UM 101: ANALYSIS & LINEAR ALGEBRA – I "AUTUMN" 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 11 PROBLEMS

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 11, 2021

PLEASE NOTE: Only in **rare circumstances** will complete solutions be provided! What follows are **hints** for solving a problem or **sketches** of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.

1. Freely using — without proof — what you know about 3-D coordinate geometry from high school, prove that any plane in \mathbb{R}^3 containing the origin (0, 0, 0) is a subspace of \mathbb{R}^3 .

Solution: We have learnt that any plane P in \mathbb{R}^3 containing the origin (0,0,0) is described in Cartesian coordinates by

$$P = \{ (x, y, z) \in \mathbb{R}^3 : Ax + By + Cz = 0 \},\$$

where $(A, B, C) \neq (0, 0, 0)$. We now appeal to the theorem that says that P is linear subspace if and only if P satisfies the two closure conditions. To this end, consider $(x, y, z), (x', y', z') \in P$ and $c \in \mathbb{R}$. Observe that

$$A(x + x') + B(y + y') + C(z + z') = (Ax + By + Cz) + (Ax' + By' + Cz') = 0,$$

which implies that $(x, y, z) + (x', y', z') \in P$. Since these two vectors are arbitrary vectors in P, the latter implies that P satisfies the closure condition for addition. Next,

$$A(cx) + B(cy) + C(cz) = c(Ax + By + Cz) = 0,$$

which implies that $c(x, y, z) \in P$. Since (x, y, z) is an arbitrary vector in P and c an arbitrary scalar, the latter implies that P satisfies the closure condition for scalar multiplication. Thus, P is subspace of \mathbb{R}^3 .

2. Let A be some non-empty set and let $V_{\text{fn},\mathbb{R}}(A)$ denote the set of of **all** \mathbb{R} -valued functions on A. For any $f, g \in V_{\text{fn},\mathbb{R}}(A)$ and any $c \in \mathbb{R}$, define

$$(f+g)(x) := f(x) + g(x) \quad \forall x \in A,$$

$$(cf)(x) := cf(x) \quad \forall x \in A.$$

Show that $V_{\text{fn},\mathbb{R}}(A)$ is a vector space over \mathbb{R} .

The above problem involves a **completely routine** check of the ten properties for $V_{\text{fn},\mathbb{R}}(A)$ to be a vector space. Hence, Problem 2 will not be discussed.

3. Consider the set $S = \{e^{ax}, xe^{ax}\}$, where $a \in \mathbb{R} - \{0\}$, viewed as a subset of $V_{\text{fn},\mathbb{R}}(\mathbb{R})$. Prove that S is a basis of L(S).

Solution: Since, by definition, S spans L(S), we must just show that S is linearly independent. We must therefore show that if

$$c_1 e^{ax} + c_2 x e^{ax} = \vec{0},$$

where $\vec{0}$ denotes the zero vector in $V_{\text{fn},\mathbb{R}}(\mathbb{R})$, then $c_1 = c_2 = 0$. The equation above has the meaning

$$c_1 e^{ax} + c_2 x e^{ax} = e^{ax} (c_1 + c_2 x) = 0 \quad \forall x \in \mathbb{R}.$$
 (1)

Since we know that $0 \notin \mathsf{range}(e^{a(\cdot)})$, we can cancel e^{ax} on both sides of (1). Hence, we are left to **prove the following:** given

$$c_1 + c_2 x = 0 \quad \forall x \in \mathbb{R},\tag{2}$$

we have $c_1 = c_2 = 0$. Now, in particular, the equality in (2) must be satisfied for x = 0 and x = 1. Substituting x = 0 in (2) implies that $c_1 = 0$. Next, substituting x = 1 in (2) gives us $c_2 = 0$. Thus, S is linearly independent, and hence a basis.

- **4.** Let $V_{\text{fn},\mathbb{R}}(\mathbb{R})$ be as in Problem 3. Find the dimension of $L(S), S \subset V_{\text{fn},\mathbb{R}}(\mathbb{R})$, where
 - a) $S = \{e^x \cos x, e^x \sin x\},\$
 - b) $S = \{1, \cos 2x, \cos^2 x, \sin^2 x\}.$

Sketch of solution: The solution to both Parts (a) and (b) involve producing a finite basis for L(S). By definition, the number of elements in this finite basis will be the dimension of L(S).

- a) Show, using an argument similar to that in the solution to Problem 3 that S is a basis of L(S). Then, by definition, the dimension of L(S) is 2.
- b) Define $\widetilde{S} := \{\cos^2 x, \sin^2 x\}$. We shall show that \widetilde{S} is a basis of L(S). To this end, consider an arbitrary element $f \in L(S)$. By definition

$$f(x) = a_1 + a_2 \cos 2x + a_3 \cos^2 x + a_4 \sin^2 x = 0 \quad \forall x \in \mathbb{R}$$

for some $a_1, \ldots, a_4 \in \mathbb{R}$. Then, by basic trigonometric identities,

$$f(x) = (a_1 + a_2 + a_3)\cos^2 x + (a_1 - a_2 + a_4)\sin^2 x \ \forall x \in \mathbb{R},$$

whence $f \in L(\widetilde{S})$. Since f was an arbitrary element of L(S), we have established that $L(S) \subseteq L(\widetilde{S})$. As $\widetilde{S} \subset S$, by definition $L(\widetilde{S}) \subseteq L(S)$. Hence $L(S) = L(\widetilde{S})$: in other words, \widetilde{S} spans L(S). Now show, using an argument similar to that in the solution to Problem 3, that \widetilde{S} is a basis of L(S). Then, by definition, the dimension of L(S) is 2.

