A theorem of Strichartz for multipliers on homogeneous trees

Sumit Kumar Rano

Indian Institute of Science Education and Research Bhopal, India

(Based on a joint work with R. P. Sarkar)

Analysis and Probability Research Group (APRG) Seminar

Department of Mathematics

Indian Institute of Science

29th January, 2025

A Theorem of Roe and Strichartz on \mathbb{R}^n

Homogeneous Trees

Strichartz's Theorem for the Laplacian on Homogeneous Trees

Strichartz's Theorem for Multipliers on Homogeneous Trees

Notable Consequences

A Theorem of Roe and Strichartz on \mathbb{R}^n

A brief history

* J. Roe, 1980 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$rac{d}{dx}f_k=f_{k+1} ext{ and } \|f_k\|_{L^\infty(\mathbb{R})}\leq M, ext{ for all } k\in\mathbb{Z}.$$

A brief history

* J. Roe, 1980 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a doubly infinite sequence of functions on \mathbb{R} such that

$$rac{d}{dx}f_k=f_{k+1} ext{ and } \|f_k\|_{L^\infty(\mathbb{R})}\leq M, ext{ for all } k\in\mathbb{Z}.$$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

$$rac{d}{dx}f_k=f_{k+1}$$
 and $\|f_k\|_{L^\infty(\mathbb{R})}\leq M,$ for all $k\in\mathbb{Z}.$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

* **Observation** : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.

$$rac{d}{dx}f_k=f_{k+1}$$
 and $\|f_k\|_{L^\infty(\mathbb{R})}\leq M,$ for all $k\in\mathbb{Z}.$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- * **Observation** : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.
- * R. S. Strichartz, 1993 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on ℝⁿ satisfying

$$\Delta_{\mathbb{R}^n} f_k = f_{k+1}$$
 and $\|f_k\|_{L^{\infty}(\mathbb{R}^n)} \leq M$, for all $k \in \mathbb{Z}$.

$$rac{d}{dx}f_k=f_{k+1}$$
 and $\|f_k\|_{L^\infty(\mathbb{R})}\leq M,$ for all $k\in\mathbb{Z}.$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- * **Observation** : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.
- * R. S. Strichartz, 1993 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on ℝⁿ satisfying

 $\Delta_{\mathbb{R}^n} f_k = f_{k+1}$ and $\|f_k\|_{L^{\infty}(\mathbb{R}^n)} \leq M$, for all $k \in \mathbb{Z}$.

Then f_0 is an eigenfunction of $\Delta_{\mathbb{R}^n}$ with eigenvalue -1.

$$rac{d}{dx}f_k=f_{k+1}$$
 and $\|f_k\|_{L^\infty(\mathbb{R})}\leq M,$ for all $k\in\mathbb{Z}.$

Then $f_0(x) = ae^{ix} + be^{-ix}$, for all $x \in \mathbb{R}$.

- * **Observation** : Roe's theorem characterizes eigenfunction of the operator d^2/dx^2 with eigenvalue -1.
- * R. S. Strichartz, 1993 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on ℝⁿ satisfying

 $\Delta_{\mathbb{R}^n} f_k = f_{k+1}$ and $||f_k||_{L^{\infty}(\mathbb{R}^n)} \leq M$, for all $k \in \mathbb{Z}$.

Then f_0 is an eigenfunction of $\Delta_{\mathbb{R}^n}$ with eigenvalue -1.

* If $\Delta_{\mathbb{R}^n} f_k = A \ f_{k+1}$ for some $A \in \mathbb{C}^{\times}$, then $\Delta_{\mathbb{R}^n} f_0 = -|A| f_0$.

 Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.
- P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions of Strichartz's theorem for the Laplace-Beltrami operator on noncompact type Riemannian symmetric spaces of rank one.

- Strichartz proved that an exact analogue holds for the sublaplacian on the Heisenberg group.
- S. Bagchi, A. Kumar and S. Sen (2023) extended this result to connected, simply connected two-step nilpotent Lie groups.
- Strichartz also demonstrated by counterexamples that an exact analogue of the result is not true on the hyperbolic 3-space.
- P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions of Strichartz's theorem for the Laplace-Beltrami operator on noncompact type Riemannian symmetric spaces of rank one.

Question

Does a precise analogue of Strichartz's theorem apply to the combinatorial Laplacian $\mathcal L$ on a homogeneous tree $\mathcal X$?

Homogeneous Trees

* A homogeneous tree \mathcal{X} of degree q + 1 is a connected graph with no loops in which every vertex is adjacent to q + 1 other vertices.

- * A homogeneous tree \mathcal{X} of degree q + 1 is a connected graph with no loops in which every vertex is adjacent to q + 1 other vertices.
- When q = 1, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.

- * A homogeneous tree \mathcal{X} of degree q + 1 is a connected graph with no loops in which every vertex is adjacent to q + 1 other vertices.
- When q = 1, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- * Therefore, we shall assume $q \ge 2$.

- A homogeneous tree X of degree q + 1 is a connected graph with no loops in which every vertex is adjacent to q + 1 other vertices.
- When q = 1, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- * Therefore, we shall assume $q \ge 2$.
- * We fix an arbitrary reference point o in \mathcal{X} .

- A homogeneous tree X of degree q + 1 is a connected graph with no loops in which every vertex is adjacent to q + 1 other vertices.
- When q = 1, X can be identified with the group of all integers, whose geometric and analytic properties differ from those of higher-degree homogeneous trees.
- * Therefore, we shall assume $q \ge 2$.
- * We fix an arbitrary reference point o in \mathcal{X} .
- * The boundary Ω is identified with the set of all infinite geodesic rays starting at *o*.

