UM 101: ANALYSIS & LINEAR ALGEBRA – I "AUTUMN" 2020 HOMEWORK 9

Instructor: GAUTAM BHARALI

Assigned: JANUARY 28, 2021

- **1.** Let a < b be real numbers and let $s : [a, b] \to \mathbb{R}$ be a step function.
 - a) Prove that s is integrable according to the abstract definition given in terms of upper and the lower integrals.
 - b) You have been given a **formula** for the integral of a step function on [a, b]. Show that the value of the integral of s given by the above-mentioned definition agrees with that given by the formula.

2. Let f be a function defined on an interval [-A, A], A > 0, and suppose $f|_{[0,A]}$ is Riemann integrable. Suppose f is an even function (i.e., f(x) = f(-x) for any $x \in [-A, A]$). Prove that f is integrable and show that

$$\int_{-A}^{A} f(x)dx = 2\int_{0}^{A} f(x)dx.$$

3. Let a < b be real numbers and let $f : [a, b] \to \mathbb{R}$ be Riemann integrable on [a, b]. Show that for any $c, d \in \mathbb{R}$ such that $a \leq c < d \leq b$, $f|_{[c,d]}$ is Riemann integrable on [c, d].

4. Let a < b be real numbers. Use the fact that if a function $f : [a, b] \to \mathbb{R}$ is continuous, then it is **uniformly** continuous, to prove the Small Span Theorem.

5. Let $n \in \mathbb{N} - \{0, 1\}$. Define $f_n : \mathbb{R} \to \mathbb{R}$ as $f_n(x) = x^n$ for each $x \in \mathbb{R}$. Show that f_n is not uniformly continuous.