $\Delta_{\mathbb{R}^n}$ which is the one-dimensional interval $(-\infty, 0]$, the L^{∞} -point spectrum of ${\mathscr L}$ is an elliptic region in the complex plane centered around the point 1.

L[∞]-point spectrum of $\mathscr L$

- \bullet L[∞]-point spectrum of \mathscr{L} : { $\gamma(z)$: $z \in \mathbb{C}$ and $|\Im z| \leq 1/2$ }.
- \bullet Unlike the L[∞]-point spectrum of $\Delta_{\mathbb{R}^n}$ which is the one-dimensional interval $(-\infty, 0]$, the L^{∞} -point spectrum of ${\mathscr L}$ is an elliptic region in the complex plane centered around the point 1.

 \bullet Choose two points z_1 , z_2 in { $z \in \mathbb{C}$: $|\Im z| \leq 1/2$ } such that

 $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.

- $|z| \le 1/2$ } such that
 $|z_1| = |\gamma(z_2)| = 1.$
 $f_k\}_{k \in \mathbb{Z}}$ as follows :
 $|z_2|^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$ \bullet Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- \bullet Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :
	- $f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$
- $|z| \le 1/2$ } such that
 $|z_1| = |\gamma(z_2)| = 1.$
 $f_k\}_{k \in \mathbb{Z}}$ as follows :
 $|z_2|^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$
 $\le 2.$ \bullet Choose two points z_1 , z_2 in { $z \in \mathbb{C}$: $|\Im z| \leq 1/2$ } such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- \bullet Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$
f_k(x)=\gamma(z_1)^k\phi_{z_1}(x)+\gamma(z_2)^k\phi_{z_2}(x),\quad x\in\mathcal{X}.
$$

*
$$
||f_k||_{L^{\infty}(\mathcal{X})} \le ||\phi_{z_1}||_{L^{\infty}(\mathcal{X})} + ||\phi_{z_2}||_{L^{\infty}(\mathcal{X})} \le 2.
$$

- $|z| \le 1/2$ } such that
 $|z_1| = |\gamma(z_2)| = 1.$
 $f_k\}_{k \in \mathbb{Z}}$ as follows :
 $|z_2|^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$
 $\le 2.$
 $\phi_k(x) = f_{k+1}(x).$ \bullet Choose two points z_1 , z_2 in { $z \in \mathbb{C}$: $|\Im z| \leq 1/2$ } such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- \bullet Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$
f_k(x)=\gamma(z_1)^k\phi_{z_1}(x)+\gamma(z_2)^k\phi_{z_2}(x),\quad x\in\mathcal{X}.
$$

*
$$
||f_k||_{L^{\infty}(\mathcal{X})} \le ||\phi_{z_1}||_{L^{\infty}(\mathcal{X})} + ||\phi_{z_2}||_{L^{\infty}(\mathcal{X})} \le 2.
$$

*
$$
\mathscr{L}f_k(x) = \gamma(z_1)^k \mathscr{L} \phi_{z_1}(x) + \gamma(z_2)^k \mathscr{L} \phi_{z_2}(x) = f_{k+1}(x).
$$

- $|z| \le 1/2$ } such that
 $|z_1| = |\gamma(z_2)| = 1.$
 $f_k]_{k \in \mathbb{Z}}$ as follows :
 $|z_2|^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$
 $\le 2.$
 $\phi_{z_2}(x) = f_{k+1}(x).$
 $\phi_{z_1}(x) = f_{k+1}(x).$
 $\phi_{z_2}(x) = f_{k+1}(x).$ \bullet Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- \bullet Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$
f_k(x)=\gamma(z_1)^k\phi_{z_1}(x)+\gamma(z_2)^k\phi_{z_2}(x),\quad x\in\mathcal{X}.
$$

*
$$
||f_k||_{L^{\infty}(\mathcal{X})} \le ||\phi_{z_1}||_{L^{\infty}(\mathcal{X})} + ||\phi_{z_2}||_{L^{\infty}(\mathcal{X})} \le 2.
$$

*
$$
\mathscr{L}f_k(x) = \gamma(z_1)^k \mathscr{L} \phi_{z_1}(x) + \gamma(z_2)^k \mathscr{L} \phi_{z_2}(x) = f_{k+1}(x).
$$

[★] Therefore $\{f_k\}_{k\in\mathbb{Z}}$ satisfies all the hypothesis of Strichartz's theorem.

- $|z| \le 1/2$ } such that
 $|z_1| = |\gamma(z_2)| = 1.$
 $f_k]_{k \in \mathbb{Z}}$ as follows :
 $|z_2|^k \phi_{z_2}(x), \quad x \in \mathcal{X}.$
 $\le 2.$
 $\phi_{z_2}(x) = f_{k+1}(x).$
 $\phi_{z_1}(x) = f_{k+1}(x).$
 $\phi_{z_2}(x) = f_{k+1}(x).$
 $\phi_{z_1}(x) = f_{k+1}(x).$ \bullet Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \leq 1/2\}$ such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- \bullet Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$
f_k(x)=\gamma(z_1)^k\phi_{z_1}(x)+\gamma(z_2)^k\phi_{z_2}(x),\quad x\in\mathcal{X}.
$$

*
$$
||f_k||_{L^{\infty}(\mathcal{X})} \le ||\phi_{z_1}||_{L^{\infty}(\mathcal{X})} + ||\phi_{z_2}||_{L^{\infty}(\mathcal{X})} \le 2.
$$

*
$$
\mathscr{L}f_k(x) = \gamma(z_1)^k \mathscr{L} \phi_{z_1}(x) + \gamma(z_2)^k \mathscr{L} \phi_{z_2}(x) = f_{k+1}(x).
$$

- **[★]** Therefore $\{f_k\}_{k\in\mathbb{Z}}$ satisfies all the hypothesis of Strichartz's theorem.
- \cdot However, f_0 fails to be an eigenfunction of \mathscr{L} .
- \bullet Notations for today : Let $1 < p \le 2$. Then
	- p' denotes the conjugate exponent $p/(p-1)$.

*
$$
\delta_{p'} = \frac{1}{p'} - \frac{1}{2}
$$
.

$$
\bullet \ \ S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}| \}.
$$

- $■$ Notations for today : Let $1 < p \le 2$. Then
- hen
 $p/(p-1).$
 $1/2$ }. • p' denotes the conjugate exponent $p/(p-1)$.

*
$$
\delta_{p'} = \frac{1}{p'} - \frac{1}{2}
$$
.

$$
\bullet \ \ S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}.
$$

Assumption : $p' = \infty$ when $p = 1$.

$$
\bullet \ \delta_{\infty}=-1/2 \text{ and } S_1=\{z\in \mathbb{C}: |\Im z|\leq 1/2\}.
$$

- \bullet Notations for today : Let $1 < p \le 2$. Then
- hen
 $p/(p-1).$
 $1/2$ }. • p' denotes the conjugate exponent $p/(p-1)$.

