

MATH 380 : INTRODUCTION TO COMPLEX DYNAMICS
AUTUMN 2025
HOMEWORK 1

Instructor: GAUTAM BHARALI

DUE: Tuesday, September 16, 2025

Remarks and instructions :

- a) You are allowed to discuss these problems with your fellow-students, but individually-written and **original** write-ups are expected for submission.
- b) Please **acknowledge** any persons from whom you received help in solving these problems — stating the problem(s) in which you took their help.
- c) You are allowed to use AI tools but: (i) You must **acknowledge** the use of AI tools for each problem for which such tools were used — citing the name of the tool used and the manner in which it was used, and (ii) Be aware that LLMs perform poorly on queries involving unusual formulations of problems or problems using terminology that mean different things in different mathematical disciplines.

1. Let X be a non-empty set and $f : X \rightarrow X$ a function. Define $F : X \times \mathbb{N} \rightarrow X$ by

$$F(x, n) := \begin{cases} x, & \text{if } n = 0, \\ \underbrace{f \circ \cdots \circ f}_{n \text{ times}}(x), & \text{if } n \in \mathbb{Z}_+, \end{cases}$$

for every $x \in X$. Show that the dynamical structure (F, \mathbb{N}) on X satisfies the semigroup property.

2. Let X be a Hausdorff, 2-dimensional, locally Euclidean space. Suppose $\mathcal{A} := \{(U_\alpha, \phi_\alpha) : \alpha \in I\}$ and $\mathcal{A}^* := \{(V_\beta, \psi_\beta) : \beta \in J\}$ be two holomorphic atlases on X . Show that $\mathcal{A} \sim \mathcal{A}^*$ if and only if id_X is a biholomorphic map $\text{id}_X : (X, \mathcal{A}) \rightarrow (X, \mathcal{A}^*)$ between Riemann surfaces (**to elaborate**: this means that we use the atlases \mathcal{A} and \mathcal{A}^* to encode the holomorphicity of the latter map, taking \mathcal{A} as the atlas on the domain and \mathcal{A}^* as the atlas on the range).

3. Let X be a Riemann surface with a holomorphic atlas $\mathcal{A} := \{(U_\alpha, \phi_\alpha) : \alpha \in I\}$. Let $f : X \rightarrow \mathbb{C}$ be a holomorphic function. Show that the chart-wise conditions for holomorphicity of f remain true with

$$(\psi_\beta, V_\beta) \text{ replacing } (\phi_\alpha, U_\alpha)$$

in these chart-wise conditions if $\mathcal{A}^* := \{(V_\beta, \psi_\beta) : \beta \in J\}$ is another holomorphic atlas on X with $\mathcal{A} \sim \mathcal{A}^*$.

4. Let X and Y be Riemann surfaces and let $f : X \rightarrow Y$ be a holomorphic map. Formulate a statement of the Open Mapping Theorem in this setting and prove it.

5. The 1-dimensional *complex projective space*, denoted by \mathbb{P}^1 , is defined as

$$\mathbb{C}^2 \setminus \{(0, 0)\} / \sim,$$

where $(x_0, x_1) \sim (y_0, y_1) \iff (y_0, y_1) = \lambda(x_0, x_1)$ for some $\lambda \in \mathbb{C} \setminus \{0\}$,

equipped with the quotient topology. Let $[x_0 : x_1]$ denote the equivalence class of (x_0, x_1) and let $U_j := \{[x_0 : x_1] \in \mathbb{P}^1 : x_j \neq 0\}$, $j = 0, 1$.

- a) Write $\phi_0 : U_0 \ni [x_0 : x_1] \mapsto x_1/x_0$. Show that the expression for ϕ_0 does not depend on the choice of representative of $[x_0 : x_1]$, and that ϕ_0 is a homeomorphism.
- b) With part (a) as a guide, construct a holomorphic atlas $\mathcal{A} := \{(U_0, \phi_0), (U_1, \phi_1)\}$ on \mathbb{P}^1 .
- c) Prove that the Riemann surfaces $(\mathbb{P}^1, \mathcal{A})$ and $(\mathbb{C}^\infty, \mathcal{A})$ (i.e., the Riemann sphere) are biholomorphic.

