UM 101: ANALYSIS & LINEAR ALGEBRA-I "AUTUMN" 2020

HOMEWORK 7

Instructor: GAUTAM BHARALI

Assigned: JANUARY 14, 2021

Some applications of the Chain Rule: The following three problems pertain to Section 4.10, which was assigned for self-study.

1–2. Solve Problems 18 and 19 in Section 4.12 of Apostol's book.

3. Fix $\alpha \in \mathbb{Q}$ and write $\alpha = p/q$ where $p \in \mathbb{Z}$ and $q \in \mathbb{N} - \{0\}$. Recall that for any $x \in (0, +\infty)$

$$x^{\alpha} := (x^p)^{1/q},$$

and that the right-hand side is independent of the choice of p and q such that $\alpha = p/q$. With this information, show that the function $f_{\alpha}: (0, +\infty) \to \mathbb{R}$, defined by

$$f_{\alpha}(x) := x^{\alpha}, \ x \in (0, +\infty),$$

is differentiable at each $x \in (0, +\infty)$ and derive the expression for $f'_{\alpha}(x)$.

Note. You may freely use the fact that the function $(0, +\infty) \ni x \mapsto 1/x^n$, $n \in \mathbb{N} - \{0\}$, is differentiable at each $x \in \mathbb{R} - \{0\}$, and use the expression for its derivative, without proof.

4. Recall the definition of \cos^{-1} (also denoted by arccos) given in class. Compute $(\cos^{-1})'(y)$ at all those y where it exists.

5. Let arctan denote the inverse of the restriction of the function tan to the interval $(-\pi/2, \pi/2)$.

- a) Give the domain and the range of arctan.
- b) Show that arctan is differentiable at each point in the domain of arctan and compute its derivative.

6. Let $I \subseteq \mathbb{R}$ be a non-empty open interval and let $f: I \to \mathbb{R}$. Assume that f is continuous on I and is invertible. Show that f(I) is an open interval.

7. Let a < b be real numbers, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b]. Show that f([a, b]) is a closed interval.

8. Let a_1, a_2, \ldots, a_n be *n* distinct real numbers. Let

$$f(x) = \sum_{j=1}^{n} (x - a_j)^2, \ x \in \mathbb{R}.$$

Show that the least value of f is obtained at the arithmetic mean of a_1, \ldots, a_n .