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Abstract

This thesis comprises two main parts. The details of the two parts are as follows:
The first part of the thesis deals with the monopole-dimer model. The dimer (resp.

monomer-dimer) model deals with weighted enumeration of perfect matchings (resp.
matchings). The monopole-dimer model is a signed variant of the monomer-dimer model
which has determinantal structure. A more general model called the loop-vertex model
has also been defined for an oriented graph and the partition function in this case can
also be written as a determinant. However, this model depends on the orientation of
the graph. The monopole-dimer model interprets the loop-vertex model independent of
the orientation for planar graphs with Pfaffian orientation. The first part of the thesis
focuses on the extension of the monopole-dimer model for planar graphs (Math. Phys.
Anal. Geom., 2015 ) to Cartesian products thereof. We show that the partition function
of this model can be expressed as a determinant of a generalised signed adjacency matrix.
We then show that the partition function is independent of the orientations of the planar
graphs so long as they are Pfaffian. When these planar graphs are bipartite, we show
that the computation of the partition function becomes especially simple. We then give
an explicit product formula for the partition function of three-dimensional grid graphs a
la Kasteleyn and Temperley–Fischer, which turns out to be fourth power of a polynomial
when all grid lengths are even. Further, we generalise this product formula to higher
dimensions, again obtaining an explicit product formula. We also discuss about the
asymptotic formulas for the free energy and monopole densities.

Lu and Wu (Physics Letters A, 1999 ) evaluated the partition function of the dimer
model on two-dimensional grids embedded on a Möbius strip and a Klein bottle. We
first prove a product formula for the partition function of the monopole-dimer model for
the higher dimensional grid graphs with cylindrical and toroidal boundary conditions.
We then consider the monopole-dimer model on high-dimensional Möbius and Klein
grids, and evaluate the partition function for three-dimensional Möbius and Klein grids.
Further, we show that the formula does not generalise for the higher dimensions in
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any natural way. Finally, we present a relation between the product formulas for three-
dimensional grids with cylindrical and Möbius boundary conditions, generalising a result
of Lu and Wu.

Let G be an undirected simple connected graph. We say a vertex u is eccentric to a
vertex v in G if d(u, v) = max{d(v, w) : w ∈ V (G)}. The eccentric graph of G, denoted
Ec(G), is a graph defined on the vertices of G in which two vertices are adjacent if one
is eccentric to the other. In the second part of the thesis, we find the structure and the
girth of the eccentric graph of trees, and see that the girth of the eccentric graph of a
tree can either be zero, three, or four. Further, we study the structure of the eccentric
graph of Cartesian product of graphs and prove that the girth of the eccentric graph
of the Cartesian product of trees can only be zero, three, four or six. Furthermore, we
provide a complete classification of when the eccentric girth assumes these values. We
also give the structure of the eccentric graph of the grid graphs and Cartesian product
of two cycles. Finally, we determine the conditions under which the eccentricity matrix
of Cartesian product of trees becomes invertible.
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Möbius and Klein grids. arXiv:2406.05750, 2024.

1



2 CONTENTS



List of Notation

Notation Description
V (G) Set of vertices in the graph G

E(G) Set of edges in the graph G

M(G) Set of all dimer coverings of the graph G

L(G) Set of loop-vertex configurations of the graph G

χ(c) The number of vertices in V (G) enclosed by the cycle c
Pn Path graph on n vertices
Cn Cycle graph on n vertices
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detA Determinant of the square matrix A.

KG ≡ KG,O Generalised adjacency matrix of the oriented graph (G,O)
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Chapter 1

Introduction

The main objectives of this thesis are

1. to extend the monopole-dimer model from plane graphs to Cartesian product of
plane graphs,

2. to explore some structural properties of the eccentric graph of a tree and Cartesian
product of trees.

We start by giving a brief review of the related work in Section 1.1, followed by an
outline of the thesis in Section 1.2.

1.1 Brief Literature Review

The dimer model originally arose as the study of the physical process of adsorption of
diatomic molecules (like oxygen) on the surface of a solid. Abstractly it can be thought
of as enumerating perfect matchings in an edge-weighted graph. For planar graphs,
Kasteleyn [21] solved the problem completely by showing that the partition function
defined in (2.2.1) can be written as a Pfaffian of a certain adjacency matrix built using
a special class of orientations called Pfaffian orientations on the graph. An immediate
corollary of Kasteleyn’s result is that the Pfaffian is independent of the orientation. For
the case of two-dimensional grid graphs Qm,n, Kasteleyn [20] and Temperley–Fisher [13,
32] independently gave an explicit product formula. Fisher and Stephenson [14] also
studied the correlation properties of the dimer model on two-dimensional grids. For
example, when m and n are even, horizontal (resp. vertical) edges have weight a (resp.
b), the partition function of the dimer model on Qm,n with free boundary condition can
be written as

m/2∏
i=1

n/2∏
j=1

(
4a2 cos2 iπ

m+ 1 + 4b2 cos2 jπ

n+ 1

)
. (1.1.1)

5



6 1. Introduction

We do not know of any simple recurrence for this formula. This formula is remarkable
because although each factor is a degree-two polynomial in a and b with coefficients that
may not be rational, the product turns out to be a polynomial with nonnegative integer
coefficients. In particular, when a = b = 1, the result is an integer.

A similar product formula for the weighted enumeration of perfect matchings of the
two-dimensional grid graph has been given by McCoy and Wu [29] for cylindrical and
toroidal boundary conditions and by Lu and Wu [25] for Möbius and Klein boundary
conditions. Kasteleyn [22] stated and Cimasoni and Reshetikhin [12] proved that the
weighted enumeration of perfect matchings of a graph embeddable on a surface of genus
g may be written as a linear combination of 4g Pfaffians. Tesler [33] showed that the
partition function of the dimer model on graphs embedded on non-orientable surfaces
can be enumerated as a linear combination of some Pfaffians. Brankov and Priezzhev [9]
gave explicit expressions for the free energy of the dimer model on finite two-dimensional
grids embedded on a Möbius strip.

There have been attempts to generalise the dimer model while preserving this nice
structure. The natural physical generalisation is the monomer-dimer model, which rep-
resents adsorption of a gas cloud consisting of both monoatomic and diatomic molecules.
The abstract version here is the (weighted) enumeration of all matchings of a graph. The
weights are interpreted as energies and are positive real numbers. This is known to be a
computationally difficult problem [18] and the partition function here does not have such
a clean formula. However, when there is a single monomer on the boundary of a plane
graph, the partition function can indeed be written as a Pfaffian [36]. A lower bound for
the partition function of the monomer-dimer model for d-dimensional grid graphs has
been obtained by Hammersley–Menon [16] by generalising the method of Kasteleyn and
Temperley–Fisher [32].

In another direction, a signed version of the monomer-dimer model called the mono-
pole-dimer model has been introduced [6] for planar graphs. Configurations of the
monopole-dimer model can be thought of as superpositions of two monomer-dimer con-
figurations having monomers (called monopoles there) at the same locations. Thus, one
ends up with even loops and isolated vertices. What makes the monopole-dimer model
less physical is that configurations have a signed weight and they cannot be interpreted
as energies anymore. On the other hand, the partition function here can be expressed as
a determinant. Moreover, it is a perfect square for a 2m×2n grid graph. A combinatorial
interpretation of the square root is given in [7].

In [6], a more general model called the loop-vertex model has also been defined for a
general graph together with an orientation. The partition function in this case can also
be written as a determinant. However, this model depends on the orientation. One of
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the main motivations for this work is to find natural families of non-planar graphs where
the partition function is independent of the orientation, just as in the monopole-dimer
model. The second motivation comes from the intuition that the monopole-dimer model
is an ‘integrable variant’ of the more physical monomer-dimer model. If this is correct,
asymptotic properties of both models should be similar. This has been explained in [6]
for the two-dimensional grid. We expect this to hold for high dimensional grids also. This
is not easy to see because of the signs in monopole-dimer weights. We hope this work will
be a starting point towards establishing this relationship between the two models. We
note in passing that higher dimensional dimer models have started attracting attention;
see [11, 17] for example.

The notion of eccentricity matrix was first introduced by Randić as the Dmax-matrix
in 2013 [30] and subsequently, Wang, Lu, Belardo and Randić renamed it as the eccentric-
ity matrix in 2018 [34]. The eccentricity matrix of a graph is also called as anti-adjacency
matrix in the following sense. The eccentricity matrix is obtained from the distance ma-
trix by preserving only the largest distances in each row and column; on the other hand,
the adjacency matrix is obtained from the distance matrix by preserving only the small-
est non-zero distances in each row and column. Unlike the adjacency matrix and the
distance matrix, the eccentricity matrix of a connected graph need not be irreducible.
The eccentricity matrix of a complete bipartite graph is reducible and the eccentricity
matrix of a tree is irreducible [34, 27].

Spectra of the eccentricity matrix for some graphs are studied by Mahato, Gurusamy,
Kannan and Arockiaraj in [27] and by Wang, Lu, Belardo and Randić in [34], the lower
and upper bounds for the E-spectral radius of graphs are also discussed in [34]. Wang,
Lu, Brunetti, Lu and Huang studied the non-isomorphic co-spectral graphs with respect
to the eccentricity matrix [35]. The eccentricity matrix has interesting applications in
the field of chemical graph theory [30, 31]. In another direction, some eccentricity-based
indices have also been studied. Xu, Das and Maden [38] have obtained bounds on the
non-self-centrality number (NSC number) of a graph G. The bounds for the difference of
the eccentric connectivity index (ECI) and the connective eccentricity index (CEI) of a
tree have been studied and the corresponding extremal trees have also been classified [37].

A necessary and sufficient condition for the eccentric graph of G to be isomorphic to
G or the complement of G is given by Akiyama, Ando and Avis [2]. Kaspar, Gayathri,
Kulandaivel, Shobhanadevi gave the complete structure of the eccentric graph for some
well-known graphs like paths and cycles [19]. Many interesting properties of the eccen-
tricity matrix of a tree have been established so far. For instance, Mahato, Gurusamy,
Kannan, and Arockiaraj showed that the eccentricity matrix of a tree is invertible only
if the tree is a star [26]. Additionally, Mahato and Kannan showed that the diameter



8 1. Introduction

of the tree is odd if and only if the eigenvalues of its eccentricity matrix are symmetric
about the origin [28].

1.2 Organisation of the thesis

The work in this thesis is motivated by the work in [6, 25, 26, 27, 28]. In particular,
Ayyer [6] defines the two main models the monopole-dimer model for the planar graphs
and the loop-vertex model for general oriented graphs. He showed that the monopole-
dimer model interprets the loop-vertex model independent of the Pfaffian orientation for
planar graphs. This raises the natural question of finding more families where the orien-
tation independency can be observed. Lu and Wu [25] worked on the dimer model for the
two-dimensional grid graphs embedded on different non-orientable surfaces, suggesting
the scope of research for the higher-dimensional grids. Mahato, Gurusamy, Kannan and
Arockiaraj [26, 27, 28] studied many intriguing properties about the eccentric graph of
a tree which motivated us to examine the complete structure of the aforementioned.

In Chapter 2, we discuss the background theory, essential preliminaries and the no-
tations crucial for this thesis. In Section 2.2 we formulate the models and in Section 2.3,
we will look at the partition function of the dimer model on two-dimensional grids em-
bedded on different surfaces. In Section 2.4, we see some unitary similarity transforms
from linear algebra relevant to our work and finally in Section 2.5, we define quantities
needed to talk about the eccentricity and eccentric graph.

To address the first question, we formulate the monopole-dimer model for Carte-
sian products of plane graphs in Chapter 3. A key ingredient in the formulation is the
construction of special directed cycle decompositions of certain projections, which are
themselves plane graphs with parallel edges. We show in Theorem 3.9 that the parti-
tion function of the (extended) monopole-dimer model is a determinant of a generalised
adjacency matrix built using Pfaffian orientations. As in the dimer model, we see im-
mediately in Corollary 3.10 that the determinant is independent of the orientation. In
Section 3.3, we focus attention on the monopole-dimer model on Cartesian product of
bipartite plane graphs. Here, we will show in Theorem 3.14 that we can allow arbi-
trary cycle decompositions of the projections mentioned above. This seems to be a new
observation of independent interest.

In Chapter 4, we focus on the special family of grid graphs in high dimensions. We
give an explicit product formula for the partition function of the monopole-dimer model
on three-dimensional grid graphs in Theorem 4.1 generalising the formula (1.1.1). One
peculiar feature of this partition function is that it is a fourth power of a polynomial
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when all side lengths are even. Just as for the partition function of the monopole-
dimer model for two-dimensional grids, it would be interesting to obtain a combinatorial
interpretation of the fourth root. We then briefly discuss the higher dimensional case in
Section 4.2 and give a similar explicit product formula in Theorem 4.4. We also discuss
its asymptotic behaviour in Section 4.3.

In Chapter 5, we define high-dimensional cylindrical and toroidal grid graphs. We
generalise the product formulas for the partition function of the dimer model on two-
dimensional grids embedded on a cylinder and a torus for the monopole-dimer model
on the d-dimensional cylindrical and toroidal grid graphs. We also give the product
formula for the monopole-dimer model on the three-dimensional Möbius and Klein grids
in Theorem 6.4 and Theorem 6.11. We show that the formulas do not hold for higher
dimensions by providing counterexamples in Example 6.7 and Example 6.12. Further,
we establish a relationship between three-dimensional grids with cylindrical and Möbius
boundary conditions in Corollary 6.8, generalising a result of Lu and Wu [25].

In Chapter 7, we discuss about the eccentric graph of a tree. We give a complete
structure of the eccentric graph of a general tree in Section 7.1 and prove that the eccen-
tricity of a vertex is either the smallest or largest among its neighbors in the eccentric
graph in Proposition 7.5. In Section 7.2, we prove that the eccentric girth of a tree can
either be zero, three or four. We also discuss when these values are attained.

In Chapter 8, we present some structural properties of the eccentric graph of Cartesian
product of graphs and classify all the possible values of the eccentric girth for Cartesian
product of trees. We discuss the structure of the eccentric graph of Cartesian product
of two path graphs and two cycle graphs in Sections 8.3 and 8.4. We also discuss about
their girth. Lastly, in Section 8.5, generalising the result in [26, Theorem 2.1], we analyze
and classify the conditions under which the eccentricity matrix of Cartesian product of
trees becomes invertible.
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Chapter 2

Preliminaries

In this chapter, we set up the notations and state the known results. We start by defining
the well-known dimer model in Section 2.2 and see results for the partition function of
dimer model on grids embedded on different surfaces in Section 2.3.

2.1 Basic terminology

We begin by recalling basic terminology from graph theory. A (simple) graph is an
ordered pair G = (V (G), E(G)), where V (G) is the set of vertices of G and E(G) is a
collection of two-element subsets of V (G), known as edges. When we allow multiple edges
between a pair of vertices (also called parallel edges), we will call such objects multigraphs.
We will never allow self loops. We will work with undirected graphs and we will always
assume that the graphs are finite and naturally vertex-labeled from {1, 2, . . . , |V (G)|}.
A simple graph is therefore a graph with no parallel edges. The degree of a vertex is the
number of edges incident to it and an even (multi)graph G is one in which all the vertices
have even degree. A vertex of degree 1 is called a leaf or a pendant vertex. A walk in
a graph G is a sequence (v0, e1, v1, . . . , vt−1, et, vt) of alternating vertices v0, . . . , vt and
edges e1, . . . , et of G, such that vi−1 and vi are the endpoints of ei for 1 ≤ i ≤ t. v0 and vt

are called the initial and final vertices respectively. A path in G is a walk whose vertices
and edges both are distinct. A cycle in G is a path whose initial and final vertices are
identical. The size of a path or a cycle is the number of edges in it. These definitions
apply also to multigraphs. A tree is a connected graph with no cycles.

A path graph is a simple graph with vertices {1, . . . , n} and two vertices are adjacent
if and only if they are consecutive. A cycle graph is obtained from the path graph by
adding an extra edge from vertex 1 to vertex n. Throughout the text, we will denote the
path graph and the cycle graph on n vertices as Pn and Cn, respectively. A star graph

11



12 2. Preliminaries

Sn on (n + 1) vertices is a graph with n vertices of degree 1 and one vertex, called the
center, of degree n. A double star Ss,t is a graph obtained by adding an edge between the
central vertices of two stars Ss and St. Let Kt denotes the complete graph on t vertices.

Recall that a planar graph is a graph which can be embedded in the plane, i.e. it
can be drawn in such a way that no edges will cross each other. Such an embedding of
a planar graph is referred as a plane graph and it divides the whole plane into regions,
each of which is called a face. For a plane graph G and a cycle c in G, the vertices
enclosed by c are the vertices lying strictly in the interior of c. We will consider only
those embeddings of the graph for which parallel edges do not enclose any vertex. An
orientation on a graph G is an assignment of arrows to its edges. A graph G with an
orientation O is called an oriented graph and is denoted (G,O). An orientation on a
labeled graph obtained by orienting its edges from lower to higher labeled vertex is called
a canonical orientation.

Definition 2.1. Let G1 and G2 be two simple connected graphs. The Cartesian product
of G1 and G2 denoted as G1□G2 is a graph with vertex set V (G1) × V (G2), where two
vertices (u1, u2) and (v1, v2) are adjacent if and only if either u1 = v1 and u2 ∼G2 v2 or
u1 ∼G1 v1 and u2 = v2.

The above definition generalises to the Cartesian product of k graphs G1, . . . , Gk, de-
noted G1□ · · ·□Gk. We write Qn1,...,nd

for the d-dimensional grid graph which is Carte-
sian product Pn1□ · · ·□Pnd

.

2.2 The dimer model and the monopole-dimer model

All our models will be defined on simple graphs. We will encounter graphs with parallel
edges only in certain decompositions.

Definition 2.2. An orientation on a plane graph G is said to be Pfaffian if it satisfies
the property that each bounded face has an odd number of clockwise oriented edges. A
Pfaffian orientation is said to possess the clockwise-odd property.

1

3

4
2

Figure 2.1: An oriented graph on 4 vertices.
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For example, the orientation in Figure 2.1 is a Pfaffian orientation. Kasteleyn has
shown that every plane graph has a Pfaffian orientation [21]. Recall that an edge e is
said to cover a vertex v if v is a vertex in e. A dimer covering or perfect matching is a
collection of edges in the graph G such that each vertex is covered in exactly one edge.
The set of all dimer coverings of G will be denoted as M(G). Let G be an edge-weighted
graph on 2n vertices with real positive weight we for e ∈ E(G) (thought of as the energy
of e). Then the dimer model is the collection of all dimer coverings where the weight of
each dimer covering M ∈ M(G) is given by w(M) = ∏

e∈M we. The partition function
of the dimer model on G is then defined as

ZG :=
∑

M∈M(G)
w(M), (2.2.1)

which is basically the weighted enumeration of perfect matchings in G. To state Kaste-
leyn’s celebrated result, recall that a matrix A = (ai,j) is skew-symmetric if ai,j = −aj,i

for every i, j, and the Pfaffian of 2n× 2n skew-symmetric matrix A is given by

Pf(A) = 1
2nn!

∑
σ∈S2n

sgn(σ)Aσ1,σ2Aσ3,σ4 . . . Aσ2n−1,σ2n ,

and Cayley’s theorem [10] says that for such a matrix, detA = Pf(A)2.

Theorem 2.3 (Kasteleyn [21]). If G is a plane graph with Pfaffian orientation O, then
the partition function of the dimer model on G is given by ZG = | Pf(KG)|, where KG is
a signed adjacency matrix defined by

(KG)u,v =


we u → v in O,

−we v → u in O,

0 otherwise.

The partition function of the dimer model on the two-dimensional grid graphs Q2m,2n

where horizontal (resp. vertical) edges have weight a (resp. b) is given by (1.1.1).
Throughout this article, we will refer to cycles in configurations on graphs as loops.

We will always understand these loops to be directed. Let us now recall the generalization
of the dimer model known as the loop-vertex model [6]. Let G be a simple weighted graph
on n vertices with an orientation O, vertex-weights x(v) for v ∈ V (G) and edge-weights
av,v′=av′,v for (v, v′) ∈ E(G). A loop-vertex configuration C of G is a subgraph of G
consisting of

• directed loops of even length (with length at least four),
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• doubled edges (which can be thought of as loops of length two), and

• isolated vertices,

with the condition that each vertex of G is either an isolated vertex or is covered in
exactly one loop. The set of all loop-vertex configurations of G will be denoted as L(G).
Figure 2.2 shows a graph and two loop-vertex configurations on it.