*
$$
\delta_{p'} = \frac{1}{p'} - \frac{1}{2}
$$
.

$$
\bullet \ \ S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}.
$$

- **Assumption** : $p' = \infty$ when $p = 1$.
- \bullet $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| < 1/2\}.$
- **In Observation :** $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- \bullet Notations for today : Let $1 < p \le 2$. Then
- hen
 $p/(p-1).$
 $1/2$ }. • p' denotes the conjugate exponent $p/(p-1)$.

*
$$
\delta_{p'} = \frac{1}{p'} - \frac{1}{2}
$$
.

$$
\bullet \ \ S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}.
$$

- **Assumption** : $p' = \infty$ when $p = 1$.
- \bullet $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| < 1/2\}.$
- **In Observation :** $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- **N** Weak L^p -estimates of ϕ_z :
- \bullet Notations for today : Let $1 < p \le 2$. Then
	- p' denotes the conjugate exponent $p/(p-1)$.

*
$$
\delta_{p'} = \frac{1}{p'} - \frac{1}{2}
$$
.

$$
\bullet \ \ S_p = \{z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}|\}.
$$

- **Assumption** : $p' = \infty$ when $p = 1$.
- \bullet $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| < 1/2\}.$
- **In Observation :** $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- **N** Weak L^p -estimates of ϕ_z :

hen
 $p/(p-1).$
 $1/2$ }.

Ind only if $z \in S_p.$
 11 * For $1 \leq p < 2$, $\phi_z \in L^{p',\infty}(\mathcal{X})$ if and only if $z \in S_p$.

- \bullet Notations for today : Let $1 < p < 2$. Then
	- p' denotes the conjugate exponent $p/(p-1)$.

*
$$
\delta_{p'} = \frac{1}{p'} - \frac{1}{2}
$$
.

$$
\quad \ast \ \mathsf{S}_p = \{ z \in \mathbb{C} : |\Im z| \leq |\delta_{p'}| \}.
$$

- **Assumption** : $p' = \infty$ when $p = 1$.
- \bullet $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| < 1/2\}.$
- **In Observation :** $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- **N** Weak L^p -estimates of ϕ_z :
- hen
 $p/(p-1).$
 $1/2$ }.

Ind only if $z \in S_p.$
 $\setminus (\tau/2)\mathbb{Z}.$ * For $1 \leq p < 2$, $\phi_z \in L^{p',\infty}(\mathcal{X})$ if and only if $z \in S_p$.
	- + $\phi_z \in L^{2,\infty}(\mathcal{X})$ if and only if $z \in \mathbb{R} \setminus (\tau/2)\mathbb{Z}$.

bubly infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}$,
 ∞). Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$. **E** S. K. Rano, 2022 : Let $\{f_k\}_{k \in \mathbb{Z}}$ be a doubly infinite sequence of functions on $\mathscr X$ satisfying

 $||f_k||_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathcal{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L} f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

bubly infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}$,
 ∞). Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

ppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite
 $f_k\|_{L^{p'}, \infty(\mathcal{X})} \leq M$, for all $k \in \mathbb{Z}$.

13 **E** S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on $\mathcal X$ satisfying

 $||f_k||_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathcal{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L} f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

EXECUTE: S. K. Rano, 2022 : Let $1 < p < 2$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on $\mathscr X$ such that $\|f_k\|_{L^{p'},\infty(\mathscr X)}\leq M$, for all $k\in\mathbb Z.$

E S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on $\mathscr X$ satisfying

 $||f_k||_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathcal{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

- **E** S. K. Rano, 2022 : Let $1 < p < 2$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on $\mathscr X$ such that $\|f_k\|_{L^{p'},\infty(\mathscr X)}\leq M$, for all $k\in\mathbb Z.$
- bubly infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}$,
 ∞). Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

ppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite
 $f_k\|_{L^{p'}, \infty(\mathcal{X})} \leq M$, for all $k \in \mathbb{Z}$.

ere • If $\mathscr{L} f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma (i \delta_{p'})$, then $\mathscr{L} f_0 = \gamma (i \delta_{p'}) f_0$.

E S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on $\mathscr X$ satisfying

 $||f_k||_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathcal{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

- \bullet **S. K. Rano, 2022** : Let $1 < p < 2$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on $\mathscr X$ such that $\|f_k\|_{L^{p'},\infty(\mathscr X)}\leq M$, for all $k\in\mathbb Z.$
- bubly infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}$,
 ∞). Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

ppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite
 $f_k\|_{L^{p'}, \infty(\mathcal{X})} \leq M$, for all $k \in \mathbb{Z}$.

ere • If $\mathscr{L} f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma (i \delta_{p'})$, then $\mathscr{L} f_0 = \gamma (i \delta_{p'}) f_0$.
	- I If $\mathscr{L}f_{-k} = A f_{-k+1}$ for all $k \in \mathbb{N}$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{p'})$, then $\mathscr{L} f_0 = \gamma(\tau/2 + i\delta_{p'}) f_0$.

-infinite sequence of functions on
 $= A f_{k+1}$, for all $k \in \mathbb{Z}$,
 $b = \frac{2\sqrt{q}}{q+1}$, **E** S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a bi-infinite sequence of functions on $\mathscr X$ satisfying

$$
||f_k||_{L^{2,\infty}(\mathcal{X})} \leq M \text{ and } \mathscr{L}f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z},
$$

where $A \in \mathbb{C}$ is such that

$$
|A| \in (1 - b, 1 + b), \quad b = \frac{2\sqrt{q}}{q+1},
$$

then $\mathscr{L} f_0 = |A| f_0$.

E S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a bi-infinite sequence of functions on $\mathscr X$ satisfying

$$
\|f_k\|_{L^{2,\infty}(\mathcal{X})}\leq M\ \ \text{and}\ \ \mathscr{L}f_k=A\ f_{k+1},\ \ \text{for all}\ \ k\in\mathbb{Z},
$$

where $A \in \mathbb{C}$ is such that

$$
|A| \in (1 - b, 1 + b), \quad b = \frac{2\sqrt{q}}{q+1},
$$

then $\mathscr{L} f_0 = |A| f_0$.

Question

-infinite sequence of functions on
 $= A f_{k+1}$, for all $k \in \mathbb{Z}$,
 $\bigg)$, $b = \frac{2\sqrt{q}}{q+1}$,

mials of \mathcal{L} , the spherical averages What happens if we replace $\mathscr L$ with polynomials of $\mathscr L$, the spherical averages on $\mathscr X$, or the heat operator on $\mathscr X$?

E S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a bi-infinite sequence of functions on $\mathscr X$ satisfying

$$
\|f_k\|_{L^{2,\infty}(\mathcal{X})}\leq M\ \ \text{and}\ \ \mathscr{L}f_k=A\ f_{k+1},\ \ \text{for all}\ \ k\in\mathbb{Z},
$$

where $A \in \mathbb{C}$ is such that

$$
|A| \in (1 - b, 1 + b), \quad b = \frac{2\sqrt{q}}{q+1},
$$

then $\mathscr{L} f_0 = |A| f_0$.

