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Positive definite matrices (real case)

Let A be a real symmetric matrix.

The following are equivalent for a symmetric matrix A € M, (R):
Q A is positive definite (xT Az > 0 Vz € R" \ {0,,}.).
@ All the eigenvalues of A are positive.

© There exist a non-singular symmetric matrix B € M,,(R) such that
A= B2

Q There exist a full rank matrix B € M,, ,,,(R) such that A= BBT.

@ The matrix A admits a Cholesky factorization A = LL™
(L is lower triangular with positive diagonal entries).

@ AIl the principal minors of A are positive.

@ The leading principal minors of A are positive.

Moreover, the entrywise product A o B = (a;;jb;;j) of two positive
definite matrices is positive definite.
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Positive definite matrices over finite fields

What about positive definite matrices over finite fields?

o [F, = finite field with ¢ = p* elements. We let Fy =T, \ {0}.
(e.g. k =1: F, = Z, = integers mod p)

e Positive elements in F, (non-zero quadratic residues):

2. *
Fl:={a®:a eF,}.
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Positive definite matrices over finite fields

What about positive definite matrices over finite fields?

o [F, = finite field with ¢ = p* elements. We let Fy =T, \ {0}.
(e.g. k =1: F, = Z, = integers mod p)
e Positive elements in F, (non-zero quadratic residues):
Ff = {a®*:a € [}
Definition: (see Cooper, Hanna, and Whitlatch, 2022) A matrix

A € My(F,) is positive definite if it is symmetric and its leading
principal minors are positive.

ai1| @12 | a13 | a14
a1 (22 | G23 @ A24
a3z1 az2 as3 | asq
41 Q42 Q43 G44)
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@ For example, consider F7 = {0,1,2,3,4,5,6}. Then
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Fr = {1%,2%,3% 4% 5% 6%} = {1,2,4}.
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@ For example, consider F7 = {0,1,2,3,4,5,6}. Then

Fr = {1%,2%,3% 4% 5% 6%} = {1,2,4}.
4 1
1 6
4 1
11

is not positive definite since det A = 3 ¢ F.

@ The matrix

is positive definite.
@ However,
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(Lack of) Equivalent definitions

Theorem (Cooper, Hanna, and Whitlatch, 2022)

The following are equivalent for a symmetric matrix A € M, (F,):

T,

© Only ifq iseven or g =3 (mod 4) The matrix A admits a Cholesky
factorization A = LL”

(L is lower triangular with positive diagonal entries).
Q All-the-prineipal-minors-of A-are-pesitive:

@ The leading principal minors of A are positive.
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Equivalent Definitions (cont.)

In particular, the quadratic form approach does not yield a useful
notion of matrix positivity.

Proposition (Cooper, Hanna, and Whitlatch, 2022)

Let I, be a finite field, let n > 3, and let A € M,,(IF,). Then there
exists a non-zero vector x € Fy so that T Az = 0.
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Equivalent Definitions (cont.)

In particular, the quadratic form approach does not yield a useful
notion of matrix positivity.

Proposition (Cooper, Hanna, and Whitlatch, 2022)

Let I, be a finite field, let n > 3, and let A € M,,(IF,). Then there
exists a non-zero vector x € Fy so that T Az = 0.

The range of the quadratic form of a positive definite matrix is not
contained in I}

Proposition (Guillot, Gupta, Vishwakarma, Yip, 2024)

Let n > 2 and let A € M,(F,) be a positive definite matrix. Then

(T Az .z € Fy} =T,
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Non-linear entrywise transformers

° & The theory of positive definiteness is still in its infancy.
There are a lot of opportunities to develop the theory and find

applications (algebra? combinatorics? cryptography?)Some recent
work:

e Finite totally nonnegative Grassmannian (Machacek, 2024)
o Genome Rearrangement (Bailey et al., 2024)

@ Generalized Cholesky decomposition over finite fields
(Vishwakarma, 2025).
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Non-linear entrywise transformers

° & The theory of positive definiteness is still in its infancy.
There are a lot of opportunities to develop the theory and find
applications (algebra? combinatorics? cryptography?)Some recent
work:

e Finite totally nonnegative Grassmannian (Machacek, 2024)
o Genome Rearrangement (Bailey et al., 2024)

@ Generalized Cholesky decomposition over finite fields
(Vishwakarma, 2025).