1

3

4
2

a1,2

a1,3
a1,4

a2,3
a3,4

(a) The graph of Figure 2.1

2

1

3

4
2

(b) The directed cycle (1234)

4

2
1

4

3

2

(c) The doubled edge (14) and
isolated vertices 2 and 3

Figure 2.2: The graph of Figure 2.1 with edge weights marked in Figure 2.2a, and two
loop-vertex configurations on it in Figure 2.2b and Figure 2.2c.

Let ℓ = (v0, v1, . . . , v2k−1, v2k = v0) be a directed even loop for k ≥ 1 in (G,O). The
weight of the loop ℓ is given by

w(ℓ) := −
2k−1∏
i=0

sgn(vi, vi+1) avi,vi+1 , (2.2.2)

where,

sgn(v, v′) :=

1 v → v′ in O,

−1 v′ → v in O.
(2.2.3)

Note that the weight of a doubled edge (vi, vj) is always +a2
vi,vj

.
Then the loop-vertex model on the pair (G,O) is the collection L(G) with the weight

of a configuration, C = (ℓ1, . . . , ℓj; v1, . . . , vk) consisting of loops ℓ1, . . . , ℓj and isolated
vertices v1, . . . , vk, given by

w(C) =
j∏

i=1
w(ℓi)

k∏
i=1

x(vi). (2.2.4)

The (signed) partition function of the loop-vertex model is defined as

ZG,O :=
∑

C∈L(G)
w(C).

The term partition function here comes directly from statistical physics and has no
relation with integer partitions.
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Example 2.4. Let G be a weighted graph on four vertices with vertex weights x for all
the vertices and edge weights as shown in Figure 2.2a. Then the weights of the configura-
tion shown in Figures 2.2b and 2.2c are a1,2a2,3a3,4a1,4 and x2a2

1,4. The partition function
of the loop-vertex model on the graph in Figure 2.2a with the canonical orientation is

ZG,O = x4 + a2
1,2x

2 + a2
1,3x

2 + a2
1,4x

2 + a2
2,3x

2 + a2
3,4x

2 + a2
1,2a

2
3,4 + a2

1,4a
2
2,3 + 2a1,2a2,3a3,4a1,4.

The last term has coefficient 2 as the cycle (1234) has two directions.

Definition 2.5. Let G be a graph with orientation O, then the generalised adjacency
matrix of (G,O) is defined as

KG,O(v, v′) =



x(v) v = v′,

av,v′ v → v′ inO,

−av,v′ v′ → v inO,

0 (v, v′) /∈ E(G).

(2.2.5)

We use KG instead of KG,O whenever the underlying orientation is clear.

Theorem 2.6 ([6, Theorem 2.5]). The partition function of the loop-vertex model on
(G,O) is

ZG,O = det KG,

where KG is a generalised adjacency matrix of (G,O).

Example 2.7. The generalised adjacency matrix for the graph G in Example 2.4 with
the canonical orientation is

KG =


x a1,2 a1,3 a1,4

−a1,2 x a2,3 0
−a1,3 −a2,3 x a3,4

−a1,4 0 −a3,4 x

 ,

and

det KG = x4 +a2
1,2x

2 +a2
1,3x

2 +a2
1,4x

2 +a2
2,3x

2 +a2
3,4x

2 +a2
1,2a

2
3,4 +a2

1,4a
2
2,3 +2a1,2a2,3a3,4a1,4,

which is exactly ZG,O from Example 2.4.

If G is a simple plane graph and O is a Pfaffian orientation on it, then the loop-vertex
model is called the monopole-dimer model. In that case, it has been shown [6, Theorem
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3.3] that the weight of a loop ℓ = (v0, v1, . . . , v2k−1, v2k = v0) can be written independent
of the Pfaffian orientation as stated in the following result.

Theorem 2.8 ([6, Equation 3.1]). Let G be a simple vertex- and edge-weighted plane
graph and O is a Pfaffian orientation on G. Then the weight of a loop ℓ = (v0, v1, . . . ,

v2k−1, v2k = v0) in (2.2.2) can be written as

w(ℓ) = (−1)number of vertices enclosed by ℓ
2k−1∏
j=0

avj ,vj+1 . (2.2.6)

Then Theorem 2.6 can be used to show the following result.

Corollary 2.9. The determinant of the generalised adjacency matrix of a plane graph
with a Pfaffian orientation is independent of the orientation.

The monopole-dimer model reduces to the so-called double-dimer model [23, 24] when
vertex weights are zero for all the vertices in the graph.

2.3 The dimer model on grids embedded on different
surfaces

McCoy and Wu obtained a product formula for the partition function of two-dimensional
grid graphs embedded on a cylinder and a torus similar to the one by Kasteleyn and
Temperley-Fisher’s formula in (1.1.1) for the two-dimensional grid graphs with free
boundary.

1 2 3 4 1

8 7 6 5 8

(a) 4 × 2 grid on a cylinder

1 2 3 4 8

8 7 6 5 1

(b) 4×2 grid on a Möbius strip

1 2 3 4 8

178

1 2 3

6 5

4

(c) 4×2 grid on a Klein bottle

Figure 2.3: Two-dimensional grid with different boundary conditions

Theorem 2.10 ([29, Equation (6.33), (6.53)]). The partition function of the dimer model
on the two-dimensional grid graph Q2m,2n where horizontal (resp. vertical) edges have
weight a (resp. b) with cylindrical and toroidal boundary conditions is given by

ZCyl
Q2m,2n

=
m∏

i=1

n∏
j=1

(
4a2 sin2 (2i− 1)π

2m + 4b2 cos2 jπ

2n+ 1

)
, (2.3.1)
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and
ZTor

Q2m,2n
=

m∏
i=1

n∏
j=1

(
4a2 sin2 (2i− 1)π

2m + 4b2 sin2 (2j − 1)π
2n

)
, (2.3.2)

respectively.

Lu and Wu have obtained the similar closed-form expressions for the partition func-
tion of the dimer model on 2m × 2n grids embedded on non-orientable surfaces like
Möbius strip and Klein bottle. Figure 2.3 shows a two-dimensional grid embedded on
different surfaces.

Theorem 2.11 ([25, Equation (18), (19)]). Let Q2m,2n = P2m□P2n denote the two-
dimensional grid graph with horizontal (resp. vertical) edges having weight a (resp. b).
The partition function of the dimer model on Q2m,2n embedded on a Möbius strip and on
a Klein bottle is given by

ZMöb
Q2m,2n

=
m∏

i=1

n∏
j=1

(
4a2 sin2 (4i− 1)π

4m + 4b2 cos2 jπ

2n+ 1

)
, (2.3.3)

and
ZKlein

Q2m,2n
=

m∏
i=1

n∏
j=1

(
4a2 sin2 (4i− 1)π

4m + 4b2 sin2 (2j − 1)π
2n

)
, (2.3.4)

respectively.

In Chapters 5 and 6, we will generalise Theorem 2.10 and Theorem 2.11 for a more
general model called the (extended) monopole-dimer model (defined in Chapter 3). This
attempt parallels the approach used to find the partition function of the monopole-dimer
model on higher dimensional grids with free boundary conditions in Chapter 4.

Now, let us define the labelling we use in this thesis. Recall that Pn denotes the
path graph on n vertices and Qn1,...,nd

is the d-dimensional grid graph which can be
regarded as Cartesian product of Pn1 , . . . , Pnd

denoted as Pn1□ · · ·□Pnd
. We will asso-

ciate the labelling Ld (defined inductively), with Q as follows: For d = 1, label L1 is

9

8

1

16

15

7

2

3

6

5

4

12

13

14

11

10

Figure 2.4: The boustrophedon labelling on P4□P2□P2.
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1, 2, . . . , n1. For d > 1, Q consists of nd copies of the (d − 1)-dimensional grids. Suc-
cessive copies (with successive last coordinate 1, 2, . . . , nd) are labelled consecutively as
Ld−1, L

′
d−1, Ld−1, L

′
d−1, . . . where L′

d−1 represents the labelling of (d−1)-dimensional grid
in reverse order of Ld−1. In particular, the vertex (p, q, r) in Q2n1,2n2,2n3 has label



8tn1n2 + 4sn1 + p q = 2s+ 1, r = 2t+ 1,

8tn1n2 + 4sn1 − p+ 1 q = 2s, r = 2t+ 1,

8tn1n2 − 4sn1 − p+ 1 q = 2s+ 1, r = 2t,

8tn1n2 − 4sn1 + p q = 2s, r = 2t,

(2.3.5)

where p ∈ [2n1], q ∈ [2n2] and r ∈ [2n3]. Figure 2.4 shows this labelling on the graph
P4□P2□P2. Any snake-like labelling like the one above is called a boustrophedon labelling.

2.4 Some useful linear algebraic identities

In this section, we recall some unitary similarity transforms that will be useful for com-
puting determinants in Chapters 4 to 6, along with their action on different matrices.
We will use ∼ to denote the equivalence relation of similarity on matrices and ι for

√
−1.

Let Tk(−s, z, s) denote the k × k tridiagonal Toeplitz matrix with diagonal entries z,
subdiagonal entries −s and superdiagonal entries s and Jk denote the k×k antidiagonal
matrix with all antidiagonal entries equal to 1. We will use the following notation for an
n× n diagonal and antidiagonal matrix

diag
(
x1, . . . , xn

)
=


x1

. . .

xn

 ,

adiag
(
x1, . . . , xn

)
=


x1

. .
.

xn

 .

Recall the definition of the Kronecker product of two matrices.

Definition 2.12. Let A = (ai,j) be an m × n matrix and B = (bi,j) be a p × q matrix,
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then the Kronecker product, A⊗B, is an mp× nq block matrix defined as
a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

The Kronecker product of two matrices is non-commutative in general. If A and B

are square matrices of order n and p, respectively, then

detA⊗B = (detA)p(detB)n.

Lemma 2.13 ([13, Section 4] ). Let uk be the standard unitary similarity transformation
whose entries are given by

(uk)p,q =
√

2
k + 1ι

p sin
(
pqπ

k + 1

)
. (2.4.1)

Then, uk transforms the Toeplitz matrix, Tk(−s, z, s), into the diagonal matrix

Dk = diag
(
z + 2ιs cos π

k + 1 , . . . , z + 2ιs cos kπ

k + 1

)
,

and

(uk)−1Jkuk = ιk−1


(−1)k−1

(−1)k−2

. .
.

(−1)0

 . (2.4.2)

Lemma 2.14 ([29, Section 6]). Let Vn be the unitary similarity transform defined as

Vn = 1√
n


1 · · · 1
eιθ1 · · · eιθn

...
...

e(n−1)ιθ1 · · · e(n−1)ιθn

 for θj = 2j − 1
n

π. (2.4.3)

Then,

V −1
n (Tn(−a, x, a) + a adiag (1, 0, . . . , 0,−1))Vn

= diag
(
x+ 2ιa sin π

n
, . . . , x+ 2ιa sin (2n− 1)π

n

)
,
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and
V −1

n JnVn = adiag
(

−eι π
n , . . . ,−eι

(2n−1)π
n

)
.

2.5 Concepts related to eccentricity

Let G be a simple undirected graph on n vertices with m edges. If two vertices v, w ∈
V (G) are adjacent, we will write v ∼G w. The neighbourhood of a vertex v in G is defined
as NG(v) = {w ∈ V (G) : v ∼G w}. If the graph G is connected, the distance dG(v, w),
between two vertices v and w is the length of the shortest path in G connecting them.
The distance matrix of a connected graph G, denoted DG, is the n × n matrix indexed
by V (G) whose (v, w)’th-entry is equal to dG(v, w).

The eccentricity, eG(v), of a vertex v ∈ V (G) is defined as

eG(v) = max{dG(u, v) : u ∈ V (G)},

we will use e(v) instead of eG(v) whenever there is no confusion about the underlying
graph. If dG(u, v) = e(v), then we will say u is eccentric to v and a shortest path between
u and v is called an eccentric path (starting from v). The diameter of G, diam(G), is
the maximum of eccentricities of the vertices in G. A diametrical path is a longest path
among all eccentric paths in the graph G.

The eccentricity matrix of a connected graph G, denoted by EG, is constructed from
the distance matrix DG, retaining the largest distances in each row and each column,
while other elements of the distance matrix are set to zero. In other words,

(EG)i j =

dG(ui, uj) if dG(ui, uj) = min{e(ui), e(uj)},

0 otherwise.

Example 2.15. The distance and eccentricity matrix of the path graph P5 are

DP5 =



0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0


and EP5 =



0 0 2 3 4
0 0 0 0 3
2 0 0 0 2
3 0 0 0 0
4 3 2 0 0


.

Definition 2.16 ([2, Section 1]). The eccentric graph, denoted Ec(G), of a connected
graph G is the simple graph with the vertex set V (G) and uv is an edge in Ec(G) if
either v is eccentric to u or u is eccentric to v. In that case, we call u and v are adjacent
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in Ec(G) and denote it as u ∼Ec(G) v.

Note that the adjacency matrix of the eccentric graph Ec(G) is obtained by replacing
the non-zero entries in the eccentricity matrix EG, by 1.

Proposition 2.17 ([19, Proposition 1]). Let Pn be the path graph on n vertices. Then,

Ec(Pn) =


Kn, if n ≤ 3,

Sn−2
2 , n−2

2
, if n > 3 is even,

Hn−3
2

if n > 3 is odd,

where Ht is a graph obtained by adding t pendant vertices to any two of the vertices of a
triangle (see Figure 2.5).

Figure 2.5: Eccentric graphs of the path graphs P8 and P9 (S3,3 and H3).

Proposition 2.18 ([19, Proposition 2]). Let Cn be the cycle graph on n vertices. Then,

Ec(Cn) =


n
2K2 if n is even,

Cn if n is odd.
(2.5.1)

Also, Ec(Kn) = Kn and Ec(Ks,t) = Ks ∪Kt for s, t > 1.
Recall the girth of a graph G is the length of the shortest cycle present in G. If a

graph G has no cycles, we will say that G has girth 0. We will call the girth of the
eccentric graph as eccentric girth and denote it as g(Ec(G)). Girth is the dual concept
to edge connectivity (minimum number of edges that must be removed to disconnect a
graph), in the sense that the girth of a planar graph is the edge connectivity of its dual
graph, and vice versa. Calculating the girth of a graph is an important task in graph
theory, as it helps us understand the graph’s structure and properties. We talk about
the eccentric girth of trees and Cartesian product of trees in Chapters 7 and 8.
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Chapter 3

Monopole-dimer model on Cartesian
products of plane graphs

We now extend the definition of the monopole-dimer model to Cartesian products of
plane graphs. Let G1, . . . , Gk be k simple graphs and G1□ · · ·□Gk be their Cartesian
product. We will denote edges in G1□ · · ·□Gk of the form ((u1, . . . , ui, . . . , uk), (u1, . . . ,

u′
i, . . . , uk)) as Gi-edges. Clearly, a path graph is plane. It is clear from the definition

that Cartesian product of k path graphs is a cuboid in Zk, also known as a grid graph.
Figure 3.1 shows Cartesian product P4□P3. We will use the notation [n] for the set
{1, . . . , n}.

1 2 3 4

8 7 6 5

1211109

Figure 3.1: Cartesian product P4□P3 with its boustrophedon labelling; see Section 2.3.

3.1 Cycle decompositions

An edge-disjoint multiset of cycles in a multigraphG is a family of cycles D = {d1, . . . , dk}
such that no edge belongs in more than one cycle. In particular, a cycle decomposition of
a multigraph G is an edge-disjoint multiset of cycles D of G such that ∪

d∈D
E(d) = E(G).

Veblen’s theorem [8, Theorem 2.7] says that a multigraph admits a cycle decomposition
if and only if it is even. We say that a cycle decomposition is directed if all of its cycles
are directed. For a plane graph G and a cycle c in G, denote the number of vertices in

23
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V (G) enclosed by c as χ(c). For example, the number of vertices enclosed by the cycle
(3,4,5) is 1 for the graph shown in Figure 3.2a.

Definition 3.1. We say that the sign of an edge-disjoint multiset of directed cycles
D = {d1, . . . , dk} of an even plane multigraph G is given by

sgn(D) :=
k∏

i=1


(−1)χ(di) if di has odd size and is directed clockwise,

(−1)χ(di)+1 if either di has even size, or has odd size

and is directed anticlockwise.

(3.1.1)

Note that this formula also defines the sign of a directed cycle decomposition.

Example 3.2. For the even plane graph H shown in Figure 3.2a, the sign of its directed
cycle decomposition {(1, 2, 3, 4), (3, 4, 5), (5, 6)} shown in Figure 3.2b is

(−1)0+1 × (−1)1 × (−1)0+1 = −1.

2

4

5
3

6

1

(a) A plane graph H with parallel edges

2

4

5
3

6

1

(b) H split as (1234)(345)(56)

Figure 3.2: (a) A plane graph on 6 vertices and (b) a directed cycle decomposition of it.

Recall that an outerplanar (multi)graph is a planar (multi)graph that has a planar
drawing for which all vertices belong to the outer face of the drawing. Such a planar
drawing is called an outerplane (multi)graph.

Corollary 3.3. The sign of an edge-disjoint multiset of directed cycles D = {d1, . . . , dk}
of an even outerplane multigraph G is given by

sgn(D) := (−1)# of even cycles in D+# of anticlockwise directed odd cycles in D (3.1.2)

A trail in a multigraph G is a walk whose vertices can be repeated but edges are
distinct. In particular, trails are allowed to self intersect at vertices. A closed trail is
one whose initial and terminal vertices are the same. Therefore, a closed trail can be
decomposed into an edge-disjoint multiset of cycles. A directed closed trail is a closed
trail with a definite direction of traversal.
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Definition 3.4. Let T be a directed closed trail in a multigraph G. We say that a
directed cycle decomposition D of T is compatible with T if the direction of cycles in D
is inherited from the direction of T .

Lemma 3.5. Let T be a closed directed trail in a plane multigraph G with Pfaffian
orientation O. Then all cycle decompositions of T compatible with it have the same
sign.

Proof. The idea of this proof is similar to that of [6, Theorem 3.3]. Let D = {d1, . . . , dk}
be a directed cycle decomposition of T compatible with it. Then the number of edges of
T oriented in the opposite direction to T is given by

k∑
j=1

(
number of edges oriented in opposite direction of dj

)
. (3.1.3)

For j ∈ [k], let Ej and Fj be the number of edges and faces enclosed by dj respectively.
Since O is Pfaffian, the number of clockwise oriented edges on the boundary of any
bounded face f is odd (say Of ). Thus the number of clockwise oriented edges of dj is

∑
f is a face in G
enclosed by dj

Of − Ej,

because each edge enclosed by dj contributes to exactly two faces, one clockwise and one
anticlockwise. Since Of is odd for any bounded face f , the above quantity has the same
parity as Fj − Ej. Now, using the Euler characteristic on the plane graph enclosed by
dj, the number of clockwise oriented edges of dj and the number of vertices enclosed by
dj, which we called χ(dj), have opposite parity. Thus the quantity in (3.1.3) is equal to
sgn(D) given in (3.1.1).

3.2 Extended monopole-dimer model

Definition 3.6. The oriented Cartesian product of naturally labeled oriented graphs
(G1,O1), . . . , (Gk,Ok) is the graph G1□ · · ·□Gk with orientation O given as follows.
For each i ∈ [k], if ui → u′

i in Oi, then O gives orientation (u1, . . . , ui, . . . , uk) →
(u1, . . . , u

′
i, . . . , uk) if ui+1 +ui+2 + · · · +uk + (k− i) ≡ 0 (mod 2) and (u1, . . . , u

′
i, . . . , uk)

→ (u1, . . . , ui, . . . , uk) otherwise.

If we assign the canonical orientation to the graph in Figure 3.1, it can be thought
of as an oriented Cartesian product of paths P4 and P3 which are labeled consecutively
from one leaf to another.
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Definition 3.7. The i-projection of a subgraph S of the Cartesian product G1□ · · ·□Gk

is the multigraph obtained by contracting all but Gi-edges of S and is denoted S̃i.

