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A brief history

* J. Roe, 1980 : Let {fc}«ecz be a doubly infinite sequence of functions on
R such that

%fk = fk+1 and Hf;(HLoc(]R) S /\/’7 for all k € 7.

Then fo(x) = ae™ + be™™, for all x € R.

* Qbservation : Roe's theorem characterizes eigenfunction of the operator
d?/dx?® with eigenvalue —1.

% R. S. Strichartz, 1993 : Let {fi}«cz be a doubly infinite sequence of
functions on R" satisfying

Apnfe = fk+1 and kaHLoo(]Rn) < /\/I7 for all k € Z.

Then fy is an eigenfunction of Ag» with eigenvalue —1.

# f Apnfy = A fii1 for some A € C*, then Arnfy = —|Alf.
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* Strichartz proved that an exact analogue holds for the sublaplacian on the
Heisenberg group.

* S. Bagchi, A. Kumar and S. Sen (2023) extended this result to
connected, simply connected two-step nilpotent Lie groups.

* Strichartz also demonstrated by counterexamples that an exact analogue
of the result is not true on the hyperbolic 3-space.

* P. Kumar, S. K. Ray and R. P. Sarkar (2014) provided modified versions
of Strichartz's theorem for the Laplace-Beltrami operator on noncompact
type Riemannian symmetric spaces of rank one.

Question
Does a precise analogue of Strichartz's theorem apply to the combinatorial
Laplacian & on a homogeneous tree & 7
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Homogeneous trees

* A homogeneous tree 2 of degree g + 1 is a connected graph with no loops
in which every vertex is adjacent to g + 1 other vertices.

* When g =1, 2 can be identified with the group of all integers, whose
geometric and analytic properties differ from those of higher-degree
homogeneous trees.

* Therefore, we shall assume g > 2.
* We fix an arbitrary reference point o in 2.

* The boundary Q is identified with the set of all infinite geodesic rays
starting at o.
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The Laplacian

* I is a metric-measure space, endowed with the counting measure # and
the standard graph distance d.

L)

For x € & and n € Z, B(x, n) and S(x, n) will respectively denote the
ball and the sphere centered at x and of radius n.

* Exponential Volume Growth : For all x € 2 and n € Z,

#B(x,n) < #5(x,n) < q".

ok

The Laplacian : Let u be a complex-valued function defined on 2.

Fu)=u(x) - = > uly)

yid(x,y)=1
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The elementary spherical functions

* For z € C, the elementary spherical function ¢, is defined as

60 = [ 9/ (x,0) du(w),
Q
where p(x,w) denotes the Poisson kernel on 2 and v denotes the unique
probability measure on Q.

* Symmetry and Periodicity : ¢.(x) = ¢—-(x) = ¢,4-(x), where
T=27/logq.

# Radial : ¢,(x) = ¢-(y), whenever d(o,x) = d(o,y).

* Eigenfunction : L ¢,(x) = v(z) ¢z(x), where

q1/2+iz + q1/2—iz

z)=1-
7(2) o

* Fact : ¢, € L*°(Z) if and only if z € C satisfies |3z| < 1/2.
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* Unlike the L°°-point spectrum of Ag» which is the one-dimensional
interval (—o0, 0], the L*-point spectrum of & is an elliptic region in the
complex plane centered around the point 1.
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Counterexample
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Y(z1) # v(22) and |y(z1)] = [v(z2)| = 1.
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Y(z1) # v(22) and |y(z1)] = [v(z2)| = 1.

L]

Consider the doubly infinite sequence {fi}xez as follows :

fe(x) = 1(21) G (x) +7(22) ¢ (x), x €.

L)

[fillLoe () < NPz llioe () + |0z || Loo () < 2.

L

L1i(x) = Y(21) L bz (x) +9(22) Lz (x) = fira (%)

L]

Therefore {fi}xcz satisfies all the hypothesis of Strichartz's theorem.

