UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2025 HOMEWORK 5

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 1, 2025

1. Let X be a metric space and let A and B be two disjoint compact subsets of X. Show that there exist open sets U and V with $A \subset U$ and $B \subset V$ such that $U \cap V = \emptyset$.

2. Let X be a metric space and let $A \subseteq X$. Let x_0 be a limit point of A. Show that:

- (a) For each r > 0, $B(x_0, r)$ contains infinitely many points of A.
- (b) There exists a set $S \subseteq A$ such that S is infinite and such that x_0 is the **only** limit point of S.

3. Let X be an infinite set. Endow X with the 0–1 metric. Give a necessary and sufficient condition for a subset $A \subseteq X$ to be compact.

4. Let X be a metric space. Let K_1, K_2, K_3, \ldots be a sequence of non-empty compact subsets of X such that $K_n \supseteq K_{n+1}$ for all $n \in \mathbb{N} \setminus \{0\}$. Show that $\bigcap_{n \ge 1} K_n \neq \emptyset$.

Given a metric space X, we say that a set $A \subseteq X$ is dense in X if $\overline{A} = X$.

5. (Note: This problem was a part of Homework 4) Show that the *density property* of \mathbb{Q} in \mathbb{R} (i.e., the property described in Problem 8 of Homework 3) is equivalent to saying that \mathbb{Q} is dense in \mathbb{R} equipped with the standard metric.

The next two problems anticipate material to be introduced on February 3–5.

6. Fix $n \in \mathbb{N} \setminus \{0\}$ and show that \mathbb{R}^n has a countable dense subset.

Remark. A metric space that contains a countable dense subset is called a *separable metric space*.

7. Show that a compact metric space is separable.