

MATH 224 : COMPLEX ANALYSIS
SPRING 2026
HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: JANUARY 16, 2026

1. Let $m \in \mathbb{Z}_+ \setminus \{1\}$.

(a) Show that there exists a number $\rho > 0$ such that $(1 - z)^{-m}$ equals the sum of a power series of the form $\sum_{n=0}^{\infty} a_{m,n} z^n$ for each $z \in D(0, \rho)$, and that ρ is independent of m , without computing any of the $a_{m,n}$.

(b) Give an expression for each $a_{m,n}$ and justify your answer.

2. Let Ω be an open subset of \mathbb{C} and let $f \in \mathcal{O}(\Omega)$. Let z_0 be a point in Ω at which $f'(z_0) \neq 0$. Using any relevant result that you know **about \mathbb{R}^N -valued maps**, show that there is a neighbourhood $U \subset \Omega$ of z_0 on which f is injective and $V := f(U)$ is an open subset of \mathbb{C} . Is the (local) inverse $(f|_U)^{-1}$ holomorphic on V ?

3. Let $\Omega \subseteq \mathbb{C}$ be a non-empty open set and let $\gamma : [a, b] \rightarrow \Omega$ be a piecewise- \mathcal{C}^1 path. Let $f \in \mathcal{C}(\Omega; \mathbb{C})$. Show that $\int_{\gamma} f dz$ is invariant under reparametrization: i.e., if $\tilde{\gamma}$ is a reparametrization of γ , then

$$\int_{\gamma} f dz = \int_{\tilde{\gamma}} f dz.$$

4. For $\varepsilon > 0$, write $\gamma_{\varepsilon}(\theta) := \varepsilon e^{i\theta}$, $\theta \in [-\pi, \pi]$. Compute

$$\int_{\gamma_{\varepsilon}} \left(\frac{1}{z} \right) dz.$$

5. Let Ω be an open subset of \mathbb{C} and let $f \in \mathcal{C}(\Omega; \mathbb{C})$. Suppose there exists a function $F \in \mathcal{O}(\Omega)$ such that $F' = f$. Let $\gamma : [a, b] \rightarrow \Omega$ be a piecewise- \mathcal{C}^1 path. Show that

$$\int_{\gamma} f dz = F(\gamma(b)) - F(\gamma(a)).$$

6–9. Problems 11, 20, 21, and 24 from the exercises to IV–Secn. 1 of Conway.