Question

What happens if we replace $\mathscr L$ with polynomials of $\mathscr L$, the spherical averages on $\mathcal X$, or the heat operator on $\mathcal X$?

-infinite sequence of functions on
 $= A f_{k+1}$, for all $k \in \mathbb{Z}$,
 $\big)$, $b = \frac{2\sqrt{q}}{q+1}$,

mials of \mathcal{L} , the spherical averages

the above results for multipliers
 $\big)$ ■ We shall specifically focus on extending the above results for multipliers when $1 < p < 2$.

[Strichartz's Theorem for Multipliers](#page-62-0)

Fourier transforms on $\mathcal X$

upported radial function f on \mathcal{X} is
 κ), where $z \in \mathbb{C}$. \bullet The spherical transform \widehat{f} of a finitely supported radial function f on $\mathcal X$ is defined by the formula

$$
\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.
$$

Fourier transforms on X

upported radial function f on \mathcal{X} is
 (x) , where $z \in \mathbb{C}$.
 $(z) = \hat{f}(z + \tau)$. **The spherical transform** \widehat{f} of a finitely supported radial function f on $\mathcal X$ is defined by the formula

$$
\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.
$$

Example 1 Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.

Fourier transforms on $\mathcal X$

The spherical transform \widehat{f} of a finitely supported radial function f on $\mathcal X$ is defined by the formula

$$
\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.
$$

- **Example 1** Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.
- upported radial function f on \mathcal{X} is
 κ), where $z \in \mathbb{C}$.
 z) = $\hat{f}(z + \tau)$.

finitely supported function f on \mathcal{X}

ormula
 $p^{1/2 + iz}(x, \omega)$. **The Helgason-Fourier transform** \tilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$
\widetilde{f}(z,\omega)=\sum_{x\in\mathcal{X}}f(x)\,\,p^{1/2+iz}(x,\omega).
$$

Fourier transforms on $\mathcal X$

F The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$
\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.
$$

- **Example 1** Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.
- upported radial function f on \mathcal{X} is
 κ), where $z \in \mathbb{C}$.
 z) = $\hat{f}(z + \tau)$.

finitely supported function f on \mathcal{X}

ormula
 $p^{1/2 + iz}(x, \omega)$. \bullet The Helgason-Fourier transform \widetilde{f} of a finitely supported function f on $\mathcal X$ is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$
\widetilde{f}(z,\omega)=\sum_{x\in\mathcal{X}}f(x)\,\,p^{1/2+iz}(x,\omega).
$$

F Periodicity : $\tilde{f}(z, \omega) = \tilde{f}(z + \tau, \omega)$.

Fourier transforms on X

F The spherical transform \widehat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$
\widehat{f}(z) = \sum_{x \in \mathcal{X}} f(x) \phi_z(x), \text{ where } z \in \mathbb{C}.
$$

- **E** Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.
- upported radial function *f* on *X* is
 c), where *z* ∈ *C*.
 z) = $\hat{f}(z + \tau)$.

finitely supported function *f* on *X*

ormula
 $p^{1/2+iz}(x, ω)$.

II $ω ∈ Ω$. \bullet The Helgason-Fourier transform \widetilde{f} of a finitely supported function f on $\mathcal X$ is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$
\widetilde{f}(z,\omega)=\sum_{x\in\mathcal{X}}f(x)\,\,p^{1/2+iz}(x,\omega).
$$

Periodicity : $\tilde{f}(z, \omega) = \tilde{f}(z + \tau, \omega)$.

If f is radial, then $\tilde{f}(z, \omega) = \hat{f}(z)$, for all $\omega \in \Omega$.

Example 3 Schwartz spaces $\mathcal{S}_p(\mathcal{X})$: Space of all functions ϕ on \mathcal{X} for which

$$
\nu_{p,m}(\phi)=\sup_{x\in\mathcal{X}}\left(1+|x|\right)^{m}q^{|x|/p}|\phi(x)|<\infty,\quad\text{for all }m\in\mathbb{Z}_{+}.
$$

Example 3 Schwartz spaces $\mathcal{S}_p(\mathcal{X})$: Space of all functions ϕ on \mathcal{X} for which

spaces on
$$
\mathcal{X}, 1 \leq p \leq 2
$$

\nartz spaces $\mathcal{S}_p(\mathcal{X})$: Space of all functions ϕ on \mathcal{X} for which $\nu_{p,m}(\phi) = \sup_{x \in \mathcal{X}} (1 + |x|)^m q^{|x|/p} |\phi(x)| < \infty$, for all $m \in \mathbb{Z}_+$.

\n) forms a Fréchet space w.r.t. the countable semi-norms $\nu_{p,m}(\cdot)$.

 \bullet $\mathcal{S}_p(\mathcal{X})$ forms a Fréchet space w.r.t. the countable semi-norms $\nu_{p,m}(\cdot)$.

 \bullet Schwartz spaces $S_p(\mathcal{X})$: Space of all functions ϕ on $\mathcal X$ for which

$$
\nu_{p,m}(\phi)=\sup_{x\in\mathcal{X}}\left(1+|x|\right)^{m}q^{|x|/p}|\phi(x)|<\infty,\quad\text{for all }m\in\mathbb{Z}_{+}.
$$

 $\bullet S_p(\mathcal{X})$ forms a Fréchet space w.r.t. the countable semi-norms $\nu_{p,m}(\cdot)$.

Definition

Let m be an even, τ -periodic, bounded measurable function on \mathbb{R} . An operator Θ defined as

$$
\Theta f(x) = c_x \int\limits_{\mathbb{T}} \int\limits_{\Omega} m(z) \ \widetilde{f}(z,\omega) \ p^{1/2 - iz}(x,\omega) \ |c(z)|^{-2} \ d\nu(\omega) \ dz,
$$

unctions ϕ on $\mathscr X$ for which
 $\phi(x)| < \infty$, for all $m \in \mathbb{Z}_+$.

countable semi-norms $\nu_{p,m}(\cdot)$.

surable function on $\mathbb R$. An
 $\pi^i z(x,\omega) |c(z)|^{-2} d\nu(\omega) dz$,

mbol m(z) if, for every semi-norm
 $\nu_{p,m_1}(\cdot)$ of \mathscr is said to be a multiplier on $S_p(\mathcal{X})$ with symbol m(z) if, for every semi-norm $\nu_{\rho,m_2}(\cdot)$ of $\mathscr{S}_{\rho}(\mathscr{X})$, there exists a semi-norm $\nu_{\rho,m_1}(\cdot)$ of $\mathscr{S}_{\rho}(\mathscr{X})$ and a constant $C_{m_1,m_2} > 0$ such that

$$
\nu_{p,m_2}(\Theta f) \leq C_{m_1,m_2} \nu_{p,m_1}(f), \quad \text{for all } f \in \mathcal{S}_p(\mathcal{X}).
$$

The space $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \to \mathbb{C}$ which satisfy the following properties:

Characterization of multipliers on the Schwartz spaces

- **The space** $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \to \mathbb{C}$ which satisfy the following properties:
	- $\cdot \psi$ is even and τ -periodic on S_p .

