UM 101: ANALYSIS & LINEAR ALGEBRA -1
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 7 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: JANUARY 14, 2021

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

Some applications of the Chain Rule: The following three problems pertain to Section 4.10,
which was assigned for self-study.
1-2. Solve Problems 18 and 19 in Section 4.12 of Apostol’s book.
Sketch of solution to Problem 1: By the chain rule and the product rule:
J'(x) = f(a?) + z[f'(2*)(22)] = f(a?) + 22° [ (a?)
g"(x) = f'(a?)(22) + 4 f'(2®) + 222 [f" (%) (2)]
= 6z f'(z%) + 42° [ (2?)

To make the necessary substitutions, it can useful to add a couple of new columns concerning z2.
With that we have the table:

v | a? | f'@®) | f'(=%) | f(2?) | g'(2) | 9" (=)
o[o| 1 2 0 0 0
11 1 1 1 3 | 10
24| 3 0 6 | 30 | 36

Sketch of solution to Problem 2: Problem 19 is elementary and involves the use of the chain rule
We just provide the answers to:

(a) ¢'(z) = ['If(@)]f ().
(b) ¢'(z) = fAAF @B (@)]f ().

3. Fix a € Q and write a = p/q where p € Z and ¢ € N — {0}. Recall that for any z € (0, +00)
% = (xp)l/q,

and that the right-hand side is independent of the choice of p and ¢ such that a = p/q. With this
information, show that the function f, : (0,400) — R, defined by

fa(z) =2, x € (0,+00),

is differentiable at each x € (0, +00) and derive the expression for f! (x).



Note. You may freely use the fact that the function (0,4+o00) 3 z — 1/2", n € N — {0}, is
differentiable at each z € R — {0}, and use the expression for its derivative, without proof.

Solution: Fix ¢ € N — {0}. Then, the function ¢4 : R — R:
dg(z) =2, xR,
has been shown to be differentiable on R and
qb;(x) =qzi !, zeR.

In particular,
dy(x) >0 Ve (0,400). (1)

Now define 1, : (0,400) = R as :

Pg(x) == o/ gz € (0, 4+00),

which, we have discussed in class, is well-defined. In particular, v, is the inverse of ¢q|(0 +o0)" From
this and (1), it follows that 1), is differentiable at each z € (0,400) and
P (x) = b Vo e (0,400)
T glegt(@)] ’
_ 1
o q[xl/Q]lI*l
r—(a-1)/q
= ——— [ by definition]. (2)
q

Now fix @ € Q and write & = p/q, p € Z and ¢ € N — {0}. Write f, : (0,+00) — R as
falz) ==z = ()9, z € (0,+00).

The above tells us, in view of the differentiability of ¢, and (2) that f, is differentiable on (0, +o00)
and, by the chain rule,
fo(@) = ¢4 (a?) ¢ (x)

@)yt
= . pxp

= E[xp(lfq)]l/qxpfl Vz >0 [by definition].
q

You can argue from the above that f/(z) = az®"!, but is not asked of you at this stage.

4. Recall the definition of cos™! (also denoted by arccos) given in class. Compute (cos_l), (y) at
all those y where it exists.

Solution: Since we know cos is differentiable, by the theorem on differentiability of inverse functions:

(Cosfl)/ (y) exists for all y = cosx, 0 < x <, such that (cos)’ (x) = —sinx # 0. (3)



By (3), we have: (cosfl)/ (y) exists for all y € (—1,1).

We now invoke the formula for the derivative(where it exists) of an inverse function to get

(COS_l)/ (y) = _sin[coi_l(y)]’ where y € (0, 7). (4)

Let us write § = cos™!(y). Then,
1 = sin? 0 + cos® 6 = sin® 6 + 3>
= sin?f =1 —y%
As range(cos™!) = [0, 7] and sin (g 5 > 0, the desired value of sin 6 in (4) is

sinf = /1 — 2.

Substituting this in (4) gives

(cos_l)/ (y) = =, Y€ (—=1,1).

