MA328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES AUTUMN 2024 HOMEWORK 2

Instructor: GAUTAM BHARALI

DUE: Thursday, Oct. 31, 2024

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems **and briefly state the nature of the help obtained**.
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_n \,, \\ \alpha! &:= \alpha_1! \dots \alpha_n! \,, \\ z^\alpha &:= z_1^{\alpha_1} \dots z_n^{\alpha_n} \,. \end{aligned}$$

1. Show that the $\overline{\partial}$ -problem

$$\frac{\partial u}{\partial \overline{z}} = \phi,$$

where $\phi \in \mathcal{C}^1_{\mathsf{c}}(\mathbb{C})$ does **not** necessarily have a compactly-supported solution. **Hint.** First consider the solution

$$u(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{\phi(w)}{w-z} dA(w),$$

for an appropriately chosen ϕ .

- **2.** Consider the function $f(z, w) := \frac{1}{1 (z+w)}$.
 - a) Find the power-series development of f, call it \mathcal{S}_f , in some small neighbourhood of $(0,0) \in \mathbb{C}^2$.
 - b) Find the domain of convergence of the series (i.e., $\mathscr{D}(\mathcal{S}_f)$ in the notation used in class) that you computed in part (a).

3. Let $n \ge 2, 0 < r_1, r_2 < 1$, and write

$$\Omega := \left(D(0, r_1) \times \mathbb{D}^{n-1} \right) \cup \left(\mathbb{D}^{n-1} \times D(0, r_2) \right).$$

Describe **explicitly**, in terms of r_1 and r_2 , a Reinhardt domain $\widetilde{\Omega} \supseteq \Omega$ such that for each $f \in \mathcal{O}(\Omega)$, there exists $F_f \in \mathcal{O}(\widetilde{\Omega})$ such that $F_f|_{\Omega} = f$.

4. Let Ω_1 and Ω_2 be domains in \mathbb{C}^n and let $F : \Omega_1 \to \Omega_2$ be a biholomorphism of Ω_1 onto Ω_2 . Show that if Ω_1 is a domain of holomorphy, then so is Ω_2 .

5. Let $\Omega_j \subseteq \mathbb{C}^{n_j}$, j = 1, 2, be domains of holomorphy. Show that the open set $\Omega_1 \times \Omega_2$ is a domain of holomorphy.

6. Let Ω be a non-empty open subset of \mathbb{C} . Let $\{u_{\alpha}\}_{\alpha \in A}$ denote a non-empty family of subharmonic functions on Ω . If the function

$$U(z) := \sup_{\alpha \in A} u_{\alpha}(z) \quad \forall z \in \Omega$$

is upper-semicontinuous, then show that $U \in \mathsf{sh}(\Omega)$.

7. Let S be a non-empty subset of \mathbb{R}^N such that no point of S is an isolated point, and let u be an upper semicontinuous function on S. Let K be a compact subset of S. Show that there exists a point $a \in K$ such that $\sup_{x \in K} u(x) = u(a)$.

Note. The above statement presupposes the fact, discussed in class, that u is bounded above on compact sets.

8. Let Ω be a non-empty open subset of \mathbb{C} and let $u \in \mathsf{sh}(\Omega)$. Suppose $\kappa : \mathbb{R} \to \mathbb{R}$ is an increasing convex function. Define

$$U(z) := \begin{cases} \lim_{t \to -\infty} \kappa(t), & \text{if } u(z) = -\infty, \\ \kappa \circ u(z), & \text{otherwise.} \end{cases}$$

Show that $U \in \mathsf{sh}(\Omega)$.

Hint. You need to consider a suitable theorem in measure theorem involving the integral and convex functions.

9. Let Ω be a non-empty open subset of \mathbb{C}^n and let $u : \Omega \to \mathbb{R} \cup \{-\infty\}$ be a plurisubharmonic function. Let $\varphi : \mathbb{D} \to \Omega$ be a holomorphic map. Show that $U \circ \varphi \in \mathsf{sh}(\mathbb{D})$.

10. Let Ω be a non-empty open subset of \mathbb{C}^n on which the Kontinuitätssatz holds true. Show that for any \mathbb{C} -quasinorm μ and any map $\varphi \in \mathcal{C}(\mathbb{D}; \Omega)$ such that $\varphi|_{\mathbb{D}}$ is holomorphic,

$$\mu(\varphi(\mathbb{D}); \Omega^{\mathsf{c}}) = \mu(\varphi(\partial \mathbb{D}); \Omega^{\mathsf{c}}).$$