Characterization of multipliers on the Schwartz spaces

- **The space** $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \to \mathbb{C}$ which satisfy the following properties:
	- $\cdot \psi$ is even and τ -periodic on S_p .
	- $\bullet \psi$ is analytic in the interior of S_p .

Characterization of multipliers on the Schwartz spaces

- wartz spaces

nctions $\psi : S_p \to \mathbb{C}$ which satisfy

tinuously on the boundary of S_p .

17 **The space** $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \to \mathbb{C}$ which satisfy the following properties:
	- $\cdot \psi$ is even and τ -periodic on S_p .
	- $\bullet \psi$ is analytic in the interior of S_n .
	- $\bullet \psi$ and all its derivatives extend continuously on the boundary of S_p .
- I **The space** $\mathcal{H}(S_p)$: Space of all such functions $\psi : S_p \to \mathbb{C}$ which satisfy the following properties:
	- $\cdot \psi$ is even and τ -periodic on S_p .
	- $\bullet \psi$ is analytic in the interior of S_n .
	- $\cdot \psi$ and all its derivatives extend continuously on the boundary of S_p .

Proposition (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

Let $1 \le p < 2$. Then the following are equivalent.

(a) The operator Θ is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol m(z).

(b) m is in $\mathcal{H}(S_p)$.

The Laplacian $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.

- **The Laplacian** $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $P \circ \gamma(z)$.

- **The Laplacian** $\mathscr X$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_{p}(\mathscr{X})$ with symbol $P \circ \gamma(z)$.
- \mathscr{X}) with symbol $\gamma(z)$.
plier on $\mathscr{S}_p(\mathscr{X})$ with symbol
operator $e^{\xi\mathscr{L}}$ defines a multiplier For every $\xi \in \mathbb{C}$, the complex-time heat operator $e^{\xi \mathscr{L}}$ defines a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $e^{\xi \gamma(z)}$.

- **The Laplacian** $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_{p}(\mathscr{X})$ with symbol $P \circ \gamma(z)$.
- \mathscr{X}) with symbol $\gamma(z)$.
plier on $\mathscr{S}_\rho(\mathscr{X})$ with symbol
operator $e^{\xi \mathscr{L}}$ defines a multiplier
i a multiplier on $\mathscr{S}_\rho(\mathscr{X})$ with For every $\xi \in \mathbb{C}$, the complex-time heat operator $e^{\xi \mathscr{L}}$ defines a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $e^{\xi \gamma(z)}$.
- **F** The spherical averaging operators \mathscr{S}_n is a multiplier on $\mathscr{S}_n(\mathscr{X})$ with symbol $\phi_z(n)$.

- **The Laplacian** $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_{p}(\mathscr{X})$ with symbol $P \circ \gamma(z)$.
- X) with symbol $\gamma(z)$.

plier on $\mathscr{S}_\rho(\mathscr{X})$ with symbol

operator $e^{\xi \mathscr{L}}$ defines a multiplier

: a multiplier on $\mathscr{S}_\rho(\mathscr{X})$ with

ultiplier on $\mathscr{S}_\rho(\mathscr{X})$ with symbol
 $j)$ $\phi_z(j)$, for all $n \in \mathbb{$ For every $\xi \in \mathbb{C}$, the complex-time heat operator $e^{\xi \mathscr{L}}$ defines a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $e^{\xi \gamma(z)}$.
- **The spherical averaging operators** \mathscr{S}_n is a multiplier on $\mathscr{S}_n(\mathscr{X})$ with symbol $\phi_z(n)$.
- \bullet The ball averaging operators \mathscr{B}_n is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\psi_z(n)$, where

$$
\psi_z(n)=\frac{1}{\#B(o,n)}\sum_{j=0}^n\#S(o,j)\ \phi_z(j),\quad\text{for all}\ \ n\in\mathbb{Z}_+.
$$

 \blacktriangleright Assume 1 < *p* < 2.

- \blacktriangleright Assume 1 < *p* < 2.
- r on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$. **Recall :** The Laplacian $\mathscr X$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.

- \triangleq Assume $1 < p < 2$.
- **Example 1** Recall : The Laplacian $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- **★** The $L^{p',\infty}$ -point spectrum of $\mathscr X$ is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .

- **★ Assume** $1 < p < 2$.
- **E** Recall : The Laplacian $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- **★** The $L^{p',\infty}$ -point spectrum of $\mathscr X$ is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- r on $S_p(\mathcal{X})$ with symbol $\gamma(z)$.

ange of the holomorphic map

an infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}_+$, **Example 1** Strichartz's theorem : Let $\{f_k\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathscr X$ satisfying

$$
\|f_k\|_{L^{p'},\infty(\mathcal{X})}\leq M\ \ \text{and}\ \ \mathscr{L}f_k=A\ f_{k+1},\ \ \text{for all}\ \ k\in\mathbb{Z}_+,
$$

- \bullet Assume $1 < p < 2$.
- **Example 1** Recall : The Laplacian $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- **★** The $L^{p',\infty}$ -point spectrum of $\mathscr X$ is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- r on $\mathcal{S}_p(\mathcal{X})$ with symbol $\gamma(z)$.

ange of the holomorphic map

an infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}_+$,
 $\in S_p$ } = $\gamma(i\delta_{p'})$. **Example 1** Strichartz's theorem : Let $\{f_k\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathscr X$ satisfying

$$
\|f_k\|_{L^{p'},\infty(\mathcal{X})}\leq M\ \ \text{and}\ \ \mathscr{L}f_k=A\ f_{k+1},\ \ \text{for all}\ \ k\in\mathbb{Z}_+,
$$

where $A \in \mathbb{C}^\times$ satisfies

 $|A| = \min\{|\gamma(z)| : z \in S_p\} = \gamma(i\delta_{p}).$

- \bullet Assume $1 < p < 2$.
- **Example 1** Recall : The Laplacian $\mathscr L$ is a multiplier on $\mathscr S_p(\mathscr X)$ with symbol $\gamma(z)$.
- **★** The $L^{p',\infty}$ -point spectrum of $\mathscr X$ is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- **Example 1** Strichartz's theorem : Let $\{f_k\}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathscr X$ satisfying

$$
\|f_k\|_{L^{p'},\infty(\mathcal{X})}\leq M\ \ \text{and}\ \ \mathscr{L}f_k=A\ f_{k+1},\ \ \text{for all}\ \ k\in\mathbb{Z}_+,
$$

where $A \in \mathbb{C}^\times$ satisfies

$$
|A|=\min\{|\gamma(z)|:z\in S_p\}=\gamma(i\delta_{p'}).
$$

r on $\mathcal{S}_\rho(\mathcal{X})$ with symbol $\gamma(z)$.

ange of the holomorphic map

an infinite sequence of functions

= A f_{k+1} , for all $k \in \mathbb{Z}_+$,
 $\in S_\rho\} = \gamma(i\delta_{\rho'})$.
 $s \{w \in \mathbb{C} : |w| = |A|\}$ at only one

19 **I** Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at only one **point**, namely, $\gamma(i\delta_{p'})$.

