EUCLIDEAN GEOMETRY BY
HIGH-PERFORMANCE SOLVERS?

SIDDHARTHA GADGIL AND ANAND TADIPATRI

ABSTRACT. Tarski showed in the 1950s that (first-order) questions in Eu-
clidean geometry can be answered algorithmically. Algorithms for doing this
have greatly improved over the decades, but still have high complexity (in
terms of time taken). We experiment with using state-of-the art software,
specifically so called SMT Solvers, to see how practical it is to prove classical
Fuclidean geometry results in this way.

Computers are able to solve an increasing range of problems, many of which
were believed not long ago to require human intelligence and creativity. Yet there
are fundamental limitations to what problems can be solved algorithmically. In
particular, by results of Godel, Turing, Church and others, there is no computer
program that, given a mathematical statement as input, either gives a proof or
(correctly) says that the statement is false.

Indeed, we cannot algorithmically solve even a seemingly simple class of prob-
lems: deciding whether (systems of) so called Diophantine Equations have solu-
tions. A Diophantine equation is a polynomial equation with integer coeflicients,
such as n? + m2 = 3 or 3n%2 4+ Tm? = 3. Solutions of such equations are assign-
ments of integers to the variables so that the equations (or systems of equations)
are satisfied. We say that a Diophantine equation (or a system of Diophantine
equations) is satisfiable if it has (integral) solutions. For instance, we can see that
the Diophantine equation n? +m? = 3 is not satisfiable, since there are no integers
n and m with n? +m? = 3, even though there are many pairs of real numbers that
satisfy this — these indeed form a circle (renaming the variables to x and y gives
the familiar equation 22 + y? = 3 of a circle with radius v/3).

As a result of combined work of Martin Davis, Yuri Matiyasevich, Hilary Put-
nam and Julia Robinson during the 1950s and 1960s, we know that there is no
algorithm (i.e., computer program) to which we can input the coefficients of a
Diophantine equation and which will tell us (correctly) whether the equation has
integral solutions.

Yet, the above results should not be over-interpreted to say that proofs cannot
be found by programs. Indeed if we turn from numbers to the other classical source
of mathematics — Fuclidean geometry, the situation is different. Using coordinate
geometry, geometric figures can be described by equations, and geometric prob-
lems can be translated (as we illustrate in this article) into satisfiability problems
for systems of real equations and inequations. Thus, we associate to a geometric
problem equations and inequations with real coefficients, with satisfiability mean-
ing that we can assign real values to the variables so the equations and inequations
are satisfied. A geometric statement is universally false (i.e., the statement never

Date: May 3, 2021.

2 SIDDHARTHA GADGIL AND ANAND TADIPATRI

holds) if and only if the corresponding equations and inequations are unsatisfiable.
Thus, to prove a theorem in geometry, one can translate the negation of the the-
orem statement into a system of equations and inequations and verify that it is
unsatisfiable (i.e., there are no real solutions).

In the 1950s, Tarski proved that whether a (finite) collection of polynomial equa-
tions and inequations has solutions that are real numbers is algorithmically decid-
able. Tarski’s algorithm has been greatly improved, and algorithms of a more
algebraic nature have also been developed, improved and implemented. Yet they
remain slow.

This article is about our experiments to use state-of-the-art solvers to try in
practice to prove such results. These experiments were prompted by a lecture to
undergraduate students, during which Z3|, a high-performance (open source) solver
from Microsoft, was used to solve a Sudoku problem (a standard demo for this
technology). The puzzle was duly solved instantly. You can see such a demo
online, but the online version is slow.

Since we could not find examples of geometric theorems proved using Z3 or
its friends, we decided to try proving some results in this way. Specifically we
attempted the Pappus hexagon theorem (which has deep connections to modern
mathematics) and Menelaus’s theorem.

Our results were mixed — with Z3 able to answer the satisfiability problem, but
not when it was asked to give a solution with proof. Especially as these systems are
vastly improving, it seems worthwhile to write about how such systems can be used
at least in principle, especially since this does not seem to be widely known. We
remark that the specific problems considered by us can also be investigated using
symbolic algebra software such as Mathematica and Maple.

An interactive notebook with code for our examples is available online on Binder
at https://bit.1ly/3e5bht 4]

1. P VERSUS NP AND SAT/SMT SOLVERS

Some problems, such as solving a system of linear equations, are not difficult,
at least once one knows a method to solve them. The thumb rule used is that if
we can solve a problem with the number of steps being at most a polynomial in
the size of the problem (for instance, the total number of digits in the coefficients
of equations), then we consider the problem to be easy enough. The class of these
problems is called P (i.e., Polynomial time).

