UM 101: ANALYSIS & LINEAR ALGEBRA – I "AUTUMN" 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 7 PROBLEMS

Instructor: GAUTAM BHARALI

Assigned: JANUARY 14, 2021

PLEASE NOTE: Only in **rare circumstances** will complete solutions be provided! What follows are **hints** for solving a problem or **sketches** of the solutions meant to help you through the difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain complete solutions.

Some applications of the Chain Rule: The following three problems pertain to Section 4.10, which was assigned for self-study.

1–2. Solve Problems 18 and 19 in Section 4.12 of Apostol's book.

Sketch of solution to Problem 1: By the chain rule and the product rule:

$$g'(x) = f(x^2) + x[f'(x^2)(2x)] = f(x^2) + 2x^2 f'(x^2)$$

$$g''(x) = f'(x^2)(2x) + 4xf'(x^2) + 2x^2[f''(x^2)(2x)]$$

$$= 6xf'(x^2) + 4x^3 f''(x^2)$$

To make the necessary substitutions, it can useful to add a couple of new columns concerning x^2 . With that we have the table:

x	x^2	$f'(x^2)$	$f''(x^2)$	$f(x^2)$	g'(x)	g''(x)
0	0	1	2	0	0	0
1	1	1	1	1	3	10
2	4	3	0	6	30	36

Sketch of solution to Problem 2: Problem 19 is elementary and involves the use of the chain rule We just provide the answers to:

- (a) g'(x) = f'[f(x)]f'(x).
- (b) $g'(x) = f'\{f[f(x)]\}f'[f(x)]f'(x).$

3. Fix $\alpha \in \mathbb{Q}$ and write $\alpha = p/q$ where $p \in \mathbb{Z}$ and $q \in \mathbb{N} - \{0\}$. Recall that for any $x \in (0, +\infty)$

$$x^{\alpha} := (x^p)^{1/q},$$

and that the right-hand side is independent of the choice of p and q such that $\alpha = p/q$. With this information, show that the function $f_{\alpha}: (0, +\infty) \to \mathbb{R}$, defined by

$$f_{\alpha}(x) := x^{\alpha}, \ x \in (0, +\infty),$$

is differentiable at each $x \in (0, +\infty)$ and derive the expression for $f'_{\alpha}(x)$.

Note. You may freely use the fact that the function $(0, +\infty) \ni x \mapsto 1/x^n$, $n \in \mathbb{N} - \{0\}$, is differentiable at each $x \in \mathbb{R} - \{0\}$, and use the expression for its derivative, without proof.

Solution: Fix $q \in \mathbb{N} - \{0\}$. Then, the function $\phi_q : \mathbb{R} \to \mathbb{R}$:

$$\phi_q(x) := x^q, \ x \in \mathbb{R},$$

has been shown to be differentiable on \mathbb{R} and

$$\phi'_q(x) := qx^{q-1}, \ x \in \mathbb{R}.$$

In particular,

$$\phi'_{q}(x) > 0 \quad \forall x \in (0, +\infty).$$

$$\tag{1}$$

Now define $\psi_q: (0, +\infty) \to \mathbb{R}$ as :

$$\psi_q(x) := x^{1/q}, \ x \in (0, +\infty),$$

which, we have discussed in class, is well-defined. In particular, ψ_q is the inverse of $\phi_q|_{(0,+\infty)}$. From this and (1), it follows that ψ_q is differentiable at each $x \in (0, +\infty)$ and

$$\psi_{q}'(x) := \frac{1}{\phi_{q}'[\phi_{q}^{-1}(x)]} \quad \forall x \in (0, +\infty)$$

$$= \frac{1}{q[x^{1/q}]^{q-1}}$$

$$= \frac{x^{-(q-1)/q}}{q} \quad [by \text{ definition}]. \tag{2}$$

Now fix $\alpha \in \mathbb{Q}$ and write $\alpha = p/q$, $p \in \mathbb{Z}$ and $q \in \mathbb{N} - \{0\}$. Write $f_{\alpha} : (0, +\infty) \to \mathbb{R}$ as

$$f_{\alpha}(x) := x^{\alpha} := (x^p)^{1/q}, \ x \in (0, +\infty)$$

The above tells us, in view of the differentiability of ϕ_p and (2) that f'_{α} is differentiable on $(0, +\infty)$ and, by the chain rule,

$$\begin{aligned} f'_{\alpha}(x) &= \psi'_{\alpha}(x^{p}) \, \phi'_{q}(x) \\ &= \frac{(x^{p})^{\frac{1}{q}-1}}{q} \, \cdot \, px^{p-1} \\ &= \frac{p}{q} [x^{p(1-q)}]^{1/q} x^{p-1} \quad \forall x > 0 \quad [\text{ by definition }]. \end{aligned}$$