Strichartz's theorem on $\mathscr L$ revisited

e an infinite sequence of functions
 $= A f_{-k+1}$, for all $k \in \mathbb{N}$,
 $|z| : z \in S_p$ = $\gamma(\tau/2 + i\delta_{p'})$. **Example 1** Strichartz's theorem : Let ${f_{-k}}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathscr X$ satisfying

 $||f_{-k}||_{L^{p',\infty}(\mathcal{X})} \leq M$ and $\mathscr{L}f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$,

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

e an infinite sequence of functions
 $= A f_{-k+1}$, for all $k \in \mathbb{N}$,
 $|X| : z \in S_p$ = $\gamma(\tau/2 + i\delta_{p'})$.
 $\{w \in \mathbb{C} : |w| = |A|\}$ at only one **Example 1** Strichartz's theorem : Let ${f_{-k}}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathscr X$ satisfying

$$
||f_{-k}||_{L^{p'},\infty(\mathcal{X})} \leq M \text{ and } \mathscr{L}f_{-k} = A f_{-k+1}, \text{ for all } k \in \mathbb{N},
$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

I Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at only one **point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.

e an infinite sequence of functions
 $= A f_{-k+1}$, for all $k \in \mathbb{N}$,
 $|X| : z \in S_p$ = $\gamma(\tau/2 + i\delta_{p'})$.
 $\forall w \in \mathbb{C} : |w| = |A|\}$ at only one
 $\gamma(\tau/2 + i\delta_{p'})f_0$. **Example 1** Strichartz's theorem : Let $\{f_{-k}\}_{k\in\mathbb{Z}_+}$ be an infinite sequence of functions on $\mathscr X$ satisfying

$$
||f_{-k}||_{L^{p',\infty}(\mathcal{X})}\leq M\;\;\text{and}\;\;\mathscr{L} f_{-k}=A\;f_{-k+1},\;\;\text{for all}\;k\in\mathbb{N},
$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

- **I** Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at only one **point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.
- **Example 10** Onclusion : $\mathscr{L} f_0 = \gamma (i \delta_{p'}) f_0$ or $\mathscr{L} f_0 = \gamma (\tau/2 + i \delta_{p'}) f_0$.

e an infinite sequence of functions
 $= A f_{-k+1}$, for all $k \in \mathbb{N}$,
 $|X| : z \in S_p$ = $\gamma(\tau/2 + i\delta_{p'})$.
 $\forall w \in \mathbb{C} : |w| = |A|\}$ at only one
 $\gamma(\tau/2 + i\delta_{p'})f_0$.

on $\delta_p(\mathcal{X})$ with symbol $m(z)$.
 $|X| : z \in S_p$. **Example 1** Strichartz's theorem : Let ${f_{-k}}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathcal X$ satisfying

$$
||f_{-k}||_{L^{p',\infty}(\mathcal{X})}\leq M\;\;\text{and}\;\;\mathscr{L} f_{-k}=A\;f_{-k+1},\;\;\text{for all}\;k\in\mathbb{N},
$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

- **I** Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at only one **point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.
- **Example 10** Onclusion : $\mathscr{L} f_0 = \gamma (i \delta_{p'}) f_0$ or $\mathscr{L} f_0 = \gamma (\tau/2 + i \delta_{p'}) f_0$.
- **Example 1** General Set-Up : Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$. Suppose that $A \in \mathbb{C}^\times$ satisfies

 $|A| = \max\{|m(z)| : z \in S_n\}.$

e an infinite sequence of functions
 $= A f_{-k+1}$, for all $k \in \mathbb{N}$,
 $|X| : z \in S_p$ = $\gamma(\tau/2 + i\delta_{p'})$.
 $\forall w \in \mathbb{C} : |w| = |A|\}$ at only one
 $\gamma(\tau/2 + i\delta_{p'})f_0$.

on $\delta_p(\mathcal{X})$ with symbol $m(z)$.
 $|X| : z \in S_p$.
 $\forall w \in \mathbb{C$ **Example 1** Strichartz's theorem : Let ${f_{-k}}_{k \in \mathbb{Z}_+}$ be an infinite sequence of functions on $\mathcal X$ satisfying

$$
||f_{-k}||_{L^{p',\infty}(\mathcal{X})}\leq M\;\;\text{and}\;\;\mathscr{L} f_{-k}=A\;f_{-k+1},\;\;\text{for all}\;k\in\mathbb{N},
$$

where $A \in \mathbb{C}^\times$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

- **I** Observation : The range of γ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at only one **point**, namely, $\gamma(\tau/2 + i\delta_{p'})$.
- **Example 10** Onclusion : $\mathscr{L} f_0 = \gamma (i \delta_{p'}) f_0$ or $\mathscr{L} f_0 = \gamma (\tau/2 + i \delta_{p'}) f_0$.
- **Example 1** General Set-Up : Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol $m(z)$. Suppose that $A \in \mathbb{C}^\times$ satisfies

 $|A| = \max\{|m(z)| : z \in S_n\}.$

 \blacktriangleright Difficulty : The range of m may intersect $\{w \in \mathbb{C} : |w| = |A|\}$ at more than one point.

 \bullet Multiplier : $I - \mathcal{L}$. Symbol : $m(z) = 1 - \gamma(z)$.

Math. Z., 2025)

(\mathcal{X}) with symbol m(z) satisfying
 $\{k\}_{k\in\mathbb{Z}}$ is a bi-infinite sequence of

A f_{k+1} , for all $k \in \mathbb{Z}$.
 $w| = |A|$ at finitely many distinct
 $\cdots + f_{0,j}$,
 $\forall i = 1, \ldots, j$. Let $1 \le p < 2$. Let Θ be a multiplier on $S_p(\mathcal{X})$ with symbol m(z) satisfying $m(z) \neq 0$ for some $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on $\mathcal X$ satisfying

$$
||f_k||_{L^{p',\infty}(\mathcal{X})}\leq M \text{ and } \Theta f_k=A \ f_{k+1}, \text{ for all } k\in\mathbb{Z}.
$$

Assume further that

- (a) $|A| = \max\{|m(z)| : z \in S_p\}.$
- (b) The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \ldots, A_i .

Then f_0 can be uniquely written as

$$
f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},
$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$
\Theta f_{0,i} = A_i \ f_{0,i}, \quad \text{for all } i=1,\ldots,j.
$$

Math. Z., 2025)

(\mathcal{X}) associated with symbol m(z)

that $\{f_k\}_{k \in \mathbb{Z}_+}$ is a bi-infinite

A f_{k+1} , for all $k \in \mathbb{Z}_+$.
 $w| = |A|$ at finitely many distinct
 $\cdots + f_{0,j}$,
 $\forall i = 1, \ldots, j$. Let $1 \le p < 2$. Let Θ be a multiplier on $S_p(\mathcal{X})$ associated with symbol m(z) satisfying m $(\mathsf{z})\neq 0$ for all $\mathsf{z}\in \mathsf{S}_p.$ Suppose that $\{f_k\}_{k\in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on $\mathcal X$ satisfying

$$
||f_k||_{L^{p',\infty}(\mathcal{X})} \leq M \text{ and } \Theta f_k = A \ f_{k+1}, \text{ for all } k \in \mathbb{Z}_+.
$$

Assume further that

- (a) $|A| = \min\{|m(z)| : z \in S_p\}.$
- (b) The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \ldots, A_i .

