Homework 2

MA 319: Algebraic Combinatorics
Spring 2024
Indian Institute of Science

Instructor: Digjoy Paul and Arvind Ayyer

February 8, 2024

Submit only the starred ${ }^{*}$) problems by Feb. 27.

1. Find a bijection between the partitions of n with all distinct odd parts and the selfconjugate partitions of n.
2. Let $w=w_{1} w_{2} \cdots w_{2 n}$ be a permutation in $S_{2 n}$ such that $w_{i}+w_{2 n+1-i}=2 n+1$ for all i. Find the number of such permutations. Prove that the shape of $P(w)$ can be covered by n dominos.
3. For a partition λ, let λ^{-}(resp. λ^{+}) denote the set of all partitions whose Young diagram can be obtained by removing (resp. adding) one box from (resp. to) the Young diagram of λ. Find $\left|\lambda^{+}\right|-\left|\lambda^{-}\right|$.
4. $\left(^{*}\right)$ Let \mathbf{Y} be the Young's lattice, the poset of all integer partitions ordered by inclusion of their Young diagrams. Consider the vector space CY of formal linear combinations of elements of Y. Define two linear operators, D (down) and U (up) by

$$
D(\lambda)=\sum_{\mu \in \lambda^{-}} \mu, \quad U(\lambda)=\sum_{\mu \in \lambda^{+}} \mu,
$$

and extend linearly.
Prove that $D U-U D=I$, where I is the identity operator.
5. For each $\lambda \neq \emptyset$, show that $f_{\lambda}=\sum_{\mu \in \lambda^{-}} f_{\mu}$.
6. (*) Use Pieri's rule to show that:

$$
s_{\left(j+1,1^{k}\right)}=\sum_{\ell=0}^{k}(-1)^{\ell} h_{j+\ell+1} e_{k-\ell} .
$$

7. (*) For a SYT T on $[n]$, define the descent set of T as following:

$$
\operatorname{Des}(T):=\{i \in[n] \mid i+1 \text { appear in a lower row than } i \text { in } T\} .
$$

Let $w \in S_{n}$ and $\operatorname{RS}(w)=(P, Q)$. Prove than $\operatorname{Des}(w)=\operatorname{Des}(Q)$. Here $\operatorname{Des}(w)$ is the set of descents of the permutation w.