Given a function f : F — F and a matrix A = (a;5) € M, (F), let

fT1A] = (f(aij))-

e We say f preserves positivity on M, (F) if f[A] is positive
definite for all positive definite A € M,,(IF).

Dominique Guillot (U. Delaware) 8/31



Motivation from distance geometry

Embedding points z1,...,x, € X from a metric space (X, p) into
a sphere
Sl = {z eR?: ||z|| = 1}

m equipped with spherical distance
‘v pga—1(x,y) = arccos (x,y).
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a sphere
Sl = {z eR?: ||z|| = 1}

m equipped with spherical distance
‘v pga—1(x,y) = arccos (x,y).

If such an embedding exists, i.e., p(z;, ;) = arccos (y;, yk),
then p(z;,2;) < m and

(cos p(wj, wr))fr=1 = (Y Uk))j e

is positive semidefinite.

Dominique Guillot (U. Delaware) 9/31



Motivation from distance geometry

Embedding points z1,...,x, € X from a metric space (X, p) into
a sphere
Sl = {z eR?: ||z|| = 1}

m equipped with spherical distance
‘v pga—1(x,y) = arccos (x,y).

If such an embedding exists, i.e., p(z;, ;) = arccos (y;, yk),
then p(z;,2;) < m and

(cos p(wj, wr))fr=1 = (Y Uk))j e

is positive semidefinite.
Theorem (Schoenberg, 1935) The above conditions are necessary
and sufficient.
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Positivity Preserver Problems

o (Entrywise) Positivity Preserver Problems:

@ Determine the functions preserving positivity on M, (IF) for a
fixed dimension n (usually very hard).

@ Determine the functions preserving positivity on M, (F) for all
n > 1.

@ The F = R case was first considered by Pélya-Szegé (1925), and
resolved by Schoenberg (1942) and Rudin (1959).
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Theorem (Schoenberg, 1942; Rudin, 1959)
Let f : R — R. The following are equivalent:

© The function f acts entrywise to preserve the set of positive
definite matrices of all dimensions with entries in I.
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Positivity Preserver Problems

o (Entrywise) Positivity Preserver Problems:

@ Determine the functions preserving positivity on M, (IF) for a
fixed dimension n (usually very hard).

@ Determine the functions preserving positivity on M, (F) for all
n > 1.

@ The F = R case was first considered by Pélya-Szegé (1925), and
resolved by Schoenberg (1942) and Rudin (1959).

Theorem (Schoenberg, 1942; Rudin, 1959)
Let f : R — R. The following are equivalent:

© The function f acts entrywise to preserve the set of positive
definite matrices of all dimensions with entries in I.

© The function f is non-constant and absolutely monotone, that is,

f(z) =307 g cna™ for all x € I with ¢, > 0 for all n and ¢,, > 0
for at least onen > 1.

Lots of variants considered (for matrices in M, (R) or M, (C)).
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What about entrywise positivity preservers for finite fields?
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What about entrywise positivity preservers for finite fields?

o A bijective function o : F, — F is called field automorphism if
forall z,y € Fy

o(x+y)=o(x)+o(y)
o(zy) = o(x)o(y)

o Let ¢ = p*. Then the distinct automorphisms of [, are exactly
the mappings ¢, 01, ...,0,_1 defined by oy(z) = P’
o In particular, in F,, we have (z + y)P = P + yP.
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A family of entrywise preservers

Theorem (Guillot, Gupta, Vishwakarma, Yip, 2024)

Let g = p*. Then all the positive multiples of the field
automorphisms of IF, preserve positivity on M, (F,) for all n > 1.
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Theorem (Guillot, Gupta, Vishwakarma, Yip, 2024)
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Theorem (Guillot, Gupta, Vishwakarma, Yip, 2024)

Let g = p*. Then all the positive multiples of the field
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£ £ £
det f[A] = Z sgn(o )allj,a(l)ag,cr(Z) e afl,a(n)
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A family of entrywise preservers

Theorem (Guillot, Gupta, Vishwakarma, Yip, 2024)

Let g = p*. Then all the positive multiples of the field
automorphisms of IF, preserve positivity on M, (F,) for all n > 1.