Then f_0 can be uniquely written as

$$
f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},
$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$
\Theta f_{0,i} = A_i \ f_{0,i}, \quad \text{for all } i=1,\ldots,j.
$$

Math. Z., 2025)

(*X*) associated with symbol m(z)

that { f_{-k} }_{k∈Z₊} is a bi-infinite

A f_{-k+1} , for all $k \in \mathbb{N}$.
 $w| = |A|$ } at finitely many distinct
 $\cdots + f_{0,j}$,
 $y_i = 1, \ldots, j.$ Let $1 \leq p \leq 2$. Let Θ be a multiplier on $S_p(\mathcal{X})$ associated with symbol m(z) satisfying m(z) $\neq 0$ for all $z\in S_p.$ Suppose that $\{f_{-k}\}_{k\in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on $\mathcal X$ satisfying

$$
||f_{-k}||_{L^{p'},\infty(\mathcal{X})} \leq M \text{ and } \Theta f_{-k} = A \ f_{-k+1}, \text{ for all } k \in \mathbb{N}.
$$

Assume further that

- (a) $|A| = \max\{|m(z)| : z \in S_p\}.$
- (b) The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \ldots, A_i .

Then f_0 can be uniquely written as

$$
f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},
$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$
\Theta f_{0,i} = A_i \ f_{0,i}, \quad \text{for all } i=1,\ldots,j.
$$

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian $\mathscr L$ on $\mathscr X$?

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian $\mathscr X$ on $\mathscr X$?

* YES ! If the multipliers are functions of the Laplacian.

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian $\mathscr L$ on $\mathscr X$?

- **F** YES ! If the multipliers are functions of the Laplacian.
- **E** Let Ψ be a nonconstant holomorphic function defined on a connected open set containing $\gamma(S_p)$.
- **Then,** $\Psi \circ \gamma$ **is in** $\mathcal{H}(S_n)$ **.**
- In the multiplier Θ to
the Laplacian.

Inction defined on a connected

In the denoted

In \bullet Hence, $\Psi \circ \gamma$ corresponds to a multiplier on $S_p(\mathcal{X})$, which will be denoted by $\Psi(\mathscr{L})$.

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian $\mathscr L$ on $\mathscr X$?

- **F** YES ! If the multipliers are functions of the Laplacian.
- **E** Let Ψ be a nonconstant holomorphic function defined on a connected open set containing $\gamma(S_p)$.
- **Then,** $\Psi \circ \gamma$ **is in** $\mathcal{H}(S_p)$ **.**
- ms of the multiplier Θ to
the Laplacian.
nction defined on a connected
r on $\mathcal{S}_p(\mathcal{X})$, which will be denoted
spherical and the ball averages on
25 \bullet Hence, $\Psi \circ \gamma$ corresponds to a multiplier on $S_p(\mathcal{X})$, which will be denoted by $\Psi(\mathscr{L})$.
- E Key examples : Polynomials of \mathscr{L} , the spherical and the ball averages on \mathscr{X} , the heat operator on \mathscr{X} .

Math. Z., 2025)

n $S_p(\mathcal{X})$ associated with the

-infinite sequence of functions on

= A f_{k+1} , for all $k \in \mathbb{Z}$.
 $|w| = |A|\}$ at finitely many distinct
 $\cdots + f_{0,j}$,

for all m = 1, ..., j,
 $\Psi \circ \gamma(\alpha_m + i\delta_{p'})| =$ For $1 \leq p \leq 2$. Let $\Psi(\mathcal{L})$ be a multiplier on $S_p(\mathcal{X})$ associated with the symbol $\Psi \circ \gamma$. Suppose that $\{f_k\}_{k\in\mathbb{Z}}$ is a bi-infinite sequence of functions on $\mathscr X$ satisfying

$$
\|f_k\|_{L^{p'},\infty(\mathcal{X})}\leq M\ \ \text{and}\ \ \Psi(\mathcal{L})f_k=A\ f_{k+1},\ \ \text{for all}\ k\in\mathbb{Z}.
$$

Assume further that

- (a) $|A| = \max\{|\Psi \circ \gamma(z)| : z \in S_p\}.$
- (b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$
f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},
$$

for some $f_{0,m}\in L^{p',\infty}(\mathcal X),$ satisfying

$$
\mathscr{L}f_{0,m}=\gamma(\alpha_m+i\delta_{p'})\;f_{0,m},\quad\text{for all }m=1,\ldots,j,
$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{p'})| = |A|.$

Math. Z., 2025)

n $S_p(\mathcal{X})$ with symbol $\Psi \circ \gamma$ such

hat $\{f_k\}_{k \in \mathbb{Z}_+}$ is a bi-infinite
 $A f_{k+1}$, for all $k \in \mathbb{Z}_+$.
 $|w| = |A|\}$ at finitely many distinct
 $\cdots + f_{0,j}$,

for all $m = 1, \ldots, j$,
 $\Psi \circ \gamma(\alpha_m + i\$ For $1 \leq p \leq 2$. Let $\Psi(\mathscr{L})$ be a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\Psi \circ \gamma$ such that $\Psi\circ\gamma(z)\neq 0$ for all $z\in S_p.$ Suppose that $\{f_k\}_{k\in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on $\mathcal X$ satisfying

 $||f_k||_{L^{p',\infty}(\mathcal{X})} \leq M$ and $\Psi(\mathcal{L})f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$.

Assume further that

- (a) $|A| = \min\{|\Psi \circ \gamma(z)| : z \in S_p\}.$
- (b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$
f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},
$$

for some $f_{0,m}\in L^{p',\infty}(\mathcal X),$ satisfying

$$
\mathscr{L} f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) \ f_{0,m}, \quad \text{for all } m = 1,\ldots,j,
$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{p'})| = |A|.$

Math. Z., 2025)

n $S_p(\mathcal{X})$ with symbol $\Psi \circ \gamma$ such

hat $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ is a bi-infinite
 $= A f_{-k+1}$, for all $k \in \mathbb{N}$.
 $|w| = |A|\}$ at finitely many distinct
 $\cdots + f_{0,j}$,

for all $m = 1, \ldots, j$,
 $\Psi \circ \gamma(\alpha_m$ For $1 \leq p \leq 2$. Let $\Psi(\mathscr{L})$ be a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\Psi \circ \gamma$ such that $\Psi \circ \gamma(z) \neq 0$ for all $z \in S_p$. Suppose that $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on $\mathcal X$ satisfying

$$
||f_{-k}||_{L^{p'},\infty(\mathcal{X})} \leq M \text{ and } \Psi(\mathcal{L})f_{-k} = A \ f_{-k+1}, \text{ for all } k \in \mathbb{N}.
$$

Assume further that

- (a) $|A| = \max\{|\Psi \circ \gamma(z)| : z \in S_p\}.$
- (b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$
f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},
$$

for some $f_{0,m}\in L^{p',\infty}(\mathcal X),$ satisfying

$$
\mathscr{L} f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) \ f_{0,m}, \quad \text{for all } m = 1,\ldots,j,
$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{p'})| = |A|.$

[Notable Consequences](#page-104-0)

I

Ext $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o, n)$.