Let G1, . . . , Gk be k plane simple naturally labeled graphs and P be their Cartesian
product. Let ℓ = (w0, w1, . . . , w2s−1, w2s = w0) be a directed even loop in P , and Di be
a cycle decomposition compatible with the i-projection ℓ̃i. For i ∈ [k], let Ĝ(i) be the
graph G1□ · · ·□Gi−1□Gi+1□ · · ·□Gk. For v̂ = (v1, . . . , vi−1, vi+1, . . . , vk) ∈ V (Ĝ(i)), let
Gi(v̂) be the copy of Gi in P corresponding to v̂ and let ei(v̂) be the number of edges
lying both in ℓ and Gi(v̂). Now let

ei =
∑

v̂∈V (Ĝ(i))
vi+1+···+vk+(k−i)≡1 (mod 2)

ei(v̂).

Then the sign of ℓ is defined by

sgn(ℓ) := −
k−1∏
i=1

(−1)ei

k∏
j=1

sgn(Dj). (3.2.1)

Note that the sign of ℓ is well-defined by Lemma 3.5. Now suppose that P has been
given vertex weights x(w) for w ∈ V (P ) and edge weights ae for e ∈ E(P ). Then the
weight of the loop ℓ is defined as

w(ℓ) := sgn(ℓ)
∏

e∈E(ℓ)
ae. (3.2.2)

Note that the orientation of a graph G is not relevant for the definition of the loop-
vertex configuration (defined in Section 2.2) on G. We will call a loop-vertex config-
uration an (extended) monopole-dimer configuration when the underlying graph G is a
Cartesian product of simple plane graphs.

Definition 3.8. The (extended) monopole-dimer model on the weighted Cartesian prod-
uct P = G1□ · · ·□Gk is the collection L of monopole-dimer configurations on P where
the weight of each configuration C = (ℓ1, . . . , ℓm; v1, . . . , vn) given by

w(C) =
m∏

i=1
w(ℓi)

n∏
i=1

x(vi).

The (signed) partition function of the monopole-dimer model on Cartesian product P is

ZP :=
∑
C∈L

w(C).
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From the above definition, it is clear that ZP is independent of the orientations on
G1, . . . , Gk. The following result is a generalisation of Theorem 2.6 when G is plane and
O is Pfaffian. Recall that KP is the generalised adjacency matrix defined in (2.2.5) for
(P,O).

Theorem 3.9. Let G1, . . . , Gk be k simple plane naturally labeled graphs with Pfaffian
orientations O1, . . . ,Ok respectively. The (signed) partition function of the monopole-
dimer model for the weighted oriented Cartesian product (P,O) of G1, . . . , Gk is given
by

ZP = det KP . (3.2.3)

The proof strategy is similar to that of Theorem 2.6.

Proof. Since KP is the sum of a diagonal matrix and an antisymmetric matrix, the only
terms contributing to det KP correspond to permutations which are product of even
cycles and singletons, and hence are in bijective correspondence with monopole-dimer
configurations on P . Thus, we only need to show that sign coming from an even cyclic
permutation (v0, v1, . . . , v2s−1, v2s = v0) coincides with the sign of the corresponding
directed loop ℓ = (v0, v1, . . . , v2s−1, v2s = v0). That is, we have to prove that

(−1)#edges pointing in opposite direction of ℓ (under O)+1 = sgn ℓ.

Let r be the number of edges pointing in opposite direction of ℓ under O. Note that
the contribution to r comes from k type of edges, G1-edges, G2-edges,. . . , Gk-edges in ℓ.
Since ℓ is a directed cycle, the i-th projection ℓ̃i, of ℓ is a directed trail in P̃i (which is just
Gi with multiple edges). Let Di = {di,1, di,2, . . . , di,mi

} be a directed cycle decomposition
compatible with ℓ̃i according to Definition 3.4. Denote the number of edges in di,j, for
j ∈ [mi], oriented under O in the direction opposite to it as εi,j.

Recall the notation χ(c) and ei from earlier in this section. For i ∈ [k − 1], the
edges contributing to ei have been reversed while defining O and thus the contribution
of Gi-edges to r is

mi∑
j=1

εi,j ≡ ei

+
mi∑
j=1

(number of edges in di,j oriented under Oi in the direction opposite to it)

(mod 2).
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By the proof of Lemma 3.5, it follows that the number of clockwise oriented edges of di,j

under Oi and χ(di,j) have opposite parity. Therefore,

mi∑
j=1

εi,j ≡ ei +
mi∑
j=1


χ(di,j) if di,j has odd size and is directed clockwise,

χ(di,j) + 1 if either di,j has even size, or has odd size

and is directed anticlockwise.

(mod 2).

Now, by Definition 3.1, Gi-edges of ℓ contribute (−1)ei sgn Di to (−1)r. Similarly, the
contribution of Gk-edges to (−1)r is sgn Dk as we have not altered the directions coming
from Ok in any copy of Gk. Thus,

(−1)r =
k−1∏
i=1

(−1)ei sgn Di × sgn Dk =
k−1∏
i=1

(−1)ei

k∏
s=1

sgn Ds,

resulting in (−1)r+1 = sgn ℓ. Hence, we get the (signed) partition function of the (ex-
tended) monopole-dimer model for the oriented Cartesian product as a determinant.

Recall that the partition function of the monopole-dimer model is defined for (unori-
ented) Cartesian product of graphs in Definition 3.8. The next result can thus be seen
as an analogue of Corollary 2.9.

Corollary 3.10. Let G1, . . . , Gk be k simple plane naturally labeled graphs with Pfaffian
orientations O1, . . . ,Ok respectively. Then the determinant of the generalised adjacency
matrix KP of the oriented Cartesian product, (P,O), of (G1,O1), . . . , (Gk,Ok) is inde-
pendent of the Pfaffian orientations O1, . . . ,Ok.

3.3 Cartesian products of plane bipartite graphs

Recall that a bipartite (multi)graph is a graph G whose vertex set can be partitioned into
two subsets X and Y such that each edge of G has one end in X and other end in Y .
Recall that an even multigraph (defined in section 2.1) is one in which all vertices have
even degree. Bipartite graphs only have cycles of even length. Since the direction of even
cycles does not affect the sign in Definition 3.1, we can write the sign of an edge-disjoint
multiset of cycles D = {d1, . . . , dk} in an even bipartite plane multigraph G as

sgn(D) :=
k∏

i=1
(−1)χ(di)+1.

Note that the above formula also applies to a cycle decomposition of an even bipartite
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plane multigraph. We will show that the sign of a cycle decomposition remains the same
for all cycle decompositions of a plane bipartite even multigraph. For that we first define
some moves on two cycles in a decomposition.

Let G be an even plane bipartite multigraph and (c1, . . . , ct) be an edge-disjoint
multiset of cycles in G. Then we define the following moves transforming one multiset
of cycles into another. For each move, we also calculate the change in the sign of this
multiset of cycles.

c2c1 c′2c′1

a

b b

a

Figure 3.3: The M1-move from Item 1. Here, the dotted blue and red lines indicate that
they are allowed to intersect each other.

1. The M1-move changes cycles c1, c2 into cycles c′
1, c′

2 as shown in Figure 3.3. Let
v (resp. v′) be the number of internal vertices lying on the blue (resp. red) solid
path from a to b along c2 (resp. c1) in the left side of Figure 3.3. Let u be the
number of vertices enclosed by the cycle formed by these two paths. Then

χ(c′
1) + χ(c′

2) = χ(c1) − u− v + χ(c2) − u− v′

≡ χ(c1) + χ(c2) (mod 2)
≡ (χ(c1) + 1) + (χ(c2) + 1) (mod 2),

where we have used the fact that v + v′ ≡ 0 (as G is bipartite) in the second line.
Thus, performing the M1-move in this multiset of cycles preserves its sign.

2. Let c1, c2 intersect as shown on the left side of Figure 3.4. Without loss of generality,
the left arc of c1 strictly between a and b does not intersect c2, and the right arc
of c1 strictly between a and b intersects the left arc of c2 strictly between a and
b only at the t points shown. The M2-move changes cycles c1, c2 into (t + 2)
cycles c′

1, c
′
2, . . . , c

′
t+2 as shown in the right side of Figure 3.4. Then, by considering
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c1

c2
1

2

t

c′2

c′1

1

2

t

c′3

c′t+2

b b

aa

... ...

Figure 3.4: The M2-move from Item 2. The dotted arc of c2 on the right indicates that
it can intersect with the part of c1 from a to b on the right side.

internal vertices in all regions, the sign of the latter multiset is given by

t+2∑
i=1

(χ(c′
i) + 1) = χ(c′

1) +
t+2∑
i=2

χ(c′
i) + (t+ 2)

=
(
χ(c1) + χ(c2) + t−

t+2∑
i=2

χ(c′
i)
)

+
t+2∑
i=2

χ(c′
i) + t+ 2

≡ (χ(c1) + 1) + (χ(c2) + 1) (mod 2).

Thus, the M2-move also preserves the sign of the multiset of cycles.

c′1c′2c1

c2
1

2

t− 2

c3

ct

a

b

a

b

1

2

t− 2

...
...

Figure 3.5: The M3-move from Item 3.

3. Fot t ≥ 2, suppose c1, . . . , ct are cycles in the multigraph G such that they form a
closed chain as shown on the left side in Figure 3.5. Note that these cycles do not
intersect at points other than those shown in the figure. The M3-move converts
these t cycles into two cycles namely c′

1, c
′
2 as shown in the right side of Figure 3.5.

Then the sign of the latter multiset of cycles is

2∑
i=1

(χ(c′
i) + 1) ≡ χ(c′

1) − χ(c′
2) (mod 2),

≡
t∑

i=1
χ(ci) + (size of c′

2) − t (mod 2),
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because c′
1 encloses all the vertices except a, b, 1, . . . , (t− 2) lying on c′

2. Since G is
bipartite, it can only have cycles of even size. Thus

2∑
i=1

(χ(c′
i) + 1) ≡

t∑
i=1

χ(ci) + t (mod 2)

≡
t∑

i=1
(χ(ci) + 1) (mod 2).

Again, the sign of the multiset is preserved under the M3-move.

We have thus shown that performing any sequence of moves of the form Items 1 to 3
will not affect the sign of a multiset of cycles.

Recall that a bridge or cut edge in a multigraph G is an edge whose deletion increases
the number of connected components in G. Let G be a connected even plane multigraph.
Then G cannot have a bridge [8, Exercise 3.2.3] and hence the boundary of the outer face
(being a closed trail) can be decomposed into cycles c1, . . . , ck such that |V (ci)∩V (cj)| ≤ 1
for all i, j ∈ [k].

Definition 3.11. Let G be a connected even plane multigraph and C be the boundary
of the outer face consisting of cycles c1, . . . , ck. Then an outer cycle decomposition of G
is a cycle decomposition of G containing c1, . . . , ck and the latter will be called boundary
cycles.

Example 3.12. Any cycle decomposition containing the cycle (1, 2, 3, 4, 5, 6, 7, 8) is an
outer cycle decomposition for the graph in Figure 3.6. For example, {(1, 2, 3, 4, 5, 6, 7, 8),
(2, 4, 6, 8)} is an outer cycle decomposition but {(1, 2, 8), (2, 3, 4), (4, 5, 6), (6, 7, 8)} is not.

1
2

3

4

5
67

8

Figure 3.6: A planar graph on 8 vertices

The next result is a crucial step towards the main result of this section.

Lemma 3.13. Let G be a connected bipartite even plane multigraph. Then for any cycle
decomposition D of G, there exists an outer cycle decomposition D′ of G with same sign.
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Proof. Suppose c1, . . . , ck are the boundary cycles. If k > 1, we can work separately
with each subgraph of G lying inside the cycle cj for each j ∈ [k]. Thus, without loss
of generality, we can assume that there is just a single cycle c (say). If D contains c,
there is nothing to prove. So assume D does not contain c. Then there exist at least
two cycles in D which will intersect c in some edge(s). There are two possibilities now
depending on whether the cycles above intersect each other more than once or not.

1. If there are two cycles among these, say ℓ1 and ℓ2, which intersect each other in
more than one point, say a and b, then ℓ1, ℓ2 will look as in Figure 3.7a. Let the
bottom arc of ℓ1 joining x to y intersect ℓ2 in t additional points as shown. First
perform the necessary number of M1-moves to reach the stage in Figure 3.7b. At
this point, the top part of the ℓ′

2 cycle between a and b lies on the same side of the
bottom part of the ℓ′

1 cycle. Now, perform an M2-move to increase the number of
edges of c covered by ℓ′

1 as depicted in Figure 3.7c. Since these moves preserve the
sign, the cycle decomposition containing (t+ 2) transformed cycles in place of two
original cycles will have the same sign.

2. If no two cycles of D which have a common edge with c intersect each other in more
than one point, then we have a certain number, say t ≥ 3, of cycles intersecting c.
Focus on one of the cycles, ℓ1 say. It will intersect another cycle at a vertex of c.
Call it ℓ2. Now following ℓ1 in the interior, find the first of these t cycles and call
it ℓt. The situation will look as in left of Figure 3.8. Now perform an M3-move to
increase the number of edges of c covered by ℓ1 and arrive at the right of Figure 3.8.
The resulting cycle decomposition will have the same sign.

Apply these cases inductively. Notice that we might need to alternate between these
two. In each case, the number of edges in the intersection of ℓ1 and c increases. As the
number of edges in c is finite, the process of performing these moves will eventually stop
and we will end up with a cycle decomposition containing c with the sign same as that
of D.

Now we will see a result analogous to Lemma 3.5 in the case of bipartite graphs.

Theorem 3.14. Let G be a connected bipartite even plane multigraph. Then all cycle
decompositions D of G will have same sign.

Proof. Since G is even and connected, the boundary of the outer face of G can be
decomposed into cycles. For simplicity, we suppose the boundary is a single cycle c. If
not, the argument below extends in an obvious way to each component of the boundary.
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a

b

t

`1

`2

c

p1

p2

1
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3

x

y
. . .

. . .

(a) The original cycles ℓ1 and ℓ2.

a

b

t

`′1

`′2

c

p1

p2

1
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3

x

y
. . .

. . .

(b) The new cycles ℓ′
1 and ℓ′

2 after several M1-
moves.

a

b

t

`
c

p1

p2

1
2

3

x

y
. . .

. . .

(c) The final cycles after an M2-move. Note that there are a total of t + 2 cycles now.

Figure 3.7: Two cycles ℓ1 and ℓ2 intersecting the boundary cycle c, and intersecting each
other in more than one point in Figure 3.7a. In Figure 3.7c, the cycle ℓ intersects c in
more edges than ℓ1.

`1

`2

`3

`t

c

. . .

`′1

`′2

c

. . .

Figure 3.8: A cycle decomposition where the cycles intersecting the boundary cycle are
shown before and after an M3-move.
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Let D be a cycle decomposition of G. Using Lemma 3.13, we obtain another cycle
decomposition D1 containing c which has the same sign as D. Let G1 be obtained from G

by removing all the edges of c and the resulting isolated vertices. Note that although G1

can be disconnected, the regions enclosed by its connected components G1,1, G1,2, . . . , G1,t

will not intersect. Now, D1 \{c} is a cycle decomposition of G1. Again using Lemma 3.13
on G1, we obtain a cycle decomposition D2 of G containing c and d1,1, d1,2, . . . , d1,t, the
boundary cycles of G1,1, G1,2, . . . , G1,t respectively, such that sgn D1 = sgn D2. Now
remove d1,1, d1,2, . . . , d1,t from G1 to obtain G2 and continue this process. Since G is
finite, this process must stop. In fact, it will stop at the cycle decomposition obtained
by successively including outer boundaries of G1, G2 and so on.

Recall the i-projection, the sign of a directed loop and the notation ei defined in
Definition 3.7, (3.2.1) and Chapter 3 respectively. By the fact that bipartite graphs only
have even cycles and by Theorem 3.14, we have the following result.

Corollary 3.15. Let G1, . . . , Gk be plane simple naturally labeled bipartite graphs and P
be their Cartesian product. Let ℓ = (w0, w1, . . . , w2s−1, w2s = w0) be a directed even loop
in P and Di be an arbitrary cycle decomposition of the i-projection ℓ̃i for i ∈ [k]. Then

sgn(ℓ) = −
k−1∏
i=1

(−1)ei

k∏
j=1

sgn(Dj),

and is well-defined. In particular, there is no restriction on the choice of cycle decompo-
sition of any i-projection in the monopole-dimer model for Cartesian product of bipartite
graphs.



Chapter 4

Monopole-dimer model on grid
graphs

We now focus on the family of grid graphs in higher dimensions. We compute the parti-
tion function of the monopole-dimer model on three-dimensional and higher-dimensional
grid graphs in Theorem 4.1 and Theorem 4.4, respectively.

4.1 Three-dimensional grid graphs

Assign the natural labelling increasing from one leaf to another to Pn, and denote its
oriented variant with the canonical orientation as (Pn,On). Consider the two-dimensional
grid graph Qℓ,m = Pℓ□Pm = {(p, q) | p ∈ [ℓ], q ∈ [m]} whose vertex (p, q) has label
2sℓ+p if q = 2s+1 and 2sℓ−p+1 if q = 2s. Observe that it is a boustrophedon labelling
(see Section 2.3). With the canonical orientation, denote this graph as (Pℓ□Pm,Oℓ,m).
For the purposes of our next result, we will think of Cartesian product of Pℓ□Pm with
Pn as embedded in Z3 where the coordinate axes x, y, z are aligned parallel to the edges
in Pℓ, Pm and Pn respectively.

Theorem 4.1 ([4, Theorem 5.1]). Let (G,O) be the oriented Cartesian product of
(Pℓ□Pm,Oℓ,m) with (Pn,On). Let vertex weights be x for all vertices of G, and edge
weights be a, b, c for the edges along the three coordinate axes. Then the partition func-
tion of the monopole-dimer model on G is given by

ZG ≡ Zℓ,m,n =
⌊n/2⌋∏
j=1

⌊m/2⌋∏
s=1

⌊ℓ/2⌋∏
k=1

(
x2 + 4a2 cos2 πk

ℓ+ 1 + 4b2 cos2 πs

m+ 1 + 4c2 cos2 πj

n+ 1

)4

35



36 4. Monopole-dimer model on grid graphs

1
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Figure 4.1: The boustrophedon labelling on P3□P2□P3.

×



1 ℓ, n,m ∈ 2N,

T 2
n,m(b, c;x) ℓ /∈ 2N,m, n ∈ 2N,

T 2
n,ℓ(a, c;x) ℓ, n ∈ 2N,m /∈ 2N,

T 2
n,m(b, c;x)T 2

n,ℓ(a, c;x)Sn(c;x) ℓ,m /∈ 2N, n ∈ 2N,

T 2
m,ℓ(a, b;x) ℓ,m ∈ 2N, n /∈ 2N,

T 2
n,m(b, c;x)T 2

m,ℓ(a, b;x)Sm(b;x) ℓ, n /∈ 2N,m ∈ 2N,

T 2
n,ℓ(a, c;x)T 2

m,ℓ(a, b;x)Sℓ(a;x) ℓ ∈ 2N,m, n /∈ 2N,

x T 2
n,m(b, c;x)T 2

n,ℓ(a, c;x)T 2
m,ℓ(a, b;x)Sn(c;x)Sm(b;x)Sℓ(a;x) ℓ,m, n /∈ 2N,

where

Sn(c;x) =
⌊n/2⌋∏
k=1

(
x2 + 4c2 cos2 πk

n+ 1

)
,

and

Tn,ℓ(a, b;x) =
⌊n/2⌋∏
j=1

⌊ℓ/2⌋∏
k=1

(
x2 + 4a2 cos2 πk

ℓ+ 1 + 4b2 cos2 πj

n+ 1

)
.

Remark 4.2. The boustrophedon labelling that induces the orientation O over the graph
G is given in (2.3.5) for an even ℓ,m and n. Figure 4.1 shows this labelling on the graph
P3□P2□P3.

Proof. The signed adjacency matrix for the graph (G,O) with the above labelling can
be written as

Kℓ,m,n = In ⊗ Im ⊗ Tℓ(−a, x, a) + In ⊗ Tm(−b, 0, b) ⊗ Jℓ + Tn(−c, 0, c) ⊗ Jm ⊗ Jℓ, (4.1.1)

where Tk(−s, z, s) and Jk be as defined in Section 2.4. Let uk be the standard unitary
similarity transformation given by the matrix uk defined in (2.4.1). Then, using the
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unitary transform un ⊗ um ⊗ uℓ and Lemma 2.13, we find that

Kℓ,m,n ∼ In ⊗ Im ⊗ diag
(
x+ 2ιa cos π

ℓ+ 1 , . . . , x+ 2ιa cos ℓπ

ℓ+ 1

)

+ In ⊗ 2ιb diag
(

cos π

m+ 1 , . . . , cos mπ

m+ 1

)
⊗ ιℓ−1


(−1)ℓ−1

. .
.