Proof: Let f(z) = 2% and A = (aij) € My(Fy).

o We have
£ £ £
det f[A] = Z sgn(o )allj,a(l)ag,cr(Z) e afl,a(n)
(TESTL
pl
= ( Z sgn(a)al’a(l)@p@) . am,(n))
(TESTL
= f(det A).

The result follows by applying the above to all leading principal
minors of A. O]
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Paley graphs

e The quadratic character n : Fy — {—1,0,1} is:

1 ifxeFS
—1
nz) =27 ={ -1 if e ¢ Ff and z # 0
0 ifz=0.
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Paley graphs

e The quadratic character n : Fy — {—1,0,1} is:

1 ifxeFS
—1
nz) =27 ={ -1 if e ¢ Ff and z # 0
0 ifz=0.

o Let ¢ = p* where p is odd. The Paley graph P(q) = (V, E) is
the graph such that
Q@ V=F,and
Q (a,b) € Eif and only if n(a —b) = 1.

The Paley graph P(13).
Credits: David Eppstein — Wikipedia.
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@ A function f is an automorphism of the Paley graph P(q) if

n(f(a) = f(b)) =nla—1b)

for all a,b € IF,.

@ In other words, an automorphism is a bijective map that
preserve edges and non-edges.

Theorem (Carlitz, 1960)

Suppose q = p* where p is odd. Let f : F, — F, such that
f(0)=0, f(1) =1 and n(f(a) — f(b)) =n(a—"0) for all a,b € F,.
Then f(x) = 2?" for some 0 < € < k — 1.

Dominique Guillot (U. Delaware) 14 /31



Main result: n > 3

Theorem (Main Result, Guillot, Gupta, Vishwakarma, Yip, 2024)

Let g =p"* and f : F, — F,. Then the following are equivalent:

@ f preserves positivity on M,,(F,) for some n > 3. Fixed dimension
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Main result: n > 3

Theorem (Main Result, Guillot, Gupta, Vishwakarma, Yip, 2024)

Let g =p"* and f : F, — F,. Then the following are equivalent:
@ f preserves positivity on M,,(F,) for some n > 3. Fixed dimension
@ f preserves positivity on M,,(F,) for all n > 3. All dimensions
Q f(z)= ca?’ for some ¢ € IF;; and 0 <0<k —1.

Moreover, when p is odd, the above are equivalent to

@ f(0) =0 and f is an automorphism of the Paley graph associated
toFy, ie., n(f(a) — f(b)) =n(a—10) for all a,b € F,,.

Our proofs rely on algebraic and combinatorial arguments.
Trichotomy of proofs

@ When p = 2, IF; =F;.
@ When ¢ =1 (mod 4), —1 is a square.
@ When ¢ =3 (mod 4), —1 is not a square, F, = {0} UF} LI (=F/).

Dominique Guillot (U. Delaware) 15 /31



Key ingredient: bijectivity on F

Let F, be a finite field with q even or ¢ =3 (mod 4) and let f : Fq — Fq.
Suppose f preserves positive definiteness on M (F,). Then:

@ The restriction of f to F{ is a bijection of F} onto itself.

Q f(0)=0.
Proof.
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Q Lleta,be Ff with a #b. WLOG a —b € F/. Consider the
PD matrix

_ (b0 — bla — +
A_<b a), det A = b(a — b) € F;.

Dominique Guillot (U. Delaware) 16 /31



Key ingredient: bijectivity on F

Let F, be a finite field with q even or ¢ =3 (mod 4) and let f : Fq — Fq.
Suppose f preserves positive definiteness on M (F,). Then:

@ The restriction of f to F{ is a bijection of F} onto itself.

Q f(0)=0.

Proof.
Q Fora € F/, flaly]is PD = f(a) € FS. Thus f(F;) CF, .