Homogeneous trees of degree 3 and 4 can be represented as follows:

Homogeneous trees of degree 3 and 4 can be represented as follows:

Homogeneous trees of degree 3 and 4 can be represented as follows:

* \mathscr{X} is a metric-measure space, endowed with the counting measure # and the standard graph distance d.

- * \mathcal{X} is a metric-measure space, endowed with the counting measure # and the standard graph distance d.
- For x ∈ X and n ∈ Z₊, B(x, n) and S(x, n) will respectively denote the ball and the sphere centered at x and of radius n.

- * \mathcal{X} is a metric-measure space, endowed with the counting measure # and the standard graph distance d.
- For x ∈ X and n ∈ Z₊, B(x, n) and S(x, n) will respectively denote the ball and the sphere centered at x and of radius n.
- * Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

 $#B(x,n) \asymp #S(x,n) \asymp q^n$.

- * \mathcal{X} is a metric-measure space, endowed with the counting measure # and the standard graph distance d.
- For x ∈ X and n ∈ Z₊, B(x, n) and S(x, n) will respectively denote the ball and the sphere centered at x and of radius n.
- * Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

$$#B(x,n) \asymp #S(x,n) \asymp q^n$$
.

* The Laplacian : Let u be a complex-valued function defined on \mathcal{X} .

- * \mathcal{X} is a metric-measure space, endowed with the counting measure # and the standard graph distance d.
- For x ∈ X and n ∈ Z₊, B(x, n) and S(x, n) will respectively denote the ball and the sphere centered at x and of radius n.
- * Exponential Volume Growth : For all $x \in \mathcal{X}$ and $n \in \mathbb{Z}_+$,

$$#B(x,n) \asymp #S(x,n) \asymp q^n$$
.

* The Laplacian : Let u be a complex-valued function defined on \mathcal{X} .

$$\mathscr{L}u(x) = u(x) - \frac{1}{q+1} \sum_{y:d(x,y)=1} u(y).$$

Strichartz's Theorem for ${\mathscr L}$ on ${\mathscr X}$

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int\limits_{\Omega} \rho^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int\limits_{\Omega} p^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

* Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

- * Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- * Radial : $\phi_z(x) = \phi_z(y)$, whenever d(o, x) = d(o, y).

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

- * Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- * Radial : $\phi_z(x) = \phi_z(y)$, whenever d(o, x) = d(o, y).
- * Eigenfunction : $\mathscr{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

- * Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- * Radial : $\phi_z(x) = \phi_z(y)$, whenever d(o, x) = d(o, y).
- * Eigenfunction : $\mathscr{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

$$\gamma(z) = 1 - rac{q^{1/2+iz} + q^{1/2-iz}}{q+1}$$

* For $z \in \mathbb{C}$, the elementary spherical function ϕ_z is defined as

$$\phi_z(x) = \int_{\Omega} p^{1/2+iz}(x,\omega) \ d\nu(\omega),$$

where $p(x, \omega)$ denotes the Poisson kernel on \mathcal{X} and ν denotes the unique probability measure on Ω .

- * Symmetry and Periodicity : $\phi_z(x) = \phi_{-z}(x) = \phi_{z+\tau}(x)$, where $\tau = 2\pi/\log q$.
- * Radial : $\phi_z(x) = \phi_z(y)$, whenever d(o, x) = d(o, y).
- * Eigenfunction : $\mathscr{L}\phi_z(x) = \gamma(z) \phi_z(x)$, where

$$\gamma(z) = 1 - rac{q^{1/2+iz} + q^{1/2-iz}}{q+1}$$

★ Fact : $φ_z ∈ L^{∞}(X)$ if and only if z ∈ ℂ satisfies $|\Im z| ≤ 1/2$.

L^{∞} -point spectrum of \mathcal{L}

- * L^{∞} -point spectrum of \mathscr{L} : $\{\gamma(z) : z \in \mathbb{C} \text{ and } |\Im z| \leq 1/2\}.$
- Unlike the L[∞]-point spectrum of Δ_{ℝⁿ} which is the one-dimensional interval (-∞, 0], the L[∞]-point spectrum of *L* is an elliptic region in the complex plane centered around the point 1.

L^{∞} -point spectrum of \mathscr{L}

- * L^{∞} -point spectrum of \mathscr{L} : { $\gamma(z) : z \in \mathbb{C}$ and $|\Im z| \le 1/2$ }.
- Unlike the L[∞]-point spectrum of Δ_{ℝⁿ} which is the one-dimensional interval (-∞, 0], the L[∞]-point spectrum of *L* is an elliptic region in the complex plane centered around the point 1.

* Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \le 1/2\}$ such that

 $\gamma(z_1) \neq \gamma(z_2) \text{ and } |\gamma(z_1)| = |\gamma(z_2)| = 1.$

- * Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \le 1/2\}$ such that $\gamma(z_1) \ne \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- * Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathscr{X}.$$

- * Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \le 1/2\}$ such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- * Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathscr{X}.$$

$$\|f_k\|_{L^{\infty}(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^{\infty}(\mathcal{X})} + \|\phi_{z_2}\|_{L^{\infty}(\mathcal{X})} \leq 2.$$

- * Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \le 1/2\}$ such that $\gamma(z_1) \neq \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- * Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathscr{X}.$$

$$\|f_k\|_{L^{\infty}(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^{\infty}(\mathcal{X})} + \|\phi_{z_2}\|_{L^{\infty}(\mathcal{X})} \leq 2.$$

*
$$\mathscr{L}f_k(x) = \gamma(z_1)^k \mathscr{L}\phi_{z_1}(x) + \gamma(z_2)^k \mathscr{L}\phi_{z_2}(x) = f_{k+1}(x).$$

- * Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \le 1/2\}$ such that $\gamma(z_1) \ne \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- * Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathscr{X}.$$

$$\|f_k\|_{L^{\infty}(\mathcal{X})} \leq \|\phi_{z_1}\|_{L^{\infty}(\mathcal{X})} + \|\phi_{z_2}\|_{L^{\infty}(\mathcal{X})} \leq 2.$$

*
$$\mathscr{L}f_k(x) = \gamma(z_1)^k \mathscr{L}\phi_{z_1}(x) + \gamma(z_2)^k \mathscr{L}\phi_{z_2}(x) = f_{k+1}(x).$$

* Therefore $\{f_k\}_{k\in\mathbb{Z}}$ satisfies all the hypothesis of Strichartz's theorem.