6. Let ω_1 and ω_2 be two non-zero complex numbers that are \mathbb{R} -independent when viewed as vectors in \mathbb{R}^2 . Let us view the (real) 2-dimensional torus \mathbb{T}^2 as $\mathbb{T}^2 = S^1 \times S^1$ (equipped with the relative topology that it inherits from $\mathbb{C} \times \mathbb{C}$). Let us write

$$U_{00} := \{(e^{i\theta_1}, e^{i\theta_2}) \in \mathbb{T}^2 : 0 < \theta_1, \theta_2 < 2\pi\},$$

$$\phi_{00} : U_{00} \ni (e^{i\theta_1}, e^{i\theta_2}) \mapsto \frac{\theta_1}{2\pi}\omega_1 + \frac{\theta_2}{2\pi}\omega_2.$$

You may **assume without proof** that U_{00} is open in \mathbb{T}^2 and that ϕ_{00} is a homeomorphism onto its image in \mathbb{C} . Emulating the above definition, and the fact that the same point in $\mathbb{T}^2 \hookrightarrow \mathbb{C}^2$ can be represented by

$$(e^{i(\theta_1+2\pi\mu)}, e^{i(\theta_2+2\pi\nu)}) \text{ for some } \theta_1, \theta_2 \in [0, 2\pi) \text{ and } \forall (\mu, \nu) \in \mathbb{Z}^2,$$

construct **four** charts (one of which is given above)

$$(U_{jk}, \phi_{jk}), \quad \phi_{jk} : U_{jk} \rightarrow \mathbb{C}, \quad j = 0, 1, \quad k = 0, 1,$$

that cover \mathbb{T}^2 such that

$$\mathcal{A} := \{(U_{ij}, \phi_{jk}) : j = 0, 1, \quad k = 0, 1\}$$

is a holomorphic atlas on \mathbb{T}^2 .

7. Explicitly describe all the elements of $\text{Hol}(\mathbb{C}^\infty; \mathbb{C}^\infty)$.

Hint. If $F \in \text{Hol}(\mathbb{C}^\infty; \mathbb{C}^\infty)$, then consider the meromorphic function $F|_{\mathbb{C}}$ and explore what singularities the latter can or cannot have at ∞ .

8. Let $p : Y \rightarrow X$ be a covering space, where X is a Riemann surface. Fix a holomorphic atlas $\mathcal{A} := \{(U_\alpha, \phi_\alpha) : \alpha \in J\}$ on X . For each $x \in X$, **fix** an evenly covered neighbourhood V_x of x and write $\mathcal{I} := \{(\alpha, x) \in J \times X : U_\alpha \cap V_x \neq \emptyset\}$. Show that

$$\mathcal{B} := \bigcup_{x \in X} \bigcup_{y \in p^{-1}\{x\}} \left\{ \left(p^{-1}(U_\alpha \cap V_x)|^y, \phi_\alpha \circ (p|_{p^{-1}(U_\alpha \cap V_x)|^y}) \right) : (\alpha, x) \in \mathcal{I} \right\}$$

is a holomorphic atlas on Y , where we define

$$p^{-1}(U_\alpha \cap V_x)|^y := \text{the connected component of } p^{-1}(U_\alpha \cap V_x) \text{ containing } y.$$

9. Let (X, \mathcal{A}_X) and (Y, \mathcal{A}_Y) be connected Riemann surfaces and let $p : Y \rightarrow X$ be a holomorphic covering map. Let (Z, \mathcal{A}_Z) be a connected Riemann surface and let $f : Z \rightarrow X$ be a holomorphic map. Suppose there exists a lift $\tilde{f} : Z \rightarrow Y$ of f . Show that \tilde{f} is holomorphic.

10. Let $\mathcal{M}_{\mathbb{D}}$ denote the Möbius function on $\mathbb{D} \times \mathbb{D}$. Show that if a, b, c are distinct points in \mathbb{D} , then

$$\mathcal{M}_{\mathbb{D}}(a, c) < \mathcal{M}_{\mathbb{D}}(a, b) + \mathcal{M}_{\mathbb{D}}(b, c)$$

Tip. Please use the fact that we may assume that $a = 0$ and $c \in (0, 1)$ —giving full justifications for the latter—before attempting any heavy computations.