* However, fp fails to be an eigenfunction of Z.
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* Weak LP-estimates of ¢, :
* For1<p<2 ¢,€ Lpl’oo(fl”) if and only if z € S,.

w ¢, € L2°(Z) if and only if z € R\ (7/2)Z.
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% S. K. Rano, 2022 : Let {fi}«ez be a bi-infinite sequence of functions on
 satisfying
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# S. K. Rano, 2022 : Let {fi}xcz be a bi-infinite sequence of functions on
 satisfying

Hﬂ(HLZ,oo(éZ') <M and Zfx = A fxi1, forall k € Z,
where A € C is such that

2\/q
Ale (1—-b,1+b), b=——,
Al ( ) b=

then Zfo = |Alfo.

Question
What happens if we replace & with polynomials of ¥, the spherical averages
on &, or the heat operator on X 7

* We shall specifically focus on extending the above results for multipliers
when 1 < p < 2.
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xeX

* Symmetry and Periodicity : f(z) = f(—z) = f(z + 7).

* The Helgason-Fourier transform fofa finitely supported function f on &
is a function on C x Q defined by the formula

w) = Z F(x) P22 (x,w).

xed

* Periodicity : f(z,w) = f(z + 7,w).

* If f is radial, then f(z,w) = ?(z) for all w € Q.
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LP-Schwartz spaces on 2, 1 < p <2
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LP-Schwartz spaces on 2, 1 < p <2

Schwartz spaces §,(Z’) : Space of all functions ¢ on X for which

Up.m(9) = sup (14 |x])™ ¢™V? |p(x)| < o0, for all m € Z,.
xeXL

Sp(Z) forms a Fréchet space w.r.t. the countable semi-norms v m(+).

Definition
Let m be an even, T-periodic, bounded measurable function on R. An

operator © defined as

Of(x) = cx / / m(z) F(z,w) P2 (x,w) |c(z)| % dv(w) dz,

is said to be a multiplier on $,(Z’) with symbol m(z) if, for every semi-norm
Vp.ma () of Sp(X), there exists a semi-norm vp m, (+) of Sp(Z) and a constant
Ciny,ma > 0 such that

VP,mz(ef) S le,mz Vp,ml(f)7 for all f S CS"P(‘%‘)

16
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* The space #(S,) : Space of all such functions ¢ : S, — C which satisfy
the following properties:
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Characterization of multipliers on the Schwartz spaces

* The space #(S,) : Space of all such functions ¢ : S, — C which satisfy

the following properties:
+ 1) is even and 7-periodic on S,.
+ 1) is analytic in the interior of Sp,.

« 1) and all its derivatives extend continuously on the boundary of S,.

Proposition ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )
Let 1 < p < 2. Then the following are equivalent.

(a) The operator © is a multiplier on S,(Z) with symbol m(z).

(b) misin F(Sp).

17



Important examples of multipliers

# The Laplacian & is a multiplier on &,(Z’) with symbol ~(z).
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Important examples of multipliers

# The Laplacian & is a multiplier on &,(Z’) with symbol ~(z).

# For any polynomial P, P(&) is a multiplier on &,(Z) with symbol
Po~y(z).

* For every £ € C, the complex-time heat operator e defines a multiplier
on &,(X) with symbol €57,

* The spherical averaging operators ., is a multiplier on §,(2°) with
symbol ¢.(n).

# The ball averaging operators %, is a multiplier on &,(Z’) with symbol
12(n), where
1

P.(n) = ZB(on) FZO#S(O,J-) ¢2(j), forallneZ,.
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19



Strichartz’s theorem on Z revisited

* Assume 1 < p < 2.

* Recall : The Laplacian Z is a multiplier on &,(Z) with symbol v(z).

19



Strichartz’s theorem on Z revisited

* Assume 1 < p < 2.
* Recall : The Laplacian Z is a multiplier on &,(Z) with symbol v(z).

* The L”I’°°—point spectrum of & is the range of the holomorphic map
z — v(z) with domain S,.

19



Strichartz’s theorem on Z revisited

* Assume 1 < p < 2.
* Recall : The Laplacian & is a multiplier on &,(2) with symbol ~(z).