- * Choose two points z_1 , z_2 in $\{z \in \mathbb{C} : |\Im z| \le 1/2\}$ such that $\gamma(z_1) \ne \gamma(z_2)$ and $|\gamma(z_1)| = |\gamma(z_2)| = 1$.
- * Consider the doubly infinite sequence $\{f_k\}_{k\in\mathbb{Z}}$ as follows :

$$f_k(x) = \gamma(z_1)^k \phi_{z_1}(x) + \gamma(z_2)^k \phi_{z_2}(x), \quad x \in \mathscr{X}.$$

★
$$||f_k||_{L^{\infty}(\mathcal{X})} \le ||\phi_{z_1}||_{L^{\infty}(\mathcal{X})} + ||\phi_{z_2}||_{L^{\infty}(\mathcal{X})} \le 2.$$

*
$$\mathscr{L}f_k(x) = \gamma(z_1)^k \mathscr{L}\phi_{z_1}(x) + \gamma(z_2)^k \mathscr{L}\phi_{z_2}(x) = f_{k+1}(x).$$

- ★ Therefore $\{f_k\}_{k \in \mathbb{Z}}$ satisfies all the hypothesis of Strichartz's theorem.
- * However, f_0 fails to be an eigenfunction of \mathscr{L} .

- * Notations for today : Let 1 . Then
 - * p' denotes the conjugate exponent p/(p-1).

•
$$\delta_{p'} = \frac{1}{p'} - \frac{1}{2}.$$

•
$$S_p = \{ z \in \mathbb{C} : |\Im z| \le |\delta_{p'}| \}.$$

- * Notations for today : Let 1 . Then
 - * p' denotes the conjugate exponent p/(p-1).

•
$$\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$$
.

•
$$S_p = \{ z \in \mathbb{C} : |\Im z| \le |\delta_{p'}| \}.$$

* Assumption : $p' = \infty$ when p = 1.

★
$$\delta_{\infty} = -1/2$$
 and $S_1 = \{z \in \mathbb{C} : |\Im z| \le 1/2\}.$

- * Notations for today : Let 1 . Then
 - * p' denotes the conjugate exponent p/(p-1).

•
$$\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$$
.

•
$$S_p = \{ z \in \mathbb{C} : |\Im z| \le |\delta_{p'}| \}.$$

- * Assumption : $p' = \infty$ when p = 1.
- ★ $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \le 1/2\}.$
- * Observation : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.

- * Notations for today : Let 1 . Then
 - * p' denotes the conjugate exponent p/(p-1).

•
$$\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$$
.

•
$$S_p = \{ z \in \mathbb{C} : |\Im z| \le |\delta_{p'}| \}.$$

- * Assumption : $p' = \infty$ when p = 1.
- ★ $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \le 1/2\}.$
- **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- * Weak L^{p} -estimates of ϕ_{z} :

- * Notations for today : Let 1 . Then
 - * p' denotes the conjugate exponent p/(p-1).

•
$$\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$$
.

•
$$S_p = \{ z \in \mathbb{C} : |\Im z| \le |\delta_{p'}| \}.$$

- * Assumption : $p' = \infty$ when p = 1.
- ★ $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \le 1/2\}.$
- **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- Weak L^p -estimates of ϕ_z :

* For $1 \leq p < 2$, $\phi_z \in L^{p',\infty}(\mathscr{X})$ if and only if $z \in S_p$.

- * Notations for today : Let 1 . Then
 - * p' denotes the conjugate exponent p/(p-1).

•
$$\delta_{p'} = \frac{1}{p'} - \frac{1}{2}$$
.

•
$$S_p = \{ z \in \mathbb{C} : |\Im z| \le |\delta_{p'}| \}.$$

- * Assumption : $p' = \infty$ when p = 1.
- ★ $\delta_{\infty} = -1/2$ and $S_1 = \{z \in \mathbb{C} : |\Im z| \le 1/2\}.$
- **Observation** : $\delta_2 = 0$ and $S_2 = \mathbb{R}$.
- Weak L^p -estimates of ϕ_z :
 - * For $1 \leq p < 2$, $\phi_z \in L^{p',\infty}(\mathcal{X})$ if and only if $z \in S_p$.
 - * $\phi_z \in L^{2,\infty}(\mathscr{X})$ if and only if $z \in \mathbb{R} \setminus (\tau/2)\mathbb{Z}$.

$L^{p',\infty}$ -point spectrum of \mathscr{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of \mathscr{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of \mathscr{L} , for $1 \leq p \leq 2$

$L^{p',\infty}$ -point spectrum of $\mathscr L$, for $1\leq p\leq 2$

$L^{p',\infty}$ -point spectrum of \mathscr{L} , for $1 \le p \le 2$

 S. K. Rano, 2022 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on X satisfying

 $\|f_k\|_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

 ★ S. K. Rano, 2022 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on X satisfying

 $\|f_k\|_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

★ S. K. Rano, 2022: Let 1 k</sub>}_{k∈Z} is a bi-infinite sequence of functions on X such that ||f_k||_{L^{p',∞}(X)} ≤ M, for all k ∈ Z.

 ★ S. K. Rano, 2022 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on X satisfying

 $||f_k||_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathcal{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

- ★ S. K. Rano, 2022: Let 1 k</sub>}_{k∈Z} is a bi-infinite sequence of functions on X such that ||f_k||_{L^{p',∞}(X)} ≤ M, for all k ∈ Z.
 - If $\mathscr{L}f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(i\delta_{p'})$, then $\mathscr{L}f_0 = \gamma(i\delta_{p'})f_0$.

