AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty
theorem AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty :
∀ {A : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} A] [inst_1 : CategoryTheory.Abelian A]
{X : CategoryTheory.SimplicialObject A} (n : ℕ),
(AlgebraicTopology.NormalizedMooreComplex.objX X n).Factors (AlgebraicTopology.DoldKan.PInfty.f n)
The theorem `AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty` states that for any category `A` (with type `Type u_1`) which also has an Abelian structure, and any simplicial object `X` in `A`, the `PInfty.f` map of the Dold-Kan correspondence `PInfty` factors through the object `n` of the Normalized Moore Complex of `X`. Here, `n` is any natural number. This theorem is about the relationship between the Dold-Kan correspondence and the Normalized Moore Complex in the context of algebraic topology.
More concisely: For any Abelian category `A` and simplicial object `X` in `A`, the `PInfty.f` map of the Dold-Kan correspondence `PInfty` factors through the object `n` of the Normalized Moore Complex of `X` for all natural numbers `n`.
|