* The L”I’°°—point spectrum of & is the range of the holomorphic map
z — v(z) with domain S,.

* Strichartz’s theorem : Let {fi}«ecz, be an infinite sequence of functions
on X satisfying

il o oo 2y S M and Lfie = A fiqa, forall k € Zy,

19



Strichartz’s theorem on Z revisited

* Assume 1 < p < 2.
* Recall : The Laplacian & is a multiplier on &,(2) with symbol ~(z).

* The L”I’°°—point spectrum of & is the range of the holomorphic map

z — v(z) with domain S,.

* Strichartz’s theorem : Let {fi}«ecz, be an infinite sequence of functions
on X satisfying

il o oo 2y S M and Lfie = A fiqa, forall k € Zy,

where A € C* satisfies

Al = min{[(2)] : € S} = (i8).

19



Strichartz’s theorem on Z revisited

* Assume 1 < p < 2.
* Recall : The Laplacian & is a multiplier on &,(2) with symbol ~(z).

* The L”I’°°—point spectrum of & is the range of the holomorphic map
z — v(z) with domain S,.

* Strichartz’s theorem : Let {fi}«ecz, be an infinite sequence of functions
on X satisfying

il o oo 2y S M and Lfie = A fiqa, forall k € Zy,
where A € C* satisfies

Al = min{[(2)] : € S} = (i8).

# Observation : The range of ~ intersects {w € C : |w| = |A|} at only one
point, namely, (i, ).
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Strichartz’s theorem on Z revisited

L]

Strichartz’s theorem : Let {f_(}«cz, be an infinite sequence of functions
on X satisfying

[kl ooy S M and ZLf o =Af i1, forall k €N,
where A € C* satisfies |A| = max{|y(z)| : z € Sp} = y(7/2 + id,).

Observation : The range of v intersects {w € C : |w| = |A|} at only one
point, namely, ¥(7/2 + id,/).

Conclusion : Zfy = ~(idy )fo or Lo = (7/2 4 6y )fo.

General Set-Up : Let © be a multiplier on §,(2) with symbol m(z).
Suppose that A € C* satisfies

|A| = max{|m(z)| : z € Sp}.

Difficulty : The range of m may intersect {w € C: |w| = |A|} at more
than one point.
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Pictorial representation

* Multiplier : | — Z. Symbol : m(z) =1 —~(2).

m(7/2 + id,) / \ m(i6y)
ku '

m(Sp), 1<p<2
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Pictorial representation

* Multiplier : | — <.

m(7/2+ i6y)

Symbol : m(z) =1 — ~(z).

y

{weC:|w|l=m(idy)}

m(idy)

(0.0) X

m(Sp), 1<p<2
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Strichartz’s theorem for multipliers |

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 < p < 2. Let © be a multiplier on $,(X") with symbol m(z) satisfying
m(z) # 0 for some z € S,. Suppose that {fi}rez is a bi-infinite sequence of
functions on X satisfying

Hﬂ(HL,,/‘OO(&,) <M and ©f, = A fi.1, forall k € Z.
Assume further that
(a) |A| = max{|m(z)|: z € Sp}.

(b) The range of m intersects {w € C : |w| = |A|} at finitely many distinct
points Ay, ..., A;.

Then fo can be uniquely written as
fo="fo1+fo2+ -+ fo,,
for some fo,i € Lp/’°°(£2"), satisfying

Ofo,i = Ai fo,i, foralli=1,...,].
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Strichartz’s theorem for multipliers Il

Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 < p < 2. Let © be a multiplier on 8,(X') associated with symbol m(z)
satisfying m(z) # 0 for all z € S,. Suppose that {f}rez, is a bi-infinite
sequence of functions on X satisfying

||fk||Lp/)m(y) <M and ©Ofx = A fxi1, forallk € Z..
Assume further that
(a) |A| = min{|m(z)| : z € Sp}.

(b) The range of m intersects {w € C : |w| = |A|} at finitely many distinct
points Ay, ..., A;.