 ★ S. K. Rano, 2022 : Let {f_k}_{k∈Z} be a doubly infinite sequence of functions on X satisfying

 $||f_k||_{L^{\infty}(\mathcal{X})} \leq M$ and $\mathcal{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{\infty})$. Then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{\infty})f_0$.

- ★ S. K. Rano, 2022: Let 1 k</sub>}_{k∈Z} is a bi-infinite sequence of functions on X such that ||f_k||_{L^{p',∞}(X)} ≤ M, for all k ∈ Z.
 - If $\mathscr{L}f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(i\delta_{p'})$, then $\mathscr{L}f_0 = \gamma(i\delta_{p'})f_0$.
 - If $\mathscr{L}f_{-k} = A f_{-k+1}$ for all $k \in \mathbb{N}$, where $A \in \mathbb{C}$ satisfies $|A| = \gamma(\tau/2 + i\delta_{p'})$, then $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.

* S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{2,\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_{+}$

where $A \in \mathbb{C}$ is such that

$$|\mathsf{A}|\in (1-b,1+b), \hspace{1em} b=rac{2\sqrt{q}}{q+1},$$

then $\mathscr{L}f_0 = |A|f_0$.

* S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{2,\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_{+}$

where $A \in \mathbb{C}$ is such that

$$|\mathcal{A}|\in (1-b,1+b), \hspace{1em} b=rac{2\sqrt{q}}{q+1},$$

then $\mathscr{L}f_0 = |A|f_0$.

Question

What happens if we replace \mathscr{L} with polynomials of \mathscr{L} , the spherical averages on \mathscr{X} , or the heat operator on \mathscr{X} ?

* S. K. Rano, 2022 : Let $\{f_k\}_{k\in\mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{2,\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$

where $A \in \mathbb{C}$ is such that

$$|A| \in (1-b,1+b), \ \ b = rac{2\sqrt{q}}{q+1},$$

then $\mathscr{L}f_0 = |A|f_0$.

Question

What happens if we replace \mathscr{L} with polynomials of \mathscr{L} , the spherical averages on \mathscr{X} , or the heat operator on \mathscr{X} ?

 We shall specifically focus on extending the above results for multipliers when 1 ≤ p < 2.

Strichartz's Theorem for Multipliers

* The spherical transform \hat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathscr{X}} f(x) \ \phi_z(x), \ ext{where} \ z \in \mathbb{C}.$$

* The spherical transform \hat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathscr{X}} f(x) \ \phi_z(x), \ ext{where} \ z \in \mathbb{C}.$$

* Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.

* The spherical transform \hat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathscr{X}} f(x) \ \phi_z(x), \ ext{where} \ z \in \mathbb{C}.$$

- * Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.
- * The Helgason-Fourier transform \tilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$\widetilde{f}(z,\omega) = \sum_{x\in\mathscr{X}} f(x) \ p^{1/2+iz}(x,\omega).$$

* The spherical transform \hat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathscr{X}} f(x) \ \phi_z(x), \ ext{where} \ z \in \mathbb{C}.$$

- * Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.
- * The Helgason-Fourier transform \tilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$\widetilde{f}(z,\omega) = \sum_{x\in\mathscr{X}} f(x) \ p^{1/2+iz}(x,\omega).$$

• Periodicity : $\tilde{f}(z, \omega) = \tilde{f}(z + \tau, \omega)$.

* The spherical transform \hat{f} of a finitely supported radial function f on \mathcal{X} is defined by the formula

$$\widehat{f}(z) = \sum_{x \in \mathscr{X}} f(x) \ \phi_z(x), \ ext{where} \ z \in \mathbb{C}.$$

- * Symmetry and Periodicity : $\hat{f}(z) = \hat{f}(-z) = \hat{f}(z + \tau)$.
- * The Helgason-Fourier transform \tilde{f} of a finitely supported function f on \mathcal{X} is a function on $\mathbb{C} \times \Omega$ defined by the formula

$$\widetilde{f}(z,\omega) = \sum_{x\in\mathscr{X}} f(x) \ p^{1/2+iz}(x,\omega).$$

* Periodicity : $\tilde{f}(z, \omega) = \tilde{f}(z + \tau, \omega)$.

* If f is radial, then $\tilde{f}(z,\omega) = \hat{f}(z)$, for all $\omega \in \Omega$.

* Schwartz spaces $S_p(\mathcal{X})$: Space of all functions ϕ on \mathcal{X} for which

$$\nu_{p,m}(\phi) = \sup_{x \in \mathscr{X}} \left(1 + |x|\right)^m \, q^{|x|/p} \, \left|\phi(x)\right| < \infty, \quad \text{for all } m \in \mathbb{Z}_+.$$

* Schwartz spaces $S_p(\mathcal{X})$: Space of all functions ϕ on \mathcal{X} for which

$$\nu_{p,m}(\phi) = \sup_{x \in \mathcal{X}} \left(1 + |x|\right)^m \, q^{|x|/p} \, \left|\phi(x)\right| < \infty, \quad \text{for all } m \in \mathbb{Z}_+.$$

* $\mathcal{S}_p(\mathcal{X})$ forms a Fréchet space w.r.t. the countable semi-norms $\nu_{p,m}(\cdot)$.

* Schwartz spaces $\mathcal{S}_p(\mathcal{X})$: Space of all functions ϕ on \mathcal{X} for which

$$\nu_{p,m}(\phi) = \sup_{x \in \mathcal{X}} \left(1 + |x|\right)^m \, q^{|x|/p} \, \left|\phi(x)\right| < \infty, \quad \text{for all } m \in \mathbb{Z}_+.$$

* $\mathcal{S}_p(\mathcal{X})$ forms a Fréchet space w.r.t. the countable semi-norms $\nu_{p,m}(\cdot)$.