(−1)0


+ 2ιc diag

(
cos π

n+ 1 , . . . , cos nπ

n+ 1

)

⊗ ιm−1


(−1)m−1

. .
.

(−1)0

⊗ ιℓ−1


(−1)ℓ−1

. .
.

(−1)0

 .

Note that each term in the above sum is a block diagonal matrix as the first matrix in
each tensor factor is diagonal. Therefore, Kℓ,m,n is similar to an n × n block diagonal
matrix with the block Fj for j ∈ [n] given by

Fj = Im ⊗ diag
(
x+ 2ιa cos π

ℓ+ 1 , . . . , x+ 2ιa cos ℓπ

ℓ+ 1

)

+



2ιb cos π
m+1 (−1)m−12ιmc cos jπ

n+1
. . . . .

.

. .
. . . .

(−1)02ιmc cos jπ
n+1 2ιb cos mπ

m+1

⊗ ιℓ−1


(−1)ℓ−1

. .
.

(−1)0

 .

Define
λm,n

s,j =
√

4b2 cos2 sπ

m+ 1 + 4c2 cos2 jπ

n+ 1 , s ∈ [m], j ∈ [n],

and let

Dj =


diag

(
ιλm,n

1,j ,−ιλ
m,n
1,j , ιλ

m,n
2,j ,−ιλ

m,n
2,j , . . . , ιλ

m,n
m
2 ,j,−ιλ

m,n
m
2 ,j

)
m even,

diag
(
ιλm,n

1,j ,−ιλ
m,n
1,j , ιλ

m,n
2,j ,−ιλ

m,n
2,j , . . . , ιλ

m,n
⌊ m

2 ⌋,j,−ιλ
m,n
⌊ m

2 ⌋,j, ιλ
m,n
m+1

2 ,j

)
m odd.
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The matrix 

2ιb cos π
m+1 (−1)m−12ιmc cos jπ

n+1
. . . . .

.

. .
. . . .

(−1)02ιmc cos jπ
n+1 2ιb cos mπ

m+1

 ,

when diagonalized, becomes equal to Dj. Thus, Fj becomes similar to

Im ⊗ diag
(
x+ 2ιa cos π

ℓ+ 1 , . . . , x+ 2ιa cos ℓπ

ℓ+ 1

)
+Dj ⊗ ιℓ−1


(−1)ℓ−1

. .
.

(−1)0

 .
(4.1.2)

Again, as the first matrix in both tensor products of (4.1.2) is diagonal, each block Fj is
similar to a block diagonal matrix given by

Fj ∼


diag

(
F+

1,j, F
−
1,j, . . . , F

+
m
2 ,j, F

−
m
2 ,j

)
m even,

diag
(
F+

1,j, F
−
1,j, . . . , F

+
m−1

2 ,j
, F−

m−1
2 ,j

, F+
m+1

2 ,j

)
m odd,

where

F±
s,j = diag

(
x+ 2ιa cos π

ℓ+ 1 , . . . , x+ 2ιa cos ℓπ

ℓ+ 1

)
± ιℓλm,n

s,j


(−1)ℓ−1

. .
.

(−1)0



=



x+ 2ιa cos π
ℓ+1 ±(−1)ℓ−1ιℓλm,n

s,j

. . . . .
.

. .
. . . .

±(−1)0ιℓλm,n
s,j x+ 2ιa cos ℓπ

ℓ+1

 .

Now defining

Y ±
k,s,j =

 x+ 2ιa cos kπ
ℓ+1 ±(−1)ℓ−kιlλm,n

s,j

±(−1)k−1ιℓλm,n
s,j x− 2ιa cos kπ

ℓ+1

 , 1 ≤ s ≤ ⌊(m+ 1)/2⌋,

and performing simultaneous row and column interchanges on F±
s,j, we can write

F±
s,j ∼


diag(Y ±

1,s,j, Y
±

2,s,j, . . . , Y
±

⌊ ℓ
2 ⌋,s,j

) ℓ even,

diag(Y ±
1,s,j, Y

±
2,s,j, . . . , Y

±
⌊ ℓ

2 ⌋,s,j
, x± ιλm,n

s,j ) ℓ odd.
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Note that

detY +
k,s,j = detY −

k,s,j = x2 + 4a2 cos2 kπ

ℓ+ 1 + 4b2 cos2 sπ

m+ 1 + 4c2 cos2 jπ

n+ 1 ,

which implies that

detF+
s,j detF−

s,j =
⌊ℓ/2⌋∏
k=1

(detY +
k,s,j detY −

k,s,j) ×

1 ℓ even,

x2 +
(
λm,n

s,j

)2
ℓ odd.

Then we get,

detFj =
⌊m/2⌋∏
s=1

(detF+
s,j detF−

s,j) ×


1 m even,

detF+
m+1

2 ,j
m odd.

Hence,

detFj =
⌊m/2⌋∏
s=1

⌊ℓ/2⌋∏
k=1

(
x2 + 4a2 cos2 kπ

ℓ+ 1 + 4b2 cos2 sπ

m+ 1 + 4c2 cos2 jπ

n+ 1

)2

×



1 ℓ,m ∈ 2N,

⌊m/2⌋∏
s=1

(
x2 + (λm,n

s,j )2
)

ℓ /∈ 2N,m ∈ 2N,

⌊ℓ/2⌋∏
k=1

(
x2 + 4a2 cos2 kπ

ℓ+ 1 + 4c2 cos2 jπ

n+ 1
)

ℓ ∈ 2N,m /∈ 2N,

⌊ℓ/2⌋∏
k=1

(
x2 + 4a2 cos2 kπ

ℓ+ 1 + 4c2 cos2 jπ

n+ 1
)

×
(
x+ 2ιc cos jπ

n+ 1
) ⌊m/2⌋∏

s=1

(
x2 + (λm,n

s,j )2
)

ℓ,m /∈ 2N.

Since, det Kℓ,m,n = ∏n
j=1 detFj and detFj = detFn−j+1 we obtain the result.

We now make a few remarks about this result. First, the orientation on G is Pfaffian
over all standard planes and G is non-planar when at least two of ℓ,m, n are greater than
2. Second, although it is not obvious from Theorem 4.1, Zℓ,m,n is always a polynomial
in x, a, b, c with nonnegative integer coefficients. Third, Zℓ,m,n is the fourth power of a
polynomial when ℓ,m and n are all even and the square of a polynomial when exactly two
of ℓ,m and n are even. Fourth, the formula in Theorem 4.1 coincides with the already
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known partition function [6] of the monopole-dimer model for the two-dimensional grid
graph when either of ℓ,m, n are equal to 1. Finally, although it is not obvious from
the construction, the formula is symmetric in all three directions. That is to say, it is
symmetric under any permutation interchanging (a, ℓ), (b,m) and (c, n).

We now prove that our monopole-dimer model on Cartesian products satisfies an
associativity property at least for path graphs.

Proposition 4.3. The partition function of the monopole-dimer model on the oriented
Cartesian product of (Pℓ□Pm,Oℓ,m) with (Pn,On) is the same as the partition func-
tion of the monopole-dimer model on the oriented Cartesian product of (Pℓ,Oℓ) with
(Pm□Pn,Om,n).

Proof. The orientation on both the products is induced from the same boustrophedon
labelling given in Remark 4.2. Moreover, the partition function of the monopole-dimer
model is the same as the partition function of the loop-vertex model on Pℓ□Pm□Pn with
the canonical orientation induced from boustrophedon labelling.

4.2 Higher-dimensional grid graphs

We now generalise the results from Section 4.1 to higher dimensional grid graphs. Let us
consider d path graphs Pm1 , Pm2 , . . . , Pmd

, ℓ of which are odd. Without loss of generality,
we assume that the first ℓ of these are odd, that is m1, . . . ,mℓ are odd.

Theorem 4.4 ([4, Theorem 6.1]). Let (G,O) be the oriented Cartesian product of the
graphs (Pm1□Pm2 ,Om1,m2), (Pm3 ,Om3), . . . , (Pmd

,Omd
), where m1, . . . ,mℓ are odd. Let

vertex weights be x for all vertices of G and edge weights be ai for the Pmi
-edges. Then

the partition function of the monopole-dimer model on G is given by

ZG ≡ Zm1,...,md
=

∏
S⊆[ℓ]

(TS)2d−1−#S

, (4.2.1)

where for S = [d] \ {p1, . . . , pr},

TS =
⌊ mp1

2 ⌋∏
ip1 =1

· · ·
⌊ mpr

2 ⌋∏
ipr =1

x2 +
r∑

q=1
4a2

s cos2 ipqπ

mpq + 1

 ,
and when ℓ = d, the empty product in T[d] must be interpreted as x2.

Note that if ℓ = d then the term in (4.2.1) corresponding to S = [d] is just x which
is expected since each configuration will have at least one monomer. The proof strat-
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egy is similar to that of [16, Section 4]. Using ideas similar to the proof of Propo-
sition 4.3, it can be shown that for s ∈ [d − 1], the formula above coincides with
the partition function of the monopole-dimer model on the oriented Cartesian prod-
uct Pm1□Pm2□ · · ·□Pms−1□(Pms□Pms+1)□Pms+2□ · · ·□Pmd

. We first demonstrate the
strategy of proof in an example below.

Example 4.5. Consider the 4-dimensional oriented hypercube, Q4, built as an oriented
Cartesian product of 4 copies of (P2,O2) as in Definition 3.6. Then the generalised
adjacency matrix is

KG = I2 ⊗ I2 ⊗ I2 ⊗ T2(−a1, x, a1) + I2 ⊗ I2 ⊗ T2(−a2, 0, a2) ⊗ J2

+ I2 ⊗ T2(−a3, 0, a3) ⊗ J2 ⊗ J2 + T2(−a4, 0, a4) ⊗ J2 ⊗ J2 ⊗ J2.

Let uk be as defined in Lemma 2.13, then using the unitary transform u2 ⊗ u2 ⊗ u2 ⊗ u2,
we see that

KG ∼ I2 ⊗ I2 ⊗ I2 ⊗

x+ ιa1 0
0 x− ιa1

+ I2 ⊗ I2 ⊗

ιa2 0
0 −ιa2

⊗ ι

0 −1
1 0


+ I2 ⊗

ιa3 0
0 −ιa3

⊗ ι

0 −1
1 0

⊗ ι

0 −1
1 0


+
ιa4 0

0 −ιa4

⊗ ι

0 −1
1 0

⊗ ι

0 −1
1 0

⊗ ι

0 −1
1 0

 .
Define, for 1 ≤ i4 ≤ 2,

Fi4 = I2 ⊗ I2 ⊗

x+ ιa1 0
0 x− ιa1

+ I2 ⊗

ιa2 0
0 −ιa2

⊗ ι

0 −1
1 0


+
 ιa3 (−1)i4−1a4

(−1)i4a4 −ιa3

⊗ ι

0 −1
1 0

⊗ ι

0 −1
1 0

 ,
and note that det KG = detF1 detF2. Now

F1 ∼ F2 ∼ I2 ⊗ I2 ⊗

x+ ιa1 0
0 x− ιa1

+ I2 ⊗

ιa2 0
0 −ιa2

⊗ ι

0 −1
1 0


+
ι√a2

3 + a2
4 0

0 −ι
√
a2

3 + a2
4

⊗ ι

0 −1
1 0

⊗ ι

0 −1
1 0

 ,
and thus both F1 and F2 have same the determinant. Hence det KG = detF 2

1 . Iterating
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the same procedure two more times, we get

det KG = det
 x+ ιa1

√
a2

2 + a2
3 + a2

4

−
√
a2

2 + a2
3 + a2

4 x− ιa1

8

.

Thus, the partition function of the monopole-dimer model on Q4 is given by

ZQ4 = (x2 + a2
1 + a2

2 + a2
3 + a2

4)8.

Proof of Theorem 4.4. Using Theorem 3.9, the partition function is the determinant of
the generalised adjacency matrix, KG, of (G,O) with the boustrophedon labelling, as
discussed in Remark 4.2. It will be convenient for us to index the components in the
tensor factors in decreasing order. Let

Md
j =

Imd
⊗ · · · ⊗ Im2 ⊗ Tm1(−a1, x, a1) j = 1

Imd
⊗ · · · ⊗ Imj+1 ⊗ Tmj

(−aj, 0, aj) ⊗ Jmj−1 ⊗ · · · ⊗ Jm1 2 ≤ j ≤ d,

where Tk(−s, z, s) and Jk are defined in the proof of Theorem 4.1. Then KG can be
written as

KG = Md
1 + · · · +Md

d . (4.2.2)

For j ∈ [d], define the mj ×mj diagonal matrix

Dj = diag
(

2ιaj cos π

mj + 1 , . . . , 2ιaj cos mjπ

mj + 1

)

and antidiagonal matrix

J ′
j = ιmj−1


(−1)mj−1

. .
.

(−1)0

 .

Let

Kd
j =

Imd
⊗ · · · ⊗ Im2 ⊗ (xIm1 +D1) j = 1

Imd
⊗ · · · ⊗ Imj+1 ⊗Dj ⊗ J ′

j−1 ⊗ · · · ⊗ J ′
1 2 ≤ j ≤ d.

Let uk be as defined in Lemma 2.13. Then, using the unitary transform umd
⊗ · · · ⊗um1 ,
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we see that KG ∼ Kd
1 + · · · +Kd

d . Let

λid,id−1,...,ip =

√√√√ d∑
s=p

4a2
s cos2 isπ

ms + 1 , 1 ≤ p ≤ d.

Since the first matrix in each tensor product Kd
j is diagonal, KG is similar to an md ×md

block diagonal matrix with the block Fid
, id ∈ [md], given by

Fid
= Kd−1

1 + · · · +Kd−1
d−2 +

(
Dd−1 + 2ιad cos idπ

md + 1J
′
d−1

)
⊗ J ′

d−2 ⊗ · · · ⊗ J ′
1.

Diagonalizing the matrix
Dd−1 + 2ιad cos idπ

md + 1J
′
d−1

leads to the matrix
diag(ιλid,1,−ιλid,1, ιλid,2,−ιλid,2, . . . , ιλid,⌊

md−1
2 ⌋,−ιλid,⌊

md−1
2 ⌋) md−1 even,

diag(ιλid,1,−ιλid,1, . . . , ιλid,⌊
md−1

2 ⌋,−ιλid,⌊
md−1

2 ⌋, 2akι cos idπ
md+1) md−1 odd.

Set F+
id

= Fid
, F−

id
= Fmd−id+1 for 1 ≤ id ≤ ⌊md

2 ⌋, and observe that F+
id

∼ F−
id

. Since
the determinant of a matrix is invariant under similarity transformation, the partition
function can now be calculated as

ZG =
⌊ md

2 ⌋∏
id=1

(detF+
id

)2 ×


1 md even,

detFmd+1
2

md odd.
(4.2.3)

Let us first assume ℓ < d, i.e. md is even. Repeating the above idea, F+
id

is similar
to an md−1 ×md−1 block diagonal matrix with blocks F±

id,id−1
for 1 ≤ id−1 ≤ ⌊md−1

2 ⌋ and
continue this process. Inductively, we obtain

ZG =
md

2∏
id=1

· · ·

mℓ+1
2∏

iℓ+1=1
(detF+

id,id−1,...,iℓ+1
detF−

id,id−1,...,iℓ+1
)2d−ℓ−1

, (4.2.4)

with

F±
id,id−1,...,iℓ+1

= Kℓ
1 + · · · +Kℓ

ℓ−1 +
(
Dℓ ± ιλid,...,iℓ+1J

′
ℓ

)
⊗ J ′

ℓ−1 ⊗ · · · ⊗ J ′
1.

Again diagonalizing, the matrix

Dℓ ± ιλid,...,iℓ+1J
′
ℓ
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is similar to

diag
(
ιλid,...,iℓ+1,1,−ιλid,...,iℓ+1,1, . . . , ιλid,...,iℓ+1,⌊ mℓ

2 ⌋,−ιλid,...,iℓ+1,⌊ mℓ
2 ⌋,±ιλid,...,iℓ+1,

mℓ+1
2

)
.

Therefore,

detF+
id,id−1,...,iℓ+1

= detF+
id,...,iℓ+1,

mℓ+1
2

⌊mℓ/2⌋∏
iℓ=1

(detF+
id,...,iℓ+1,iℓ

detF−
id,...,iℓ+1,iℓ

), (4.2.5)

and

detF−
id,id−1,...,iℓ+1

= detF−
id,...,iℓ+1,

mℓ+1
2

⌊mℓ/2⌋∏
iℓ=1

(detF+
id,...,iℓ+1,iℓ

detF−
id,...,iℓ+1,iℓ

), (4.2.6)

where

F±
id,id−1,...,iℓ

= Kℓ−1
1 + · · · +Kℓ−1

ℓ−2 +
(
Dℓ−1 ± ιλid,...,iℓ

J ′
ℓ−1

)
⊗ J ′

ℓ−2 ⊗ · · · ⊗ J ′
1.

Substituting (4.2.5) and (4.2.6) in (4.2.4) gives

ZG =
md

2∏
id=1

· · ·
mℓ
2∏

iℓ=1
(detF+

id,id−1,...,iℓ
detF−

id,id−1,...,iℓ
)2d−ℓ

md
2∏

id=1
· · ·

mℓ+1
2∏

iℓ+1=1

(
detF+

id,...,iℓ+1,
mℓ+1

2
detF−

id,...,iℓ+1,
mℓ+1

2

)2d−ℓ−1

By repeated application of this procedure, we will get

ZG =
md

2∏
id=1

· · ·
⌊ m1

2 ⌋∏
i1=1

(detF+
id,...,i1 detF−

id,...,i1)2d−1 ∏
S⊂[ℓ]
|S|=1

T 2d−2

S

∏
S⊂[ℓ]
|S|=2

T 2d−3

S · · ·
∏

S⊂[ℓ]
|S|=ℓ

T 2d−ℓ−1

S ,

where F±
id,...,i1 is the 1 × 1 matrix

±ι

√√√√x2 +
d∑

s=1
4a2

s cos2 isπ

ms + 1

 .
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Thus, we finally arrive at

ZG =
md

2∏
id=1

· · ·
⌊ m1

2 ⌋∏
i1=1

(
x2 +

d∑
s=1

4a2
s cos2 isπ

ms + 1

)2d−1 ∏
S⊂[ℓ]
|S|=1

T 2d−2

S

∏
S⊂[ℓ]
|S|=2

T 2d−3

S · · ·
∏

S⊂[ℓ]
|S|=ℓ

T 2d−ℓ−1

S .

(4.2.7)
The last case is when ℓ = d. Then the right hand side of (4.2.7) will have an additional
factor of detFmd+1

2
, and the latter is the generalised adjacency matrix for the oriented

Cartesian product (Pm1□Pm2 ,Om1,m2)□(Pm3 ,Om3)□ · · ·□(Pmd−1 ,Omd−1). Thus,

detFmd+1
2

=
∏

S⊆[d−1]
(TS)2d−2−#S =

∏
∅⊊S⊆[d]

d∈S

(TS)2d−1−#S

,

by induction. Substituting this in (4.2.3) completes the proof.

As for the three-dimensional case, it is not obvious from the formula (4.2.1) for
Zm1,...,md

that it is a polynomial with nonnegative integer coefficients. The formula is
also symmetric under any permutation of (a1,m1), . . . , (ak,md). Finally, (4.2.1) tells
that the partition function of the monopole-dimer model for even grid lengths is the
2(d−1)’th power of a polynomial. Again a combinatorial interpretation of the underlying
polynomial would be interesting.

Let us now present an example of a well-studied family of graphs.

Example 4.6. Consider the d-dimensional oriented hypercube, Qd, built as an oriented
Cartesian product of d copies of (P2,O2) as in Definition 3.6. Then the partition function
of the monopole-dimer model on Qd is given by

ZQd
= (x2 + a2

1 + · · · + a2
d)2d−1

.

While this formula is amazingly simple, it is a result of a lot of cancellation of terms.
Finding a combinatorial interpretation of this formula would certainly be very interesting.
An interpretation in the two-dimensional case has been given in [7].