Q Lleta,be Ff with a #b. WLOG a —b € F/. Consider the
PD matrix

_ (b0 — bla — +
A_<b a), det A = b(a — b) € F;.

det f[A] = f(b) (f(a) — f(b)) €Fy = f(a) # f(D).
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© Finally, suppose f(0) = c € F,f. By the above, f(a) = c for
some a € F/.
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© Finally, suppose f(0) = c € F,f. By the above, f(a) = c for
some a € F. Consider

sians = () 1) = (2 ¢)

which is not PD, a contradiction.
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© Finally, suppose f(0) = c € F,f. By the above, f(a) = c for
some a € F. Consider

_(fla) fQO)) _ (¢ ¢
rion = (£ For) = (¢ ©)
which is not PD, a contradiction. If f(0) € —F,, say
f(0) = —¢, letting again f(a) = ¢, we obtain

- (03 12)- (<

which is not PD. Thus f(0) = 0. O
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Characteristic 2: preservers on Ms(IF,)

e Assume ¢ = 2F for some k > 1.

e Since f(z) = 22 is bijective, every z € F, has a unique square
root \/x.

o Well known result: f(x) = 2™ is bijective on Fy iff
ged(n,g—1) = 1.
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Characteristic 2: preservers on Ms(IF,)

e Assume ¢ = 2F for some k > 1.
e Since f(z) = 22 is bijective, every z € F, has a unique square
root \/x.

o Well known result: f(x) = 2™ is bijective on Fy iff
ged(n,g—1) = 1.

Let g = 2* for some k > 1 and let f : F, — F,. Then the following
are equivalent:

@ [ preserves positivity on Ma(Fy).

Q@ f(0) =0, f is bijective, and f(\/zy)* = f(z)f(y) for all
z,y € Fy.

© There exist c € Fy and 1 <n < ¢ —1 with ged(n,q—1) =1
such that f(x) = ca™ for all x € Fy.

.
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|dea of proof

(1) = (2). For z,y # 0, consider

A(z) = (\/;iyz \/?Z> (z €F,). det A(z) = zy(1 — 2%).
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o The map z — f(,/zyz)? is bijective on F, since f is bijective.

e This forces f(z)f(y) = f(y/zy)>.

(2) = (3). With some effort, we prove the only polynomials
satisfying f(z)f(y) = f(,/Zy)* are monomials.
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Let g = 2" and let f : F, — F, preserve positivity on Ms(F,). Then
flz) = cx?' for some 0 <l<k-1andceF;}.
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Characteristic 2: dimension > 3

Let g = 2" and let f : F, — F, preserve positivity on Ms(F,). Then
flz) = cx?' for some 0 <l<k-1andceF;}.

Proof.
@ By the 2 x 2 case, f(z) = cz™ and is bijective. WLOG, assume ¢ = 1.
@ Consider

1
Alz,y)= |z , det A(z,y) =1 —z* — ¢°.
Y

o =8
— o

Since f preserves positivity, A(z,y) is PD = f[A(z,y)] is PD.
Observe:

detA=0 <= >+’ =(@+y)’=1 <<= z4+y=1

detf[A}:O<:>l‘2n+y2n:(l‘n+yn)2:1<:>$n+yn:1
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© Consider
Si:={(z,y) €EFs iz +y=1}, Sy :={(z,y) €Fs :a" +y" = 1}.
Clearly |S1] = gq. Also, |S2| = ¢ since we know f(z) = ™ is bijective.
@ Claim: if f preserves positivity, we have Sy C S;.
(z,y) € So = det f[A(z,y)] =0 = A(z,y) is not PD
= z=1or det A(z,y) =0
— z+y=1
= (z,y) € S1.

@ We conclude that S; = S3. That meansx +y=1 < 2" +y" = 1.
@ Not hard to show that this implies (z + y)" = 2™ + y™:

rT+y=a — E—|—g:1 — (E)n—i—(g)n:l
a a a a

= " +y"=a" = (x+y)".