Definition

Let m be an even, $\tau\text{-periodic},$ bounded measurable function on $\mathbb{R}.$ An operator Θ defined as

$$\Theta f(x) = c_{\mathcal{X}} \int_{\mathbb{T}} \int_{\Omega} m(z) \ \widetilde{f}(z,\omega) \ p^{1/2-iz}(x,\omega) \ |c(z)|^{-2} \ d\nu(\omega) \ dz,$$

is said to be a multiplier on $S_p(\mathcal{X})$ with symbol m(z) if, for every semi-norm $\nu_{p,m_2}(\cdot)$ of $S_p(\mathcal{X})$, there exists a semi-norm $\nu_{p,m_1}(\cdot)$ of $S_p(\mathcal{X})$ and a constant $C_{m_1,m_2} > 0$ such that

$$\nu_{p,m_{\mathbf{2}}}(\Theta f) \leq C_{m_{\mathbf{1}},m_{\mathbf{2}}} \ \nu_{p,m_{\mathbf{1}}}(f), \quad \text{for all } f \in \mathcal{S}_p(\mathcal{X}).$$

* The space ℋ(S_p) : Space of all such functions ψ : S_p → C which satisfy the following properties:

Characterization of multipliers on the Schwartz spaces

- The space ℋ(S_p) : Space of all such functions ψ : S_p → C which satisfy the following properties:
 - ψ is even and τ -periodic on S_p .

Characterization of multipliers on the Schwartz spaces

- * The space ℋ(S_p) : Space of all such functions ψ : S_p → C which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .
 - ψ is analytic in the interior of S_p .

Characterization of multipliers on the Schwartz spaces

- * The space ℋ(S_p) : Space of all such functions ψ : S_p → C which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .
 - ψ is analytic in the interior of S_p .
 - * ψ and all its derivatives extend continuously on the boundary of S_p .

- * The space ℋ(S_p) : Space of all such functions ψ : S_p → C which satisfy the following properties:
 - * ψ is even and τ -periodic on S_p .
 - ψ is analytic in the interior of S_p .
 - * ψ and all its derivatives extend continuously on the boundary of S_{p} .

Proposition (S. K. Rano and R. P. Sarkar ; Math. Z. , 2025)

Let $1 \le p < 2$. Then the following are equivalent.

(a) The operator Θ is a multiplier on $\mathcal{S}_p(\mathcal{X})$ with symbol m(z).

(b) m is in $\mathcal{H}(S_p)$.

* The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.

- * The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $P \circ \gamma(z)$.

- * The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_{p}(\mathscr{X})$ with symbol $P \circ \gamma(z)$.
- For every ξ ∈ C, the complex-time heat operator e^{ξS} defines a multiplier on S_p(S) with symbol e^{ξγ(z)}.

- * The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * For any polynomial P, $P(\mathscr{L})$ is a multiplier on $\mathscr{S}_{p}(\mathscr{X})$ with symbol $P \circ \gamma(z)$.
- For every ξ ∈ C, the complex-time heat operator e^{ξS} defines a multiplier on S_p(S) with symbol e^{ξγ(z)}.
- * The spherical averaging operators \mathscr{S}_n is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\phi_z(n)$.

- * The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- For any polynomial P, $P(\mathscr{Z})$ is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $P \circ \gamma(z)$.
- For every ξ ∈ C, the complex-time heat operator e^{ξS} defines a multiplier on S_p(S) with symbol e^{ξγ(z)}.
- * The spherical averaging operators \mathscr{S}_n is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\phi_z(n)$.
- * The ball averaging operators \mathscr{B}_n is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\psi_z(n)$, where

$$\psi_z(n) = rac{1}{\#B(o,n)} \sum_{j=0}^n \#S(o,j) \ \phi_z(j), \quad ext{for all } n \in \mathbb{Z}_+.$$

★ Assume 1

- ✤ Assume 1
- * **Recall** : The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_{p}(\mathscr{X})$ with symbol $\gamma(z)$.

- ✤ Assume 1
- * **Recall** : The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * The $L^{p',\infty}$ -point spectrum of \mathscr{L} is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .

- ✤ Assume 1
- * **Recall** : The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * The $L^{p',\infty}$ -point spectrum of \mathscr{L} is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- Strichartz's theorem : Let {f_k}_{k∈ℤ+} be an infinite sequence of functions on X satisfying

$$\|f_k\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$,

- ✤ Assume 1
- * **Recall** : The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * The $L^{p',\infty}$ -point spectrum of \mathscr{L} is the range of the holomorphic map $z \mapsto \gamma(z)$ with domain S_p .
- Strichartz's theorem : Let {f_k}_{k∈ℤ+} be an infinite sequence of functions on X satisfying

$$\|f_k\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$,

where $A \in \mathbb{C}^{\times}$ satisfies

$$|A| = \min\{|\gamma(z)| : z \in S_p\} = \gamma(i\delta_{p'}).$$

- ✤ Assume 1
- * **Recall** : The Laplacian \mathscr{L} is a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\gamma(z)$.
- * The $L^{p',\infty}$ -point spectrum of \mathscr{L} is the range of the holomorphic map $z\mapsto\gamma(z)$ with domain S_p .
- Strichartz's theorem : Let {f_k}_{k∈ℤ+} be an infinite sequence of functions on X satisfying

$$\|f_k\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$,

where $A \in \mathbb{C}^{\times}$ satisfies

$$|A| = \min\{|\gamma(z)| : z \in S_p\} = \gamma(i\delta_{p'}).$$

Observation : The range of γ intersects {w ∈ C : |w| = |A|} at only one point, namely, γ(iδ_{p'}).