A more interesting class of problems is ones for which we can check that a
solution is correct reasonably easily, though it may not be clear how to find a
solution in an easy manner. This is typically the case with puzzles like jigsaws or
Sudoku — indeed the appeal of puzzles perhaps lies in this feature. Such problems
are called NP problems (or problems in the class NP). While it appears that many
such problems do not have easy (i.e., polynomial time) solutions, there is no proof
of this. Whether every problem whose solution is easy to check has a solution that
is easy to find is the P versus NP problem.

What makes the P versus NP problem specially interesting and fruitful is the
Cook-Levine theorem from the early 1970s. This says that if one specific problem

LFull link:
https://hub.gke2.mybinder.org/user/siddhartha-gadg-ing-mathematics-2x6efnix/
notebooks/jupyter_notebook/SMTSolverDemonstration.ipynb

https://github.com/Z3Prover/z3
https://rise4fun.com/Z3/Cs7p
https://bit.ly/3e5bhfA
https://hub.gke2.mybinder.org/user/siddhartha-gadg-ing-mathematics-2x6efnix/notebooks/jupyter_notebook/SMTSolverDemonstration.ipynb
https://hub.gke2.mybinder.org/user/siddhartha-gadg-ing-mathematics-2x6efnix/notebooks/jupyter_notebook/SMTSolverDemonstration.ipynb

EUCLIDEAN GEOMETRY BY HIGH-PERFORMANCE SOLVERS? 3

(which is in NP), called the Boolean satisfiability problem (or SAT), has a polynomial
time solution, then every problem that is in NP can be solved in polynomial time. It
can be deduced that there are many other problems with the same property. Such
problems are called NP-complete.

1.1. Boolean satisfiability (SAT). The Boolean satisfiability problem (SAT) is
similar to the satisfiability problems for Diophantine or real equations, with Boolean
variables. This means that the variables take values true and false — we can think
of variables P, @, ... representing whether some statements are true or false. These
can be combined using the logical operations and (denoted P A @), or (denoted
P Vv Q) and not (denoted —P). Combinations of the variables built using these
give a collection of clauses, for example we may have two variables P and @ and
consider the clauses P A (=Q) and (—Q) vV P. The (finite) collection of clauses is
satisfiable if we can assign true/false values to the variables so that all the clauses
are true. For example, the set of clauses {P A (—Q), (—=Q) V P} is not satisfiable
(which one can check by trying all 4 possibilities for P and Q). Deciding whether
a finite collection of clauses is satisfiable is the SAT problem.

1.2. SAT solvers. While the theoretical P vs NP problem remains mysterious, the
Cook-Levine theorem has had some remarkable practical uses. Since so many classes
of problems can be reduced to solving one class of problems, namely SAT, a powerful
approach has been to develop various clever ways, and powerful programs incor-
porating them, to solve SAT problems better, and then using these to solve other
problems. Such programs are called SAT solvers .

While it appears that no program can solve all SAT problems reasonably fast (i.e.,
in polynomial time), high-performance SAT solvers try to solve as large a class of
SAT problems as quickly as possible in practice. Indeed in many cases a SAT problem
may not be too hard — for example the problem becomes reasonably easy if there
are either so many solutions that one can readily find one or so many constraints
that one can readily show that there are no solutions.

1.3. SMT Solvers. SMT solvers (for Satisfiability Modulo Theories) extend these
ideas to handle problems that involve not just Booleans, but also integers and
real numbers (and, in general, any first-order theories). Thus, we can require that
a collection of equations are satisfied, or a mixture of equations and inequations
(examples of inequations are x? < 3, 3 > 3z, and y? + 22 # 1) or even a logical
combination of these (for example, (2% < 3)V (y?+2? # 1)). Again, many instances
of these problems are hard, and there are even ones with no algorithmic solution.
Nevertheless the approach taken is to solve as large a class of problems as efficiently
as possible.

2. GEOMETRY THEOREMS AS SATISFIABILITY PROBLEMS

We next describe how we translated statements of theorems from Euclidean
geometry into satisfiability results, suitable for using SMT solvers.

2.1. The Pappus Hexagon theorem. A theorem we attempted to prove was the
Pappus hexagon theorem, which we now describe. In addition to being a typical
geometry result, this has a deeper mathematical meaning (corresponding to com-
mutativity for affine geometries over division rings), as you can read in the beautiful
book [1].