4.3 Asymptotic Behaviour

It is natural to ask how fast the partition function of these monopole-dimer models on
grid graphs grows as the size increases. We are also interested in understanding the
‘probability’ of seeing a monopole at a given vertex or a dimer at a given edge. The
reason these are not strict probabilities is that we are working with signed measures.
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As a warm-up, we begin with three-dimensional grids. We then move on to the general
d-dimensional grids in the next section, where the formulas are not as explicit. We will
follow the strategy in [6, Section 5].

Define the free energy as

Φ3(a, b, c, x) := lim
ℓ,m,n→∞

1
8ℓmn ln Z2ℓ,2m,2n.

Using the product formula in Theorem 4.1,

Φ3(a, b, c, x) = lim
ℓ,m,n→∞

1
8ℓmn

×
n∑

j=0

m∑
s=0

ℓ∑
k=0

ln
(
x2 + 4a2 cos2 πk

2ℓ+ 1 + 4b2 cos2 πs

2m+ 1 + 4c2 cos2 πj

2n+ 1

)4

.

Note that the right hand side can be expressed as a Riemann sum. Therefore,

Φ3(a, b, c, x) = 4
π3

π/2∫
0

π/2∫
0

π/2∫
0

ln(x2 + 4a2 cos2 θ + 4b2 cos2 ϕ+ 4c2 cos2 ψ) dθ dϕ dψ.

Hence, the density of a-type edges and of monopoles will be

ρ3,a := a
∂

∂a
Φ3 = 4

π3

π/2∫
0

π/2∫
0

π/2∫
0

8a2 cos2 θ

(x2 + 4a2 cos2 θ + 4b2 cos2 ϕ+ 4c2 cos2 ψ) dθ dϕ dψ,

ρ3,x := x
∂

∂x
Φ3 = 4

π3

π/2∫
0

π/2∫
0

π/2∫
0

2x2

(x2 + 4a2 cos2 θ + 4b2 cos2 ϕ+ 4c2 cos2 ψ) dθ dϕ dψ,

respectively. Similarly, the density of b- and c-type dimers can be defined and one can
check that ρ3,a + ρ3,b + ρ3,c + ρ3,x = 1 as expected.

Recall the elliptic integral of the first kind,

F (ϕ, k) =
ϕ∫

0

dα√
1 − k2 sin2 α

,

and the elliptic integral of the second kind,

E(ϕ, k) =
ϕ∫

0

√
1 − k2 sin2 α dα.

The complete elliptic integral of the first kind is K(k) = F (π/2, k) and the complete
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elliptic integral of the second kind is E(k) = E(π/2, k). Then, the Jacobi zeta function
is

Z(ϕ, k) = E(ϕ, k) − E(k)
K(k)F (ϕ, k).

See Gradshteyn and Rizhik [15] for basic properties of elliptic integrals.

Now performing similar calculations as in [6] using

ϵ3 = tan−1
(√

x2 + 4c2 cos2 ψ + 4b2

2a

)

and

q3 = 4ab√
(x2 + 4c2 cos2 ψ + 4a2)(x2 + 4c2 cos2 ψ + 4b2)

,

we get,

ρ3,a =1 − 2
π

π/2∫
0

Λ0(ϵ3, sin−1 q3) dψ, (4.3.1)

ρ3,x = x2

π2ab

π/2∫
0

q3 K(q3) dψ, (4.3.2)

where Λ0(θ, y) is the Heuman lambda function [1, Formula 17.4.39] defined as

Λ0(θ, y) = F (ϕ, cos y)
K(cos y) + 2

π
K(sin y)Z(ϕ, cos y).

Let us now calculate the monopole density for the three dimensional case when all the
vertex and edge weights are 1. Using (4.3.2), we get

ρ3,x = 1
π2

π/2∫
0

4
5 + 4 cos2 ψ

K
( 4

5 + 4 cos2 ψ

)
dψ ≈ 0.1705.

We now move on to the asymptotic behaviour for the case of d-dimensional grid graphs
where all side lengths are even, vertex weights are x and edges along the j’th direction
have weight aj. The free energy is given by

Φd(a1, . . . , ad, x) := lim
m1,...,md→∞

1
2dm1 · · ·md

ln Z2m1,...,2md
.
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The product formula in Theorem 4.4 together with the Riemann sum implies that

Φd(a1, . . . , ad, x) = 2d−1

πd

π/2∫
0

· · ·
π/2∫
0

ln
(
x2 +

d∑
s=1

4a2
s cos2 θs

)
dθ1 . . . dθd.

Again defining the densities of monopoles and s-type edges for s ∈ [d] as

ρd,x := x
∂

∂x
Φd, ρd,as := as

∂

∂as

Φd,

one can again get that ρd,x +∑d
s=1 ρd,as = 1. Following the strategy in [6], we define

ϵd = tan−1


√
x2 + 4a2

2 +∑d
s=3 4a2

s cos2 θs

2a1

,
qd = 4a1a2√

(x2 + 4a2
1 +∑d

s=3 4a2
s cos2 θs)(x2 + 4a2

2 +∑d
s=3 4a2

s cos2 θs)
,

and we get

ρd,a1 =1 − 2d−2

πd−2

π/2∫
0

· · ·
π/2∫
0

Λ0(ϵd, sin−1 qd) dθ3 . . . dθd,

ρd,x = 2d−3x2

πd−1a1a2

π/2∫
0

· · ·
π/2∫
0

qd K(qd) dθ3 . . . dθd.

4 6 8 10

0.05

0.10

0.15

Figure 4.2: Monopole densities ρd,x for limiting grid graphs in dimensions d ranging from
3 to 11 when all the vertex and edge weights are 1.
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Figure 4.2 shows the numerically evaluated monopole density ρd,x for the first few
dimensions when all the vertex and edge weights are 1. Observe that ρd,x seems to
decrease monotonically as dimension increases. It would be interesting to determine the
limit of ρd,x as d tends to infinity, if it exists. In particular, it is not clear whether this
limit is 0 or not.
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Chapter 5

High-dimensional cylindrical and
toroidal grid graphs

First, recall that Pn denotes the path graph on n vertices and Qn1,n2,n3 is the three-
dimensional grid graph. Throughout the chapter, we will assign Q2n1,2n2,2n3 the boustro-
phedon labelling defined in (2.3.5). Figure 2.4 shows this labelling on the graph Q4,2,2.
We will denote the following n× n antidiagonal matrices as

BCyl
n = adiag (1, 0, . . . , 0,−1) ,

BMöb
n = adiag (1, 0, . . . , 0, 1) .

Let us now delve into the discussion regarding the partition function of the monopole-
dimer model on higher dimensional grids with cylindrical and toroidal boundary condi-
tions.

5.1 General cylindrical grids

Definition 5.1. We define an ℓ-cylindrical grid denoted Qℓ
n1,...,nd

as the graph Cn1□ · · ·□
Cnℓ

□Pnℓ+1□ · · ·□Pnd
. For ℓ = 1 (ℓ = d), we call it a cylindrical (toroidal) grid and use

the notation QCyl
n1,...,nd

(QTor
n1,...,nd

).

We sometimes refer to Qℓ
n1,...,nd

as the d-dimensional grid Qn1,...,nd
with cylindrical,

toroidal and mixed boundary conditions depending on whether ℓ is 1, d or in between, re-
spectively. Note that Qℓ

n1,...,nd
with canonical orientation induced from Boustrophedon la-

belling can be regarded as the oriented Cartesian product of Cn1 , . . . , Cnℓ
, Pnℓ+1 , . . . , Pnd

.
Thus, the loop-vertex model on an ℓ-cylindrical grid is nothing but the monopole-dimer
model.
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Theorem 5.2 ([3, Theorem 3.2]). Let G be the d-dimensional cylindrical grid QCyl
2m1,...,2md

with boustrophedon labelling. Let (G,O) be obtained from G by orienting the edges from
lower-labelled vertex to higher-labelled vertex. Let the vertex weights be x for all vertices
of G, and edge weights be a1, . . . , ad for the edges along the different coordinate axes.
Then the partition function of the monopole-dimer model on G is given by

ZCyl
2m1,...,2md

≡ ZCyl
G =

m1∏
i1=1

· · ·
md∏

id=1

(
x2 + 4a2

1 sin2 (2i1 − 1)π
2m1

+
d∑

q=2
4a2

q cos2 iqπ

2mq + 1

)2d−1

.

9

8

1

16

15

7

2

3
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9

16
12

13

14

11

10

Figure 5.1: The boustrophedon labelling on the cylindrical grid QCyl
4,2,2.

Figure 5.1 shows a three-dimensional grid graph with boustrophedon labelling and
cylindrical boundary conditions. Using [4, Corollary 3.9], ZCyl

G remains independent of
the various Pfaffian orientations on C2n1 , P2n2 , . . . , P2nd

. Before presenting the proof, we
exemplify the proof strategy below.

Example 5.3. Consider G to be the three-dimensional cylindrical grid QCyl
4,2,2 with the

boustrophedon labelling as shown in Figure 5.1. Orient G in the canonical way. Then
the generalised adjacency matrix is

KG = I2 ⊗ I2 ⊗ T4(−a1, x, a1) + I2 ⊗ T2(−a2, 0, a2) ⊗ J4 + T2(−a3, 0, a3) ⊗ J2 ⊗ J4

+ a1I2 ⊗ I2 ⊗BCyl
4 .

Let u2 be the unitary matrix,

u2 =
√

2
3

 ι sin π
3 ι sin 2π

3

− sin 2π
3 − sin 4π

3

 .
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Then using the unitary transform u2 ⊗ u2 ⊗ I4 and by Lemma 2.13

KG ∼ I2 ⊗ I2 ⊗


x a1 0 a1

−a1 x a1 0
0 −a1 x a1

−a1 0 −a1 x

+ I2 ⊗ diag (ιa2,−ιa2) ⊗ J4

+diag (ιa3,−ιa3) ⊗ ι adiag (−1, 1) ⊗ J4.

Define, for i3 = 1, 2,

Fi3 = I2 ⊗


x a1 0 a1

−a1 x a1 0
0 −a1 x a1

−a1 0 −a1 x

+
 ιa2 (−1)i3−1a3

(−1)i3a3 −ιa2

⊗ J4,

and det KG = detF1 detF2. Now

F1 ∼ F2 ∼ I2 ⊗


x a1 0 a1

−a1 x a1 0
0 −a1 x a1

−a1 0 −a1 x

+
ι√a2

2 + a2
3 0

0 −ι
√
a2

2 + a2
3

⊗ J4,

and thus both F1 and F2 have same the determinant. Hence det KG = detF 2
1 . Iterating

the same procedure one more time, we get,

ZCyl
G =

(
detF+

1,1 detF−
1,1

)2
,

where

F±
1,1 =


x a1 0 a1

−a1 x a1 0
0 −a1 x a1

−a1 0 −a1 x

± ι
√
a2

2 + a2
3J4.

Let V4 be the unitary similarity transform defined in (2.4.3) for n = 4, then by Lemma 2.14

V ∗
4 F

±
1,1V4 =



x+ 2ιa1 sin π
4 0 0 ∓ιeπ

4 ι
√
a2

2 + a2
3

0 x+ 2ιa1 sin 3π
4 ∓ιe 3π

4 ι
√
a2

2 + a2
3 0

0 ∓ιe 5π
4 ι
√
a2

2 + a2
3 x+ 2ιa1 sin 5π

4 0

∓ιe 7π
4 ι
√
a2

2 + a2
3 0 0 x+ 2ιa1 sin 7π

4

 .
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Thus, the partition function of the monopole-dimer model on G is given by

ZG = (x2 + 2a2
1 + a2

2 + a2
3)8.

Proof of Theorem 5.2. Define

Md
j =

I2md
⊗ · · · ⊗ I2m2 ⊗ T2m1(−a1, x, a1) j = 1

I2md
⊗ · · · ⊗ I2mj+1 ⊗ T2mj

(−aj, 0, aj) ⊗ J2mj−1 ⊗ · · · ⊗ J2m1 2 ≤ j ≤ d.

Using Theorem 2.6, the partition function of the monopole-dimer model on (G,O) is
the determinant of the generalised adjacency matrix, KG, of (G,O) and the generalised
adjacency matrix, KG with the boustrophedon labelling can be written as

KG = Md
1 + · · · +Md

d + a1I2md
⊗ · · · ⊗ I2m2 ⊗BCyl

2m1 . (5.1.1)

For j ∈ [d] \ {1}, define the 2mj × 2mj diagonal and antidiagonal matrices

Dj = diag
(

2ιaj cos π

2mj + 1 , . . . , 2ιaj cos 2mjπ

2mj + 1

)
, (5.1.2)

J ′
j = ι2mj−1 adiag (−1, 1, . . . ,−1, 1) , (5.1.3)

and let

Kd
j = I2md

⊗ · · · ⊗ I2mj+1 ⊗Dj ⊗ J ′
j−1 ⊗ · · · ⊗ J ′

2 ⊗ J2m1 ,

λid,id−1,...,ip =

√√√√ d∑
s=p

4a2
s cos2 isπ

2ms + 1 , 1 < p ≤ d.

Let uk be the similarity transformation defined in Lemma 2.13. Then using the
unitary transform u2md

⊗ · · · ⊗ u2m2 ⊗ I2m1 , we see that

KG ∼ I2md
⊗ · · · ⊗ I2m2 ⊗

(
T2m1(−a1, x, a1) + a1B

Cyl
2m1

)
+Kd

2 + · · · +Kd
d . (5.1.4)

Since the first matrix of each tensor product in (5.1.4) is diagonal, KG is similar to
an 2md × 2md block diagonal matrix with the block Fid

, id ∈ [2md], given by

Fid
= I2md−1 ⊗ · · · ⊗ I2m2 ⊗

(
T2n1(−a1, x, a1) + a1B

Cyl
2m1

)
+Kd−1

2 + · · · +Kd−1
d−2

+
(
Dd−1 + 2ιad cos idπ

2md + 1J
′
d−1

)
⊗ J ′

d−2 ⊗ · · · ⊗ J2m1 .
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Diagonalizing the cruciform matrix (a matrix whose nonzero entries lie only on the
diagonal and the antidiagonal)

Dd−1 + 2ιad cos idπ

2md + 1J
′
d−1

leads to the matrix

diag(ιλid,1,−ιλid,1, ιλid,2,−ιλid,2, . . . , ιλid,md−1 ,−ιλid,md−1).

Set F+
id

= Fid
, F−

id
= F2md−id+1 for 1 ≤ id ≤ md, and observe that F+

id
∼ F−

id
. Since

the determinant of a matrix is invariant under similarity transformation, the partition
function can now be calculated as

ZCyl
G =

md∏
id=1

(detF+
id

)2. (5.1.5)

Continuing with the above approach, F+
id

is similar to an 2md−1 × 2md−1 block diagonal
matrix with blocks F±

id,id−1
(1 ≤ id−1 ≤ md−1), resulting

ZCyl
G =

md∏
id=1

md−1∏
id−1=1

(detF+
id,id−1

)4. (5.1.6)

Inductively,

ZCyl
G =

md∏
id=1

· · ·
m2∏

i2=1
(detF+

id,...,i2 detF−
id,...,i2)2d−2

, (5.1.7)

where
F±

id,...,i2 =
(
T2m1(−a1, x, a1) + a1B

Cyl
2m1

)
± ιλid,...,i2J2m1 .

Let Vk be the unitary similarity transform defined in (2.4.3). Then by Lemma 2.14,

V ∗
2m1F

±
id,...,i2V2m1 =



x+ 2ιa1 sin π
2m1

∓ιe
π

2m1
ι
λid,...,i2

. . . . .
.

. .
. . . .

∓ιe
(4m1−1)π

2m1
ι
λid,...,i2 x+ 2ιa1 sin (4m1−1)π

2m1


,

resulting,

detF±
id,...,i2 =

m1∏
i1=1

(
x2 + 4a2

1 sin2 (2i1 − 1)π
2m1

+
d∑

s=2
4a2

s cos2 isπ

2ms + 1

)
.
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Substituting this in (5.1.7), concludes the proof.

We can see an ℓ-cylindrical grid graph as obtained from a d-dimensional grid graph
by imposing cylindrical boundary conditions in the first ℓ directions and keeping the rest
free. A similar proof technique can be used to prove the following general theorem.

Theorem 5.4 ([3, Theorem 3.4]). Let G be the ℓ-cylindrical grid graph Qℓ
2m1,...,2md

with
boustrophedon labelling in d dimension. Let (G,O) be obtained from G by orienting the
edges from a lower-labelled vertex to a higher-labelled vertex. Let the vertex weights be
x for all vertices of G, and edge weights be a1, . . . , ad for the edges along the different
coordinate axes. Then the partition function of the monopole-dimer model on G is given
by

ZMix
2m1,...,2md

=
m1∏

i1=1
· · ·

md∏
id=1

x2 +
ℓ∑

s=1
4a2

s sin2 (2is − 1)π
2ms

+
d∑

t=ℓ+1
4a2

t cos2 itπ

2mt + 1

2d−1

.

Let us now consider d-dimensional grids with toroidal boundary conditions which are
obtained by imposing cylindrical boundary conditions in all directions of a d-dimensional
grid.

Corollary 5.5 ([3, Theorem 3.5]). Let G be the toroidal grid graph QTor
2m1,...,2md

with
boustrophedon labelling in d dimension. Let (G,O) be obtained from G by orienting the
edges from a lower-labelled vertex to a higher-labelled vertex. Let the vertex weights be
x for all vertices of G, and edge weights be a1, . . . , ad for the edges along the different
coordinate axes. Then the partition function of the monopole-dimer model on G is given
by

ZTor
2m1,...,2md

=
m1∏

i1=1
· · ·

md∏
id=1

(
x2 +

d∑
s=1

4a2
s sin2 (2is − 1)π

2ms

)2d−1

.

Now, we will focus on higher dimensional Möbius and Klein grid graphs.



Chapter 6

Three-dimensional Möbius and
Klein grid graphs

In this chapter, we will extend the product formula (2.3.3) and (2.3.4) for three-dimension-
al grids and show that the formula does not extend to higher dimensions in the obvious
way. We start by presenting the following lemma. We will use the notation Ā and A∗ to
denote the conjugate and conjugate transpose of the matrix A, respectively.

Lemma 6.1. Let A and B be two square matrices of order n such that A is invertible,
BA∗ = AB, and Bt = B. Then, the determinant of the block matrix

det
 A B

−B A

 = det (AA∗ +BB∗).

Proof. When D is invertible, it is well known that

det
A B

C D

 = det (A−BD−1C) detD

= det (A−BD−1C) detDt,

= det (ADt −BD−1CDt).

Here, we have D = A and C = −B, therefore

det
 A B

−B A

 = det (AAt +BA
−1
BA∗)

= det (AAt +BA
−1
AB∗)

= det (AA∗ +BB∗).
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58 6. Three-dimensional Möbius and Klein grid graphs

6.1 Three-dimensional Möbius grids

Let us begin by defining what we mean by the term “high-dimensional Möbius grid”.

Definition 6.2. Let Qn1,...,nd
be the d-dimensional grid graph, we add an edge between

the vertices (1, k2, . . . , kd) and (n1, n2 − k2 + 1, . . . , nd − kd + 1) for all 1 ≤ ki ≤ ni (2 ≤
i ≤ d) to obtain Qn1,...,nd

with Möbius boundary condition along the first direction. We
call these edges as dashed edges and the remaining as solid edges. We call this new graph
as d-dimensional Möbius grid graph and denote it as QMöb

n1,...,nd
.

Let G = QMöb
n1,...,nd

be the d-dimensional Möbius grid graph with boustrophedon la-
belling. Orient the solid edges from lower-labelled vertex to higher-labelled vertex, orient
the dashed edge at 1 outward and the remaining dashed edges such that each two-
dimensional square satisfies the clockwise-odd property. Let us denote the resulting
oriented graph as (G,O). We will always orient the edges coming from the Möbius
boundary condition as described above. Figure 6.1 shows such an orientation over the
Möbius grid graph QMöb

4,2,2.

Definition 6.3. We define the monopole-dimer model on the d-dimensional Möbius grid
graph G as the loop-vertex model on G with the above orientation O. The partition
function of the monopole-dimer model is then the partition function of the loop-vertex
model.