Strichartz's theorem on $\mathcal L$ revisited

 Strichartz's theorem : Let {f_{-k}}_{k∈Z+} be an infinite sequence of functions on X satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$,

where $A \in \mathbb{C}^{\times}$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$,

where $A \in \mathbb{C}^{\times}$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'}).$

* Observation : The range of γ intersects {w ∈ C : |w| = |A|} at only one point, namely, γ(τ/2 + iδ_{p'}).

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$,

where $A \in \mathbb{C}^{\times}$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- * Observation : The range of γ intersects {w ∈ C : |w| = |A|} at only one point, namely, γ(τ/2 + iδ_{p'}).
- * Conclusion : $\mathscr{L}f_0 = \gamma(i\delta_{p'})f_0$ or $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$,

where $A \in \mathbb{C}^{\times}$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_p\} = \gamma(\tau/2 + i\delta_{p'})$.

- * Observation : The range of γ intersects {w ∈ C : |w| = |A|} at only one point, namely, γ(τ/2 + iδ_{p'}).
- * Conclusion : $\mathscr{L}f_0 = \gamma(i\delta_{p'})f_0$ or $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.
- * General Set-Up : Let Θ be a multiplier on $S_p(\mathcal{X})$ with symbol m(z). Suppose that $A \in \mathbb{C}^{\times}$ satisfies

 $|A| = \max\{|m(z)| : z \in S_p\}.$

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\mathscr{L}f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$,

where $A \in \mathbb{C}^{\times}$ satisfies $|A| = \max\{|\gamma(z)| : z \in S_{p}\} = \gamma(\tau/2 + i\delta_{p'}).$

- * Observation : The range of γ intersects {w ∈ C : |w| = |A|} at only one point, namely, γ(τ/2 + iδ_{p'}).
- * Conclusion : $\mathscr{L}f_0 = \gamma(i\delta_{p'})f_0$ or $\mathscr{L}f_0 = \gamma(\tau/2 + i\delta_{p'})f_0$.
- * General Set-Up : Let Θ be a multiplier on $S_p(\mathcal{X})$ with symbol m(z). Suppose that $A \in \mathbb{C}^{\times}$ satisfies

 $|A| = \max\{|m(z)| : z \in S_p\}.$

* Difficulty : The range of *m* may intersect {*w* ∈ C : |*w*| = |*A*|} at more than one point.

* Multiplier : $I - \mathcal{L}$.

Symbol :
$$m(z) = 1 - \gamma(z)$$
.

Let $1 \le p < 2$. Let Θ be a multiplier on $S_p(\mathcal{X})$ with symbol m(z) satisfying $m(z) \ne 0$ for some $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M$$
 and $\Theta f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$.

Assume further that

(a)
$$|A| = \max\{|m(z)| : z \in S_p\}.$$

(b) The range of m intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points A_1, \ldots, A_j .

Then fo can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\Theta f_{0,i} = A_i f_{0,i}, \quad \text{for all } i = 1, \dots, j.$$

Let $1 \le p < 2$. Let Θ be a multiplier on $S_p(\mathcal{X})$ associated with symbol m(z)satisfying $m(z) \ne 0$ for all $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M$$
 and $\Theta f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$.

Assume further that

(a)
$$|A| = \min\{|m(z)| : z \in S_p\}.$$

(b) The range of m intersects {w ∈ C : |w| = |A|} at finitely many distinct points A₁,..., A_j.

Then fo can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\Theta f_{0,i} = A_i f_{0,i}, \quad \text{for all } i = 1, \dots, j.$$

Let $1 \le p < 2$. Let Θ be a multiplier on $\mathcal{S}_p(\mathcal{X})$ associated with symbol m(z)satisfying $m(z) \ne 0$ for all $z \in S_p$. Suppose that $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M$$
 and $\Theta f_{-k} = A f_{-k+1}$, for all $k \in \mathbb{N}$.

Assume further that

(a)
$$|A| = \max\{|m(z)| : z \in S_p\}.$$

(b) The range of m intersects {w ∈ C : |w| = |A|} at finitely many distinct points A₁,..., A_j.

Then fo can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,i} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\Theta f_{0,i} = A_i f_{0,i}, \quad \text{for all } i = 1, \dots, j.$$

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian $\mathscr L$ on $\mathscr X$?

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathscr{L} on \mathscr{X} ?

* YES ! If the multipliers are functions of the Laplacian.

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathscr{L} on \mathscr{X} ?

- * YES ! If the multipliers are functions of the Laplacian.
- Let Ψ be a nonconstant holomorphic function defined on a connected open set containing γ(S_p).
- Then, $\Psi \circ \gamma$ is in $\mathcal{H}(S_p)$.
- Hence, Ψ ∘ γ corresponds to a multiplier on S_p(X), which will be denoted by Ψ(L).

Can we further decompose the eigenfunctions of the multiplier Θ to eigenfunctions of the Laplacian \mathscr{L} on \mathscr{X} ?

- * YES ! If the multipliers are functions of the Laplacian.
- Let Ψ be a nonconstant holomorphic function defined on a connected open set containing γ(S_p).
- Then, $\Psi \circ \gamma$ is in $\mathcal{H}(S_p)$.
- Hence, Ψ ∘ γ corresponds to a multiplier on S_p(X), which will be denoted by Ψ(L).
- Key examples : Polynomials of *L*, the spherical and the ball averages on *X*, the heat operator on *X*.

