Homework 1
 MA 216: Graph Theory
 Autumn 2019
 Indian Institute of Science

Instructor: Arvind Ayyer
August 15, 2019

Submit only the starred $\left({ }^{*}\right)$ problems by Aug. 22. Unless otherwise stated n is the number of vertices and m is the number of edges of the graph in the question.

1. Let $G[X, Y]$ be the bipartite graph with $\# X=r$ and $\# Y=s$. Show that $m \leq r s$ and therefore that $m \leq n^{2} / 4$. Describe simple bipartite graphs where equality holds.
2. $\left(^{*}\right)$ Show that in any simple graph with at least two vertices, there exist two vertices with the same degree.
3. (*) If G is simple and $m>\binom{n-1}{2}$, show that G must be connected. For some $n>1$, find a disconnected simple graph with $m=\binom{n-1}{2}$.
4. (*) If $m<n$, prove that G has at least $n-m$ components.
5. (*) Draw all simple labelled graphs on 3 vertices.
6. (*) Write down that adjacency matrix of K_{n} and compute all its eigenvalues (with multiplicities).
7. (*) If A is the adjacency matrix of G, write a simple expression for that of \bar{G}.
8. Show that Q_{n}, the n-dimensional hypercube graph, is vertex-transitive. What is $\operatorname{Aut}\left(Q_{n}\right)$?
9. Show that $\operatorname{Aut}(G)=\operatorname{Aut}(\bar{G})$.
10. (*) Show that if $m \geq n$, then G contains a cycle.
11. Let T be a tournament on n vertices. Show that the number of directed paths of length 2 passing through a given vertex is at most $(n-1)^{2} / 4$.
