
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 3 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: DECEMBER 3, 2020

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. Let F be an ordered field and let S ⊆ F. If S has a least upper bound, then show that it is
unique.

Sketch of solution: Suppose b and c are two least upper bounds for S. Then, by first requirement
for a least upper bound:

b and c are upper bounds for S. (1)

Assume that b < c. Then, by the second requirement for a least upper bound applied to c, b
cannot be an upper bound for S. Since this contradicts (1), our assumption is false. Thus, b ≥ c.
Similarly, c ≥ b. Thus, b = c.

2. (Apostol, I-3.12, Prob. 2) Let x be an arbitrary real number. Show that there exist integers m
and n such that m < x < n.

Clarification. The set of integers is the set N ∪ {−n : n ∈ P}, where −n is the negative of n
viewed as an element of R.

Hint. It can useful to consider Theorem I.28 in Apostol.

Sketch of solution: We already know that P is not bounded above. Thus, as P ⊂ Z, Z too is not
bounded above. We now establish the following:

Claim: Z is not bounded below.
Assume Z is bounded below. Then Z must have a lower bound. I.e., ∃ ` ∈ R such that ` ≤ n ∀n ∈ Z.
Suppose ` ∈ {−n : n ∈ P} = Z− N. Then, `− 1 ∈ Z− N, by our definition of Z− N. Then

`− (`− 1) = 1 > 0 [ by Theorems I.4 & I.21 in Apostol ]

⇒ ` > `− 1 [ by Theorem I.18 in Apostol ]

which violates the fact that ` ≤ n ∀n ∈ Z. Thus ` < n∀n ∈ Z− N, so

` < −n ∀n ∈ P
⇒ −` > n ∀n ∈ P [ by Theorem I.23 in Apostol ]

⇒ −` ≥ n ∀n ∈ P.

The last statement implies that P has an upper bound in R, which is false. This contradiction
shows that our initial assumption was wrong; thus the claim.

Thus, we have shown: Z is neither bounded below nor bounded above.

Now, use the meanings of “bounded below” and “bounded above” to complete the proof.
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Remark: The above problem shows that we need to first formulate definitions of “lower bound”
and “bounded below” analogous to the terms defined in class.

3. Let {an} ⊂ R and let L ∈ R. How do you express quantitatively the statement, “{an} does not
converge to L”?

Solution: ∃ ε0 such that for each N ∈ P, ∃n(N) ≥ N such that |an(N) − L| ≥ ε0.

4. Let {an} be a convergent sequence with limit L. Prove that the sequence {bn}, where

bn =
a1 + · · ·+ an

n
,

converges to L.

Solution: Since {an} has the limit L, given ε > 0, ∃N1 ∈ P, N1 ≥ 2, such that

|an − L| <
ε

2
∀n ≥ N1

By the triangle inequality, we have∣∣∣∣∣a1 + a2 + · · ·+ an
n

− L

∣∣∣∣∣ =

∣∣∣∣∣(a1 − L) + (a2 − L) + · · ·+ (an − L)

n

∣∣∣∣∣
≤

n∑
j=1

|aj − L|
n

.

Since {|a1 − L|, |a2 − L|, . . . , |aN1 − L|} is a finite set, ∃M > 0 such that

|aj − L| ≤M for j = 1, 2, . . . , N1 − 1.

So, from the two inequalities:∣∣∣∣∣a1 + a2 + ...+ an
n

− L

∣∣∣∣∣ ≤ (N1 − 1)M

n
+

1

n

n∑
j=N1

|aj − L|

<
(N1 − 1)M

n
+
n−N1 + 1

n

( ε
2

)
∀n ≥ N1

≤ (N1 − 1)M

n
+
ε

2
∀n ≥ N1. (2)

From theorems about limits presented in class, we know

lim
n→∞

(N1 − 1)M

n
= 0.

