UM 101: ANALYSIS & LINEAR ALGEBRA -1
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 1 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: NOVEMBER 19, 2020

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. In class we encountered one of the axioms of set-theory, stated as “The rule defining when two
sets are equal,” and for which you were referred to Section I-2.2 of Apostol’s book. Using this
rule, justify the following equalities of sets:

(a) {a,a} = {a}
(0) {a,b} = {b,a}
(c) {a} ={b,c} ifand only if a =b=c.

Sketch of solution: We will not discuss all the parts.

(a) {a,a} contains the element a and no element other than a. {a} contains exactly the element
a. Thus, by the definition referenced, {a,a} = {a}.

(b) Use similar reasoning as in part (a).

(¢) This problem involves two steps. First assume {a} = {a,b,c}. Then by definition, b = a and
¢ = a. Hence a = b = ¢. Argue the implication “a = b=c¢ = {a} = {a,b,c}” as done in
part (a).

2. (Prob.20(b) from Apostol, Section I-2.5) Show that one of the two expressions below is always
right and that the other is sometimes wrong;:

iy A= (B-C) = (A-B)UC,
ii) A—(BUC) = (A—B) - C.

(Note. What this means is that you must provide a proof of the expression that you think is
always true, and you must provide one counterexample showing that the other is false.)

Sketch of solution: (i) is false sometimes. Please find specific examples of A, B and C to illustrate
this.

(1) is always true. We first show that A— (BUC) C (A— B)—C. Since @ C (A—B) —C, it
suffices to consider A — (BUC) # @. So, pick an arbitrary x € A — (B UC). Then:

r€A and z¢ (BUC). (1)

Negating the definition (see Apostol, Section 1-2.4) for when an element belongs to (BUC'), we get



(%) ¢ (BUC) means that x is neither in B nor in C.

From () and (1)), we have z € A and z ¢ B. So, z € (A— B). But sincez ¢ C, 2z € (A— B) - C.
As x was arbitrarily chosen, we have A — (BUC) C (A—B) —C.
One can prove (A — B) —C C A— (BUC) using (*). Do this yourself.

3. In class, we mentioned that if A and B are two sets, then we take as an axiom — The Axiom of
Unions—that AU B is a set. In contrast, show that we do not need any axiom beyond those that
were mentioned in class to assert that AN B is a set. Specifically show that the fact that AN B
is a set is given by the set-builder axiom.

Sketch of solution: By the set-builder axiom, the collection
I={recA:ze B}
is a set. Now prove I = AN B.

4. Prove that @ C A for any set A.

Solution: It is easier to prove this statement by contradiction. So, assume the negation of “@ C A
for any A”. Thus, assume there is a set Ag such that @ ¢ Ay. This means that there is an element
in @ that is not in Ag. This is a contradiction as @ has no elements.

5. Prove the De Morgan law whose proof was not given in class. Namely, if B is a set and .# is a
non-empty family of sets, then show that

B-(ﬂ A) = Jm-4)

AesF AeF

Sketch of solution: We will work out one of the inclusions. Let us consider

B—( N A>g () (B-A).

AeF AeF
Call the left-hand set C' and the right-hand set D. Since @ C D, we may assume C # &. Pick an
arbitrary element x € C'. By definition

r€B and z¢ ﬂ A.
AeF

By definition of intersection, there is some A in .# such that + ¢ A. Asx € B, x € (B — A) for
some A € #. By definition of union, therefore x € D. As x was arbitrarily chosen, C C D. The
opposite inclusion is left for you to try; it is easy.

The following problem will go a little beyond what has been taught until now. You will need the
material of the lecture of November 20 to solve it.

6. Refer to Peano’s Axioms. For a natural number n, S(n) will denote the successor of n. Let “+4”
denote the Peano addition between two natural numbers (which formalises the addition you learnt
as children). Define:

1 := 5(0),

2 := 5(1) = S(5(0)),

3:=5(2) = S(5(1)) = S(S(S(O))).
Using the rules of Peano addition, justify that



(a) 1+1=2.
(b) 1+2=3.

Note. You may freely use the fact n+m = m+n for all m,n € N without proof. Using this will
provide a somewhat shorter proof of (b) than the one resulting from following the rules of Peano
addition slavishly.

Since this involves just applying the rules of Peano addition, the above is left for you to work out.



