
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 7 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: JANUARY 14, 2021

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

Some applications of the Chain Rule: The following three problems pertain to Section 4.10,
which was assigned for self-study.

1–2. Solve Problems 18 and 19 in Section 4.12 of Apostol’s book.

Sketch of solution to Problem 1: By the chain rule and the product rule:

g′(x) = f(x2) + x[f ′(x2)(2x)] = f(x2) + 2x2f ′(x2)

g′′(x) = f ′(x2)(2x) + 4xf ′(x2) + 2x2[f ′′(x2)(2x)]

= 6xf ′(x2) + 4x3f ′′(x2)

To make the necessary substitutions, it can useful to add a couple of new columns concerning x2.
With that we have the table:

x x2 f ′(x2) f ′′(x2) f(x2) g′(x) g′′(x)

0 0 1 2 0 0 0

1 1 1 1 1 3 10

2 4 3 0 6 30 36

Sketch of solution to Problem 2: Problem 19 is elementary and involves the use of the chain rule
We just provide the answers to:

(a) g′(x) = f ′[f(x)]f ′(x).

(b) g′(x) = f ′{f [f(x)]}f ′[f(x)]f ′(x).

3. Fix α ∈ Q and write α = p/q where p ∈ Z and q ∈ N− {0}. Recall that for any x ∈ (0,+∞)

xα := (xp)1/q ,

and that the right-hand side is independent of the choice of p and q such that α = p/q. With this
information, show that the function fα : (0,+∞)→ R, defined by

fα(x) := xα, x ∈ (0,+∞),

is differentiable at each x ∈ (0,+∞) and derive the expression for f ′α(x).
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Note. You may freely use the fact that the function (0,+∞) 3 x 7→ 1/xn, n ∈ N − {0}, is
differentiable at each x ∈ R− {0}, and use the expression for its derivative, without proof.

Solution: Fix q ∈ N− {0}. Then, the function φq : R→ R:

φq(x) := xq, x ∈ R,

has been shown to be differentiable on R and

φ′q(x) := qxq−1, x ∈ R.

In particular,

φ′q(x) > 0 ∀x ∈ (0,+∞). (1)

Now define ψq : (0,+∞)→ R as :

ψq(x) := x1/q, x ∈ (0,+∞),

which, we have discussed in class, is well-defined. In particular, ψq is the inverse of φq|(0,+∞). From

this and (1), it follows that ψq is differentiable at each x ∈ (0,+∞) and

ψ′q(x) :=
1

φ′q[φ
−1
q (x)]

∀x ∈ (0,+∞)

=
1

q[x1/q]q−1

=
x−(q−1)/q

q
[ by definition ]. (2)

Now fix α ∈ Q and write α = p/q, p ∈ Z and q ∈ N− {0}. Write fα : (0,+∞)→ R as

fα(x) := xα := (xp)1/q, x ∈ (0,+∞).

The above tells us, in view of the differentiability of φp and (2) that f ′α is differentiable on (0,+∞)
and, by the chain rule,

f ′α(x) = ψ′α(xp)φ′q(x)

=
(xp)

1
q
−1

q
· pxp−1

=
p

q
[xp(1−q)]1/qxp−1 ∀x > 0 [ by definition ].

You can argue from the above that f ′α(x) = αxα−1, but is not asked of you at this stage.

4. Recall the definition of cos−1 (also denoted by arccos) given in class. Compute
(
cos−1

)′
(y) at

all those y where it exists.

Solution: Since we know cos is differentiable, by the theorem on differentiability of inverse functions:(
cos−1

)′
(y) exists for all y = cosx, 0 ≤ x ≤ π, such that (cos)′ (x) = − sinx 6= 0. (3)

2



By (3), we have:
(
cos−1

)′
(y) exists for all y ∈ (−1, 1).

We now invoke the formula for the derivative(where it exists) of an inverse function to get(
cos−1

)′
(y) = − 1

sin [cos−1(y)]
, where y ∈ (0, π). (4)

Let us write θ = cos−1(y). Then,

1 = sin2 θ + cos2 θ = sin2 θ + y2

⇒ sin2 θ = 1− y2.

As range
(

cos−1
)

= [0, π] and sin |(0,π) > 0, the desired value of sin θ in (4) is

sin θ =
√

1− y2.

Substituting this in (4) gives(
cos−1

)′
(y) = − 1√

1− y2
, y ∈ (−1, 1).

5. Let arctan denote the inverse of the restriction of the function tan to the interval (−π/2, π/2).

a) Give the domain and the range of arctan.

b) Show that arctan is differentiable at each point in the domain of arctan and compute its
derivative.

Sketch of solution: If arctan :=
(
tan |(−π/2,π/2)

)−1
, then, by definition

range(arctan) = (−π/2, π/2).