4 SIDDHARTHA GADGIL AND ANAND TADIPATRI

FIGURE 1. Pappus Theorem

Suppose we are given two lines, with points a, b and ¢ on the first line and A,
B and C on the second line as in Figure We consider the general case, where
no pair of lines involving these points are parallel. Let P be the intersection of the
lines Ab and aB, @ the intersection of Ac and aC, and R the intersection of Bc
and bC'. The Pappus hexagon theorem is the result that P, @ and R are collinear,
i.e., there is a line containing all three of these points, for all choices of a, b, ¢, A,
B, and C' of the above form.

2.2. Equations for collinearity. We shall formulate the Pappus theorem in terms
of collinearity, and then translate this into equations and inequations. Recall that
collinearity can be expressed as a polynomial equality. Namely, points with coor-
dinates (x1,y1), (z2,y2) and (z3,ys), which we assume to be distinct, are collinear
if and only if

Y2—Y1 _ Ys— N

T2 — X1 B T3 — 1

which is equivalent to
(Y2 —y1)(x3 — 21) = (y3 — y1) (w2 — T1).

2.3. Warmup: a simple problem. As a warmup and sanity check, we set up
the problem of showing that for an arbitrary point P = (z,y), the three points
P = (z,y), O =(0,0) and —P = (—z, —y) are collinear.

We prove such results using SMT solvers by contradiction. In this case, for vari-
ables = and y, we impose the condition that the points P, O and —P are not
collinear. If the solver shows that this cannot be satisfied, then it follows that
the points are always collinear. Observe that the condition of not being collinear
just means that equation in the above equation is replaced by the inequation
(Y2 —y1)(x3 — 21) # (y3 — Y1) (w2 — 1).

Indeed the solvers Z3 and CVC4 (another SMT solver, and the champion in the
latest competition for SMT solvers) proved this result instantly — more precisely, Z3
took 0.012 seconds and CVC4 took 0.094 seconds.

EUCLIDEAN GEOMETRY BY HIGH-PERFORMANCE SOLVERS? 5

2.4. Formulating Pappus theorem using polynomial (in)equations. We
next translate the Pappus theorem, first into coordinate geometry and then into
real equations and inequations.

2.4.1. Choosing coordinates. While one can (and we initially did) take arbitrary
coordinates for the 6 points a, b, ¢, A, B and C and add equations for their being
collinear, we consider a simpler variant where we choose coordinates and parame-
trize the points. Namely, we can take a, b and ¢ on the z-axis with a = (1,0). Then
we have b = (1+u,0) and ¢ = (1 + v+ v,0) with v > 0 and v > 0. Similarly, if we
let A= (za,ya), then we can assume that B = (x4(1 + U),ya(1 + U)) for some
U>0and C=(za(14+U+V),ya(1 + U +V)) for some V > 0. Further, we can
assume that y4 > 0.

Let the points P = (zp,yp), @ = (2q,yg) and R = (zg,yr) have arbitrary
coordinates. We add equations corresponding to their being intersection points, as
we see below. Thus, we have 12 variables in all, 6 of them the parameters u, v, x4,
ya, U and V for the problem and 6 more coordinates of the intersection points.
Further, we have inequations v > 0, v > 0, y4 > 0, U > 0 and V' > 0. We shall
add to these equations and inequations from the statement of the theorem.

2.4.2. Equations and inequations. We reformulate the Pappus hexagon theorem in
terms of collinearity. Observe that P being the intersection point of Ab and aC'is
equivalent to both the triples of points (A, P,b) and (a, P, B) being collinear. We
have similar conditions for Q and R. Thus, the conditions on P, @ and R can be
formulated in terms of collinearity of 6 triples of points.

Finally, the conclusion is that P, @ and R are collinear. We seek to prove this by
contradiction, namely we add the condition that they are not collinear, and show
that the resulting system cannot be satisfied. Again, the condition that the points
are not collinear gives an inequation.

In summary, we have a problem asking whether a set of algebraic equations and
inequations has a solution over reals. This system has 12 variables, with 6 equations
corresponding to collinearity, 5 inequations stating that variables are positive and
an inequation (to contradict) stating that three points are not collinear.

We shall discuss the results of our attempts to prove this in Section [3] Before
that, we state, and translate into SMT form another geometric result, which we also
tried to prove.

2.5. Menelaus’s theorem. Another classical result in geometry is Menelaus’s
theorem, formulated by Menelaus of Alexandria.

