
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 5 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: DECEMBER 17, 2020

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. State whether or not each of the following non-negative series converges. Give justifications.

a) (Apostol, 10.16, Prob. 13)
∑∞

n=1

n3
(√

2+(−1)n
)n

3n

b)
∑∞

n=1(n!)2/(2n)!

Note. You must use only the tests and results discussed in class or assigned for self-study.

Sketch of solution: Sketches of each of the parts are as follows (in both parts, let an denote the
n-th term of the given series):

a) This series is not a geometric series or a telescoping series. The preconditions of the Ratio
Test (in the form that we have studied) do not apply to the given series. However, we observe
that

0 ≤ an ≤ n3
(√2 + 1

3

)n
∀n = 1, 2, 3, . . .

Let us fix a real number r :
√

2 + 1 < r < 3. Then, the above inequality gets rewritten as

0 ≤ an ≤ n3
(√2 + 1

r

)n(r
3

)n
∀n = 1, 2, 3, . . . (1)

Since 0 ≤ (
√

2 + 1)/r < 1, by a result discussed in class limn→∞ n
3
(
(
√

2 + 1)/r
)n

= 0. Thus
(we take ε = 1 in the definition of the limit of a sequence) there exists N ∈ P such that

0 ≤ n3
(
(
√

2 + 1)/r
)n
< 1 ∀n ≥ N. (2)

Now use (1) and (2) to argue, using the Comparison Test, that the series converges.

b) We observe that

an+1

an
=

(n+ 1)2

(2n+ 2)(2n+ 1)
=

n+ 1

2(2n+ 1)
∀n = 1, 2, 3, . . .

Now, give a (by now familiar) justification that limn→∞ an+1/an = 1/4 < 1. By the Ratio
Test, the series converges.
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2. Let p be a real number contained in an open interval I. Let f be a R-valued function such
that f(x) is defined at each x ∈ I except perhaps at x = p. Let A ∈ R. How do you express
quantitatively (involving parameters like ε, etc., in an appropriate way) the statement, “f(x) does
not have the limit A as x approaches p”?

Solution: ∃ε0 > 0 such that for each δ > 0, there exists a point xδ (the subscript indicates that the
latter point, in general, depends on δ) such that

xδ ∈ I and 0 < |xδ − p| < δ and |f(xδ)−A| ≥ ε0.

3. Show that

lim
x→0

sin(6x)− sin(5x)

x

exists. Give justifications in terms of the limit theorems that are used.

Note. You may use standard trigonometric identities learnt in high school without deriving them.

Solution: We compute

sin(6x)− sin(5x)

x
= 6

sin(6x)

6x
− 5

sin(5x)

5x
(x 6= 0).

We know that when a 6= 0, limnx→0 sin(ax)/(ax) = 1. Using this, together with the theorem on
the limits of algebraic combinations of functions we know that the given limit exists and

lim
x→0

sin(6x)− sin(5x)

x
= 6 lim

x→0

sin(6x)

6x
− 5 lim

x→0

sin(5x)

5x
= 1.

4. Let n be some (fixed) positive integer and let p ∈ R. Complete the following outline to show
that limx→p x

n = pn using only the “ε-δ definition”.

a) Establish the desired limit for the case n = 1 using the “ε-δ definition”.

b) Now, use Part (a) to establish the stated limit.

Sketch of solution: To prove Part (a), check that given any ε > 0, taking δ = ε suffices for the ε-δ
condition to hold when f(x) = x. We therefore consider the case of n ∈ P− {1}. Fix p ∈ R. As n
is a positive integer, we can apply a standard identity from high-school algebra to get

|xp − pn| =
∣∣(x− p)(xn−1 + · · ·+ pn−1)

∣∣ ≤ |x− p| n∑
j=1

|x|n−j |p|j−1. (3)

Now, fix an ε > 0. Let δ = min
(
ε/n(|p|+ 1|)n−1, 1

)
. Then, whenever 0 < |x− p| < δ, we first have

|x| − |p| ≤ |x− p| < 1

⇒ |x| < |p|+ 1.
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Combining the latter with the estimate (3), we get

|xp − pn| ≤ |x− p|
n∑
j=1

|x|n−j |p|j−1

< δ

n∑
j=1

(|p|+ 1)n−j |p|j−1

< δ · n(|p|+ 1)n−1 ≤ ε whenever 0 < |x− p| < δ.

This establishes Part (b).
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