Then fo can be uniquely written as
fo="fo1+fo2+ -+ fo,,
for some fo,i € Lp/’°°(£2"), satisfying

Ofo,i = Ai fo,i, foralli=1,...,j.
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Theorem ( S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Let 1 < p < 2. Let © be a multiplier on 8,(X') associated with symbol m(z)
satisfying m(z) # 0 for all z € S,. Suppose that {f_i}rez, is a bi-infinite
sequence of functions on X satisfying

Hf,kHLp/m(&,) <M and ©f = A f 411, forall ke N.
Assume further that
(a) |A| = max{|m(z)|: z € Sp}.

(b) The range of m intersects {w € C : |w| = |A|} at finitely many distinct
points A, ..., A;.

Then fo can be uniquely written as
fo="fo1+fo2+ -+ fo,,
for some fo,i € Lp/’°°(£2"), satisfying

Ofo,i = Ai fo,i, foralli=1,...,].
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* Let W be a nonconstant holomorphic function defined on a connected
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Functions of the Laplacian

Question
Can we further decompose the eigenfunctions of the multiplier © to
eigenfunctions of the Laplacian & on X 7

* YES | If the multipliers are functions of the Laplacian.

* Let W be a nonconstant holomorphic function defined on a connected
open set containing v(S,).

* Then, Worisin Z(Sp).

* Hence, W oy corresponds to a multiplier on &,(Z’), which will be denoted
by V(Z).

* Key examples : Polynomials of Z, the spherical and the ball averages on
Z, the heat operator on .
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Strichartz’s theorem for V(%) |

Theorem (' S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Forl < p < 2. Let W(Z) be a multiplier on $,(X’) associated with the
symbol W o ~y. Suppose that {fi}rez is a bi-infinite sequence of functions on
X satisfying

||fk||Lp/7x(£[) <M and \V(g)fk = /A fk+1, for all k € 7Z.
Assume further that
(a) |Al = max{|Wo~r(z):z€ Sy}

(b) The range of W o~ intersects {w € C : |w| = |A|} at finitely many distinct
points.

Then fo can be uniquely written as
fo=fo1+fo2+ -+ fo,,
for some fo.m € Lp/’“’(él"), satisfying
ZLlo,m =v(0m +idy) fom, forallm=1,...,J,

where —7 /2 < oum < 7/2 are distinct and |V o y(am + idy )| = |A].
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Strichartz’s theorem for V(%) Il

Theorem (' S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Forl < p<2. Let W(Z) be a multiplier on S,(X) with symbol W o~ such
that W o y(z) # 0 for all z € S,. Suppose that {fi}kez, is a bi-infinite
sequence of functions on & satisfying

kaHLP,-OC(jZ) <M and \U(g)fk = /4 fk+1, for all k € Zy.
Assume further that
(a) |Al = min{|Wo~r(z)|:z€ Sy}

(b) The range of W o~ intersects {w € C : |w| = |A|} at finitely many distinct
points.

Then fo can be uniquely written as
fo=fo1+fo2+ -+ fo,,
for some fo.m € Lp/’“’(él"), satisfying
ZLlo,m =Y(0m +idy) fom, forallm=1,...,J,
where —7 /2 < aum < 7/2 are distinct and |V o y(am + idy )| = |A].
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Strichartz’s theorem for V(&) IlI

Theorem (' S. K. Rano and R. P. Sarkar ; Math. Z. , 2025 )

Forl < p<2. Let W(Z) be a multiplier on S,(X) with symbol W o~ such
that W o y(z) # 0 for all z € S,. Suppose that {f_}rez, is a bi-infinite
sequence of functions on & satisfying

||f—k||Lp',r>c(‘§[) <M and \V(g)f_k =A f_k+17 for all k € N.
Assume further that
(a) |Al = max{|Wo~r(z):z€ Sy}

(b) The range of W o~ intersects {w € C : |w| = |A|} at finitely many distinct
points.