Consider a triangle with vertices A, B and C and a line that crosses the (possibly
extended) edges AB, BC and C'A of the triangle at points D, E and F respectively,
as in Figure 2| Menelaus’s theorem states that

DA EB FC
DB “EC " FA
This theorem also has a converse, provided certain additional conditions are
satisfied —if D, E and F are points on the (possibly extended) edges of the triangle
ABC, and either exactly one or exactly three of these points lie on extended edges,
and the points satisfy the above equation, then they are collinear.
Note that the additional condition of either exactly one or three of the points
being contained on extended edges is automatically satisfied in the first statement.

1

6 SIDDHARTHA GADGIL AND ANAND TADIPATRI

B~

FIGURE 2. Menelaus’s theorem

The above theorem is also valid when signed distances are used in place of
regular distances (with signed distances, the line segments AB and BA have the
same length but differ in sign). In this case, the extra condition is not required for
the converse to be true.

2.6. Formulating Menelaus’s theorem using polynomial (in)equations.
Like Pappus’ theorem, Menelaus’s theorem is solved by formulating it in coordinate
geometry, and then as a system of equations and inequations in real variables.

2.6.1. Defining the variables. Three distinct points representing the vertices of the
triangle ABC are arbitrarily chosen (one could optimise this by scaling and shifting
the triangle to make two of the three vertices coincide with points (0,0) and (1,1)
on the plane).

A line passing through two points P and) on the plane can be parameterised
by a single real number [. Moreover, this parameterisation can be chosen such that
the value I = 0 corresponds to the point P and [= 1 corresponds to the point Q.

The three edges of the triangle — AB, BC, CA — can be parameterised in this
manner by real numbers r, s and ¢.

Since the theorem requires the transversal line to cross all three edges of the
triangle, the points of intersection — D, E, F' — correspond to some values of the
parameters r, s and t.

After defining the nine variables (six for the vertices of the triangle and three for
the parameters of the edges) required to describe the setup in coordinate geometry,
the next step is to formulate a system of equations describing the theorem.

2.6.2. Equations and inequations. For the forward part of the theorem statement,
the hypothesis is that the three points of intersection — D, E and F' — are collinear.
As mentioned above, collinearity can be formulated as a polynomial equation in
terms of the coordinates of the three points.

Since the Euclidean distance (given by +/(z1 — x2)% + (y1 — y2)2, for pairs of
points (z1,y1) and (z2,y2)) involves square roots, we reformulate the theorem into
an equivalent form. Namely, as distances are positive, the equation in the theorem

EUCLIDEAN GEOMETRY BY HIGH-PERFORMANCE SOLVERS? 7

can also be rewritten as

DA EB FC\?
— X ==X —=—] =1,
DB~ EC~ FA

or equivalently
(DA)* x (EB)? x (FC)* = (DB)? x (EC)?* x (FA)?

With these simplifications, as the square of the distance is a polynomial, the
forward part of the theorem can be expressed as a polynomial in all the variables
involved.

The converse (or reverse) statement has the additional requirement that the
either exactly one or exactly three of the intersection points lie on the extensions
of edges of the triangle. Due to the way the parameterisation of the lines was
chosen, a point lies on an extended edge if and only if the corresponding value of
the parameter is not contained in the [0, 1] interval.

The condition of a parameter [being contained in the (0,1) interval can be
formulated in terms of inequations

O<DhA(l<])
The converse of the theorem requires that out of the three parameters r, s, and ¢,
an odd number of them (either one or three) must not satisfy the above condition.
This can be captured using the XOR (exclusive OR, which is ¢true when exactly
one of the inputs is true) function (@) —

(<A (r<1)®((0<s)A(s<1)d((0<t)A(t<1)))

which is true only when an odd number of points lie on the extended edges.

With these modifications, the statement of the theorem can be given to the Z3
solver in the form of a system of constraints and polynomial (in)equations over the
reals. The theorem is true if the negation of the theorem statement is unsatisfiable.

3. RUNNING SMT SOLVERS

High-performance SMT solvers such as Z3 use a huge collection of algorithms,
which they choose and mix using complex heuristics to decide whether a collection
of constraints is satisfiable. When asked to check satisfiability, one of three possible
results is returned — sat, unsat and unknown, corresponding to the problem being
satisfiable, unsatisfiable and the chosen algorithm failing to answer the problem.
A fourth possibility is manual interruption (i.e., the user giving up) if the solver
appears to be failing to answer — which is a variant of unknown (indeed if a timeout
limit is reached unknown is returned).