@ Thus z — 2" is a field automorphism and so n = 2' for some
0<I<k-—1. O
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Theorem (Main Result, Guillot, Gupta, Vishwakarma, Yip, 2024)

Let g =1p* and f : F, — F,. Then the following are equivalent:
@ f preserves positivity on M, (F,) for some n > 3.
@ f preserves positivity on M, (F,) for all n > 3.
Q f(z)= ca? for some ¢ € ]’F&F and 0 </ <k—1.
Moreover, when p is odd, the above are equivalent to

Q@ f(0) =0 and f is an automorphism of the Paley graph
associated to Fy, i.e., n(f(a) — f(b)) = n(a —b) for all
a,bel,.

@ The key idea for resolving the p # 2 cases is to show that the
positivity preservers are automorphisms of the associated Paley
graph, i.e.,

n(f(a) — f(b)) =n(a—10) for all a,b € Fy.
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Proof of (1) = (3) when ¢ = 3 (mod 4)

Assume ¢ = 3 (mod 4). We already know f(0) =0 and f is
bijective on ).
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Assume ¢ = 3 (mod 4). We already know f(0) =0 and f is
bijective on IF. Let us assume that 1(a —b) = 1 and consider the
following three cases.

Case 1 Assume b = 0. Since f(F}) =TF/,

n(a—b) =nla) =1 = n(f(a)) =1 =n(f(a) - f(0))

Case 2 Assume 7(b) = 1. Then the matrix

b b 0
A=1b a 0
0 0 1

is positive definite. Hence,
det f[A] = f(b)(f(a) — f(b)) € F,.
Thus, 5(f(a) — £(8)) = 1 since 5(f(b)) = 1.
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Case 3 Assume n(b) = —1.
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Case 3 Assume 7(b) = —1. Consider the matrix

c
b, det A=c(b—c)(a—0)
a

A=Ac) =

o O 0

St SO

where ¢ € F7 and 7(b — ¢) = 1. Thus, the matrix A is positive
definite.
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Case 3 Assume 7(b) = —1. Consider the matrix

AA(C)(

where ¢ € F7 and 7(b — ¢) = 1. Thus, the matrix A is positive
definite. It follows that

det f[A] = f(e)(f(b) — f(c))(f(a) — f(b)) € Fy.

) , det A=c(b—c)(a—0)

St SO
SIS e}

o O 0
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Case 3 Assume 7(b) = —1. Consider the matrix

AA(C)(

where ¢ € F7 and 7(b — ¢) = 1. Thus, the matrix A is positive
definite. It follows that

det f[A] = f(e)(f(b) — f(c))(f(a) — f(b)) € Fy.

We know that 7(f(c)) = 1, and using the previous case applied
with @’ = b and V' = ¢, we conclude that n(f(b) — f(c)) = 1.

Thus, n(f(a) — f(b)) = 1.
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Case 3 Assume 7(b) = —1. Consider the matrix

AA(C)(

where ¢ € F7 and 7(b — ¢) = 1. Thus, the matrix A is positive
definite. It follows that

det f[A] = f(e)(f(b) — f(c))(f(a) — f(b)) € Fy.

We know that 7(f(c)) = 1, and using the previous case applied
with @’ = b and V' = ¢, we conclude that n(f(b) — f(c)) = 1.

Thus, n(f(a) — f(b)) = 1.

Finally, if n(a —b) = —1, then (b — a) = 1. Hence, by the above

argument n(f(b) — f(a)) = 1. That implies n(f(a) — f(b)) = —1.
Thus, (1) = (3) and the result follows.

o O O

St SO
SIS e}

) , det A=c(b—c)(a—0)

Dominique Guillot (U. Delaware) 24 /31



Positivity preservers on Mj(F,)

For 2 x 2 matrices. ..

@ When p = 2, we saw that the preservers are f(x) = ca™ for
some c € [y and n such that ged(n,q — 1) = 1. (Bijective
power functions.)
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Positivity preservers on Mj(F,)

For 2 x 2 matrices. ..