Spherical averages on X

- **I** Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- **The spherical average of a function f over** $S(x, n)$ **is given by**

ages on
$$
\mathcal{X}
$$

\n $o,n)$ denote the indicator function of the sphere $S(o, n)$.

\nnerical average of a function f over $S(x, n)$ is given by

\n $\mathscr{S}_n f(x) = \frac{1}{\# S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\# S(o, n)} \sum_{y \in S(x, n)} f(y)$.

Spherical averages on X

- In Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- \bullet The spherical average of a function f over $S(x, n)$ is given by

ages on
$$
\mathcal{X}
$$

\n $o,n)$ denote the indicator function of the sphere $S(o, n)$.

\nherical average of a function f over $S(x, n)$ is given by

\n $\mathscr{S}_n f(x) = \frac{1}{\# S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\# S(o, n)} \sum_{y \in S(x, n)} f(y)$.

\nation: $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f - \mathscr{L} f$.

 \bullet Observation : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f - \mathscr{L} f$.
Spherical averages on $\mathcal X$

- **I** Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- **The spherical average of a function f over** $S(x, n)$ **is given by**

ages on
$$
\mathscr{X}
$$

\n $o,n)$ denote the indicator function of the sphere $S(o, n)$.

\nherical average of a function f over $S(x, n)$ is given by

\n $\mathscr{S}_n f(x) = \frac{1}{\# S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\# S(o, n)} \sum_{y \in S(x, n)} f(y)$.

\nation: $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f - \mathscr{L} f$.

\nFor $n \geq 2$,

\n $\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f$.

- \bullet Observation : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f \mathscr{L} f$.
- \bullet **Fact :** For *n* ≥ 2,

$$
\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f.
$$

Spherical averages on $\mathcal X$

- \bullet Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- **The spherical average of a function f over** $S(x, n)$ **is given by**

ages on
$$
\mathscr{X}
$$

\n $o,n)$ denote the indicator function of the sphere $S(o, n)$.

\nherical average of a function f over $S(x, n)$ is given by

\n $\mathscr{S}_n f(x) = \frac{1}{\# S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\# S(o, n)} \sum_{y \in S(x, n)} f(y)$.

\nation: $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f - \mathscr{L} f$.

\nFor $n \geq 2$,

\n $\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f$.

\nAre, $\mathscr{S}_n = P_n(\mathscr{L})$, where P_n is a polynomial of degree n .

- \bullet Observation : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f \mathscr{L} f$.
- \bullet **Fact** : For *n* ≥ 2,

$$
\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f.
$$

Therefore, $\mathscr{S}_n = P_n(\mathscr{L})$, where P_n is a polynomial of degree n.

Spherical averages on X

- \bullet Let $\chi_{S(o,n)}$ denote the indicator function of the sphere $S(o,n)$.
- **The spherical average of a function f over** $S(x, n)$ **is given by**

ages on
$$
\mathscr{X}
$$

\n $o,n)$ denote the indicator function of the sphere $S(o, n)$.

\nherical average of a function f over $S(x, n)$ is given by

\n $\mathscr{S}_n f(x) = \frac{1}{\# S(o, n)} f * \chi_{S(o, n)}(x) = \frac{1}{\# S(o, n)} \sum_{y \in S(x, n)} f(y)$.

\nation: $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f - \mathscr{L} f$.

\nFor $n \geq 2$,

\n $\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f$.

\nor, $\mathscr{S}_n = P_n(\mathscr{L})$, where P_n is a polynomial of degree n .

\n $z \mapsto \phi_z(n)$.

- \bullet Observation : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f \mathscr{L} f$.
- **► Fact :** For $n \geq 2$,

$$
\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f.
$$

Therefore, $\mathscr{S}_n = P_n(\mathscr{L})$, where P_n is a polynomial of degree n.

 \bullet Symbol : $z \mapsto \phi_z(n)$.

Strichartz's theorem for spherical averages on $\mathcal X$

- **The maximum modulus of** $z \mapsto \phi_z(n)$ is $\phi_{i\delta_{p'}}(n) = -\phi_{\tau/2+i\delta_{p'}}(n)$.
- **Attained at** $z_1 = i\delta_{p'}$ **and** $z_2 = \tau/2 + i\delta_{p'}$ **.**
- \bullet The range of $z \mapsto \phi_z(n)$ contains zero.

Corollary

s on \mathscr{X}
 $\phi_{i\delta_{\rho'}}(n) = -\phi_{\tau/2+i\delta_{\rho'}}(n).$
 $\delta_{\rho'}.$

bi-infinite sequence of functions

A f_{k+1}, for all $k \in \mathbb{Z}$,

f₀ can be uniquely written as
 $\delta_{0,2}$,
 $\phi_{2,2} = \gamma(\tau/2 + i\delta_{\rho'})$ f_{0,2}. Fix $n \in \mathbb{N}$. For $1 \leq p < 2$, let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on $\mathscr X$ satisfying

$$
||f_k||_{L^{p'},\infty(\mathcal{X})} \leq M \text{ and } \mathscr{S}_n f_k = A \ f_{k+1}, \text{ for all } k \in \mathbb{Z},
$$

where $A\in\mathbb{C}$ satisfies $|A|=\phi_{i\delta_{p'}}(n).$ Then f_0 can be uniquely written as

$$
\mathit{f}_0 = \mathit{f}_{0,1} + \mathit{f}_{0,2},
$$

for some $f_{0,1}, f_{0,2} \in L^{p',\infty}(\mathcal X)$ satisfying

$$
\mathscr{L} f_{0,1} = \gamma \big(i \delta_{\rho'} \big) \ f_{0,1} \quad \text{and} \quad \mathscr{L} f_{0,2} = \gamma \big(\tau/2 + i \delta_{\rho'} \big) \ f_{0,2}.
$$

The heat operator on $\mathscr X$

For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathcal{H}_{ξ} is defined by

$$
\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x),
$$

where h_{ε} denotes the heat kernel on $\mathcal{X}.$

The heat operator on $\mathscr X$

For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathcal{H}_{ξ} is defined by

$$
\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x),
$$

where h_{ξ} denotes the heat kernel on $\mathcal{X}.$

Example 1 Symbol : $\widehat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.

The heat operator on $\mathcal X$

rator \mathscr{H}_{ξ} is defined by
* $h_{\xi}(x)$,
ins zero. For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathcal{H}_{ξ} is defined by

$$
\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x),
$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

- **Example 1** Symbol : $\widehat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.
- \bullet The range of $z \mapsto e^{\xi \gamma(z)}$ does not contains zero.