Theorem 6.4 ([3, Theorem 4.4]). Let G be the three-dimensional Möbius grid graph
QMöb

2m1,2m2,2m3 with boustrophedon labelling. Let the vertex weights be x for all vertices of
G, and edge weights be a1, a2 and a3 for the edges along the x-,y- and z- coordinate axes
respectively. Then the partition function of the monopole-dimer model on G is given by

ZMöb
2m1,2m2,2m3

=
m1∏

i1=1

m2∏
i2=1

m3∏
i3=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 cos2 i2π

2m2 + 1 + 4a2
3 cos2 i3π

2m3 + 1

)4

.

Remark 6.5. The product formula in Theorem 6.4 remains unchanged even if one starts
by orienting the dashed edge at 1 inward and the remaining dashed edges such that each
two-dimensional square satisfies the clockwise-odd property.
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9

8

1

16

15

7

2

3

6

5

4

1

8

9

16

12

13

14

11

10

Figure 6.1: The three-dimensional Möbius grid graph QMöb
4,2,2.

Remark 6.6. Note that the oriented d-dimensional Möbius grid QMöb
2m1,...,2md

can be re-
garded as the oriented Cartesian product of P2m1 , . . . , P2md

(oriented from one leaf to
another) together with some additional dashed edges oriented in the specified way. We
believe that the partition function of the monopole-dimer model remains unchanged re-
gardless of the orientation on the path graphs. That is the reason for naming it as the
monopole-dimer model.

Proof. Let Dj and J ′
j be as defined in (5.1.2) and (5.1.3). The generalised adjacency

matrix KG of the oriented three-dimensional Möbius grid graph (G,O) is

KG = I2m3 ⊗ I2m2 ⊗ T2m1(−a1, x, a1) + I2m3 ⊗ T2m2(−a2, 0, a2) ⊗ J2m1

+ T2m3(−a3, 0, a3) ⊗ J2m2 ⊗ J2m1 + a1 adiag (1,−1, . . . , 1,−1) ⊗ diag (1,−1 . . . , 1,−1)
⊗BMöb

2m1

Let uk be the standard unitary similarity transformation defined in Lemma 2.13. Then
using the unitary transform u2m3 ⊗ u2m2 ⊗ I2m1 , it is clear that

KG ∼ I2m3 ⊗ I2m2 ⊗ T2m1(−a1, x, a1) + I2m3 ⊗D2 ⊗ J2m1 +D3 ⊗ J ′
2 ⊗ J2m1

+ a1ι
2m3−1diag (1,−1 . . . , 1,−1) ⊗ J2m2 ⊗BMöb

2m1 . (6.1.1)

Given that the initial matrix of each tensor product is diagonal in (6.1.1), KG becomes
similar to a 2m3 × 2m3 block diagonal matrix, with each block Fi3 , (i3 ∈ [2m3]), defined
as

Fi3 = I2m2 ⊗ T2m1(−a1, x, a1) +D2 ⊗ J2m1 + 2ιa3 cos i3π

2m3 + 1J
′
2 ⊗ J2m1

+ a1(−1)i3−1ι2m3−1J2m2 ⊗BMöb
2m1 . (6.1.2)



60 6. Three-dimensional Möbius and Klein grid graphs

Therefore,

det KG =
2m3∏
i3=1

detFi3 . (6.1.3)

Applying some simultaneous row and column interchanges on the first matrix in each
tensor of (6.1.2) results in

Fi3 ∼Im2 ⊗ I2 ⊗ T2m1(−a1, x, a1)

+ diag
(
2ιa2 cos π

2m2 + 1 , . . . , 2ιa2 cos m2π

2m2 + 1
)

⊗

1 0
0 −1

⊗ J2m1

+ 2ι2m2a3 cos i3π

2m3 + 1diag
(
1,−1, 1,−1, . . . ) ⊗

0 −1
1 0

⊗ J2m1

+ a1(−1)i3−1ι2m3−1Im2 ⊗ J2 ⊗BMöb
2m1 .

Consequently,

detFi3 =
m2∏

i2=1
det

(
I2 ⊗ T2m1(−a1, x, a1) + 2ιa2 cos i2π

2m2 + 1

1 0
0 −1

⊗ J2m1

+ 2(−1)i2−1ι2m2a3 cos i3π

2m3 + 1

0 −1
1 0

⊗ J2m1

+ a1(−1)i3−1ι2m3−1J2 ⊗BMöb
2m1

)
.

Using the unitary transform
1√
2

−1 1
1 1

⊗ I2m1 ,

the determinant of Fi3 can be expressed as the following product:

detFi3 =
m2∏

i2=1
det

(
I2 ⊗ T2m1(−a1, x, a1) + 2ιa2 cos i2π

2m2 + 1

 0 −1
−1 0

⊗ J2m1

+ 2(−1)i2−1ι2m2a3 cos i3π

2m3 + 1

 0 1
−1 0

⊗ J2m1

+ a1(−1)i3−1ι2m3−1

−1 0
0 1

⊗BMöb
2m1

)
.

Finally, notice that Fi3 is the product of determinants of 2 × 2 block matrices of the
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following form  A B

−B A


where

A = T2m1(−a1, x, a1) − a1(−1)i3−1ι2m3−1BMöb
2m1

and
B =

(
− 2ιa2 cos i2π

2m2 + 1 + 2(−1)i2−1ι2m2a3 cos i3π

2m3 + 1

)
J2m1 .

Observe that

BA∗ =
(

2ιa2 cos i2π

2m2 + 1 + 2(−1)i2−1ι2m2a3 cos i3π

2m3 + 1

)
× J2m1

(
T2m1(a1, x,−a1) + a1(−1)i3−1ι2m3−1BMöb

2m1

)
Since, J2m1 commutes with BMöb

2m1 and J2m1T2m1(a1, x,−a1) = T2m1(−a1, x, a1)J2m1

BA∗ =
(

2ιa2 cos i2π

2m2 + 1 + 2(−1)i2−1ι2m2a3 cos i3π

2m3 + 1

)

×

T2m1(−a1, x, a1)J2m1 + a1(−1)i3−1ι2m3−1BMöb
2m1 J2m1


After re-arranging the terms, we get

BA∗ =
T2m1(−a1, x, a1) + a1(−1)i3−1ι2m3−1BMöb

2m1


×
(

2ιa2 cos i2π

2m2 + 1 + 2(−1)i2−1ι2m2a3 cos i3π

2m3 + 1

)
J2m1

=AB.

Now, using Lemma 6.1, we get

det
 A B

−B A

 = det (AA∗ +BB∗). (6.1.4)

Diagonalizing the matrix A yields the following:

A ∼ diag
(
x+ 2(−1)m3+i3−1ia1 sin 3π

4m1
, . . . , x+ 2(−1)m3+i3−1ιa1 sin (4(2m1) − 1)π

4m1

)
,



62 6. Three-dimensional Möbius and Klein grid graphs

and
AA∗ ∼ diag

(
x2 + 4a2

1 sin2 3π
4m1

, . . . , x2 + 4a2
1 sin2 (8m1 − 1)π

4m1

)
. (6.1.5)

Further, a quick calculation shows that

BB∗ =
(

4a2
2 cos2 i2π

2m2 + 1 + 4a2
3 cos2 i3π

2m3 + 1

)
I2m1 . (6.1.6)

Combining equations (6.1.4), (6.1.5), and (6.1.6) results

detFi3 =
m2∏

i2=1

2m1∏
i1=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 cos2 i2π

2m2 + 1 + 4a2
3 cos2 i3π

2m3 + 1

)
.

Finally, (6.1.3) together with the following trigonometric identities

sin (4(m1 + i1) − 1)π
4m1

= − sin (4i1 − 1)π
4m1

, (6.1.7)

cos (2m3 − i3 + 1)π
2m3 + 1 = − cos i3π

2m3 + 1 (6.1.8)

concludes the proof.

We now provide an example showing that the formula does not generalise for higher
dimensions.

Example 6.7. Let G = QMöb
2,2,2,2 be the four-dimensional Möbius grid as shown in Fig-

ure 6.2. The solid edges are oriented from lower labelled vertex to higher labelled vertex
and dashed edges are oriented as described in the paragraph just below Definition 6.2.
Let the vertex weight be 0 for all the vertices and edge weights be a1, a2, a3 and a4
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Figure 6.2: The four-dimensional cube with Möbius boundary conditions

for the edges along the different coordinate axes. Then, the partition function of the
monopole-dimer model on G is

(4a2
1 + a2

2 + a2
3 + a2

4)4(a2
2 + a2

3 + a2
4)4
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which is not an 8th power. This leads us to conclude that the product formula in (2.3.3)
does not generalise to higher dimensions.

Using Theorem 5.2 and Theorem 6.4 together with the following identities,

sin2 (2(2i) − 1)π
4n = sin2 (2(2n− 2i+ 1) − 1)π

4n = sin2 (4i− 1)π
4n , for 1 ≤ i ≤ n,

we can deduce the generalized relationship between the partition function of the monopole-
dimer model on the three-dimensional Möbius and cylindrical grid graphs, akin to the
relationship between the partition function of the dimer model on two-dimensional grids
embedded on a cylinder and a Möbius strip [25, (24)].

Corollary 6.8. Let ZCyl
4n1,2n2,2n3 and ZMöb

2n1,2n2,2n3 be the partition function of the monopole-
dimer model on the oriented three-dimensional Möbius grid QMöb

4n1,2n2,2n3 and cylindrical
grid QCyl

2n1,2n2,2n3 with boustrophedon labelling, respectively. Then

ZCyl
4n1,2n2,2n3 =

(
ZMöb

2n1,2n2,2n3

)2
. (6.1.9)

6.2 Three-dimensional Klein grids

A d-dimensional grid is considered to have Klein boundary conditions if it exhibits Möbius
boundary conditions along the first direction and cylindrical boundary conditions along
the remaining directions.

Definition 6.9. Let Pn1□Cn2□ · · ·□Cnd
be Cartesian product of Pn1 , Cn1 , . . . , Cnd

, we
add an edge between the vertices (1, k2, . . . , kd) and (n1, n2 − k2 + 1, . . . , nd − kd + 1) for
all 1 ≤ ki ≤ ni (2 ≤ i ≤ d) to obtain a new graph called the d-dimensional Klein grid
graph QKlein

n1,...,nd
. We call these additional edges as dashed edges and the remaining as solid

edges.

Let G = QKlein
n1,...,nd

be the d-dimensional Klein grid graph with boustrophedon labelling.
Orient the solid edges from lower-labelled vertex to higher-labelled vertex, orient the
dashed edge at 1 outward and the remaining dashed edges such that each two-dimensional
square satisfies the clockwise-odd property. Let us denote the resulting oriented graph as
(G,O). Note that QMöb

n1,...,nd
is a subgraph of QKlein

n1,...,nd
. Figure 6.3 shows such an orientation

over the Klein grid graph QKlein
4,2,2 .

Definition 6.10. We define the monopole-dimer model on the d-dimensional Klein grid
graph G as the loop-vertex model on G with the above orientation O. The partition



64 6. Three-dimensional Möbius and Klein grid graphs

9

8

1

16

15

7

2

3

6

5

4

1

8

9

16

12

13

14

11

10

Figure 6.3: The three-dimensional Möbius grid graph QKlein
4,2,2 .

function of the monopole-dimer model is then the partition function of the loop-vertex
model.

Theorem 6.11 ([3, Theorem 5.3]). Let G = QKlein
2m1,2m2,2m3 be the three-dimensional Klein

grid graph. Let vertex weights be x for all vertices of G, and edge weights be a1, a2 and
a3 for the edges along the x-,y- and z- coordinate axes respectively. Then the partition
function of the monopole-dimer model on (G,O) is given by

ZKlein
2m1,2m2,2m3

=
m1∏

i1=1

m2∏
i2=1

m3∏
i3=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 sin2 (2i2 − 1)π

2m2
+ 4a2

3 sin2 (2i3 − 1)π
2m3

)4

.

Proof. Again, let Tk, Jk, Dj and J ′
j be as defined in the proof of Theorem 5.2. The

generalised adjacency matrix, KG of the oriented three-dimensional grid graph with
Klein boundary conditions, (G,O) is

KG = I2m3 ⊗I2m2 ⊗T2m1(−a1, x, a1)+a1 adiag (1,−1 . . . , 1,−1)⊗diag (1,−1 . . . , 1,−1)
⊗BMöb

2m1

+I2m3 ⊗
(
T2m2(−a2, 0, a2) + a2B

Cyl
2m2

)
⊗J2m1 +

(
T2m3(−a3, 0, a3) + a3B

Cyl
2m3

)
⊗J2m2 ⊗J2m1 .

Let Vk be the similarity transformation defined in Lemma 2.14. Then using the unitary
transform V2m3 ⊗ V2m2 ⊗ I2m1 , it is clear that

KG ∼I2m3 ⊗ I2m2 ⊗ T2m1(−a1, x, a1)
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+ a1



e
ι π

2m3

. .
. 0

e
ι

(2m3−1)π

2m3

e
ι

(2m3+1)π

2m3

0 . .
.

e
ι

(4m3−1)π

2m3


⊗

 0 Im2

Im2 0

⊗BMöb
2m1

+I2m3 ⊗ diag
(

2ιa2 sin (2 · 1 − 1)π
2m2

, . . . , 2ιa2 sin (2 · 2m2 − 1)π
2m2

)
⊗ J2m1

+diag
(

2ιa3 sin (2 · 1 − 1)π
2m3

, . . . , 2ιa3 sin (2 · 2m3 − 1)π
2m3

)

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(2·2m2−1)π

2m2

)
⊗ J2m1 .

Using the following identities

eι
(2(n+k)−1)π

2n = −eι
(2k−1)π

2n , (6.2.1)

sin (2(n+ k) − 1)π
2n = − sin (2k − 1)π

2n ,

we get

KG ∼ I2 ⊗ Im3 ⊗ I2m2 ⊗ T2m1(−a1, x, a1)

+ a1

1 0
0 −1

⊗ adiag
(
e

ι π
2m3 , . . . , e

ι
(2m3−1)π

2m3

)
⊗

 0 Im2

Im2 0

⊗BMöb
2m1

+ I2 ⊗ Im3 ⊗ diag
(

2ιa2 sin (2 · 1 − 1)π
2m2

, . . . , 2ιa2 sin (2 · 2m2 − 1)π
2m2

)
⊗ J2m1

+
1 0

0 −1

⊗ diag
(

2ιa3 sin (2 · 1 − 1)π
2m3

, . . . , 2ιa3 sin (2m3 − 1)π
2m3

)

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(2·2m2−1)π

2m2

)
⊗ J2m1 .

Observing that
eι

(2(n−k+1)−1)π
2n = −e−ι

(2k−1)π
2n , (6.2.2)

sin (2(n− k + 1) − 1)π
2n = sin (2k − 1)π

2n , (6.2.3)

and applying some simultaneous row and column interchanges on the second matrix of
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each tensor, turns it into a block diagonal matrix. In particular, if m3 is even,

KG ∼ I2 ⊗ Im3 ⊗ I2m2 ⊗ T2m1(−a1, x, a1)

+a1

1 0
0 −1

⊗



0 e
ι π

2m3

−e−ι π
2m3 0

. . .

0 0 e
ι
(2· m3

2 −1)π

2m3

−e−ι
(2· m3

2 −1)π

2m3 0


⊗

 0 Im2

Im2 0

⊗BMöb
2m1

+ I2 ⊗ Im3 ⊗ diag
(

2ιa2 sin (2 · 1 − 1)π
2m2

, . . . , 2ιa2 sin (2 · 2m2 − 1)π
2m2

)
⊗ J2m1

+
1 0

0 −1

⊗ 2ιa3diag
(

sin π

2m3
, sin π

2m3
, . . . , sin

(2 · m3
2 − 1)π
2m3

, sin
(2 · m3

2 − 1)π
2m3

)

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(4m2−1)π

2m2

)
⊗ J2m1 . (6.2.4)

Since the first matrix of each tensor product in (6.2.4) is diagonal and the second matrix
is block diagonal, the determinant of the matrix KG can be written as the following
product.

det(KG) =
⌊ m3

2 ⌋∏
i3=1

det
I2 ⊗ I2 ⊗ I2m2 ⊗ T2m1(−a1, x, a1)

+ a1

1 0
0 −1

⊗

 0 e
ι

(2i3−1)π

2m3

−e−ι
(2i3−1)π

2m3 0

⊗

 0 Im2

Im2 0

⊗BMöb
2m1

+ I2 ⊗ I2 ⊗ diag
(

2ιa2 sin (2 · 1 − 1)π
2m2

, . . . , 2ιa2 sin (2 · 2m2 − 1)π
2m2

)
⊗ J2m1

+
1 0

0 −1

⊗ 2ιa3

sin (2i3−1)π
2m3

0
0 sin (2i3−1)π

2m3

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(4m2−1)π

2m2

)

⊗ J2m1


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×



1 if m3 is even,

det
I2 ⊗ I2m2 ⊗ T2m1(−a1, x, a1)

+ιa1

1 0

0 −1

⊗

 0 Im2

Im2 0

⊗BMöb
2m1 if m3 is odd.

+I2 ⊗ diag
(
2ιa2 sin (2·1−1)π

2m2
, . . . , 2ιa2 sin (2·2m2−1)π

2m2

)
⊗ J2m1

+2ιa3

1 0

0 −1

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(4m2−1)π

2m2

)
⊗ J2m1



Further, adiag
(
e

ι
(2i3−1)π

2m3 ,−e−ι
(2i3−1)π

2m3

)
diagonalizes to diag (ι,−ι). Therefore,

det(KG) =
⌊ m3

2 ⌋∏
i3=1

det(I2 ⊗ I2 ⊗ I2m2 ⊗ T2m1(−a1, x, a1)

+ a1

1 0
0 −1

⊗

ι 0
0 −ι

⊗

 0 Im2

Im2 0

⊗BMöb
2m1

+ I2 ⊗ I2 ⊗ diag
(

2ιa2 sin (2 · 1 − 1)π
2m2

, . . . , 2ιa2 sin (2 · 2m2 − 1)π
2m2

)
⊗ J2m1

+
1 0

0 −1

⊗ 2ιa3 sin (2i3 − 1)π
2m3

1 0
0 1

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(4m2−1)π

2m2

)
⊗ J2m1)

×



1 if m3 is even,

det(I2 ⊗ I2m2 ⊗ T2m1(−a1, x, a1) + ιa1

1 0

0 −1

⊗

 0 Im2

Im2 0


⊗BMöb

2m1 + I2 ⊗ 2ιa2diag
(
sin (2·1−1)π

2m2
, . . . , sin (2·2m2−1)π

2m2

)
⊗ J2m1

+2ιa3

1 0

0 −1

⊗ adiag
(

−eι π
2m2 , . . . ,−eι

(4m2−1)π

2m2

)
⊗ J2m1) if m3 is odd.

Now, since the initial two matrices of each tensor product are 2 × 2 diagonal matrices,
it is enough to determine the determinant of the following matrices:
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Fα,β
i3 ( for α = ±1, β = ±1) = I2m2 ⊗ T2m1(−a1, x, a1) + ιαa1

 0 Im2

Im2 0

⊗BMöb
2m1

+ 2ιa2diag
(

sin (2 · 1 − 1)π
2m2

, . . . , sin (2 · 2m2 − 1)π
2m2

)
⊗ J2m1

− 2ιβa3 sin (2i3 − 1)π
2m3

adiag
(
e

ι π
2m2 , . . . , e

ι
(4m2−1)π

2m2

)
⊗ J2m1 .

We can rewrite Fα,β
i3 with the help of the trigonometric identities in (6.2.1) as

Fα,β
i3 = I2 ⊗ Im2 ⊗ T2m1(−a1, x, a1) + ιαa1

0 1
1 0

⊗ Im2 ⊗BMöb
2m1

+
1 0

0 −1

⊗ 2ιa2diag
(

sin (2 · 1 − 1)π
2m2

, . . . , sin (2 ·m2 − 1)π
2m2

)
⊗ J2m1

− 2ιβa3 sin (2i3 − 1)π
2m3

 0 1
−1 0

⊗ adiag
(
e

ι π
2m2 , . . . , e

ι
(2m2−1)π

2m2

)
⊗ J2m1 .