You can argue from the above that $f'_{\alpha}(x) = \alpha x^{\alpha-1}$, but is not asked of you at this stage.

4. Recall the definition of \cos^{-1} (also denoted by arccos) given in class. Compute $(\cos^{-1})'(y)$ at all those y where it exists.

Solution: Since we know cos is differentiable, by the theorem on differentiability of inverse functions:

$$(\cos^{-1})'(y)$$
 exists for all $y = \cos x, 0 \le x \le \pi$, such that $(\cos)'(x) = -\sin x \ne 0$. (3)

By (3), we have: $(\cos^{-1})'(y)$ exists for all $y \in (-1, 1)$.

We now invoke the formula for the derivative (where it exists) of an inverse function to get

$$(\cos^{-1})'(y) = -\frac{1}{\sin[\cos^{-1}(y)]}, \quad \text{where } y \in (0,\pi).$$
 (4)

Let us write $\theta = \cos^{-1}(y)$. Then,

$$\begin{split} 1 &= \sin^2 \theta + \cos^2 \theta = \sin^2 \theta + y^2 \\ \Rightarrow \sin^2 \theta &= 1 - y^2. \end{split}$$

As range $(\cos^{-1}) = [0, \pi]$ and $\sin|_{(0,\pi)} > 0$, the desired value of $\sin \theta$ in (4) is

$$\sin\theta = \sqrt{1 - y^2}.$$

Substituting this in (4) gives

$$(\cos^{-1})'(y) = -\frac{1}{\sqrt{1-y^2}}, \quad y \in (-1,1).$$

- 5. Let arctan denote the inverse of the restriction of the function tan to the interval $(-\pi/2, \pi/2)$.
 - a) Give the domain and the range of arctan.
 - b) Show that arctan is differentiable at each point in the domain of arctan and compute its derivative.

Sketch of solution: If $\arctan := (\tan |_{(-\pi/2,\pi/2)})^{-1}$, then, by definition

$$range(\arctan) = (-\pi/2, \pi/2)$$

Since, we know that, by definition, $\operatorname{range}(\tan|_{(-\pi/2,\pi/2)}) = \mathbb{R}$, $\operatorname{domain}(\operatorname{arctan}) = \mathbb{R}$.

Now solve part(b) in a similar manner as Problem 4, making use of the identity

$$\sec^2\theta = 1 + \tan^2\theta$$

to get:

$$\arctan'(y) = \frac{1}{1+y^2} \quad \forall y \in \mathbb{R}.$$

6. Let $I \subseteq \mathbb{R}$ be a non-empty open interval and let $f: I \to \mathbb{R}$. Assume that f is continuous on I and is invertible. Show that f(I) is an open interval.

Sketch of solution: This problem requires dealing with several cases.

Case (i) f(I) is a bounded set.

In this case, by the least upper-bound property and, equivalently, the greatest lower-bound property of \mathbb{R} , the numbers $a, b \in \mathbb{R}$,

$$a := \inf f(I)$$
$$b := \sup f(I)$$

exist. We now make the following **Claim:** $a \notin f(I)$ and $b \notin f(I)$. To see this, assume $a \in f(I)$. Now, by a result presented in class, as f is continuous and is invertible, f is either strictly increasing or strictly decreasing. As I is open, we can find an $\varepsilon > 0$ such that $[f^{-1}(a) - \varepsilon, f^{-1}(a) + \varepsilon] \subset I$. Then

> $f(f^{-1}(a) - \varepsilon) < a$ if f is strictly increasing, $f(f^{-1}(a) + \varepsilon) < a$ if f is strictly decreasing,

which contradicts the fact that $a = \inf f(I)$. Similarly, we can show that $b \notin f(I)$, which establish our claim.