For $1 \le p < 2$. Let $\Psi(\mathscr{L})$ be a multiplier on $S_p(\mathscr{X})$ associated with the symbol $\Psi \circ \gamma$. Suppose that $\{f_k\}_{k \in \mathbb{Z}}$ is a bi-infinite sequence of functions on \mathscr{X} satisfying

 $\|f_k\|_{L^{p',\infty}(\mathscr{X})} \leq M \text{ and } \Psi(\mathscr{L})f_k = A f_{k+1}, \text{ for all } k \in \mathbb{Z}.$

Assume further that

- (a) $|A| = \max\{|\Psi \circ \gamma(z)| : z \in S_p\}.$
- (b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,m} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\mathscr{L}f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) f_{0,m}, \text{ for all } m = 1, \dots, j,$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{\rho'})| = |A|$.

For $1 \le p < 2$. Let $\Psi(\mathscr{L})$ be a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\Psi \circ \gamma$ such that $\Psi \circ \gamma(z) \ne 0$ for all $z \in S_p$. Suppose that $\{f_k\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathscr{X} satisfying

 $\|f_k\|_{L^{p',\infty}(\mathscr{X})} \leq M$ and $\Psi(\mathscr{L})f_k = A f_{k+1}$, for all $k \in \mathbb{Z}_+$.

Assume further that

(a) $|A| = \min\{|\Psi \circ \gamma(z)| : z \in S_p\}.$

(b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then fo can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,m} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\mathscr{L}f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) f_{0,m}, \text{ for all } m = 1, \dots, j,$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{\rho'})| = |A|$.

For $1 \le p < 2$. Let $\Psi(\mathscr{L})$ be a multiplier on $\mathscr{S}_p(\mathscr{X})$ with symbol $\Psi \circ \gamma$ such that $\Psi \circ \gamma(z) \ne 0$ for all $z \in S_p$. Suppose that $\{f_{-k}\}_{k \in \mathbb{Z}_+}$ is a bi-infinite sequence of functions on \mathscr{X} satisfying

$$\|f_{-k}\|_{L^{p',\infty}(\mathscr{X})} \leq M ext{ and } \Psi(\mathscr{L})f_{-k} = A f_{-k+1}, ext{ for all } k \in \mathbb{N}.$$

Assume further that

- (a) $|A| = \max\{|\Psi \circ \gamma(z)| : z \in S_p\}.$
- (b) The range of $\Psi \circ \gamma$ intersects $\{w \in \mathbb{C} : |w| = |A|\}$ at finitely many distinct points.

Then fo can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2} + \cdots + f_{0,j},$$

for some $f_{0,m} \in L^{p',\infty}(\mathcal{X})$, satisfying

$$\mathscr{L}f_{0,m} = \gamma(\alpha_m + i\delta_{p'}) f_{0,m}, \text{ for all } m = 1, \dots, j,$$

where $-\tau/2 < \alpha_m \leq \tau/2$ are distinct and $|\Psi \circ \gamma(\alpha_m + i\delta_{\rho'})| = |A|$.

Notable Consequences

* Let $\chi_{S(o,n)}$ denote the indicator function of the sphere S(o, n).

Spherical averages on $\mathcal X$

- * Let $\chi_{S(o,n)}$ denote the indicator function of the sphere S(o, n).
- * The spherical average of a function f over S(x, n) is given by

$$\mathscr{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

Spherical averages on $\mathcal X$

- * Let $\chi_{S(o,n)}$ denote the indicator function of the sphere S(o, n).
- * The spherical average of a function f over S(x, n) is given by

$$\mathscr{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

* **Observation** : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f - \mathscr{L} f$.

Spherical averages on \mathcal{X}

- * Let $\chi_{S(o,n)}$ denote the indicator function of the sphere S(o, n).
- * The spherical average of a function f over S(x, n) is given by

$$\mathscr{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

- * **Observation** : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f \mathscr{L} f$.
- Fact : For n ≥ 2,

$$\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f.$$

Spherical averages on \mathcal{X}

- * Let $\chi_{S(o,n)}$ denote the indicator function of the sphere S(o, n).
- * The spherical average of a function f over S(x, n) is given by

$$\mathscr{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

- * **Observation** : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f \mathscr{L} f$.
- Fact : For n ≥ 2,

$$\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f.$$

* Therefore, $\mathscr{S}_n = P_n(\mathscr{L})$, where P_n is a polynomial of degree n.

Spherical averages on \mathcal{X}

- * Let $\chi_{S(o,n)}$ denote the indicator function of the sphere S(o, n).
- * The spherical average of a function f over S(x, n) is given by

$$\mathscr{S}_n f(x) = \frac{1}{\#S(o,n)} f * \chi_{S(o,n)}(x) = \frac{1}{\#S(o,n)} \sum_{y \in S(x,n)} f(y).$$

- * **Observation** : $\mathscr{S}_0 f = f$ and $\mathscr{S}_1 f = f \mathscr{L} f$.
- Fact : For n ≥ 2,

$$\mathscr{S}_n f = \frac{q+1}{q} \mathscr{S}_{n-1}(\mathscr{S}_1 f) - \frac{1}{q} \mathscr{S}_{n-2} f.$$

* Therefore, $\mathscr{S}_n = P_n(\mathscr{L})$, where P_n is a polynomial of degree n.

• Symbol : $z \mapsto \phi_z(n)$.

Strichartz's theorem for spherical averages on ${\mathcal X}$

- * The maximum modulus of $z \mapsto \phi_z(n)$ is $\phi_{i\delta_{p'}}(n) = -\phi_{\tau/2+i\delta_{n'}}(n)$.
- * Attained at $z_1 = i\delta_{p'}$ and $z_2 = \tau/2 + i\delta_{p'}$.
- * The range of $z \mapsto \phi_z(n)$ contains zero.