Using the unitary transform

1√
2

−1 1
1 1

⊗ Im2 ⊗ I2m1 ,

we obtain

Fα,β
i3 ∼ I2 ⊗ Im2 ⊗ T2m1(−a1, x, a1) + ιαa1

−1 0
0 1

⊗ Im2 ⊗BMöb
2m1

+
 0 −1

−1 0

⊗ diag
(

2ιa2 sin (2 · 1 − 1)π
2m2

, . . . , 2ιa2 sin (2 ·m2 − 1)π
2m2

)
⊗ J2m1

− 2ιβa3 sin (2i3 − 1)π
2m3

0 −1
1 0

⊗ adiag
(
e

ι π
2m2 , . . . , e

ι
(2m2−1)π

2m2

)
⊗ J2m1 .

Repeating the same procedure on the second matrix in each tensor if m2 is even, results
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in

Fα,β
i3 ∼ I2 ⊗ Im2 ⊗ T2m1(−a1, x, a1) + ιαa1

−1 0
0 1

⊗ Im2 ⊗BMöb
2m1

+
 0 −1

−1 0

⊗ 2ιa2diag
(

sin π

2m2
, sin π

2m2
, . . . , sin

(2 · m2
2 − 1)π
2m2

, sin
(2 · m2

2 − 1)π
2m2

)

⊗ J2m1

−2ιβa3 sin (2i3 − 1)π
2m3

0 −1
1 0

⊗ diag (ι,−ι, . . . , ι,−ι) ⊗ J2m1 .

Further, notice that Fα,β
i3 is the product of determinants of 2 × 2 block matrices of the

following form  A B

−B A


where

A = Im2 ⊗ T2m1(−a1, x, a1) − ιαa1Im2 ⊗BMöb
2m1 ,

and

B =

− 2ιa2diag
(

sin π

2m2
, sin π

2m2
, . . . , sin

(2 · m2
2 − 1)π
2m2

, sin
(2 · m2

2 − 1)π
2m2

)
⊗ J2m1

+ 2ιβa3 sin (2i3 − 1)π
2m3

diag (ι,−ι, . . . , ι,−ι) ⊗ J2m1 .

Using a similar argument as in the proof of Theorem 6.4, we can see that BA∗ = AB.
Now, using Lemma 6.1, we get

det
 A B

−B A

 = det (AA∗ +BB∗). (6.2.5)

Diagonalizing the matrix A yields the following:

A = Im2 ⊗
(
T2m1(−a1, x, a1) − ιαa1B

Möb
2m1

)
∼ Im2 ⊗ diag

(
x− 2ιαa1 sin 3π

4m1
, . . . , x− 2ιαa1 sin (4(2m1) − 1)π

4m1

)
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and

AA∗ ∼ Im2 ⊗ diag
(
x2 + 4a2

1 sin2 3π
4m1

, . . . , x2 + 4a2
1 sin2 (8m1 − 1)π

4m1

)
. (6.2.6)

Further, a quick calculation shows that

BB∗ =diag
(

4a2
2 sin2 π

2m2
, 4a2

2 sin2 π

2m2
, . . . , 4a2

2 sin2 (2 · m2
2 − 1)π
2m2

, 4a2
2 sin2 (2 · m2

2 − 1)π
2m2

)

+ 4a2
3 sin2 (2i3 − 1)π

2m3
Im2

⊗ I2m1 . (6.2.7)

Combining equations (6.2.5), (6.2.6), and (6.2.7) results in

detFα,β
i3 =

⌊ m2
2 ⌋∏

i2=1

2m1∏
i1=1

(
x2+4a2

1 sin2 (4i1 − 1)π
4m1

+4a2
2 sin2 (2i2 − 1)π

2m2
+4a2

3 sin2 (2i3 − 1)π
2m3

)2

×


1 m2 is even,∏2m1

i1=1

(
x2 + 4a2

1 sin2 (4i1−1)π
4m1

+ 4a2
2 sin2 ((m2+1)−1)π

2m2
+ 4a2

3 sin2 (2i3−1)π
2m3

)
m2 is odd.

Hence,

det(KG)

=
⌊ m3

2 ⌋∏
i3=1

m2∏
i2=1

2m1∏
i1=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 sin2 (2i2 − 1)π

2m2
+ 4a2

3 sin2 (2i3 − 1)π
2m3

)4

×



1 m3 is even,∏m2
i2=1

∏2m1
i1=1

(
x2 + 4a2

1 sin2 (4i1−1)π
4m1

+ 4a2
2 sin2 (2i2−1)π

2m2
+ 4a2

3 sin2 ((m3+1)−1)π
2m3

)2

m3 is odd,
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which can be rewritten using the trigonometric identities (6.1.7) and (6.2.3) as

det(KG)

=
m3∏

i3=1

m2∏
i2=1

m1∏
i1=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 sin2 (2i2 − 1)π

2m2
+ 4a2

3 sin2 (2i3 − 1)π
2m3

)4

.

We conclude the section by providing an example that shows that the formula in
(2.3.4) can only be generalised to three dimensions and by raising a pertinent question
of whether is it possible to define the non-orientable boundary conditions such that the
product formulas for higher dimensions still hold while preserving the relationship in
(6.1.9).
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Figure 6.4: four-dimensional Klein grid graph, QKlein
2,2,2,2.

Example 6.12. Let G = QKlein
2,2,2,2 be the four-dimensional Klein grid graph as shown in

Figure 6.4. Solid edges are oriented from a lower labelled vertex to a higher labelled
vertex and dashed edges are oriented as described above. Let the vertex weight be 0
for all the vertices and edge weights be a1, a2, a3 and a4 for the edges along the different
coordinate axes. Then, the partition function of the monopole-dimer model on G is

216(a2
1 + a2

2 + a2
3 + a2

4)4(a2
2 + a2

3 + a2
4)4

which is not an 8th power. Hence the product formula (2.3.4) does not generalise to
higher dimensions in obvious way.

Remark 6.13. Again, note that the oriented d-dimensional Klein grid QKlein
2m1,...,2md

can
be regarded as the oriented Cartesian product of P2m1 , C2m2 , . . . , C2md

(oriented from
lower-labelled vertex to higher-labelled vertex) together with some additional dashed
edges oriented in the specified manner. We believe that the partition function of the
monopole-dimer model remains unchanged regardless of the Pfaffian orientation on the
path and cycle graphs.
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Chapter 7

Eccentric graph of trees

We talked in Section 2.5 about the interesting properties of the eccentric graph of a tree.
In this chapter, we will discuss about the structure of the eccentric graph of a tree and
its girth in detail. From now on, we will only consider simple, undirected graphs on at
least two vertices.

7.1 Structure of eccentric graph of a tree

In this section, we will focus on the structure of the eccentric graph of a tree.

Definition 7.1. Let T be a tree and v be a leaf in T . We define the path from v to the
nearest vertex of degree greater than two as the stem at v and the branching vertex is
an endpoint of the stem which has degree greater than two in T.

1 2 3 4 5 6 7

8 10

12 11
9

Figure 7.1: A tree T on 12 vertices with different colored stems at vertices 9, 11 and 12.

Note that a path graph Pn has no stems. Recall that a diametrical path (defined in
Section 2.5) is a longest eccentric path in the graph G.

Definition 7.2. Let P be a diametrical path in a tree T . We define the tree induced from
the path P as the subtree of T obtained by removing stems except branching vertices at
those leaves (except endpoints of P ), which are an endpoint of some diametrical path
other than P .

73
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Consider the tree T shown in Figure 7.1. T has three diametrical paths and the
subtrees induced by these are shown in Figure 7.2.

1 2 3 4 5 6 7

8 10

11

3 4 5 6 7

8 10

11
9

3 4 5 6 7

8 10

12 11

Figure 7.2: Subtrees induced by different diametrical paths (dashed) of the tree in Fig-
ure 7.1.

The eccentric graphs of the subtrees in Figure 7.2 are shown in Figure 7.3.

1 7
4
10

11

5

6

2

8
9 7
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10

11

5

6

3

8
12 7

4
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11

5

6

3

8
3

Figure 7.3: Eccentric graphs of the three subtrees in Figure 7.2 of the tree in Figure 7.1.

In general, the structure of the eccentric graph of a subtree induced from a diametrical
path in T depends on the diameter of T . In case of an even diameter, it looks as shown
in the left of Figure 7.4 and in case of odd diameter, it looks as shown in the right of
Figure 7.4.

...

...
...

...
...

Figure 7.4: Eccentric graphs of subtrees induced by diametrical paths.

The following result shows that the graphs shown in Figure 7.4 are the building blocks
for the eccentric graph of a tree. First, recall that the union of two graphs G1 and G2,
denoted G1 ∪G2, is the simple graph whose vertex set and edge set are formed by taking
the union of the vertex sets of G1 and G2 and the edge sets of G1 and G2, respectively.

Theorem 7.3 ([5, Theorem 1]). Let Q1, . . . , Qk be diametrical paths in T with starting
point v1

0, . . . , v
k
0 and ending point v1

n, . . . , v
k
n, respectively. Let T1, . . . , Tk be induced trees

from Q1, . . . , Qk, repectively. Then, Ec(T ) = ∪k
i=1Ec(Ti).
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Proof. A vertex of T either lies in some diametrical path or lies on a stem in each of the
induced trees Ti’s. Thus,

V (T ) = ∪k
i=1V (Ti).

For i ∈ [k], let e be an edge in the eccentric graph Ec(Ti). As Qi is the unique
diametrical path in Ti, it follows that one of the endpoints of e is either vi

0 or vi
n, assume

that e = vvi
n. Thus, eTi

(v) = dTi
(v, vi

n) = dT (v, vi
n) = eT (v). Thus, Ec(Ti) is a subgraph

of Ec(T ).
Now, let v ∼Ec(T ) w which implies that one of v or w (say v) is an endpoint of a

diametrical path say Qj (1 ≤ j ≤ k) in T . It is enough to show that v and w both lie
on the same tree Ts for some s ∈ [k]. If w /∈ Ec(Tj), eccentric graph of the tree induced
from Qj, then w lies on a stem at some leaf z in T . In that case, the path joining from
v to z is a diametrical path and the tree induced by this diametrical path Ts contains
both v and w.

The following example illustrates Theorem 7.3.

Example 7.4. Let T be the tree shown in Figure 7.1. The eccentric graph of T (see
Figure 7.5) is the union of the eccentric graphs (shown in Figure 7.3) of the subtrees
(shown in Figure 7.2) induced from the three diametrical paths of T .

4

10
11

2

3

8
7

5

6

9

1

12
Figure 7.5: Eccentric graph of the tree in Figure 7.1 which is the union of the graphs in
Figure 7.3.

Proposition 7.5. Let T be a tree. There does not exist v1, v2, v3 ∈ V (T ) such that
v1 ∼Ec(T ) v2, v2 ∼Ec(T ) v3 and eT (v1) < eT (v2) < eT (v3).

Proof. On the contrary, assume that such v1, v2, v3 ∈ V (T ) exist. Then dT (v1, v2)=
min{eT (v1), eT (v2)} = eT (v1), i.e., v2 is eccentric to v1. Therefore, v2 is an endpoint
of a diametrical path. Again, dT (v2, v3) = min{eT (v2), eT (v3)} = eT (v2), which implies
that the path from v2 to v3 is a diametrical path and therefore eT (v2) = eT (v3), a
contradiction.
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Remark 7.6. The essence of Proposition 7.5 can be summarized by saying that the
eccentricity of a vertex v ∈ V (T ) is either the smallest or the largest among the eccen-
tricities of its neighbours in the eccentric graph of T .

7.2 Eccentric girth of a tree

In this section, we will determine the eccentric girth of a tree and its potential values.
In addition, we will classify the instances in which these possible values of the eccentric
girth can be achieved. It is well-known that two paths of maximum length must pass
through a common point. Thus, it is evident that two diametrical paths in a tree must
intersect at vertices. But this is not true for graphs that are not trees; the graph in
Figure 7.6 has two diametrical paths (dashed) but they do not intersect.

Figure 7.6: A graph having two non-intersecting diametrical paths

Now, we will present the main result of this section which classifies the eccentric girth
of a tree.

Theorem 7.7 ([5, Theorem 3]). Let T be a tree. Then the eccentric girth of T is either
zero, three, or four. Moreover,

g(Ec(T )) =


3 if the diameter of T is even,

0 if the diameter of T is odd with unique diametrical path,

4 otherwise.

Corollary 7.8. The only trees T which satisfy Ec(T ) = T are P2 and P4.

Proof. The proof is divided into the following cases depending on the parity of the
diameter of T .

First, let the diameter of T be even and P = v0 v1 . . . vk vk+1 . . . v2k be a diametrical
path. Note that e(v0) = 2k = e(v2k) and d(v0, v2k) = 2k, therefore v0 ∼Ec(T ) v2k. If
e(vk) > k, then one of e(v0) or e(v2k) will be greater than 2k, which is not possible. Also,
d(v0, vk) = k = d(vk, v2k), therefore e(vk) = k and vk ∼Ec(T ) v0, vk ∼Ec(T ) v2k. Thus,
v0, vk, and v2k form a triangle in Ec(T ).
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Second, If the diameter of T is odd and P = v0 v1 . . . vk vk+1 . . . v2k+1 is the unique
diametrical path in T . It is sufficient to show that for any vertex i ∈ V (T ) exactly one
of v0 or v2k+1 is eccentric to i and no other vertex is eccentric to i. Note that, in a tree,
if a vertex j is eccentric to some vertex, then j must be a pendant vertex.

Let i ∈ V (P ), if possible, there exists a vertex j ∈ V (T ) other than v0 and v2k+1

which is eccentric to i, that is, d(i, j) = e(i), then j is a leaf of a branch emerging from
some vertex p ∈ V (P ). Assume that p is on the left of i in P , then d(i, j) ≥ d(i, v0),
which implies d(v2k+1, j) = d(v2k+1, i) + d(i, j) ≥ d(v2k+1, i) + d(i, v0) = 2k + 1, which
contradicts the fact that P is the only diametrical path. A similar argument can be
given when p is on the right of i.

Now suppose that i ∈ V (T ) \ V (P ) lies on some branch emerging from a vertex
i′ ∈ V (P ). Again let there exists j ∈ V (T ) other than v0 and v2k+1 which is eccentric
to i. Note that j cannot lie on the same branch; otherwise, the eccentricity of one of v0

or v2k+1 will increase. Thus, j must be eccentric to i′ which cannot happen as proved in
the preceding paragraph. Moreover, because of odd diameter, exactly one of v0 or v2k+1

can be eccentric to i. For illustration, Ec(T ) in this scenario is shown in Figure 7.7.

v0 v2k+1

...

...

Figure 7.7: Eccentric graph of a tree (of odd diameter) with unique diametrical path.

Third, let the diameter of T be odd and P = v0 v1 . . . vk vk+1 . . . v2k+1, P ′ = w0 w1 . . .

wk wk+1 . . . w2k+1 be two diametrical paths in T . As mentioned at the start of Section 7.2,
they must intersect. Therefore, it is reasonable to assume that P and P ′ have one
common endpoint say v0 = w0, otherwise one of the paths joining from v0 to w0 or
w2k+1 (say w2k+1) is a diametrical path and we can create two such diametrical paths
by replacing P ′ with the diametrical path from v0 to w2k+1. Hence, (v0, v2k+1, v1, w2k+1)
forms a 4-cycle in Ec(T ). Now, if there is a triangle (z1, z2, z3) in Ec(T ) and e(z1) ≤
e(z2) ≤ e(z3). Without loss of generality, assume that z1 is a vertex on some branch
emerging from wp, 1 ≤ p ≤ k (Note that z1 can be w0). If z is any vertex eccentric to
z1, then z must be a vertex on some branch emerging from wi, for some k + 1 ≤ i ≤ 2k;
if not, then d(z, w2k+1) is greater than the diameter 2k+ 1. Now z2 being eccentric to z1

must lie on some branch emerging from wq, k+ 1 ≤ q ≤ 2k (Note that z2 can be w2k+1).
Again, as z3 is eccentric to z2, z3 is a vertex on some branch emerging from wr, 1 ≤ r ≤ k,
but then z3 cannot be eccentric to z1. Hence Ec(T ) cannot have a triangle.
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Chapter 8

Eccentric graph of Cartesian
products

In this chapter, analogous to Theorem 7.7, we will see the possible values for the eccentric
girth of Cartesian product of trees. We will discuss the structure of the eccentric graph
of Cartesian product of two path graphs and two cycle graphs. We will also provide
a necessary and sufficient condition for the invertibility of the eccentricity matrix of
Cartesian product of trees.

8.1 Cartesian product of graphs

In this section, we will examine some properties of the eccentric graph of Cartesian
product of general graphs and calculate the eccentric girth of Cartesian product of trees
in Section 8.2. Recall Cartesian product of two graphs defined in Definition 2.1. The
following equations

dG1□G2

(
(u1, u2), (v1, v2)

)
= dG1(u1, v1) + dG2(u2, v2), (8.1.1)

and
eG1□G2

(
(u1, u2)

)
= eG1(u1) + eG2(u2) (8.1.2)

follow directly from Definition 2.1 and can be generalised to Cartesian product of k
graphs G1, . . . , Gk denoted as G1□ · · ·□Gk.

Definition 8.1. Let G1 and G2 be two simple connected graphs. The Kronecker product
of G1 and G2 denoted as G1 × G2 is a graph with vertex set V (G1) × V (G2), and two
vertices (u1, u2) and (v1, v2) are adjacent if and only if u1 ∼G1 v1 and u2 ∼G2 v2.

79
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Lemma 8.2. Let G1, . . . , Gk be simple connected graphs and G = G1□ · · ·□Gk be their
Cartesian product. Let u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ V (G) where ui, vi ∈ V (Gi)
for i ∈ [k]. Then, v is eccentric to u if and only if vi is eccentric to ui for all i ∈ [k].

Proof. Let v be eccentric to u, i.e., dG

(
u, v

)
= max{dG

(
u, x

)
: x ∈ V (G)}. Then by

(8.1.1) we can express this as:

k∑
i=1

dGi

(
ui, vi

)
= max

{
k∑

i=1
dGi

(
ui, xi

)
: xi ∈ V (Gi)

}
.

Which holds only if

dGi

(
ui, vi

)
= max{dGi

(
ui, xi

)
: xi ∈ V (Gi)} for all i ∈ [k]}.

Thus, vi is eccentric to ui for all i ∈ [k]. Furthermore, we can reverse the steps of this
argument to establish the converse part.

Remark 8.3. Note that if (u1, . . . , uk) ∼Ec(G1□···□Gk) (v1, . . . , vk), then ui ̸= vi for all
i ∈ [k]. Also, it is clear from Lemma 8.2 that if u ∼Ec(G) v, then ui ∼Ec(Gi) vi for all
i ∈ [k], but the converse is not true. For example, 1 ∼Ec(P4) 3 and 2 ∼Ec(P4) 4, but
(1, 2) ≁Ec(P4□P4) (3, 4) (see Figure 8.1).

3 1 4 2

(3,3)
(1,1) (4,4)

(2,2)

Ec(P4) Ec(P4□P4)

(3,4)

(4,3)

(1,2)

(2,1)

(3,2)
(1,4) (4,1)

(2,3)

(3,1)

(4,2)

(1,3)

(2,4)

Figure 8.1: Eccentric graphs of naturally labelled P4 and P4□P4.

Corollary 8.4. Let G1 and G2 be simple connected graphs such that all the vertices
in both G1 and G2 have the same eccentricities. Then Ec(G1□G2) is isomorphic to
Ec(G1) × Ec(G2), the Kronecker product of Ec(G1) and Ec(G2).

Lemma 8.5. Let G1, . . . , Gk be simple connected graphs and G = G1□ · · ·□Gk. If for
some s, t ∈ [k] there exists us, vs, ws ∈ V (Gs) such that us ∼Ec(Gs) vs, vs ∼Ec(Gs) ws and
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eGs(vs) ≥ max{eGs(us), eGs(ws)}, and there exists ut, vt, wt ∈ V (Gt) such that ut ∼Ec(Gt)

vt, vt ∼Ec(Gt) wt and eGt(vt) ≤ min{eGt(ut), eGt(wt)}, then there exists a 4-cycle in
Ec(G).

Proof. Without loss of generality, assume that s = 1 and t = 2 and for i = 3, . . . , k, let
{ui, vi} be an edge in Ec(Gi) such that eGi

(ui) ≥ eGi
(vi), i.e., ui is eccentric to vi for

i = 3, . . . , k. By the inequalities in the hypothesis, v1 is eccentric to both u1 and w1, u2

is eccentric to v2 and w2 is eccentric to v2. Thus by Lemma 8.2, a = (u1, v2, v3, . . . vk),
b = (v1, w2, u3, . . . , uk), c = (w1, v2, v3, . . . , vk) and d = (v1, u2, u3, . . . , uk) form a 4-cycle
in Ec(G) (see Figure 8.2).

u1 w1

v1

v2

u2 w2 b

ca

d

Inside Ec(G1) Inside Ec(G2) Inside Ec(G)

u3 uk

v3 vk

=⇒
. . .

