UM 101: ANALYSIS & LINEAR ALGEBRA-I "AUTUMN" 2020

HOMEWORK 11

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 11, 2021

1. Freely using — without proof — what you know about 3-D coordinate geometry from high school, prove that any plane in \mathbb{R}^3 containing the origin (0, 0, 0) is a subspace of \mathbb{R}^3 .

2. Let A be some non-empty set and let $V_{\text{fn},\mathbb{R}}(A)$ denote the set of of **all** \mathbb{R} -valued functions on A. For any $f, g \in V_{\text{fn},\mathbb{R}}(A)$ and any $c \in \mathbb{R}$, define

$$(f+g)(x) := f(x) + g(x) \quad \forall x \in A,$$

$$(cf)(x) := cf(x) \quad \forall x \in A.$$

Show that $V_{\text{fn},\mathbb{R}}(A)$ is a vector space over \mathbb{R} .

3. Consider the set $S = \{e^{ax}, xe^{ax}\}$, where $a \in \mathbb{R} - \{0\}$, viewed as a subset of $V_{\text{fn},\mathbb{R}}(\mathbb{R})$. Prove that S is a basis of L(S).

4. Let $V_{\mathrm{fn},\mathbb{R}}(\mathbb{R})$ be as in Problem 3. Find the dimension of $L(S), S \subset V_{\mathrm{fn},\mathbb{R}}(\mathbb{R})$, where

- a) $S = \{e^x \cos x, e^x \sin x\},\$
- b) $S = \{1, \cos 2x, \cos^2 x, \sin^2 x\}.$

5. Let V and W be vector spaces over the field \mathbb{F} . Let $T: V \to W$ be a linear transformation. Show that T is one-one if and only if $N(T) = {\vec{0}}$.

6. Let \mathcal{P}_n denote the vector space of polynomials with real coefficients of degree $\leq n$. Let $T : \mathcal{P}_n \to \mathcal{P}_n$ be the linear transformation given by T(p) = p''. Consider the ordered basis $\mathcal{B} = (1, x, \dots, x^n)$. Denote as M the $(n+1) \times (n+1)$ -matrix:

$$M = [T]_{\mathcal{B},\mathcal{B}}.$$

Find all the entries M_{ij} of M.

7. Let \mathbb{F} be either \mathbb{R} or \mathbb{C} (although the following makes sense for any field) and consider the linear transformations $T_A : \mathbb{F}^{n_1} \to \mathbb{F}^{n_2}$ and $T_B : \mathbb{F}^{n_2} \to \mathbb{F}^{n_3}$ induced by the matrices A and B, respectively. This means that:

A is an $n_2 \times n_1$ matrix with entries in \mathbb{F} , B is an $n_3 \times n_2$ matrix with entries in \mathbb{F} .

Show that T_BT_A is induced by a matrix C (so, $T_BT_A = T_C$) where C = BA (here, BA is the matrix product that you have learnt in high school).