Then fo can be uniquely written as
fo=fo1+fo2+ -+ fo,,
for some fo.m € Lp/’“’(él"), satisfying
ZLlo,m =v(0m +idy) fom, forallm=1,...,J,
where —7 /2 < oum < 7/2 are distinct and |V o y(am + idy )| = |A].
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Notable Consequences




Spherical averages on &

* Let xs(o,n) denote the indicator function of the sphere S(o, n).
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* Let xs(o,n) denote the indicator function of the sphere S(o, n).

% The spherical average of a function f over S(x, n) is given by
1
S - - om(x) = E £
/ f(X) #5(0> n) F XS( ' )(X) yeS x,n) (y

L]

Observation : Af = f and Af =f — Zf.

* Fact : For n > 2,
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* Therefore, ./, = Pn(&Z), where P, is a polynomial of degree n.
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Spherical averages on &

* Let xs(o,n) denote the indicator function of the sphere S(o, n).

% The spherical average of a function f over S(x, n) is given by

ynf(X) = mf * XS(o,n)(X) = Z f(y

yES x,n)

* Qbservation : .S f = f and Af =f — Zf.

* Fact : For n > 2,

qg+1

=9 o (AR - % of.

* Therefore, ./, = Pn(&Z), where P, is a polynomial of degree n.

* Symbol : z — ¢,(n).
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Strichartz’s theorem for spherical averages on &

The maximum modulus of z — ¢-(n) is ¢is,, (n) = —¢T/2+,-5p/(n).
Attained at z; = idy and zo = 7/2 + i, .
The range of z — ¢,(n) contains zero.

Corollary

FixneN. Forl < p < 2, let {fc}rez be a bi-infinite sequence of functions
on X satisfying

||fk||Lp',Qc(‘2") < M and Fnfk = A ﬂ(+17 for all k € Z,
where A € C satisfies |A| = ¢is,, (n). Then fo can be uniquely written as

fo=fo1+ fo2,
for some fo 1, fo,2 € L”"°°(5l”) satisfying

gfog = v(idp/) ﬁ),l and gfoﬂz = ’y(T/Z =+ i5p/) fo,z.
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The heat operator on &

# For ¢ € C*, the complex-time heat operator .7 is defined by
Hef (x) = £+ he(x),

where he denotes the heat kernel on .
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Hef (x) = £+ he(x),

where he denotes the heat kernel on .
* Symbol : ;1\5(2) = e,
* The range of z — €27(?) does not contains zero.

* For 1 < p < 2, we define

®p(€) = (1= (i) - (RE)* + tanh® (5, log q) (3¢€)*)/2.
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The heat operator on &

# For ¢ € C*, the complex-time heat operator .7 is defined by
Hef (x) = £+ he(x),

where he denotes the heat kernel on .
* Symbol : ;1\5(2) = e,
* The range of z — €27(?) does not contains zero.

* For 1 < p < 2, we define
®p(€) = (1= (i) - (RE)* + tanh® (5, log q) (3¢€)*)/2.
% The maximum modulus : exp{RE + ®,(£)}.

* The minimum modulus : exp{RE — ®,(&)}.
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Strichartz’s theorem for the heat operator on &

* Let §;, j = 1,2, denote the unique points in (—7/2,7/2] satisfying
(&) cos fj = (~1YRE(L—(i8y)), Pp(€)sin B = (—1Y SE(7/4+i8,).
* Maximum and minumim modulus are attained at z; = 1 + id, and

7o = [f2 + id,r, respectively.

Corollary
Fix £ € C*. For1 < p < 2, let {fi}kez be a bi-infinite sequence of functions
on X such that |[fil| 0 gy < M for all k € Z.

(a) If Hef_ = A f_yq1 for all k € N, where A € C satisfies |A| = exp{R¢ +
®,(€)}, then Lfo = v(z1)fo, where zi = 1 + id,y and B1 is as above.

(b) If Hifi = A fiya for all k € Zy, where A € C satisfies |A| = exp{R¢ —
b,(€)}, then Lo = v(z2)fo, where z» = 2 + 0, and (2 is as above.
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Thank You !
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