Inside Ec(G3) Inside Ec(Gk). . .

Figure 8.2: Formation of 4-cycle in Ec(G).

We will now prove that there is a triangle in the eccentric graph of Cartesian product
of k graphs if and only if there is a triangle in the eccentric graph of each of the individual
graphs.

Theorem 8.6. Let G1, . . . , Gk be simple connected graphs and G be their Cartesian
product. Then the girth of Ec(G) is 3 if and only if the girth of Ec(Gi) is 3 for all
i ∈ [k].

Proof. First, suppose that there is a triangle in Ec(Gi) for all i ∈ [k]. Let {ui, vi, wi}
be a triangle in Ec(Gi) such that eGi

(ui) ≤ eGi
(vi) ≤ eGi

(wi) for all i ∈ [k]. In other
words, vi is eccentric to ui and wi is eccentric to both ui and vi for all i. Therefore by
Lemma 8.2, (u1, . . . , uk), (v1, . . . , vk) and (w1, . . . , wk) form a triangle in Ec(G). Con-
versely, suppose (u1, . . . , uk), (v1, . . . , vk) and (w1, . . . , wk) form a triangle in Ec(G), then
again by Lemma 8.2, {ui, vi, wi} forms a triangle in Ec(Gi) for all i ∈ [k].

Theorem 8.7. Let G1, . . . , Gk be simple connected graphs such that the eccentric girths
of at least two of them are greater than two. Let G = G1□ · · ·□Gk, then the girth of
Ec(G) is four except when the girth of Ec(Gi) is exactly three for all i ∈ [k].

Proof. Suppose that Ec(G1) and Ec(G2) have girths greater than two and C1 and C2 are
cycles in Ec(G1) and Ec(G2), respectively. Let v1 be a vertex of the largest eccentricity
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on C1 and v2 be a vertex of the smallest eccentricity on C2. In particular, if u1, w1 are
neighbours of v1 in C1 and u2, w2 are neighbours of v2 in C2, then

eG1(v1) ≥ max{eG1(u1), eG1(w1)} and eG2(v2) ≤ min{eG2(u2), eG2(w2)}.

Hence, the result follows from Theorem 8.6 and Lemma 8.5.

Based on the above-stated theorems, it can be concluded that the eccentric girth of
Cartesian product of graphs in which at least two have non-zero eccentric girth is either
three or four.

8.2 Eccentric girth of Cartesian product of trees

Recall that in Section 7.2, we observed that the eccentric girth of a tree could either be
zero, three or four. Now, we will prove that for Cartesian product of trees, it can also be
six in addition to the above values. We will now characterize completely the eccentric
girth of Cartesian product of trees and present an analogous result to Theorem 7.7.

Theorem 8.8 ([5, Theorem 6]). Let T1, . . . , Tk be trees and G = T1□ · · ·□Tk. Then,

g(Ec(G)) =



0 if the girth of Ec(Ti) = 0 for all i ∈ [k],

3 if the girth of Ec(Ti) = 3 for all i ∈ [k],

6 if G = T1□P2□ · · ·□P2 and Ec(T1) is C4-free with girth three,

4 otherwise.

Proof. First, assume that T1, . . . , Tk are trees with eccentric girth 0. By Theorem 7.7,
there exists a unique diametrical path of odd length in Ti with endpoints ui and vi for
all i ∈ [k]. Consider the set of vertices S = {(x1, . . . , xk) : xi ∈ {ui, vi}, i ∈ [k]} in V (G).
Any vertex u ∈ V (G) \ S cannot be eccentric to anyone in G and the vertices eccentric
to u lie in S. Moreover, exactly one vertex in S is eccentric to u because each of the T ′

is

has a unique diametrical path. Consequently, u is adjacent to exactly one vertex in the
eccentric graph Ec(G). Also, note that any two vertices in S are adjacent if and only if
they differ at each component, therefore Ec(G) is an acyclic graph with 2k−1 connected
components.

Second, only one of T ′
is say T1 has non-zero eccentric girth. Now there are two cases,

one is when at least one of Ti, i = 2, . . . , k, is not P2 and the other is Ti = P2 for all
i = 2, . . . , k.
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If suppose that T2 ̸= P2, and since Ec(T2) has girth zero, by Theorem 7.7 there exists a
unique diametrical path with endpoints u2 and v2 and u2 ∼Ec(T2) v2. Now, as T2 ̸= P2 and
Ec(T2) is connected [34], there is a vertex w2, adjacent to either u2 or v2, say v2 ∼Ec(T2)

w2. Clearly, eT2(v2) ≥ max{eT2(u2), eT2(w2)}. Additionally, as the girth of Ec(T1) is
nonzero (it is either 3 or 4 by Theorem 7.7), it is possible to choose u1, v1, w1 ∈ V (T1)
such that u1 ∼Ec(T1) v1, v1 ∼Ec(T1) w1 and eT1(v1) ≤ min{eT1(u1), eT1(w1)}. Therefore by
Lemma 8.5 and Theorem 8.6, the girth of Ec(G) is four.

Let Ti = P2 with endpoints {ui, vi} for i = 2, . . . , k. If Ec(T1) contains a 4-cycle,
{u1, v1, w1, x1}, then {(u1, . . . , uk), (v1, . . . , vk), (w1, u2, . . . , uk), (x1, v2, . . . , vk)} forms a
4-cycle in Ec(G). Therefore the girth of Ec(G) is four as Ec(G) can not contain any
odd cycle (because T2 = P2). If Ec(T1) doesn’t contain a 4-cycle, then by Theorem 7.7,
girth of Ec(T1) is 3. Let {u1, v1, w1} be a 3-cycle in Ec(T1) then {(u1, . . . , uk), (v1, . . . , vk),
(w1, u2, . . . , uk), (u1, v2, . . . , vk), (v1, u2, . . . , uk), (w1, v2, . . . , vk)} forms a 6-cycle inEc(G).
If Ec(G) contains a 4-cycle, then so is Ec(T1) as Ti = P2 for all i = 2, . . . , k.

Finally, the rest of the cases follow from Theorem 8.6 and Theorem 8.7.

As an illustration, we will now discuss the structure of the eccentric graph of Cartesian
product of two path graphs and two cycle graphs. We will also discuss about their
eccentric girth.

8.3 Cartesian product of two path graphs

Let the vertices of the grid graph Pm□Pn be {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. In this
chapter, we label a vertex (i, j) by (i−1)n+ j. Figure 8.3 shows the mentioned labelling
for the grid graph P3□P5.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 8.3: The grid graph, P3□P5.
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Let G = Pm□Pn be a grid. Then the eccentricity of each vertex is given by

e
(
(i, j)

)
=



d
(
(i, j), (m,n)

)
if 1 ≤ i ≤ ⌈m

2 ⌉, 1 ≤ j ≤ ⌈n
2 ⌉,

d
(
(i, j), (1, 1)

)
if ⌊m

2 ⌋ < i ≤ m, ⌊n
2 ⌋ < j ≤ n,

d
(
(i, j), (m, 1)

)
if 1 ≤ i ≤ ⌈m

2 ⌉, ⌊n
2 ⌋ < j ≤ n,

d
(
(i, j), (1, n)

)
if ⌊m

2 ⌋ < i ≤ m, 1 ≤ j ≤ ⌈n
2 ⌉.

Note that (1, 1), (1, n), (m, 1) and (m,n) have the maximum eccentricity, which is m+n.
Therefore,

(i, j) ∼Ec(G)



(m,n) if 1 ≤ i ≤ ⌈m
2 ⌉, 1 ≤ j ≤ ⌈n

2 ⌉,

(1, 1) if ⌊m
2 ⌋ < i ≤ m, ⌊n

2 ⌋ < j ≤ n,

(m, 1) if 1 ≤ i ≤ ⌈m
2 ⌉, ⌊n

2 ⌋ < j ≤ n,

(1, n) if ⌊m
2 ⌋ < i ≤ m, 1 ≤ j ≤ ⌈n

2 ⌉.

From the above adjacency relations, it is clear that the eccentric graph of Pm□Pn

has a specific structure depending on the parity of m and n. Example for each of the
three cases, depending on whether both m and n are even, both are odd, or one is even
and the other is odd, are presented in Figure 8.4. Further, note that the eccentric girth
of Pm□Pn is zero if both m and n are even, four if exactly one of m and n is even and
greater than two, six if exactly one of m and n is two and the other is odd, and three if
both m and n are odd.
Moreover, if n is odd and m > 2 is even, then

(
(1, 1)

(
n+ 1

2 ,m− 1
)

(n, 1)
(
n+ 1

2 ,m
))

form a 4-cycle in Ec(Pn□Pm). If n is odd and m = 2, then
(

(1, 1)
(
n+ 1

2 , 2
)

(n, 1)(1, 2)
(
n+ 1

2 , 1
)

(n, 2)
)

form a 6-cycle in Ec(Pn□Pm). If both n and m are odd, then
(

(1, 1)
(
n+ 1

2 ,
m+ 1

2

)
(n,m)

)

form a 3-cycle in Ec(Pn□Pm).
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Figure 8.4: Eccentric graphs of different grid graphs.

8.4 Cartesian product of two cycle graphs

In this section, we first give the structure of the eccentric graph of Cartesian product of
two cycles and then we discuss about their girth.

Theorem 8.9 ([5, Section 4.3]). Let Cn and Cm be the cycle graphs on n and m vertices,
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respectively. Then,

Ec(Cn□Cm) =


nm
2 copies of K2 if both n and m are even,

n
2 cycles of length 2m if n is even and m is odd,

Cn × Cm if both n and m are odd.

Proof. As discussed in Section 2.5, Ec(Cn) is isomorphic to the n
2 copies of K2 for an

even n. Thus when n and m both are even, each vertex in Ec(Cn□Cm) has degree 1. In
other words, Ec(Cn□Cm) is isomorphic to a graph containing nm

2 copies of K2.
For even n and odd m, each vertex in Ec(Cn) and Ec(Cm) has degree 1 and 2

respectively. Therefore, Ec(Cn□Cm) is a 2-regular graph. Consequently, Ec(Cn□Cm) is
either a cycle or a union of cycles. Moreover, Ec(Cn□Cm) consists n

2 cycles of length
2m, namely (

(i, 1)
(
n

2 + i, 2
)
. . . (i,m)

(
n

2 + i, 1
)

(i, 2) . . .
(
n

2 + i,m
))

for i ∈ [n
2 ].

The final case follows from Proposition 2.18 and Corollary 8.4.

Figure 8.5 shows the eccentric graph of Cartesian product of C4 and C3.

(1,1)

(3,2)

(1,3)

(3,1)

(1,2)

(3,3)

(2,1)

(4,2)

(2,3)

(4,1)

(2,2)

(4,3)

Figure 8.5: Eccentric graph of Cartesian product of C4 and C3.

The eccentric graph of C3□C3 is shown in Figure 8.6 and its girth is 3 by Theorem 8.6,
which can be seen in the figure as well. But when both n and m are odd but one of them
is not equals to 3, it follows from Theorem 8.7 that the eccentric girth of Cn□Cm is four
and ((

1, m+ 3
2

)(
n+ 1

2 , 1
)(

1, m+ 1
2

)(
n+ 3

2 , 1
))

form a 4-cycle in Ec(Cn□Cm).
The following statement summarizes the above discussion: The eccentric girth of

Cartesian product of two cycle graphs is even except when both cycles are triangles.
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(3,1)

(2,3)

(1,2) (2,1)

(3,3)

(1,1)

(2,2)

(1,3)

(3,2)

Figure 8.6: Eccentric graph of Cartesian product of a 3-cycle with itself.

Moreover,

g(Ec(Cn□Cm)) =



0 if both n and m are even,

3 if n = m = 3,

2m if n is even and m is odd,

4 otherwise.

We will end this section with the following observation.

Proposition 8.10. For odd n, Ec(Cn□Cn) is isomorphic to Cn□Cn.

Proof. By Corollary 8.4, it is enough to show that Cn□ Cn is isomorphic to Cn ×Cn for
an odd n. We assume the natural labelling on the vertices of Cn. Now, we define an
isomorphism f from Cn□ Cn to Cn × Cn as follows

f
(
(1, 1)

)
= (1, 1),

f
(
(i, 1)

)
= (n+ 2 − i, n+ 2 − i) for i = 2, . . . , n,

f
(
(i, j)

)
=
[
f
(
(i, 1)

)
+ (j − 1, 1 − j)

]
(mod n).

We will write 0 as n in the computation of f . To see f is a bijection, first note that
f
(
(i, 1)

)
̸= f

(
(j, 1)

)
for i ̸= j. Now assume that (i, j) ̸= (k, l), this happens in either of

three cases, (a) i ̸= k and j = l, (b) i = k and j ̸= l, or (c) i ̸= k and j ̸= l.
Consider the first case i ̸= k and j = l and let f

(
(i, 1)

)
= (s, s) and f

(
(k, 1)

)
= (t, t),

clearly s ̸= t. Now, if f
(
(i, j)

)
= f

(
(k, l)

)
, then s + j − 1 ≡ t + j − 1(mod n), which

leads to s = t, a contradiction. Therefore f
(
(i, j)

)
̸= f

(
(k, l)

)
. Similarly, we can

show for the second case. Now consider the third case i ̸= k and j ̸= l, and again let
f
(
(i, 1)

)
= (s, s) and f

(
(k, 1)

)
= (t, t), clearly s ̸= t. Now, if f

(
(i, j)

)
= f

(
(k, l)

)
, then

s+ j−1 ≡ t+ l−1(mod n) and s+1− j ≡ t+1− l(mod n), compatibility with addition
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of congruence leads to again s = t (because n is odd), a contradition. Therefore, f is a
bijection.

Now, let (i, j) ∈ V (Cn□Cn) and f
(
(i, j)

)
= (s, t). Then f

(
(i ± 1, j)

)
= (s ± 1, t ±

1)(mod n) and f
(
(i, j ± 1)

)
= (s ± 1, t ∓ 1)(mod n). This proves that f preserves the

adjacency.

8.5 Invertibilty of eccentricity matrix of Cartesian
product of trees

In this section, we will focus on the invertibility of the eccentricity matrix for Cartesian
product of trees. First, recall the definition of the Kronecker product of two matrices
defined in Definition 2.12.

Lemma 8.11. Let T1 be a tree which is not a star or P4. Then the eccentricity matrix
of T1□P2□ · · ·□P2︸ ︷︷ ︸

k−1

is not invertible.

Proof. Let G = T1□P2□ · · ·□P2 and the ith graph in this product be the path P2 with
endpoints {ui, vi} for i = 2, . . . , k. Note that a vertex (x1, x2 . . . , xk) is adjacent to
(u1, u2, . . . , uk) in Ec(G) if and only if xi = vi for i = 2, . . . , k and either x1 is eccentric
to u1 in T1 or u1 is eccentric to x1 in T1. In other words, adjacency with (u1, u2, . . . , uk)
in Ec(G) solely depends on the adjacency of u1 in Ec(T1). Now we consider three cases.
Case 1: diam(T1)=3.
Let P = a1 b1 c1 d1 be a diametrical path in T1. As T1 ̸= P4, there must be a leaf vertex,
say e1, adjacent to either b1 or c1. Let us assume that e1 is adjacent to b1. Now we
claim that NEc(G)

(
(a1, u2, . . . , uk)

)
= NEc(G)

(
(e1, u2, . . . , uk)

)
. If a vertex f1 is eccentric

to a1 then f1 is also eccentric to e1 because dT1(a1, f1) = dT1(e1, f1), and if a1 is eccentric
to some vertex f1 then so is e1 because dT1(a1, f1) = dT1(e1, f1). This proves our claim
and hence the rows corresponding to these two vertices in EG are exactly the same and
therefore det(EG) = 0.
Case 2: diam(T1)=4.
Let P = a1 b1 c1 d1 e1 be a diametrical path in T1. Let {b1, d1, p1, . . . , pℓ} be the set of
neighbours of c1. Note that if a vertex x is eccentric to a neighbour of c1 then it is also ec-
centric to c1. Further, note that none of c1 or its neghbours can be eccentric to any vertex
in T1. Therefore, the row corresponding to (c1, u2, . . . , uk) in the matrix EG is a constant
multiple of the sum of the rows corresponding to (b1, u2, . . . , uk), (d1, u2, . . . , uk), (p1, u2,

. . . , uk), . . . (pℓ, u2, . . . , uk).



8.5. Invertibilty of eccentricity matrix of Cartesian product of trees 89

Case 3: diam(T1) > 4.
Let P = a1 b1 c1 d1 . . . z1 be a diametrical path in T1. A vertex eccentric to b1 in T1 is also
eccentric to c1 in T1 and vice versa. Also, b1 and c1 cannot be eccentric to any vertex in
T1 as they are not leaves. Therefore, b1 and c1 have same neighbourhood in Ec(T1). As
a result, the rows corresponding to (b1, u2, . . . , uk) and (c1, u2, . . . , uk) in EG are constant
multiple of each other and hence det(EG) = 0.

Now, we will present the main result of this section.

Theorem 8.12 ([5, Theorem 7]). Let T1, . . . , Tk be trees and G (= T1□ · · ·□Tk) be their
Cartesian product. Then the eccentricity matrix of G, EG, is invertible if and only if one
of them is either a star or a P4, and the rest are P2’s.

Proof. Let T1, . . . , Tk be trees with at least two vertices and G = T1□ · · ·□Tk. Assume
that T1 is a star on n+ 1 vertices and T2 = · · · = Tk = P2. Then the eccentricity matrix
of G is

EG =



0 k k · · · k

k 0 k + 1 · · · k + 1
...

...
. . .

k k + 1 · · · 0 k + 1
k k + 1 · · · k + 1 0


⊗ J2k−1 ,

where, Js is a s× s antidiagonal matrix with all antidiagonal entries as 1.

Note that det J2k−1 ̸= 0 and

det



0 k k · · · k

k 0 k + 1 · · · k + 1
...

...
. . .

k k + 1 · · · 0 k + 1
k k + 1 · · · k + 1 0


= (−1)nnk2(k + 1)n−1.

Therefore det EG ̸= 0.
Now if T1 = P4, then the eccentricity matrix of G is

EG =


0 0 k + 1 k + 2
0 0 0 k + 1

k + 1 0 0 0
k + 2 k + 1 0 0

⊗ J2k−1 ,
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Again, det EG ̸= 0, as

det


0 0 k + 1 k + 2
0 0 0 k + 1

k + 1 0 0 0
k + 2 k + 1 0 0

 = (k + 1)4.

For the converse part, let T1 be neither a star nor P4. Thus the diameter of T1 > 2 and let
P = u1u2 . . . us be a diametrical path in T1. If each of T2, . . . , Tk contains only pendant
vertices, then the conclusion follows from Lemma 8.11. Therefore, we can assume without
loss of generality that T2 has a non-pendant vertex v. Now we want to show that det EG is
zero. This assertion holds if we can show in general det EK is zero, where K is Cartesian
product of T1, T2 and a simple connected graph H. Let (ui, v, x) ∈ V (K). Note that
(ui, v, x) cannot be farthest from (and hence, eccentric to) any vertex in K because v is
a non-pendant. Consequently, only those vertices are adjacent to (ui, v, x) (in Ec(K))
which are eccentric to (ui, v, x). Thus by Lemma 8.2,

NEc(K)(ui, v, x) = {(wi, w, y) : wi, w, y are eccentric to ui, v, x respectively}. (8.5.1)

Now if any vertex is eccentric to u1 in T1, then the same vertex is eccentric to u2 as
well in T1 leading to

NEc(K)(u1, v, x) = NEc(K)(u2, v, x).

Thus, the row corresponding to (u1, v, x) in EK is a constant multiple of that of (u2, v, x),
proving the non-invertibility of EK .



Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with
formulas, graphs, and mathematical tables, volume 55. US Government printing
office, 1964.

[2] Jin Akiyama, Kiyoshi Ando, and David Avis. Eccentric graphs. Discrete Mathe-
matics, 56(1):1–6, 1985.

[3] Anita Arora. The monopole-dimer model on high-dimensional cylindrical, toroidal,
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