UM 101: ANALYSIS & LINEAR ALGEBRA -1
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 3 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: DECEMBER 3, 2020

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. Let F be an ordered field and let S C F. If S has a least upper bound, then show that it is
unique.

Sketch of solution: Suppose b and c¢ are two least upper bounds for S. Then, by first requirement
for a least upper bound:
b and ¢ are upper bounds for S. (1)

Assume that b < ¢. Then, by the second requirement for a least upper bound applied to ¢, b
cannot be an upper bound for S. Since this contradicts (1)), our assumption is false. Thus, b > c.
Similarly, ¢ > b. Thus, b = c.

2. (Apostol, I-3.12, Prob.2) Let = be an arbitrary real number. Show that there exist integers m
and n such that m < z < n.

Clarification. The set of integers is the set NU {—n : n € P}, where —n is the negative of n
viewed as an element of R.

Hint. It can useful to consider Theorem 1.28 in Apostol.
Sketch of solution: We already know that P is not bounded above. Thus, as P C Z, Z too is not
bounded above. We now establish the following:

Claim: Z is not bounded below.
Assume Z is bounded below. Then Z must have a lower bound. I.e., 3¢ € R such that { < nVn € Z.
Suppose £ € {—n :n € P} =Z —N. Then, £ — 1 € Z — N, by our definition of Z — N. Then

(—(f—-1)=1>0 [by Theorems 1.4 & 1.21 in Apostol ]
=0>0—-1 [by Theorem I.18 in Apostol |

which violates the fact that £ <nVn € Z. Thus { <nVn € Z —N, so

t<—-n VnelP
=—(>n VnelP [by Theorem 1.23 in Apostol ]
=-—4>n Vnel.

The last statement implies that P has an upper bound in R, which is false. This contradiction
shows that our initial assumption was wrong; thus the claim.

Thus, we have shown: Z is neither bounded below nor bounded above.

Now, use the meanings of “bounded below” and “bounded above” to complete the proof.



Remark: The above problem shows that we need to first formulate definitions of “lower bound”
and “bounded below” analogous to the terms defined in class.

3. Let {a,} C R and let L € R. How do you express quantitatively the statement, “{a,} does not
converge to L7

Solution: J ey such that for each N € P, 3n(N) > N such that |a, ) — L[ > €.

4. Let {a,} be a convergent sequence with limit L. Prove that the sequence {b,}, where
ar+ -+ ap

bn: )
n

converges to L.

Solution: Since {a,} has the limit L, given € > 0, 3N; € P, N; > 2, such that
lan — L <§ Vn > Ny
By the triangle inequality, we have

ap+ax+---+ay
n

(ap —L)+(ag—L)+---+ (an — L)

- L

n
|a; — L
< ==
<2
J=1

Since {|a; — L|,|az — L|,...,|an, — L|} is a finite set, 3 M > 0 such that
|aj*L| SMfOI‘jzl,Z,...,lel.

So, from the two inequalities:
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<cWi=DM ey SN (2)
n 2
From theorems about limits presented in class, we know
N —1)M
fiy DM
n—oo n

Thus, 3 Ny € P such that 0 < w < §Vn > Ny Set N := max(Ny, Nz). Combining the
latter inequality with , we have

ay+az+---+an
n

—Ll<e Vn>N

The following problem will go a little beyond what has been taught until now. You will need the
results from the beginning of the lecture of December 4 to solve it.

5. For each of the following sequences, determine whether it converges or diverges. Justify your
answer.



) 10"n
“ An? —4n +1

b) {1+ (=1)"}
o) {Vn+1-+nj
d) {1+ (=1)")/n}

2 {an5}

f {\/ﬁcos(n!) sin(1/n!) }

n+1

Tip. In those cases where you think the sequence is divergent, it is useful to assume that it has
the limit L —where L is an arbitrary real number —and arrive at a contradiction.

Sketch of solution: Sketches to each of the parts are as follows:
a) We compute

10™n _ 107(1/n)
4n? —4n+1 4 — (4/n) + (1/n2)

By the theorem on limits of algebraic combinations of sequences, and as lim, o 1/n% =0
for any rational a > 0, the denominator of the R.H.S. above has the limit 4 # 0. Thus, by
the above results again,

’ 107(1/n) 107 limp—oo(1/n)
oo 4 — (4/n) + (1/n2) 4

=0.

b) We see intuitively that the limit doesn’t exist. To justify this, appeal to Problem 3. Write
ap =1+ (=1)"

o {a,} does not converge to 0 because if we set ey = 1, then if, for each N € P, we write

n(N) {N+1, if N is odd,

N, if N is even,

we get [an(N) — 0] = [1+ (=1)"™M)| =2 > ¢ for N =1,2,... Hence 0 is not the limit.
o A similar argument as above shows 2 cannot be the limit.
o Now consider L # 0,2. Set
€0 := min{|L|, |L — 2|}.

Then as |a, — L| > €y Vn, the answer to Problem 3 again implies that L(# 0,2) is not
the limit.



¢) We compute

_ Wnt+1-vVn)(Vn+1+Vn)
Vit 1oy = Vn+1+n

1
=0<Vn+1—+yn=
vn+1+ \/ﬁ
1
< —. 3
< 3)
This suggests that the limit is 0. To establish this, note that gives

|(Vn + —\/ﬁ)—O\S\/lﬁ VneP.

We have seen in class that lim, ,o 1/y/7 = 0 (note: /n = n'/?). Thus, given € > 0, 3N

such that

1
‘—O’ <e VYn>N.
vn

From the last two inequalities:
(Vn+1—+/n)—0/<e Vn>N.

d) The sequence has the limit 0. Its justification is in the style of the argument for (f), but
much simpler. Do this yourself (using the solution for (f) as a template).

e) We intuit that the limit does not exist. To establish this we argue by contradiction. Suppose
L € R is the limit. Then, for any € € (0,1), we can find N € P such that

TL2
n+5—L‘<e Vn > N. (4)
But,
n2 n2
o ‘_n+5 ]L|>§—|L|>1 Vn > max (5,2M (L) + 2),

where M (L) := the least natural number > |L|. But contradicts the above inequality.
Thus, no L € R can be a limit.

f) We estimate
Vv/ncos (n!)sin (1/n!) < Vn < 1
n+1 “n+l- Vn

One can now argue as in (c¢) to show that the limit is 0.

VneP.