The heat operator on $\mathcal X$

For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathcal{H}_{ξ} is defined by

$$
\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x),
$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

- **Example 1** Symbol : $\widehat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.
- \bullet The range of $z \mapsto e^{\xi \gamma(z)}$ does not contains zero.
- For $1 \leq p \leq 2$, we define

18.2. Let
$$
\mathcal{C}^{\times}
$$
, the complex-time heat operator \mathcal{H}_{ξ} is defined by

\n
$$
\mathcal{H}_{\xi}f(x) = f * h_{\xi}(x),
$$
\n
$$
\xi
$$
 denotes the heat Kernel on \mathcal{X} :\n
$$
\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}.
$$
\ng.e.

\n
$$
\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}.
$$
\ng.e.

\n
$$
\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}.
$$
\nhence, $\hat{h}_{\xi}(z) = (1 - \gamma(i\delta_{\rho'})) \cdot ((\Re \xi)^2 + \tanh^2(\delta_{\rho'} \log q)(\Im \xi)^2)^{1/2}.$

\ng.e.

\n
$$
\Phi_{\rho}(\xi) = (1 - \gamma(i\delta_{\rho'})) \cdot ((\Re \xi)^2 + \tanh^2(\delta_{\rho'} \log q)(\Im \xi)^2)^{1/2}.
$$

The heat operator on $\mathscr X$

For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathcal{H}_{ξ} is defined by

$$
\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x),
$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

- **Example 1** Symbol : $\widehat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.
- \bullet The range of $z \mapsto e^{\xi \gamma(z)}$ does not contains zero.
- For $1 \leq p \leq 2$, we define

1. (c)
$$
\mathscr{X}
$$

\n2. (d) \mathscr{X}_{ξ}

\n3. (e) \mathscr{W}_{ξ}

\n4. (f) \mathscr{W}_{ξ}

\n5. (g) \mathscr{W}_{ξ}

\n6. (h) \mathscr{W}_{ξ}

\n7. (i) $\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}$

\n8. (g) $\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}$

\n9. (h) $\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}$

\n1. (i) $\hat{h}_{\xi}(z) = (1 - \gamma(i\delta_{\rho'})) \cdot ((\Re \xi)^2 + \tanh^2(\delta_{\rho'} \log q)(\Im \xi)^2)^{1/2}$

\n1. (i) $\hat{h}_{\xi}(z) = (1 - \gamma(i\delta_{\rho'})) \cdot ((\Re \xi)^2 + \tanh^2(\delta_{\rho'} \log q)(\Im \xi)^2)^{1/2}$

\n2. (i) $\hat{h}_{\xi}(z) = \exp\{\Re \xi + \Phi_{\rho}(\xi)\}$

\n3. (ii) $\hat{h}_{\xi}(z) = \exp\{\Re \xi - \Phi_{\rho}(\xi)\}$

- **E** The maximum modulus : $exp{\Re\xi + \Phi_p(\xi)}$.
- **E** The minimum modulus : exp{ $\Re \xi \Phi_p(\xi)$ }.

 \bullet Let β_i , $j = 1, 2$, denote the unique points in $(-\tau/2, \tau/2]$ satisfying

 $\Phi_{p}(\xi) \cos \beta_{j} = (-1)^{j} \Re \xi \cdot (1 - \gamma(i \delta_{p'})), \ \Phi_{p}(\xi) \sin \beta_{j} = (-1)^{j} \Im \xi \cdot \gamma(\tau/4 + i \delta_{p'}).$

• Maximum and minumim modulus are attained at $z_1 = \beta_1 + i\delta_{p'}$ and $z_2 = \beta_2 + i\delta_{p'}$, respectively.

Corollary

Fix $\xi \in \mathbb{C}^\times$. For $1 \leq p < 2$, let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on $\mathscr X$ such that $||f_k||_{L^{p',\infty}(\mathscr X)}\leq M$ for all $k\in\mathbb Z$.

- **r on** *X*

ts in $(-\tau/2, \tau/2]$ satisfying
 $\rho(\xi) \sin \beta_j = (-1)^j \Im \xi \cdot \gamma(\tau/4 + i\delta_{\rho'})$.

ttained at $z_1 = \beta_1 + i\delta_{\rho'}$ and

a bi-infinite sequence of functions
 $\epsilon \mathbb{Z}$.

re *A* ∈ *C* satisfies $|A| = \exp{\Re \xi} + \beta_1 + i\delta_{\rho'}$ a (a) If $\mathcal{H}_{\xi}f_{-k} = A f_{-k+1}$ for all $k \in \mathbb{N}$, where $A \in \mathbb{C}$ satisfies $|A| = \exp{\Re \xi + \pi}$ $\Phi_{p}(\xi)\}$, then \mathscr{L} fo $=\gamma(z_1)$ fo, where $z_1=\beta_1+i\delta_{p'}$ and β_1 is as above.
- (b) If $\mathcal{H}_{\xi}f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \exp{\Re \xi \pi}$ $\Phi_{p}(\xi)\}\$, then $\mathscr{L} f_0 = \gamma(z_2)f_0$, where $z_2 = \beta_2 + i\delta_{p'}$ and β_2 is as above.

S.

S. Bagchi, A. Kumar and S. Sen

Roe-Strichartz theorem on two-step nilpotent Lie groups Math. Nachr., 296 (7): 2691–2700, 2023.

R. Howard and M. Reese

Characterization of eigenfunctions by boundedness conditions Canad. Math. Bull., 35 (2): 204–213, 1992.

螶 P. Kumar, S. K. Ray and R. P. Sarkar

potent Lie groups

23.

houndedness conditions

992.

ctions of the Laplace-Beltrami

1–3225, 2014.

he Laplace-Beltrami operator

pp., 2020. Characterization of almost L^p -eigenfunctions of the Laplace-Beltrami operator

Trans. Amer. Math. Soc., 366 (6): 3191–3225, 2014.

M. Naik and R. P. Sarkar

Characterization of eigenfunctions of the Laplace-Beltrami operator using Fourier multipliers

J. Funct. Anal., 279 (11): 108737, 43 pp., 2020.

A theorem of Roe and Strichartz on homogeneous trees Forum Math., 34 (1): 115–136, 2022.

歸 S. K. Rano and R. P. Sarkar

A theorem of Strichartz for multipliers on homogeneous trees Math. Z., 309 (1): Paper No. 2, 2025.

歸 J. Roe

螶

A characterization of the sine function

Math. Proc. Cambridge Philos. Soc., 87 (1): 69–73, 1980.

R. S. Strichartz

omogeneous trees

on homogeneous trees

7 (1): 69–73, 1980.

he Laplacian by boundedness

–979, 1993. Characterization of eigenfunctions of the Laplacian by boundedness conditions

Trans. Amer. Math. Soc., 338 (2): 971–979, 1993.

I Thank You !