UM 101: ANALYSIS & LINEAR ALGEBRA – I "AUTUMN" 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 2 PROBLEMS

Instructor: GAUTAM BHARALI

Assigned: NOVEMBER 26, 2020

PLEASE NOTE: Only in **rare circumstances** will complete solutions be provided! What follows are **hints** for solving a problem or **sketches** of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.

1. Let us consider a set $A = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ on which we define two operations + and \times as follows:

$$\overline{a} + b := \overline{c}, \qquad \overline{a} \times b := d, \tag{1}$$

where c and d are obtained as follows:

c = the remainder obtained when dividing (a + b) by 8,

d = the remainder obtained when dividing ab by 8.

(The operations between the unbarred variables a and b above are the usual addition and multiplication between natural numbers.) Is $(A, +, \times)$ a field? Justify your answer.

Sketch of solution: $(A, +, \times)$ is not a field. To show this, compute

$$\overline{2} \times \overline{m}$$
 for $m = 0, ..., 7$,

and conclude that $\overline{2}$ has no reciprocal in A. (The latter also applies to $\overline{4}$ and $\overline{6}$.)

The next three problems are devoted to showing that many statements that we take for granted about \mathbb{R} require **proofs** based on \mathbb{R} being an ordered field. While \mathbb{R} has just been introduced, these problems will rely on the **first thing to be presented on November 27:** i.e., that Apostol's treatment of \mathbb{R} is one where its existence and well-definedness are taking to axiomatic. Hence, the **Axioms 1–9** in Apostol, Sections I-3.2 and I-3.4 for \mathbb{R} are the properties (1)–(9) — presented in class — of ordered fields.

2. (a part of Apostol, I-3.5, Prob. 1) Using **only** the field axioms and the order axioms for \mathbb{R} , prove the following:

Theorem. Let $a, b, c \in \mathbb{R}$. If a < b and c < 0, then ac > bc.

Sketch of solution: To prove this, we first establish the following:

- (I) For any $a \in \mathbb{R}$, -(-a) = a.
- (II) For any $a, b \in \mathbb{R}$, (-a)b = -(ab).
- (III) If for $a, b, c \in \mathbb{R}$, a < b and c > 0, then ac < bc.

It is easy to establish (I) and (II) only from the field axioms; do it yourself.

As for (III), this is Theorem I.19 from Apostol, whose proof using only the field axioms and order axioms is given in the book.

Now c < 0 implies, by definition of >, that $0 - c = -c \in \mathbb{R}^+$. Thus $-c - 0 \in \mathbb{R}^+$, which implies -c > 0, by definition of >. As a < b:

(-c)a < (-c)b	[by (III)]
$\Rightarrow -(ca) < -(cb)$	[by (II)]
$\Rightarrow -(cb) - [-(ca)] \in \mathbb{R}^+$	[by the definition of $>$]
$\Rightarrow -(cb) + ca \in \mathbb{R}^+$	[by (I)]
$\Rightarrow ca - cb \in \mathbb{R}^+$	[by Axiom 1 applied to $+]$
$\Rightarrow ca > cb$	[by the definition of $>$
$\Rightarrow ac > bc$	[by Axiom 1 applied to \times].

3. (Apostol, I-3.5, Prob. 2) Using **only** the field axioms and the order axioms for \mathbb{R} , show that there is no real number x such that $x^2 + 1 = 0$.

Sketch of solution: To prove this, we first establish the following:

- (A) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.
- (B) If for $a, b, c \in \mathbb{R}$, a < b then a + c < b + c.

(A) and (B) are Theorems I.20 and I.18, respectively, from Apostol, whose proof using only the field axioms and order axioms are given in the book.

Assume $\exists x \in \mathbb{R}$ such that $x^2 + 1 = 0$. Now, $x \neq 0$, since x = 0 would give $x^2 + 1 = 1 \neq 0$. By (A), $x^2 > 0$. Then, by (B),

$$x^2 + 1 > 0 + 1 = 1 \tag{2}$$

Applying (A) to a = 1 gives 1 > 0. Combining this with (2), we have

$$x^2 + 1 > 1 > 0 \tag{3}$$

Now, the transitive law for > can be derived from only the field axioms and order axioms, as given by the proof of Theorem I.17 in Apostol. Applying transitivity to (3) gives $x^2 + 1 > 0$; a contradiction. Thus, our initial assumption must be false, hence the result.

4. Let $a, b \in \mathbb{R}$ and assume that a > b. Show that there exists a real rumber c such that b < c < a. **Note.** You may freely use **without proof** any of Theorems I.17–I.25 in Apostol, Section I-3.4, without proof.

Sketch of solution: This problem has two steps.

Step 1: To show 1/2 > 0

Assume not. From this assumption, argue as in the previous two problems that $-1 \in \mathbb{R}^+$. Then by Axiom 8, $1 \notin \mathbb{R}^+$. But this means

$$\begin{split} &1-0\notin \mathbb{R}^+ \\ &\Rightarrow 1 \neq 0 \qquad [\text{ by definition of } >]. \end{split}$$

The fact, shown in solving problem 3, that 1>0. Hence 1/2 > 0. Step 2: Completing the solution To do this, just show that $b < \frac{1}{2}(b+a) < a$.