In addition, an SMT solver can be asked for a proof in case a problem is not
satisfiable (i.e., a proof that the problem has no solution) or a model — values for
variables that satisfy the constraint — in case the problem is satisfiable.

3.1. First attempt: proving Pappus theorem. When asked to solve the sat-
isfiability problem with proof, neither of the SMT solvers Z3 and CVC4 was able to
prove the Pappus hexagon theorem. This was in spite of our (non-expert) attempts
at changing their parameters to raise various limits, and allowing them to run for
hours.

8 SIDDHARTHA GADGIL AND ANAND TADIPATRI

To try to assess how far they were from proving the theorem, we attempted a
simpler variant. Instead of having all six of u, v, 4, ya, U and V as variables (so
proving the result for all values of these), we added additional equations fixing some
of them. Since all but x4 were known to be positive, for convenience, conditions
could only be added by choosing random positive numbers corresponding to some
of the five variables u, v, ya, U and V and adding corresponding equations — for
example, we could pick ¢ > 0 at random and add the equation u = c.

When all 5 of the variables were fixed (leaving only x4 to vary), Z3 solved the
problem instantly. When 4 of the 5 were fixed, the theorem was proved in about 6
seconds. However, when only 3 were fixed we could not get either solver to prove
the result, in spite of changing parameters.

3.2. Next attempts: solving (but not proving) Menelaus’s theorem. Our
next attempt (using a different program to interface with Z3) was Menelaus’s theo-
rem, formulated as a satisfiability problem contradicting the statement, as sketched
above. When run Z3 instantly solved the satisfiability problem with unsat as the
answer (as needed to obtain a contradiction).

But there was a twist to the tale. When we used the same setup as that for
the Pappus theorem, Z3 failed to solve the problem (when running for about 10
minutes). Some experimentation revealed the crucial difference between the two
programs was that in the one obtained by modifying the Pappus attempt we were
asking for a proof.

Indeed, when the code for Menelaus’s theorem was modified to ask for a proof,
Z3 ran for a few seconds and returned unknown — presumably the system was forced
to use an algorithm that returned a proof when the problem was not satisfiable,
and this algorithm found the problem too hard.

3.3. Pappus revisited. Based on the above, it was natural to try to ask Z3
whether the constraints corresponding to the Pappus theorem were satisfiable, with-
out asking for a proof. Another change made, again based on the above experiments,
was to not specify the logic to be used.

When run in this way, Z3 solved the problem instantly (in 0.02 seconds).

4. CONCLUSION: SOLVED BUT NOT PROVED?

The above experiments showed that when asked for a proof, the choice of algo-
rithms by Z3 was different, either taking much longer (effectively not terminating),
or explicitly giving up.

As we have seen, when asked only for a solution, Z3 could quickly and correctly
solve the satisfiability problems corresponding to the two theorems. Thus, to the
extent that Z3 can be trusted, we can readily check if problems of this complexity
from Euclidean geometry, and presumably many other areas, are correct. Even
without getting a proof this is valuable — at the least avoiding time and effort being
spent on what is not true, and identifying related statements that are true.

The failure to solve with proofs suggests that, at least at present, we cannot
hope to prove non-trivial Euclidean geometry theorems (without trusting Z3) by
simply translating them and using SMT solvers. However, with the underlying solvers
rapidly improving, the solutions in principle may become solutions in practice. This
is especially the case if the algorithms are successfully parallelized — to our surprise

EUCLIDEAN GEOMETRY BY HIGH-PERFORMANCE SOLVERS?

(declare—fun u() Real)

(declare—fun v() Real)

(declare—fun Ax() Real)

(declare—fun Ay() Real)

(declare—fun U() Real)

(declare—fun V() Real)

(declare—fun Px() Real)

(declare—fun Py() Real)

(declare—fun Qx() Real)

(declare—fun Qy() Real)

(declare—fun Rx() Real)

(declare—fun Ry() Real)

(assert (= (x (— Py 0.0) (— (*x Ax (+ U 1.0)) 1.0))
(* (= (+ Ay (+ U 1.0)) 0.0) (— Px 1.0))))

(assert (= (x (— Py Ay) (— (+ 1.0 u) Ax))
(x (- 0.0 Ay) (~ Px Ax))))

(assert (= (* (— Qy 0.0) (— (x Ax (+ (+ UV) 1.0)) 1.0))
(¢ (- (« Ay (+ (+ UV) 1.0)) 0.0) (~ Qx 1.0))))

