Homework 1 MA 216: Graph Theory Autumn 2019 Indian Institute of Science

Instructor: Arvind Ayyer

August 15, 2019

Submit only the starred (*) problems by Aug. 22. Unless otherwise stated n is the number of vertices and m is the number of edges of the graph in the question.

- 1. Let G[X, Y] be the bipartite graph with #X = r and #Y = s. Show that $m \leq rs$ and therefore that $m \leq n^2/4$. Describe simple bipartite graphs where equality holds.
- 2. (*) Show that in any simple graph with at least two vertices, there exist two vertices with the same degree.
- 3. (*) If G is simple and $m > \binom{n-1}{2}$, show that G must be connected. For some n > 1, find a disconnected simple graph with $m = \binom{n-1}{2}$.
- 4. (*) If m < n, prove that G has at least n m components.
- 5. (*) Draw all simple labelled graphs on 3 vertices.
- 6. (*) Write down that adjacency matrix of K_n and compute all its eigenvalues (with multiplicities).
- 7. (*) If A is the adjacency matrix of G, write a simple expression for that of \overline{G} .
- 8. Show that Q_n , the *n*-dimensional hypercube graph, is vertex-transitive. What is Aut (Q_n) ?
- 9. Show that $\operatorname{Aut}(G) = \operatorname{Aut}(\overline{G})$.
- 10. (*) Show that if $m \ge n$, then G contains a cycle.
- 11. Let T be a tournament on n vertices. Show that the number of directed paths of length 2 passing through a given vertex is at most $(n-1)^2/4$.