By the definitions of a and b, there exist, for each $n \in \mathbb{N} - \{0, 1, 2\}$,

$$a_n \in f(I)$$
 such that $a < a_n < a + (b-a)/n$,
 $b_n \in f(I)$ such that $b > b_n > b - (b-a)/n$.

Observe that since $n \geq 3$,

$$a_n < \frac{b}{n} + \left(1 - \frac{1}{n}\right)a < \frac{b}{n} + \left(1 - \frac{1}{n}\right)a + \left(1 - \frac{2}{n}\right)(b - a)$$
$$= \left(1 - \frac{1}{n}\right)b + \frac{a}{n} < b_n \text{ for each } n = 3, 4, 5, \dots$$

By the Intermediate Value Theorem, for each $y : a_n < y < b_n$, $\exists x \in I$ such that y = f(x). As y was arbitrary, we get

$$[a_n, b_n] \subset I, \ n = 3, 4, 5, \dots$$
(5)

Now, give an argument establishing

$$\bigcup_{n=3}^{\infty} [a_n, b_n] = (a, b)$$

So, by (5), we get $(a,b) \subset f(I)$. But, by the claim above, $((-\infty,a] \cup [b,+\infty)) \cap f(I) = \emptyset$. Hence f(I) = (a,b), an open interval.

Case (ii) f(I) is bounded above but **not** bounded below. By the least upper-bound property, the number

$$b := \sup f(I)$$

exists. Now, by a similar argument as used to establish the **Claim** above, prove the **Claim**^{*} : $b \notin f(I)$. In the present case, there exists, for each $n \in \mathbb{P}$,

$$a_n \in f(I)$$
 s.t. $a_n < -n$,
 $b_n \in f(I)$ s.t. $b > b_n > b - \frac{1}{n}$

Now, argue in a manner analogous to the discussion in Case (i) to get $f(I) = (-\infty, b)$.

To conclude, the arguments for the two remaining cases are along the lines of the arguments above.

7. Let a < b be real numbers, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b]. Show that f([a, b]) is a closed interval.

Solution: By the theorems on continuous functions on [a, b]:

- f is bounded, whence $\sup f$ and $\inf f$ exist in \mathbb{R} .
- inf f =: m and sup f =: M belong to f([a, b]).

If m = M, then f([a, b]) is a singleton, which is a closed interval. If m < M, then, by Intermediate Value Theorem, for each $y \in (m, M)$, $\exists x \in [a, b]$ such that y = f(x). As y was arbitrary, we conclude

$$[m, M] \subseteq f([a, b]) \tag{6}$$

However, by definition of m, M,

$$(-\infty, m) \cup (M, +\infty) \cap f([a, b]) = \varnothing$$

From the above and (6), f([a, b]) = [m, M].

8. Let a_1, a_2, \ldots, a_n be *n* distinct real numbers. Let

$$f(x) = \sum_{j=1}^{n} (x - a_j)^2, \ x \in \mathbb{R}.$$

Show that the least value of f is obtained at the arithmetic mean of a_1, \ldots, a_n .

Sketch of solution: By the fact that $\mathbb{R} = \text{domain}(f)$ has no boundary points, all points of relative extremum satisfy the equation

$$f'(x) = \sum_{j=1}^{n} 2(x - a_j) = 2nx - 2(a_1 + \dots + a_n) = 0.$$
(7)

The above has a unique solution, $x_0 = (a_1 + \cdots + a_n)/2$. The so-called "second-derivative test" is **not** in the syllabus, so we must try a different argument. Observe that by (7)

$$f'(x) > 0 \quad \forall x \in ((a_1 + \dots + a_n)/n, +\infty),$$

$$f'(x) < 0 \quad \forall x \in (-\infty, (a_1 + \dots + a_n)/n).$$

From the above, it is easy to show that $f|_{[x_0,+\infty)}$ is strictly increasing and $f|_{(-\infty,x_0]}$ is strictly decreasing. So:

$$f(x) > f(x_0) \quad \forall x \in [x_0, +\infty) \quad \text{and} \quad f(x) < f(x_0) \quad \forall x \in (-\infty, x_0].$$
(8)

Thus, x_0 is a point of global maximum of f.