
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 8 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: JANUARY 21, 2021

1. Consider the polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a0,

and assume that ana0 < 0. Show that the equation p(x) = 0 has at least one positive root.

Solution: The condition ana0 < 0 implies that an and a0 have opposite signs. We may assume
w.l.o.g. that a0 < 0 and an > 0, because, if not, then the argument below can be applied to −p to
give the same conclusion. By our assumption:

p(0) = a0 < 0. (1)

Observe that

p(x) = anx
n +

n−1∑
j=0

ajx
j ≥ anxn −

n−1∑
j=0

|aj |xj ∀x > 0

because −|aj |xj ≤ ajxj whenever x > 0 (and j = 0, 1, . . . , n− 1). Thus, from the above inequality,
we have

p(x) ≥ anxn −
n−1∑
j=0

|aj |xj ≥ anxn −
( n−1∑
j=0

|aj |
)
xn−1 ∀x ≥ 1. (2)

Now, since we have an > 0, by assumption,

anx
n −

( n−1∑
j=0

|aj |
)
xn−1 > 0

⇐⇒ x >

∑n−1
j=0 |aj |
an

or x < 0.

Now, pick any x0 > max
{

1,
∑n−1

j=0 |aj |
an

}
. From the above fact and (2), we have

p(x0) > 0. (3)

We now apply the Intermediate Value Theorem to p|[0,x0]. By (1) and (3), we get that ∃ c ∈ (0, x0)
such that p(c) = 0.

2. Show that the equation

x2 = x sin(x) + cos(x)

has exactly two roots in R.

Hint. Consider what will happen if there are three or more roots.
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Sketch of solution: Consider f : R→ R given by f(x) = x2 − x sin(x)− cos(x). We compute:

f ′(x) = 2x− x cos(x).

Suppose f has n distinct roots, call them a1 < a2 < . . . an, and assume n ≥ 3. By applying Rolle’s
theorem to

f ′|[aj ,aj+1], j = 1, 2, . . . , n− 1,

we conclude that f ′ has at least one zero in (aj , aj+1), j = 1, 2, . . . , n − 1. Hence, f ′ has at least
n− 1 ≥ 2 zeros. But,

f ′(x) = 0 ⇐⇒ 2x− x cos(x) = 0

⇐⇒
(
2− cos(x)

)
x = 0

⇐⇒ x = 0. (4)

There are no other zeros because 2− cos(x) ≥ 2− | cos(x)| ≥ 1 ∀x ∈ R. But (4) contradicts the
assertion that f ′ must have at least 2 zeros. Hence our assumption must be false, whence f must
have at most 2 zeros.

Now observe that

f(π/2) = f(−π/2) =
π

2

(π
2
− 1
)
> 0,

f(0) = −1 < 0.

Now, apply the Intermediate Value Theorem to f |[−π/2,0] and f |[0,π/2] to conclude that f has at
least 2 zeros. Together with the conclusion of the last paragraph, the desired conclusion follows.

3. Let a < b be real numbers and let s, t : [a, b] → R be two simple functions. Go through the
following outline to show that s+ t is also a simple function.

(a) Let

P1 : a = x0 < x1 < x2 < · · · < xn = b,

P2 : a = y0 < y1 < y2 < · · · < ym = b

be partitions that determine s and t, respectively. Consider the partition P1 ∪ P2 (which is
called the common refinement of P1 and P1), and denote it as

P1 ∪ P2 : a = z0 < z1 < z2 < · · · < zN = b.

Fix an index l such that 1 ≤ l ≤ N . You may assume without proof (the proof is annoying,
involving the consideration of several cases) that there exist unique integers i(l), j(l), 1 ≤
i(l) ≤ n and 1 ≤ j(l) ≤ m such that

(zl−1, zl) =
(
xi(l)−1, xi(l)

)
∩
(
yj(l)−1, yj(l)

)
.

(b) Let σ1, . . . , σn be the values taken by s on the open sub-intervals given by P1 and τ1, . . . τm
be the values taken by t on the open sub-intervals given by P2. Use Part (a) and the latter
information to show that s+ t is also a step function.
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Solution: We consider the partition P1 ∪ P2 and let zl, l = 0, . . . , N , be as given by part (a). As

(zl−1, zl) =
(
xi(l)−1, xi(l)

)
∩
(
yj(l)−1, yj(l)

)
,

we conclude from the data given that

s(t) = σi(l) ∀ t ∈ (zl−1, zl),

t(x) = τj(l) ∀x ∈ (zl−1, zl).

Thus:
(s+ t)(x) = σi(l) + τj(l) ∀x ∈ (zl−1, zl) and l = 1, 2, . . . , N,

which precisely fits the definition of a step function.

4. Solve parts (c)–(f) of Problem 1 of Section 1.15 of Apostol.

Sketch of solution: The key to solving these problems is to establish that each of the functions is
a step function. Then

∫ b
a f(x) dx in each case is given by the formula for the integral.

We will present a solution of just one of the problems: Part 1(c). Note:

[x] =


−1, if − 1 ≤ x ≤ 0,

0, if 0 ≤ x ≤ 1,

1, if 1 ≤ x ≤ 2,

2, if 2 ≤ x ≤ 3,

[x+ 1/2] =



−1, if − 1 ≤ x ≤ −1
2 ,

0, if − 1
2 ≤ x ≤

1
2 ,

1, if 1
2 ≤ x ≤

3
2 ,

2, if 3
2 ≤ x ≤

5
2 ,

3, if 5
2 ≤ x ≤ 3.

This suggests the following defining partition for f(x) := [x] + [x+ 1
2 ], −1 ≤ x ≤ 2 :

P : −1 < −1/2 < 0 < · · · < 5/2 < 3 ≡ x0 < x1 < . . . x8,

for the values of f(x) on the j-th open subinterval are −2,−1, 0, 1, . . . , 5, respectively, j = 1, . . . , 8.
By definition ∫ 3

−1
f(x) dx =

8∑
j=1

(
f |(xj−1,xj)

)
(x)∆xj

= 6.

5. Compute the integrals
∫ 3
0 [x2] dx and

∫ 9
0 [
√
x ] dx. (As in the previous problem, given x ∈ R, [x]

denotes the greatest integer≤ x.)

Sketch of solution: The same insight as for Problem 4 applies to this problem as well. The integrals
are elementary. The detailed solution above to part 1(c) of the problem set 1.15 in Apostol gives
you a template for presenting your solution systematically.
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