UM 101: ANALYSIS & LINEAR ALGEBRA – I "AUTUMN" 2020 HOMEWORK 2

Instructor: GAUTAM BHARALI Assigned: NOVEMBER 26, 2020

1. Let us consider a set $A = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ on which we define two operations + and \times as follows:

$$\overline{a} + \overline{b} := \overline{c}, \qquad \overline{a} \times \overline{b} := \overline{d},$$
 (1)

where c and d are obtained as follows:

c = the remainder obtained when dividing (a + b) by 8,

d = the remainder obtained when dividing ab by 8.

(The operations between the unbarred variables a and b above are the usual addition and multiplication between natural numbers.) Is $(A, +, \times)$ a field? Justifiy your answer.

The next three problems are devoted to showing that many statements that we take for granted about \mathbb{R} require **proofs** based on \mathbb{R} being an ordered field. While \mathbb{R} has just been introduced, these problems will rely on the **first thing to be presented on November 27:** i.e., that Apostol's treatment of \mathbb{R} is one where its existence and well-definedness are taking to axiomatic. Hence, the **Axioms 1–9** in Apostol, Sections I-3.2 and I-3.4 for \mathbb{R} are the properties (1)–(9) — presented in class — of ordered fields.

2. (a part of Apostol, I-3.5, Prob. 1) Using **only** the field axioms and the order axioms for \mathbb{R} , prove the following:

Theorem. Let $a, b, c \in \mathbb{R}$. If a < b and c < 0, then ac > bc.

- **3.** (Apostol, I-3.5, Prob. 2) Using **only** the field axioms and the order axioms for \mathbb{R} , show that there is no real number x such that $x^2 + 1 = 0$.
- **4.** Let $a, b \in \mathbb{R}$ and assume that a > b. Show that there exists a real rumber c such that b < c < a. **Note.** You may freely use **without proof** any of Theorems I.17–I.25 in Apostol, Section I-3.4, without proof.