(assert (= (+ (- Qv Ay) (= (+ (+ 1.0 u) v) Ax))
(x (- 0.0 Ay) (-~ Qx Ax))))

(assert (= (* (— Ry 0.0) (— (x Ax (+ (+ UV) 1.0))
(+ 1.0 u))) (* (= (* Ay (+ (+ UV) 1.0)) 0.0)
(= Rx (+ 1.0 u)))))

(assert (= (* (— Ry (x Ay (+ U 1.0))) (= (+ (+ 1.0 u) v)
(* Ax (+ U 1.0)))) (x (= 0.0 (x Ay (+ U 1.0)))
(- Rx (+ Ax (+ U 1.0))))))

(assert (> u 0.0))

(assert (> v 0.0))

(assert (> Ay 0.0))

(assert (> U 0.0))

(assert (> V 0.0))

(assert (not (= (x (— Qy Py) (— Rx Px))
(+ (= Ry Py) (- Qx Px)))))

FIGURE 3. SMT format for Pappus theorem

we observed that the algorithms were essentially serial even when configured to be

parallel, with occasional use of 2 cores being the only concurrency.

It would also be interesting to see in greater detail what causes such algorithms
to be so slow, say with the above model problems. In particular, while it is known
that in the worst case any algorithm must be slow, perhaps there are special features

in cases of interest that allow speeding up.

APPENDIX: RUNNING Z3 AND THE SMT FORMAT

SMT solvers such as Z3 can be run from many languages (in case of Z3 we can use
Python, C++, Java and other JVM languages such as Scala). But one nice way to

10 SIDDHARTHA GADGIL AND ANAND TADIPATRI

def are_collinear(p, q, r):
return ((q[1]—=p[1])*(r[0]—p[0])==(r[1]—p[1])*(q[0]—p[0]))

def d(p, q):
return (p[0]—q[0])*%2 + (p[1]—q[1])*%*2

menelaus_theorem = Implies (And(Not(are_collinear (A, B, C)),
are_collinear (D, E, F)),
d(A, D) « d(B, E) = d(C, F) = d(D, B) = d(E, C) = d(F, A))

FIGURE 4. Extract of Python code for Menelaus’s theorem

run these, and especially to examine the problems being solved, is to use a standard
format called SMT2 which all SMT solvers support (this can be run interactively or
as a file from the command line).

As an example, we give the SMT2 code for the Pappus problem in Figure [3] This
is a language with syntax (following LISP/Scheme) that is easy for both machines
and people to read. Each statement is a so called S-expression (i.e., symbolic
expression), which is a list enclosed in parenthesis. Operators and functions come
in the beginning, so we write, for example, (+ 2 3) for 24+ 3 and (= (+ 2 3) (+
3 2)) for 2+ 3 = 34 2. In general, an S-expression is a list, enclosed in parenthesis
with entries either other S-expression or atoms, with atoms being integers, reals,
strings, functions, operators etc.

Specifically, most of our statements are of one of two forms — declaring a vari-
able using declare-fun (which can more generally be used to declare functions),
or asserting conditions using a statement (assert <expression>) for a Boolean
expression.

Incidentally, we have run Z3 in a few ways — using Python, using Scala via the
Java API and using Scala to generate code in the SMT2 language (like the above
code) and using the Z3 command line either programmatically or in a terminal.
The interfaces in high-level languages are also pleasant and human readable. For
instance, an extract from the Python code for Menelaus theorem is in figure [4]

REFERENCES

[1] Artin, Emil Geometric Algebra, Dover.

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF SCIENCE, BANGALORE.
Email address: gadgil@iisc.ac.in

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, PUNE.
Email address: anand.tadipatri@students.iiserpune.ac.in

	1. P versus NP and SAT/SMT solvers
	1.1. Boolean satisfiability (SAT)
	1.2. SAT solvers
	1.3. SMT Solvers

	2. Geometry theorems as satisfiability problems
	2.1. The Pappus Hexagon theorem
	2.2. Equations for collinearity
	2.3. Warmup: a simple problem
	2.4. Formulating Pappus theorem using polynomial (in)equations
	2.5. Menelaus's theorem
	2.6. Formulating Menelaus's theorem using polynomial (in)equations

	3. Running SMT solvers
	3.1. First attempt: proving Pappus theorem
	3.2. Next attempts: solving (but not proving) Menelaus's theorem
	3.3. Pappus revisited

	4. Conclusion: solved but not proved?
	Appendix: running Z3 and the SMT format
	References

