UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2025 HOMEWORK 3

Instructor: GAUTAM BHARALI

Assigned: JANUARY 17, 2025

1. Consider the following subsets of $\mathbb{N} \times \mathbb{N}$:

diag := {
$$(m, m) : m \in \mathbb{N}$$
},
 $\mathcal{P} := {(m, n) \in \mathbb{N} \times \mathbb{N} : m \cdot m \le n}$,

where " \leq " denotes the "usual order" on \mathbb{N} (which \mathbb{N} inherits from \mathbb{Z}), and " \cdot " denotes Peano multiplication on \mathbb{N} . Define:

for
$$m, n \in \mathbb{N}, \ m \preceq n \iff (m, n) \in (\mathsf{diag} \cup \mathcal{P}).$$

Is \leq an order on \mathbb{N} ? Give justifications.

2. Show, from the definitions of integer addition and multiplication, that (-1)a = -a for every a in \mathbb{Z} , where -a denotes the additive inverse of a.

3. If $m/n \in \mathbb{Q}$, where $m \in \mathbb{Z}$ and $n \in \mathbb{Z} \setminus \{0\}$, give an expression for -(m/n) in terms of m and n, where -(m/n) denotes the additive inverse of m/n. Now show that (-1)a = -a for every a in \mathbb{Q} .

4. Formally show that the set

$$\{x \in \mathbb{Q} : x^2 < 2\}$$

has no least upper bound in \mathbb{Q} . To do so:

- Recall, here, that for rational numbers a and b, $a < b \iff b a \in \mathbb{Q}^+$.
- Quote explicitly suitable facts from Propositions 1.14, 1.15, 1,16, and 1.18 (where required) from Chapter 1 of Rudin's book, in support of your argument.
- **5.** Define the following relation on \mathbb{R} :

for two cuts
$$\alpha, \beta, \ \alpha \leq \beta \iff \begin{cases} \alpha = \beta, \ \text{or} \\ \alpha \lneq \beta. \end{cases}$$

Show that \leq is a total order on \mathbb{R} . You may freely use **without proof** facts about sets given on page 16 of Apostol's *Calculus: Vol.* 1.

6. If α is a positive cut, then we define (here < is as in Problem 4)

$$\alpha^{-1} := \{ x \in \mathbb{Q} \setminus \{0\} : \exists r \in \mathbb{Q} \text{ such that } r < 1/x \text{ and } r \notin \alpha \} \cup 0^* \cup \{0\}.$$

$$\tag{1}$$

- (a) Propose a definition for α^{-1} when α is a negative cut.
- (b) Assuming that α^{-1} as defined in (1) is a cut, show that α^{-1} is the multiplicative inverse of α (for α a positive cut).

(c) Assuming that the set presented in (a) is a cut, and assuming the conclusion of (b), show that the set defined in (a) is the multiplicative inverse of a negative cut.

7. Let (\mathbb{F}, \leq) be an ordered field having the least upper-bound property. Let A be a non-empty subset of \mathbb{F} that is **bounded below.** Write $-A := \{-x : x \in A\}$. Show that $\sup(-A)$ exists, and show that

$$\inf A = -\sup(-A).$$

The following anticipates material to be introduced in the lecture on January 20.

8. Using the Archimedean property of \mathbb{R} , prove that if $x, y \in \mathbb{R}$ and x < y, then there exists $q \in \mathbb{Q}$ such that x < q < y.