
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 11 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: FEBRUARY 11, 2021

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. Freely using — without proof — what you know about 3-D coordinate geometry from high school,
prove that any plane in R3 containing the origin (0, 0, 0) is a subspace of R3.

Solution: We have learnt that any plane P in R3 containing the origin (0, 0, 0) is described in
Cartesian coordinates by

P = {(x, y, z) ∈ R3 : Ax + By + Cz = 0},

where (A,B,C) 6= (0, 0, 0). We now appeal to the theorem that says that P is linear subspace if
and only if P satisfies the two closure conditions. To this end, consider (x, y, z), (x′, y′, z′) ∈ P and
c ∈ R. Observe that

A(x + x′) + B(y + y′) + C(z + z′) = (Ax + By + Cz) + (Ax′ + By′ + Cz′) = 0,

which implies that (x, y, z) + (x′, y′, z′) ∈ P . Since these two vectors are arbitrary vectors in P , the
latter implies that P satisfies the closure condition for addition. Next,

A(cx) + B(cy) + C(cz) = c(Ax + By + Cz) = 0,

which implies that c(x, y, z) ∈ P . Since (x, y, z) is an arbitrary vector in P and c an arbitrary
scalar, the latter implies that P satisfies the closure condition for scalar multiplication. Thus, P is
subspace of R3.

2. Let A be some non-empty set and let Vfn,R(A) denote the set of of all R-valued functions on A.
For any f, g ∈ Vfn,R(A) and any c ∈ R, define

(f + g)(x) := f(x) + g(x) ∀x ∈ A,

(cf)(x) := cf(x) ∀x ∈ A.

Show that Vfn,R(A) is a vector space over R.

The above problem involves a completely routine check of the ten properties for Vfn,R(A) to
be a vector space. Hence, Problem 2 will not be discussed.

3. Consider the set S = {eax, xeax}, where a ∈ R−{0}, viewed as a subset of Vfn,R(R). Prove that
S is a basis of L(S).

Solution: Since, by definition, S spans L(S), we must just show that S is linearly independent. We
must therefore show that if

c1e
ax + c2xe

ax = ~0,
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where ~0 denotes the zero vector in Vfn,R(R), then c1 = c2 = 0. The equation above has the meaning

c1e
ax + c2xe

ax = eax(c1 + c2x) = 0 ∀x ∈ R. (1)

Since we know that 0 /∈ range(ea(·)), we can cancel eax on both sides of (1). Hence, we are left to
prove the following: given

c1 + c2x = 0 ∀x ∈ R, (2)

we have c1 = c2 = 0. Now, in particular, the equality in (2) must be satisfied for x = 0 and x = 1.
Substituting x = 0 in (2) implies that c1 = 0. Next, substituting x = 1 in (2) gives us c2 = 0.
Thus, S is linearly independent, and hence a basis.

4. Let Vfn,R(R) be as in Problem 3. Find the dimension of L(S), S ⊂ Vfn,R(R), where

a) S = {ex cosx, ex sinx},

b) S = {1, cos 2x, cos2 x, sin2 x}.

Sketch of solution: The solution to both Parts (a) and (b) involve producing a finite basis for L(S).
By definition, the number of elements in this finte basis will be the dimension of L(S).

a) Show, using an argument similar to that in the solution to Problem 3 that S is a basis of
L(S). Then, by definition, the dimension of L(S) is 2.

b) Define S̃ := {cos2 x, sin2 x}. We shall show that S̃ is a basis of L(S). To this end, consider
an arbitrary element f ∈ L(S). By definition

f(x) = a1 + a2 cos 2x + a3 cos2 x + a4 sin2 x = 0 ∀x ∈ R

for some a1, . . . , a4 ∈ R. Then, by basic trigonometric identities,

f(x) = (a1 + a2 + a3) cos2 x + (a1 − a2 + a4) sin2 x ∀x ∈ R,

whence f ∈ L(S̃). Since f was an arbitrary element of L(S), we have established that
L(S) ⊆ L(S̃). As S̃ ⊂ S, by definition L(S̃) ⊆ L(S). Hence L(S) = L(S̃): in other words, S̃
spans L(S). Now show, using an argument similar to that in the solution to Problem 3, that
S̃ is a basis of L(S). Then, by definition, the dimension of L(S) is 2.

5. Let V and W be vector spaces over the field F. Let T : V → W be a linear transformation.
Show that T is one-one if and only if N(T ) = {~0 }.

Solution: First assume that T is one-one. Then, by definition T−1{~0} has at most one element. As
T is linear, we have T (~0) = ~0. Thus,

N(T ) = T−1{~0} = {~0 }.

Next, assume that N(T ) = {~0 }. Now, consider x1, x2 ∈ V such that T (x1) = T (x2). Then

T (x1) = T (x2)⇒ T (x1)− T (x2) = ~0

⇒ T (x1 − x2) = ~0 [ by linearity ]

⇒ x1 − x2 = ~0 [ by the definition of N(T ) ]

⇒ x1 = x2.
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Thus, T is one-one.

6. Let Pn denote the vector space of polynomials with real coefficients of degree≤ n. Let T : Pn →
Pn be the linear transformation given by T (p) = p′′. Consider the ordered basis B = (1, x, . . . , xn).
Denote as M the (n + 1)× (n + 1)-matrix:

M = [T ]B,B.

Find all the entries Mij of M .

Sketch of solution: By definition,

the j-th column of M =
[
T (j-th term of B)

]
B , j = 1, . . . , (n + 1). (3)

Next, we have

T (j-th term of B) = T (xj−1) =

{
0, if j = 1, 2,

(j − 1)(j − 2)xj−3, if j 6= 1, 2.

Observe that if n ≥ 2, then xj−3 is the element numbered (j−2) in B, j 6= 1, 2. Thus, by the above
equation and the equation (3)

Mij = 0 ∀(i, j) : i = 1, . . . , (n + 1), j = 1, . . . , (n + 1),

in case n = 0, 1, and

Mij = 0 for each i, if j = 1, 2, and

Mij =

{
0, for i 6= (j − 2), if j = 3, . . . , (n + 1),

(j − 1)(j − 2), for i = (j − 2), if j = 3, . . . , (n + 1),

in case n ≥ 2.

7. Let F be either R or C (although the following makes sense for any field) and consider the
linear transformations TA : Fn1 → Fn2 and TB : Fn2 → Fn3 induced by the matrices A and B,
respectively. This means that:

A is an n2 × n1 matrix with entries in F,
B is an n3 × n2 matrix with entries in F.

Show that TBTA is induced by a matrix C (so, TBTA = TC) where C = BA (here, BA is the matrix
product that you have learnt in high school).

Solution: Fix (x1, . . . , xn1) ∈ Fn1 and write A = [aij ], B = [bij ],

(y1, . . . , yn2) := TA(x1, . . . , xn1),

(z1, . . . , zn3) := TB

(
TA(x1, . . . , xn1)

)
.

By definition

zi =

n2∑
k=1

bik yk =

n2∑
j=1

bik
(
TA(x1, . . . , xn1)

)
k
, i = 1, . . . , n3.
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We now substitute the definition of TA into the above equation, to get

zi =

n2∑
k=1

bik

n1∑
j=1

akj xj

=

n1∑
j=1

( n2∑
k=1

aik bkj

)
xj , i = 1, . . . , n3. (4)

But since, by definition

BA =

[ n2∑
k=1

aik bkj

]
,

the equation (4) gives us the i-th Cartesian factor of the vector TBA(x1, . . . , xn1). Hence TBTA =
TBA.
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