
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 4 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: DECEMBER 10, 2020

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. Let {an} be a real sequence. We say “{an} is bounded” if the set {an : n = 1, 2, 3, . . . } is
bounded above and bounded below. Show that if {an} converges, then it is bounded.

Tip. If {c1, c2, . . . , cN} ⊂ R is a finite set, then you may freely assume that the meaning of
max(c1, c2, . . . , cN ) is sup

{
c1, c2, . . . , cN

}
— which is the meaning you have taken for granted so

far — without justifying that the former exists.

Solution: As {an} converges, call its limit L. By definition, ∃N ∈ P, N ≥ 2, such that

|an − L| < 1 ∀n ≥ N.
⇒ L− 1 < an < L+ 1 ∀n ≥ N. (1)

Write M := max(|a1|, . . . |aN−1|). Then, as −|aj | ≤ aj ≤ |aj | ∀ j ∈ P,

−M ≤ aj ≤M for j = 1, 2, . . . , N − 1.

Combining this with (1), we have

min(−M,L− 1) ≤ an ≤ max(M,L+ 1) ∀n ∈ P.

By definition, therefore, the set {an : n = 1, 2, 3, . . . } is bounded above and below; hence {an} is
bounded.

2. Let {an} and {bn} be convergent sequences with limits A and B, respectively. Prove that the
sequence {anbn} converges and that limn→∞ anbn = AB.

Solution: As {an} and {bn} are convergent, by Problem 1, there exist positive numbers M1 and
M2 such that

−M1 ≤ an ≤M1 and −M2 ≤ bn ≤M2 ∀n ∈ P (2)

Fix ε > 0. As limn→∞ an = A and limn→∞ bn = B, ∃N1, N2 ∈ P such that

|bn −B| <
εM1

2
∀n ≥ N1,

|an −A| < ε∗ ∀n ≥ N2,

where ε∗ is a positive real such that 0 < |B|ε∗ < ε/2. Write N := max(N1, N2). We now compute

|anbn −AB| = |(anbn − anB) + (anB −AB)|
≤ |an||bn −B|+ |B||an −A|

<
|an|ε
2M1

+ |B|ε∗ ∀n ≥ N

< ε/2 + ε/2 ∀n ≥ N. [using (2)]
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Thus, by definition, limn→∞ anbn = AB.

3. In each case below, show that the series
∑∞

n=1 an converges, and find the sum:

a) an = 1/(2n− 1)(2n+ 1)

b) an = 1/(n2 − 1)

c) an = n/(n+ 1)(n+ 2)(n+ 3)

d) an = (
√
n+ 1−

√
n)/
√
n2 + n

Sketch of solution: We make a correction to part (b) [which was communicated via Microsoft
Teams]: namely, for part (b), consider the series

∑∞
n=2 an.

We shall provide the solution of part (a). The solutions of (b) and (c) will follow from similar
partial-fraction arguments.

a) Let us write if possible

1

(2x− 1)(2x+ 1)
=

A

2x− 1
+

B

2x+ 1
∀x ∈ R− {±1/2}. (3)

Note that

(3) is true ⇐⇒ A(2x+ 1) +B(2x− 1) = 1 ∀x ∈ R

⇐⇒

{
2A+ 2B = 0

A−B = 1,

by high-school algebra. The latter equation has the unique solution (A,B) = (1/2,−1/2).
Thus, it follows that

an =
1/2

2n− 1
− 1/2

2n+ 1
=

1/2

2n− 1
− 1/2

2(n+ 1)− 1
∀n = 1, 2, 3, . . .

Thus, the given series is a telescoping series and the bn appearing in the convergence theorem
for telescoping series is

bn =
1/2

2n− 1
=

1/2n

2− (1/n)
∀n = 1, 2, 3, . . .

Since limn→∞ 1/n = 0, the denominator of the R.H.S. above has the limit 2 6= 0. Thus, by
the theorem on limits of quotient sequences

lim
n→∞

bn =
limn→∞ 1/2n

2
= 0.

Hence, by the convergence theorem,

∞∑
n=1

1

(2n− 1)(2n+ 1)
= b1 − lim

n→∞
bn = 1/2.
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d) Observe that √
n+ 1−

√
n√

n2 + n
=

1√
n
− 1√

n+ 1
∀n = 1, 2, 3, . . .

This is clearly a telescoping series and the bn appearing in the convergence theorem for
telescoping series is

bn =
1√
n

=
1

n1/2
∀n = 1, 2, 3, . . .

Now, argue as in the last few sentences of the solution to part (a) to get

∞∑
n=1

√
n+ 1−

√
n√

n2 + n
= 1.

4. Fix some positive integer N . Show that the series
∑∞

n=1 an is convergent if and only if the series∑∞
n=N an is convergent.

Sketch of solution: Let us consider the n-th partial sums of the two series given to us (we may take
N ≥ 2, since there’s nothing to prove when N = 1):

sn :=
n∑

j=1

aj and Sn :=
n+N−1∑
j=N

aj .

Let us write C := a1 + · · ·+ aN−1. Then, we have

Sn = sn − C ∀n ≥ N

Now use the above equation and the definition of the convergence of infinite series to complete the
proof.

5. Determine whether or not each of the following non-negative series converges. Give justifica-
tions.

a) (Apostol, 10.14, Prob. 1)
∑∞

n=1 n/(4n− 3)(4n− 1)

b)
∑∞

n=1 | sin(5n2)|/n2

c)
∑∞

n=1

(
3 + (−1)n

)
/3n

d) (Apostol, 10.14, Prob. 7)
∑∞

n=1 n!/(n+ 2)!

e)
∑∞

n=1 bn/5
n, where {bn} is a bounded sequence with non-negative terms.

Sketch of solution: Sketches of each of the parts are as follows:

a) We intuit that the n-th term of this series is comparable to c/n for some c > 0, whence the
series diverges. Thus, we need a non-negative series

∑∞
n=1 cn that is divergent such that

0 ≤ cn ≤
n

(4n− 3)(4n− 1)
∀n ≥ N.
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Now, observe:

1

16n
≤ 1

4(4n− 3)
=

n

(4n)(4n− 3)
≤ n

(4n− 1)(4n− 3)
∀n = 1, 2, 3, . . . (4)

By the p-series test
∑∞

n=1 1/16n diverges. Combining this with (4), the comparison test tells
us that the given series diverges.

Now, use the above as a template to solve (d), except that in this case the series
converges.

(b) Observe that
| sin 5n2|

n2
≤ 1

n2
∀n = 1, 2, . . .

Now complete the argument, using the camparison test, showing that the given series con-
verges.

Part (c) can be argued in a manner very similar to the solution of (e) (of which (c) is a special
case). Therefore, we present

(e) Since {bn} is a bounded sequence, and all terms are non-negative, ∃u ∈ R such that 0 ≤ bn ≤ u
∀n = 1, 2, 3, . . . Thus

0 ≤ bn
5n
≤ u

5n
∀n = 1, 2, 3, . . . (5)

Since
∑∞

n=1
u
5n is a convergent geometric series, the comparison test, combines with (5) tells

us that the given series converges.
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