@ When p = 2, we saw that the preservers are f(x) = ca™ for
some c € [y and n such that ged(n,q — 1) = 1. (Bijective
power functions.)

e When ¢ =3 (mod 4), all positivity preservers are f(z) = cat
for some ¢ € F;r and 0 < ¢ < k — 1. Proof is much more
complicated for My(IF,)!

@ When ¢ =1 (mod 4), we resolved the case ¢ = 2.
Otherwise, this is an open problem.
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General approach when ¢ =1 (mod 4)

Proposition

Let ¢ = p* be a prime power with ¢ =1 (mod 4) and let f be a
positivity preserver over My(F,) with f(1) = 1. Assume additionally
that f is injective on IF;. Then there exists 0 < [ < k — 1 such that

1
f(z) =aP forall z € Fy.

The proof relies on the following result of Muzychuk and Kovacs.
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General approach when ¢ =1 (mod 4)

Proposition

Let ¢ = p* be a prime power with ¢ =1 (mod 4) and let f be a
positivity preserver over My(F,) with f(1) = 1. Assume additionally
that f is injective on IF;. Then there exists 0 < | < k — 1 such that

1
f(z) =aP forall z € Fy.

The proof relies on the following result of Muzychuk and Kovacs.

Theorem (Muzychuk and Kovacs, 2005)

Let p be a prime and ¢ = p* =1 (mod 4). The automorphisms of the
subgraph of P(q) induced by ]F;r are precisely given by the maps

T = azt? where a € Ff and 1 € {0,1,...,k —1}.

@ We show that a positivity preserver on My (F,) that is injective on
IF;F is an automorphism of the above subgraph of P(g). Thus azt?.
@ With (quite a bit of) extra work, we rule out the az P case.
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When ¢ =1 (mod 4),
@ Not hard to show that a preserver on M, (IF,) is injective on
F;‘ if n> 3.

@ This implies our main result.
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When ¢ =1 (mod 4),

@ Not hard to show that a preserver on M, (IF,) is injective on
F;‘ if n> 3.

@ This implies our main result.

@ In general, we were not able to show that a positivity preserver
on M3(F,) needs to be injective on .

e When ¢ = 72, we can exploit extra structure of P(g) to show a
preserver on M(IF,) is injective on IF,.

Open problem: If f preserves positivity on M (F,) where ¢ =1
(mod 4) is not a square, does f have to be injective on F;?
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When ¢ = 72, we can exploit known structure of P(q) to determine
the positivity preservers on M (Fy).
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When ¢ = 72, we can exploit known structure of P(q) to determine
the positivity preservers on M (Fy).

@ Note I, C IE‘:; CF,2.
e The maximal cliques of P(r?) are known.

Theorem (Erdés-Ko-Rado for Paley graphs of square order)

In the Paley graph P(q), the clique number of P(q) is r. Moreover,
all maximum cliques are of the form aolF, + (3, where o € IF;; and
B € Fy (squares translates of the subfield F,.).

o Note that [} /F; is a well-defined group.
o We can thus write F; = a1IF; U aoFy U - - - U ap 1 F}.

o We say that a coset of the form aFF}, with a € IF‘; is a square
coset.
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Outline of proof for ¢ = r?

Let f be a positivity preserver on M(F,) where ¢ = r2.

© The function f maps a square coset to a square coset.
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Outline of proof for ¢ = r?

Let f be a positivity preserver on M(F,) where ¢ = r2.

© The function f maps a square coset to a square coset.

@ Action of f on a square coset alF}: there exist a positive
integer m = m(«) such that ged(m,r —1) =1 and
flazx) = pa™ for all x € F,, where § = f(a) € F/.

© The function f maps different square cosets to different square
cosets. Equivalently, f is injective on I,

@ We conclude f(z) = az?’ for all z € [F,.

The above steps are highly non-trivial and exploit the known
maximal clique structure of P(r?).
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Possible research directions

e New connections to other areas/problems in mathematics?
@ Applications of positive definite matrices over IF,?
@ Other problems involving matrix positivity over finite fields?

@ Other definitions of positive definiteness/semidefiniteness over
F,?
q
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Lecture notes:
https://dominiqueguillot.github.io/iisc-eigen.pdf

Thank you!
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