5. Let arctan denote the inverse of the restriction of the function tan to the interval (—m/2,7/2).

a) Give the domain and the range of arctan.

b) Show that arctan is differentiable at each point in the domain of arctan and compute its

derivative.
Sketch of solution: If arctan := (tan |(77r/2,7r/2))_17 then, by definition
range(arctan) = (—7/2,7/2).
Since, we know that, by definition, range(tan ](,W/QJ/Q)) = R, domain(arctan) = R.
Now solve part(b) in a similar manner as Problem 4, making use of the identity

sec’f =1+ tan’6

to get:

1
arctan’(y) = . Vy € R.
Y

6. Let I C R be a non-empty open interval and let f : I — R. Assume that f is continuous on [
and is invertible. Show that f(I) is an open interval.

Sketch of solution: This problem requires dealing with several cases.

Case (i) f(I) is a bounded set.
In this case, by the least upper-bound property and, equivalently, the greatest lower-bound property

of R, the numbers a,b € R,

a :=inf f(I)
b:=sup f(I)



exist. We now make the following Claim: a ¢ f(I) and b ¢ f(I). To see this, assume a € f([).
Now, by a result presented in class, as f is continuous and is invertible, f is either strictly increasing
or strictly decreasing. As I is open, we can find an € > 0 such that [f~(a) — &, f1(a) +¢] C I.
Then

f(f~Y(a) —€) < aif f is strictly increasing,

f(f~Y(a) +¢€) < aif fis strictly decreasing,
which contradicts the fact that @ = inf f(I). Similarly, we can show that b ¢ f(I), which establish
our claim.

By the definitions of a and b, there exist, for each n € N — {0, 1, 2},

an € f(I) such that a < a, < a+ (b—a)/n,
bn, € f(I) such that b > b, > b— (b—a)/n.
Observe that since n > 3,

b 1 b 1 2

1
= (1——)1)—1—g < b, for each n = 3,4,5, ...
n n

By the Intermediate Value Theorem, for each y : a, < y < b,, 2 € I such that y = f(x). Asy
was arbitrary, we get

[an,bn] C I, n=3,4,5,... (5)
Now, give an argument establishing
oo
U lan, bn] = (a,b).
n=3

So, by (5), we get (a,b) C f(I). But, by the claim above, ((—o0,a] U [b,+00)) N f(I) = @. Hence
f(I) = (a,b), an open interval.

Case (ii) f(I) is bounded above but not bounded below.

By the least upper-bound property, the number

b:=sup f(I)

exists. Now, by a similar argument as used to establish the Claim above, prove the Claim* : b ¢
f(I). In the present case, there exists, for each n € P,

an € f(I) s.t. a, < —n,

1
bp € f(I) st. b>by >b— —.

n
Now, argue in a manner analogous to the discussion in Case (i) to get f(I) = (—00,b).

To conclude, the arguments for the two remaining cases are along the lines of the arguments
above.

7. Let a < b be real numbers, and let f : [a,b] — R be continuous on [a,b]. Show that f([a,b]) is
a closed interval.

Solution: By the theorems on continuous functions on [a, b]:



e f is bounded, whence sup f and inf f exist in R.
e inf f =:m and sup f =: M belong to f([a,b]).

If m = M, then f([a,b]) is a singleton, which is a closed interval. If m < M, then, by Intermediate
Value Theorem, for each y € (m, M), 3z € [a,b] such that y = f(x). As y was arbitrary, we
conclude

[m, M] € f([a,b]) (6)

However, by definition of m, M,
(_Ooﬁm) U (Mv +OO) N f([ay b]) = d.
From the above and (6), f([a,b]) = [m, M].

8. Let a1,a9,...,a, be n distinct real numbers. Let

n

flx) = Z(m—aj)Q, z eR.

j=1
Show that the least value of f is obtained at the arithmetic mean of aq, ..., a,.

Sketch of solution: By the fact that R = domain(f) has no boundary points, all points of relative
extremum satisfy the equation

f(z) = ZQ(Q?—CLJ') =2nx —2(a;1+---+a,) =0. (7)
j=1

The above has a unique solution, g = (a1 + - - - + a,,)/2. The so-called “second-derivative test” is
not in the syllabus, so we must try a different argument. Observe that by (7)

f'(x)>0 Ve ((ar+-+ay)/n,+00),
f'(x) <0 Vae (—oo,(ar+-+an)/n).

From the above, it is easy to show that f \[xO,JrOO) is strictly increasing and f ](,OOM] is strictly
decreasing. So:

f(x) > f(zo) VY € [x9,+0) and f(x) < f(xo) Va € (—o0,xo]. (8)

Thus, zg is a point of global maximum of f.