5. Let V and W be vector spaces over the field \mathbb{F} . Let $T: V \to W$ be a linear transformation. Show that T is one-one if and only if $N(T) = \{\vec{0}\}$.

Solution: First assume that T is one-one. Then, by definition $T^{-1}\{\vec{0}\}$ has at most one element. As T is linear, we have $T(\vec{0}) = \vec{0}$. Thus,

$$N(T) = T^{-1}\{\vec{0}\} = \{\vec{0}\}.$$

Next, assume that $N(T) = \{\vec{0}\}$. Now, consider $x_1, x_2 \in V$ such that $T(x_1) = T(x_2)$. Then

$$T(x_1) = T(x_2) \Rightarrow T(x_1) - T(x_2) = \vec{0}$$

$$\Rightarrow T(x_1 - x_2) = \vec{0} \qquad [by linearity]$$

$$\Rightarrow x_1 - x_2 = \vec{0} \qquad [by the definition of N(T)]$$

$$\Rightarrow x_1 = x_2.$$

Thus, T is one-one.

6. Let \mathcal{P}_n denote the vector space of polynomials with real coefficients of degree $\leq n$. Let $T : \mathcal{P}_n \to \mathcal{P}_n$ be the linear transformation given by T(p) = p''. Consider the ordered basis $\mathcal{B} = (1, x, \dots, x^n)$. Denote as M the $(n + 1) \times (n + 1)$ -matrix:

$$M = [T]_{\mathcal{B},\mathcal{B}}.$$

Find all the entries M_{ij} of M.

Sketch of solution: By definition,

the *j*-th column of
$$M = [T(j\text{-th term of }\mathcal{B})]_{\mathcal{B}}, \quad j = 1, \dots, (n+1).$$
 (3)

Next, we have

$$T(j\text{-th term of }\mathcal{B}) = T(x^{j-1}) = \begin{cases} 0, & \text{if } j = 1, 2, \\ (j-1)(j-2)x^{j-3}, & \text{if } j \neq 1, 2. \end{cases}$$

Observe that if $n \ge 2$, then x^{j-3} is the element numbered (j-2) in $\mathcal{B}, j \ne 1, 2$. Thus, by the above equation and the equation (3)

$$M_{ij} = 0 \ \forall (i,j) : i = 1, \dots, (n+1), \ j = 1, \dots, (n+1),$$

in case n = 0, 1, and

$$M_{ij} = 0 \quad \text{for each } i, \text{ if } j = 1, 2, \text{ and}$$

$$M_{ij} = \begin{cases} 0, & \text{for } i \neq (j-2), \text{ if } j = 3, \dots, (n+1), \\ (j-1)(j-2), & \text{for } i = (j-2), \text{ if } j = 3, \dots, (n+1), \end{cases}$$

in case $n \geq 2$.

7. Let \mathbb{F} be either \mathbb{R} or \mathbb{C} (although the following makes sense for any field) and consider the linear transformations $T_A : \mathbb{F}^{n_1} \to \mathbb{F}^{n_2}$ and $T_B : \mathbb{F}^{n_2} \to \mathbb{F}^{n_3}$ induced by the matrices A and B, respectively. This means that:

A is an $n_2 \times n_1$ matrix with entries in \mathbb{F} , B is an $n_3 \times n_2$ matrix with entries in \mathbb{F} .

Show that T_BT_A is induced by a matrix C (so, $T_BT_A = T_C$) where C = BA (here, BA is the matrix product that you have learnt in high school).

Solution: Fix $(x_1, \ldots, x_{n_1}) \in \mathbb{F}^{n_1}$ and write $A = [a_{ij}], B = [b_{ij}],$

$$(y_1, \dots, y_{n_2}) := T_A(x_1, \dots, x_{n_1}), (z_1, \dots, z_{n_3}) := T_B(T_A(x_1, \dots, x_{n_1}))$$

By definition

$$z_i = \sum_{k=1}^{n_2} b_{ik} y_k = \sum_{j=1}^{n_2} b_{ik} (T_A(x_1, \dots, x_{n_1}))_k, \quad i = 1, \dots, n_3.$$

We now substitute the definition of T_A into the above equation, to get

$$z_{i} = \sum_{k=1}^{n_{2}} b_{ik} \sum_{j=1}^{n_{1}} a_{kj} x_{j}$$

= $\sum_{j=1}^{n_{1}} \left(\sum_{k=1}^{n_{2}} a_{ik} b_{kj} \right) x_{j}, \quad i = 1, \dots, n_{3}.$ (4)

But since, by definition

$$BA = \bigg[\sum_{k=1}^{n_2} a_{ik} \, b_{kj}\bigg],$$

the equation (4) gives us the *i*-th Cartesian factor of the vector $T_{BA}(x_1, \ldots, x_{n_1})$. Hence $T_BT_A = T_{BA}$.