Since, we know that, by definition, range
(

tan |(−π/2,π/2)
)

= R, domain(arctan) = R.

Now solve part(b) in a similar manner as Problem 4, making use of the identity

sec2 θ = 1 + tan2 θ

to get:

arctan′(y) =
1

1 + y2
∀y ∈ R.

6. Let I ⊆ R be a non-empty open interval and let f : I → R. Assume that f is continuous on I
and is invertible. Show that f(I) is an open interval.

Sketch of solution: This problem requires dealing with several cases.

Case (i) f(I) is a bounded set.
In this case, by the least upper-bound property and, equivalently, the greatest lower-bound property
of R, the numbers a, b ∈ R,

a := inf f(I)

b := sup f(I)
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exist. We now make the following Claim: a /∈ f(I) and b /∈ f(I). To see this, assume a ∈ f(I).
Now, by a result presented in class, as f is continuous and is invertible, f is either strictly increasing
or strictly decreasing. As I is open, we can find an ε > 0 such that [f−1(a) − ε, f−1(a) + ε] ⊂ I.
Then

f(f−1(a)− ε) < a if f is strictly increasing,

f(f−1(a) + ε) < a if f is strictly decreasing,

which contradicts the fact that a = inf f(I). Similarly, we can show that b /∈ f(I), which establish
our claim.

By the definitions of a and b, there exist, for each n ∈ N− {0, 1, 2},

an ∈ f(I) such that a < an < a+ (b− a)/n,

bn ∈ f(I) such that b > bn > b− (b− a)/n.

Observe that since n ≥ 3,

an <
b

n
+
(
1− 1

n

)
a <

b

n
+
(
1− 1

n

)
a+

(
1− 2

n

)
(b− a)

=
(
1− 1

n

)
b+

a

n
< bn for each n = 3, 4, 5, . . .

By the Intermediate Value Theorem, for each y : an < y < bn, ∃x ∈ I such that y = f(x). As y
was arbitrary, we get

[an, bn] ⊂ I, n = 3, 4, 5, . . . (5)

Now, give an argument establishing

∞⋃
n=3

[an, bn] = (a, b).

So, by (5), we get (a, b) ⊂ f(I). But, by the claim above, ((−∞, a] ∪ [b,+∞)) ∩ f(I) = ∅. Hence
f(I) = (a, b), an open interval.

Case (ii) f(I) is bounded above but not bounded below.
By the least upper-bound property, the number

b := sup f(I)

exists. Now, by a similar argument as used to establish the Claim above, prove the Claim∗ : b /∈
f(I). In the present case, there exists, for each n ∈ P,

an ∈ f(I) s.t. an < −n,

bn ∈ f(I) s.t. b > bn > b− 1

n
.

Now, argue in a manner analogous to the discussion in Case (i) to get f(I) = (−∞, b).
To conclude, the arguments for the two remaining cases are along the lines of the arguments

above.

7. Let a < b be real numbers, and let f : [a, b] → R be continuous on [a, b]. Show that f
(
[a, b]

)
is

a closed interval.

Solution: By the theorems on continuous functions on [a, b]:
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• f is bounded, whence sup f and inf f exist in R.

• inf f =: m and sup f =: M belong to f([a, b]).

If m = M , then f([a, b]) is a singleton, which is a closed interval. If m < M , then, by Intermediate
Value Theorem, for each y ∈ (m,M), ∃x ∈ [a, b] such that y = f(x). As y was arbitrary, we
conclude

[m,M ] ⊆ f([a, b]) (6)

However, by definition of m,M ,

(−∞,m) ∪ (M,+∞) ∩ f([a, b]) = ∅.

From the above and (6), f([a, b]) = [m,M ].

8. Let a1, a2, . . . , an be n distinct real numbers. Let

f(x) =
n∑
j=1

(x− aj)2, x ∈ R.

Show that the least value of f is obtained at the arithmetic mean of a1, . . . , an.

Sketch of solution: By the fact that R = domain(f) has no boundary points, all points of relative
extremum satisfy the equation

f ′(x) =
n∑
j=1

2(x− aj) = 2nx− 2(a1 + · · ·+ an) = 0. (7)

The above has a unique solution, x0 = (a1 + · · ·+ an)/2. The so-called “second-derivative test” is
not in the syllabus, so we must try a different argument. Observe that by (7)

f ′(x) > 0 ∀x ∈ ((a1 + · · ·+ an)/n,+∞),

f ′(x) < 0 ∀x ∈ (−∞, (a1 + · · ·+ an)/n).

From the above, it is easy to show that f |[x0,+∞) is strictly increasing and f |(−∞,x0] is strictly
decreasing. So:

f(x) > f(x0) ∀x ∈ [x0,+∞) and f(x) < f(x0) ∀x ∈ (−∞, x0]. (8)

Thus, x0 is a point of global maximum of f .
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