Corollary

Fix $n \in \mathbb{N}$. For $1 \le p < 2$, let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathcal{X} satisfying

$$\|f_k\|_{L^{p',\infty}(\mathcal{X})} \leq M$$
 and $\mathscr{S}_n f_k = A f_{k+1}$, for all $k \in \mathbb{Z}$,

where $A \in \mathbb{C}$ satisfies $|A| = \phi_{i\delta_{n'}}(n)$. Then f_0 can be uniquely written as

$$f_0 = f_{0,1} + f_{0,2},$$

for some $f_{0,1}, f_{0,2} \in L^{p',\infty}(\mathcal{X})$ satisfying

$$\mathscr{L} f_{0,1} = \gamma \bigl(i \delta_{p'} \bigr) \ f_{0,1} \quad \text{and} \quad \mathscr{L} f_{0,2} = \gamma \bigl(\tau/2 + i \delta_{p'} \bigr) \ f_{0,2}.$$

The heat operator on ${\mathcal X}$

* For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathscr{H}_{ξ} is defined by

 $\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x),$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

The heat operator on ${\mathcal X}$

* For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathscr{H}_{ξ} is defined by

$$\mathscr{H}_{\xi}f(x) = f * h_{\xi}(x)$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

• Symbol : $\widehat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.

The heat operator on \mathcal{X}

* For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathscr{H}_{ξ} is defined by

$$\mathscr{H}_{\xi}f(x) = f * h_{\xi}(x)$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

- Symbol : $\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.
- The range of $z \mapsto e^{\xi \gamma(z)}$ does not contains zero.

* For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathscr{H}_{ξ} is defined by

$$\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x)$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

- Symbol : $\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.
- * The range of $z \mapsto e^{\xi \gamma(z)}$ does not contains zero.
- For $1 \le p < 2$, we define

 $\Phi_p(\xi) = (1 - \gamma(i\delta_{p'})) \cdot ((\Re\xi)^2 + \tanh^2(\delta_{p'}\log q)(\Im\xi)^2)^{1/2}.$

* For $\xi \in \mathbb{C}^{\times}$, the complex-time heat operator \mathscr{H}_{ξ} is defined by

$$\mathscr{H}_{\xi}f(x)=f*h_{\xi}(x)$$

where h_{ξ} denotes the heat kernel on \mathcal{X} .

- Symbol : $\hat{h}_{\xi}(z) = e^{\xi \gamma(z)}$.
- * The range of $z \mapsto e^{\xi \gamma(z)}$ does not contains zero.
- For $1 \le p < 2$, we define

 $\Phi_{p}(\xi) = (1 - \gamma(i\delta_{p'})) \cdot ((\Re\xi)^{2} + \tanh^{2}(\delta_{p'}\log q)(\Im\xi)^{2})^{1/2}.$

- The maximum modulus : $\exp{\{\Re \xi + \Phi_{\rho}(\xi)\}}$.
- * The minimum modulus : $\exp{\{\Re \xi \Phi_p(\xi)\}}$.

* Let β_j , j = 1, 2, denote the unique points in $(-\tau/2, \tau/2]$ satisfying

 $\Phi_{\rho}(\xi)\cos\beta_{j}=(-1)^{j}\Re\xi\cdot(1-\gamma(i\delta_{\rho'})),\ \Phi_{\rho}(\xi)\sin\beta_{j}=(-1)^{j}\Im\xi\cdot\gamma(\tau/4+i\delta_{\rho'}).$

* Maximum and minumim modulus are attained at $z_1 = \beta_1 + i\delta_{p'}$ and $z_2 = \beta_2 + i\delta_{p'}$, respectively.

Corollary

Fix $\xi \in \mathbb{C}^{\times}$. For $1 \leq p < 2$, let $\{f_k\}_{k \in \mathbb{Z}}$ be a bi-infinite sequence of functions on \mathscr{X} such that $\|f_k\|_{L^{p',\infty}(\mathscr{X})} \leq M$ for all $k \in \mathbb{Z}$.

- (a) If $\mathscr{H}_{\xi}f_{-k} = A f_{-k+1}$ for all $k \in \mathbb{N}$, where $A \in \mathbb{C}$ satisfies $|A| = \exp{\{\Re \xi + \Phi_p(\xi)\}}$, then $\mathscr{L}f_0 = \gamma(z_1)f_0$, where $z_1 = \beta_1 + i\delta_{p'}$ and β_1 is as above.
- (b) If $\mathscr{H}_{\xi}f_k = A f_{k+1}$ for all $k \in \mathbb{Z}_+$, where $A \in \mathbb{C}$ satisfies $|A| = \exp\{\Re \xi \Phi_p(\xi)\}$, then $\mathscr{L}f_0 = \gamma(z_2)f_0$, where $z_2 = \beta_2 + i\delta_{p'}$ and β_2 is as above.

References

S. Bagchi, A. Kumar and S. Sen

Roe-Strichartz theorem on two-step nilpotent Lie groups Math. Nachr., 296 (7): 2691–2700, 2023.

R. Howard and M. Reese

Characterization of eigenfunctions by boundedness conditions Canad. Math. Bull., 35 (2): 204–213, 1992.

P. Kumar, S. K. Ray and R. P. Sarkar

Characterization of almost L^p-eigenfunctions of the Laplace-Beltrami

operator

Trans. Amer. Math. Soc., 366 (6): 3191–3225, 2014.

M. Naik and R. P. Sarkar

Characterization of eigenfunctions of the Laplace-Beltrami operator using Fourier multipliers

J. Funct. Anal., 279 (11): 108737, 43 pp., 2020.

A theorem of Roe and Strichartz on homogeneous trees

Forum Math., 34 (1): 115–136, 2022.

S. K. Rano and R. P. Sarkar

A theorem of Strichartz for multipliers on homogeneous trees Math. Z., 309 (1): Paper No. 2, 2025.

J. Roe

A characterization of the sine function

Math. Proc. Cambridge Philos. Soc., 87 (1): 69-73, 1980.

R. S. Strichartz

Characterization of eigenfunctions of the Laplacian by boundedness conditions

Trans. Amer. Math. Soc., 338 (2): 971-979, 1993.

Thank You !