
UM 101 :ANALYSIS & LINEAR ALGEBRA– I
“AUTUMN” 2020

HINTS/SKETCH OF SOLUTIONS TO HOMEWORK 9 PROBLEMS

Instructor: GAUTAM BHARALI Assigned: JANUARY 28, 2021

PLEASE NOTE: Only in rare circumstances will complete solutions be provided! What
follows are hints for solving a problem or sketches of the solutions meant to help you through the
difficult parts (or, sometimes, to introduce a nice trick). You are encouraged to use these to obtain
complete solutions.

1. Let a < b be real numbers and let s : [a, b]→ R be a step function.

a) Prove that s is integrable according to the abstract definition given in terms of upper and
the lower integrals.

b) You have been given a formula for the integral of a step function on [a, b]. Show that the
value of the integral of s given by the above-mentioned definition agrees with that given by
the formula.

Solution: By definition of the sets Sf and Tf for any bounded function f : [a, b]→ R, we have

(∗)
∫ b

a
s(x)dx ∈ Ss and Ts,

where (∗)∫ b
a s(x)dx denotes the integral of s given by the formula for step functions. Thus, by

definition of I(s) and Ī(s)

(∗)
∫ b

a
s(x)dx ≤ I(s) ≤ Ī(s) ≤

(∗)
∫ b

a
s(x)dx.

Therefore, I(s) = Ī(s), which simultaneously shows that s is Riemann integrable and that

(∗)
∫ b

a
s(x)dx =

∫ b

a
s(x)dx.

2. Let f be a function defined on an interval [−A,A], A > 0, and suppose f |[0,A] is Riemann
integrable. Suppose f is an even function (i.e., f(x) = f(−x) for any x ∈ [−A,A]). Prove that f
is integrable and show that ∫ A

−A
f(x)dx = 2

∫ A

0
f(x)dx.

Sketch of solution: Since [−A,A] = [−A, 0]∪ [0, A] and f |[0,A] is Riemann integrable, if we can show
that f |[−A,0] is Riemann integrable, then we can use the theorem on additivity w.r.t. interval of
integration. Now, follow the proof of Theorem 1.19 (which has not been mentioned in the class and,
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thus, requires an argument) to establish that f |[−A,0] is Riemann integrable and the first equality
in (1). We therefore get:∫ A

0
f(x)dx = −

∫ −A

0
f(−x)dx =

∫ 0

−A
f(−x)dx =

∫ 0

−A
f(x)dx. (1)

By additivity w.r.t. interval of integration, we have∫ A

−A
f(x)dx =

∫ 0

−A
f(x)dx+

∫ A

0
f(x)dx

= 2

∫ A

0
f(x)dx [ by (1) ].

3. Let a < b be real numbers and let f : [a, b]→ R be Riemann integrable on [a, b]. Show that for
any c, d ∈ R such that a ≤ c < d ≤ b, f |[c,d] is Riemann integrable on [c, d].

Solution: By definitions of I(f) and Ī(f), given any n ∈ N − {0}, there exist step functions
sn, tn : [a, b]→ R such that

I(f)− 1

2n
<

∫ b

a
sn(x)dx ≤ I(f),

Ī(f) ≤
∫ b

a
tn(x)dx < Ī(f) +

1

2n
.

Thus,

Ī(f)− I(f) ≤
∫ b

a
tn(x)dx−

∫ b

a
sn(x)dx < I(f)− Ī(f) +

1

n
,

⇒ 0 ≤
∫ b

a
tn(x)dx−

∫ b

a
sn(x)dx <

1

n
, (2)

where (2) follows from the fact that Ī(f) = I(f), since f is Riemann integrable. From (2) and
linearity, we have

0 ≤
∫ b

a
(tn − sn)(x)dx <

1

n
. (3)

We know that (tn − sn) is a step function, so the auxiliary function

˜(tn − sn)(x) :=

{
(tn − sn)(x), if x ∈ [c, d],

0, otherwise,

is a step function. By the choices of sn and tn, we know:

sn ≤ f ≤ tn
⇒ tn − sn ≥ 0

⇒ (tn − sn) ≥ ˜(tn − sn) ≥ 0.
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So, by (3) and the Comparison theorem:

0 ≤
∫ b

a

˜(tn − sn)(x)dx <
1

n

⇒ 0 ≤
∫ d

c
(tn|[c,d] − sn|[c,d])(x)dx <

1

n
[ by additivity w.r.t. interval of integration ]

⇒ 0 ≤
∫ d

c

(
tn|[c,d]

)
(x)dx−

∫ d

c

(
sn|[c,d]

)
(x)dx <

1

n
[ by additivity ]. (4)

Since, sn|[c,d] ≤ f |[c,d] and tn|[c,d] ≥ f |[c,d], (4) gives

0 ≤ Ī(f |[c,d])− I(f |[c,d]) <
1

n
.

Since the above is true for arbitrary n ∈ N− {0}, we conclude f |[c,d] is Riemann integrable.

4. Let a < b be real numbers. Use the fact that if a function f : [a, b]→ R is continuous, then it is
uniformly continuous, to prove the Small Span Theorem.

Solution: Fix ε > 0. Uniform continuity implies that ∃ δ(ε) > 0 such that

|f(x)− f(y)| < ε whenever x, y ∈ [a, b] and |x− y| < δ(ε). (5)

Define

N :=
[b− a
δ(ε)

]
+ 1, ∆ :=

b− a
N

,

where [·] denotes the greatest integer function. Let us now define the partition

Pε : a = x0 < x1 < x2 < · · · < xN = b,

where xj = a+ j∆, j = 1, 2, . . . , N. By construction:

x, y ∈ [xj−1, xj ] =⇒ |x− y| ≤ b− a
N

< δ(ε) ∀ j = 1, 2, . . . , N. (6)

As f is continuous, for each j = 1, 2, . . . , N, ∃αj , βj ∈ [xj−1, xj ] such that

Mj = f(αj) and mj = f(βj)

(where mj and Mj have the same meanings as in the lectures). By (6), |αj − βj | < δ(ε), whence,
by (5), 0 ≤Mj −mj < ε for each j = 1, 2, . . . , N.

5. Let n ∈ N − {0, 1}. Define fn : R → R as fn(x) = xn for each x ∈ R. Show that fn is not
uniformly continuous.

Sketch of solution: The condition for uniform continuity is negated as follows:

∃ ε0 > 0 such that for each δ > 0, ∃xδ, yδ ∈ R (the subscripts indicate that, in general, xδ
and yδ depend on δ) such that

|xδ − yδ| < δ and |f(xδ)− f(yδ)| ≥ ε0. (7)

Fix n ∈ N− {0, 1}. Use the identity

xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ yn−1)

to show that (7) holds with ε0 = 1.
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