MA 328 : INTRODUCTION TO SEVERAL COMPLEX VARIABLES AUTUMN 2024 HOMEWORK 3

Instructor: GAUTAM BHARALI

DUE: Tuesday, Nov. 19, 2024

Note:

- a) You are allowed to discuss these problems with your classmates, but individually-written and **original** write-ups are expected for submission. Please **acknowledge** any persons from whom you received help in solving these problems **and briefly state the nature of the help obtained.**
- b) Given a multi-index $\alpha \in \mathbb{N}^n$, we shall use the following notation:

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_n \,, \\ \alpha! &:= \alpha_1! \dots \alpha_n! \,, \\ z^{\alpha} &:= z_1^{\alpha_1} \dots z_n^{\alpha_n} \,. \end{aligned}$$

c) The notation $I \in \mathscr{I}_q$ means that I is an increasing q-tuple in $\{1, \ldots, n\}^q$.

1. Let \mathbb{B}^n denote the open unit ball in \mathbb{C}^n , $n \geq 2$. Let $\rho : (0, +\infty) \to (0, +\infty)$ be an increasing, concave function of class \mathcal{C}^2 . Show that the function

$$u(z) := \begin{cases} -\rho(-\log(||z||)), & \text{if } z \in \mathbb{B}^n \setminus \{0\}, \\ -(\lim_{x \to +\infty} \rho(x)), & \text{if } z = 0, \end{cases}$$

is a plurisubharmonic function on \mathbb{B}^n . Please be clear that your argument **actually** conforms to the definition!

2. Let Ω be a non-empty open subset of \mathbb{C}^n and let U be plurisubharmonic on Ω . Prove that for each $a \in \Omega$, $U(a) = \limsup_{z \to a} U(z)$.

3. Let X be an n-dimensional complex manifold and let $\mathfrak{A} = \{(U_{\alpha}, \psi_{\alpha}) : \alpha \in A\}$ be the complex structure on X. Let TX be the classical (i.e., real) tangent bundle of X obtained by viewing \mathfrak{A} as a \mathcal{C}^{∞} -smooth atlas. Recall that this means that — denoting by π the bundle-projection of TX onto X — we have:

• for each $\alpha \in A$, homeomorphisms h_{α} such that the diagrams

commute (here $proj_1$ denotes the projection onto the first factor); and

• smooth maps $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \longrightarrow GL(2n, \mathbb{R})$, for all $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, that determine the transition functions for TX;

that are canonically determined by the collection $\{\psi_{\alpha} : \alpha \in A\}$. Write

$$T^{\mathbb{C}}X := \bigcup_{x \in X} (T_x X) \otimes \mathbb{C}.$$

Show, using \mathfrak{A} , that $T^{\mathbb{C}}X$ can be endowed with the structure of a smooth complex vector bundle whose fibres are 2n-dimensional complex vector spaces.

4. Let \mathcal{H}_1 and \mathcal{H}_2 be two separable Hilbert spaces and let $T : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ be a densely-defined unbounded (linear) operator. Show that T is a closed operator if and only if $\mathsf{Dom}(T)$ is a Hilbert space when equipped with the graph norm.

5. Let $q \geq 1$. Recall that the *formal adjoint* of $\overline{\partial} : \mathbb{L}^2_{(0,q-1)}(\Omega; \phi_1) \longrightarrow \mathbb{L}^2_{(0,q)}(\Omega; \phi_2)$, (where $\overline{\partial}$ is defined in the sense of distributions) is the adjoint of $\overline{\partial}$ on smooth (0,q)-forms "paired against $(\mathcal{C}^{\infty}_{\mathsf{c}})^{0,q-1}(\Omega)$." Given $\alpha \in \mathscr{I}_{q-1}$ and $\beta \in \mathscr{I}_q$, define

$$\varepsilon_{\alpha}^{j\beta} := \begin{cases} 0, & \text{if } j \in \alpha, \\ 0, & \text{if } \{j\} \cup \alpha \neq \beta, \\\\ \text{sgn} \begin{pmatrix} j & \alpha_1 & \dots & \alpha_{q-1} \\ \beta_1 & \beta_2 & \dots & \beta_q \end{pmatrix}, & \text{if } \{j\} \cup \alpha = \beta, \end{cases}$$

where $1 \leq j \leq n$. Denoting by $\overline{\delta}^*$ formal adjoint of $\overline{\partial} : \mathbb{L}^2_{(0,q-1)}(\Omega;\phi_1) \longrightarrow \mathbb{L}^2_{(0,q)}(\Omega;\phi_2)$, show that

$$\overline{\delta}_{q-1}^* \left(\sum_{\beta \in \mathscr{I}_q} f_\beta d\overline{z}^\beta \right) = \sum_{\alpha \in \mathscr{I}_{q-1}} \left\{ \sum_{\beta \in \mathscr{I}_q} \sum_{j=1}^n \varepsilon_\alpha^{j\beta} e^{\phi_1 - \phi_2} \left(f_\beta \frac{\partial \phi_2}{\partial z_j} - \frac{\partial f_\beta}{\partial z_j} \right) \right\} d\overline{z}^\alpha,$$

where $\sum_{\beta \in \mathscr{I}_q} f_{\beta} d\overline{z}^{\beta} \in (\mathcal{C}^{\infty})^{0,q}(\Omega).$