UM 101: ANALYSIS & LINEAR ALGEBRA – I "AUTUMN" 2020 HOMEWORK 10

Instructor: GAUTAM BHARALI Assigned: FEBRUARY 4, 2021

1. Let a < b be real numbers and let $f \in \mathcal{R}([a,b])$. Let $c_1, c_2, c_3 \in [a,b]$ —not necessarily distinct or in ascending order. Then show that

$$\int_{c_1}^{c_3} f(x)dx = \int_{c_1}^{c_2} f(x)dx + \int_{c_2}^{c_3} f(x)dx.$$

Note. By a problem in Homework 9, we know that all the integrals above exist.

2. You are given a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous and satisfies

$$\int_0^x f(t)dt = 1 + x^2 + x\sin(2x) \quad \forall x \in \mathbb{R}.$$

Compute $f(\pi/4)$.

3-4. Solve Problems 17 and 22 from Section 5.5 of Apostol.

5. Let $g: \mathbb{R} - \{0\} \to \mathbb{R}$ be defined by $g(x) = 1/x, x \neq 0$. Define the function $L(x) = \log |x| \forall x \neq 0$.

- a) Argue **rigorously** that $L|_{(-\infty,0)}$ is a primitive of the function $g|_{(-\infty,0)}$.
- b) Based on our discussion on the Leibnizian notation and the meaning of the left-hand side below, **justify** the equation:

$$\int \frac{1}{x} \, dx \, = \, \log|x| + C.$$

6. Let x > 0 and $\alpha \in \mathbb{Q}$. Recall that we have previously given the definition of x^{α} in class. Prove that $x^{\alpha} = e^{\alpha \log(x)}$.

7. This problem is meant to demonstrate the diversity of forms in which vector spaces arise. Let $V = (0, \infty)$, let \oplus denote the sum of two elements in V, and let \odot denote the scalar multiplication, where the scalar field is \mathbb{R} , according to the following definition:

$$x \oplus y = xy$$
 (the usual multiplication in \mathbb{R}) $\forall x, y \in V$, $c \odot x = x^c \quad \forall c \in \mathbb{R}$, and $\forall x \in V$.

Prove that V is a vector space over the scalar field \mathbb{R} with the zero vector being 1.

Hint. Although this is a problem in linear algebra, you will need to use something from an earlier topic!

Since there is **only one tutorial ahead in the semester** it would be good to have some problems from linear algebra for discussion in that tutorial. Thus, following problems will go a little

beyond what has been taught until now, and anticipate parts of the lectures of **February 5** and **February 8**.

- 8. Solve Problems 14, 16, 18, and 20 from Section 15.9 of Apostol, omitting for the moment the computation of dimensions.
- **9.** By following the reference to the proof of Theorem 12.8 in the discussion of the following result in Apostol, give a proof of the following:

Theorem (Theorem 15.5 of Apostol). Let V be a vector space over the field \mathbb{F} and let $\emptyset \neq S \subset V$. Let S have n elements, $n \in \mathbb{N} - \{0\}$. Then any finite subset of L(S) with more than n elements is linearly dependent.