Thus, ∃ N2 ∈ P such that 0 < (N1−1)M
n < ε

2 ∀n ≥ N2. Set N := max(N1, N2). Combining the
latter inequality with (2), we have∣∣∣∣∣a1 + a2 + · · ·+ an

n
− L

∣∣∣∣∣ < ε ∀n ≥ N

The following problem will go a little beyond what has been taught until now. You will need the
results from the beginning of the lecture of December 4 to solve it.

5. For each of the following sequences, determine whether it converges or diverges. Justify your
answer.
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a)

{
107n

4n2 − 4n+ 1

}
b) {1 + (−1)n}

c) {
√
n+ 1−

√
n}

d) {(1 + (−1)n)/n}

e)

{
n2

n+ 5

}

f)

{√
n cos(n!) sin(1/n!)

n+ 1

}

Tip. In those cases where you think the sequence is divergent, it is useful to assume that it has
the limit L— where L is an arbitrary real number — and arrive at a contradiction.

Sketch of solution: Sketches to each of the parts are as follows:

a) We compute

107n

4n2 − 4n+ 1
=

107(1/n)

4− (4/n) + (1/n2)

By the theorem on limits of algebraic combinations of sequences, and as limn→∞ 1/nα = 0
for any rational α > 0, the denominator of the R.H.S. above has the limit 4 6= 0. Thus, by
the above results again,

lim
n→∞

107(1/n)

4− (4/n) + (1/n2)
=

107 limn→∞(1/n)

4
= 0.

b) We see intuitively that the limit doesn’t exist. To justify this, appeal to Problem 3. Write
an := 1 + (−1)n

◦ {an} does not converge to 0 because if we set ε0 = 1, then if, for each N ∈ P, we write

n(N) =

{
N + 1, if N is odd,

N, if N is even,

we get |an(N)− 0| = |1 + (−1)n(N)| = 2 ≥ ε0 for N = 1, 2, . . . Hence 0 is not the limit.

◦ A similar argument as above shows 2 cannot be the limit.

◦ Now consider L 6= 0, 2. Set

ε0 := min{|L|, |L− 2|}.

Then as |an − L| ≥ ε0 ∀n, the answer to Problem 3 again implies that L(6= 0, 2) is not
the limit.

3



c) We compute

√
n+ 1−

√
n =

(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

⇒ 0 ≤
√
n+ 1−

√
n =

1√
n+ 1 +

√
n

≤ 1√
n
. (3)

This suggests that the limit is 0. To establish this, note that (3) gives

|(
√
n+ 1−

√
n)− 0| ≤ 1√

n
∀n ∈ P.

We have seen in class that limn→∞ 1/
√
n = 0 (note:

√
n = n1/2). Thus, given ε > 0, ∃N

such that ∣∣∣∣ 1√
n
− 0

∣∣∣∣ =
1√
n
< ε ∀n ≥ N.

From the last two inequalities:

|(
√
n+ 1−

√
n)− 0| < ε ∀n ≥ N.

d) The sequence has the limit 0. Its justification is in the style of the argument for (f), but
much simpler. Do this yourself (using the solution for (f) as a template).

e) We intuit that the limit does not exist. To establish this we argue by contradiction. Suppose
L ∈ R is the limit. Then, for any ε ∈ (0, 1), we can find N ∈ P such that∣∣∣∣ n2

n+ 5
− L

∣∣∣∣ < ε ∀n ≥ N. (4)

But, ∣∣∣∣ n2

n+ 5
− L

∣∣∣∣ ≥ n2

n+ 5
− |L| ≥ n

2
− |L| ≥ 1 ∀n ≥ max

(
5, 2M(L) + 2

)
,

where M(L) := the least natural number ≥ |L|. But (4) contradicts the above inequality.
Thus, no L ∈ R can be a limit.

f) We estimate ∣∣∣∣∣
√
n cos (n!) sin (1/n!)

n+ 1

∣∣∣∣∣ ≤
√
n

n+ 1
≤ 1√

n
∀n ∈ P.

One can now argue as in (c) to show that the limit is 0.
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