LeanAide GPT-4 documentation

Module: Mathlib.Analysis.Calculus.ParametricIntervalIntegral


intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_lip

theorem intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_lip : โˆ€ {๐•œ : Type u_1} [inst : RCLike ๐•œ] {ฮผ : MeasureTheory.Measure โ„} {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace โ„ E] [inst_3 : NormedSpace ๐•œ E] {a b ฮต : โ„} {bound : โ„ โ†’ โ„} {F : ๐•œ โ†’ โ„ โ†’ E} {F' : โ„ โ†’ E} {xโ‚€ : ๐•œ}, 0 < ฮต โ†’ (โˆ€แถ  (x : ๐•œ) in nhds xโ‚€, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ™ a b))) โ†’ IntervalIntegrable (F xโ‚€) ฮผ a b โ†’ MeasureTheory.AEStronglyMeasurable F' (ฮผ.restrict (ฮ™ a b)) โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ LipschitzOnWith (Real.nnabs (bound t)) (fun x => F x t) (Metric.ball xโ‚€ ฮต)) โ†’ IntervalIntegrable bound ฮผ a b โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ HasDerivAt (fun x => F x t) (F' t) xโ‚€) โ†’ IntervalIntegrable F' ฮผ a b โˆง HasDerivAt (fun x => โˆซ (t : โ„) in a..b, F x t โˆ‚ฮผ) (โˆซ (t : โ„) in a..b, F' t โˆ‚ฮผ) xโ‚€

This theorem states that the function `x โ†ฆ โˆซ F x a` has a derivative at a given point `xโ‚€` in either the real or complex number system, under the following conditions: - The function `F xโ‚€` is interval integrable. - The function `x โ†ฆ F x a` is Lipschitz continuous in a neighborhood around `xโ‚€` for almost every `a`, with the size of the neighborhood being independent of `a`, and the Lipschitz bound is also integrable. - The function `F x` is almost everywhere measurable for `x` in a potentially smaller neighborhood around `xโ‚€`. - The function `F'` is almost everywhere strongly measurable and interval integrable. - The function `F x` has a derivative `F'` at `xโ‚€` for almost every `t` in the interval. In this case, the derivative of the integral function at `xโ‚€` is the integral of `F'` over the interval.

More concisely: Given a function `F` that is interval integrable, Lipschitz continuous with an integrable Lipschitz constant, almost everywhere measurable, and has a almost everywhere defined derivative `F'` that is interval integrable, then the function `x โ†ฆ โˆซ F x a` has a derivative at `xโ‚€` equal to `โˆซ F' x dx`.

intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip

theorem intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip : โˆ€ {๐•œ : Type u_1} [inst : RCLike ๐•œ] {ฮผ : MeasureTheory.Measure โ„} {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace โ„ E] [inst_3 : NormedSpace ๐•œ E] {H : Type u_3} [inst_4 : NormedAddCommGroup H] [inst_5 : NormedSpace ๐•œ H] {a b ฮต : โ„} {bound : โ„ โ†’ โ„} {F : H โ†’ โ„ โ†’ E} {F' : โ„ โ†’ H โ†’L[๐•œ] E} {xโ‚€ : H}, 0 < ฮต โ†’ (โˆ€แถ  (x : H) in nhds xโ‚€, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ™ a b))) โ†’ IntervalIntegrable (F xโ‚€) ฮผ a b โ†’ MeasureTheory.AEStronglyMeasurable F' (ฮผ.restrict (ฮ™ a b)) โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ LipschitzOnWith (Real.nnabs (bound t)) (fun x => F x t) (Metric.ball xโ‚€ ฮต)) โ†’ IntervalIntegrable bound ฮผ a b โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ HasFDerivAt (fun x => F x t) (F' t) xโ‚€) โ†’ IntervalIntegrable F' ฮผ a b โˆง HasFDerivAt (fun x => โˆซ (t : โ„) in a..b, F x t โˆ‚ฮผ) (โˆซ (t : โ„) in a..b, F' t โˆ‚ฮผ) xโ‚€

The theorem `intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip` states that differentiation under the integral of a function $x \mapsto \int_{a}^{b} F(x, t) dt$ at a given point $x_0$ exists, given certain conditions. These conditions are: - the function $F(x_0, \cdot)$ is interval integrable, - the function $x \mapsto F(x, a)$ is locally Lipschitz continuous on a ball around $x_0$ for almost every $a$, with the radius of this ball being independent of $a$, and the Lipschitz constant is integrable, - the function $F(x, \cdot)$ is almost everywhere strongly measurable for $x$ in a possibly smaller neighborhood of $x_0$, - the derivative of the function $x \mapsto F(x, t)$ at $x_0$ exists for almost every $t$ in the interval $a$ to $b$. The theorem then concludes that the function $F'(x,\cdot)$ is interval integrable and the derivative of the function $x \mapsto \int_{a}^{b} F(x, t) dt$ at $x_0$ exists, and is equal to $\int_{a}^{b} F'(x, t) dt$.

More concisely: If $F(x,t)$ is a function that is locally Lipschitz continuous and integrable in the first variable at $x_0$ for almost every $a$, strongly measurable in the second variable for $x$ near $x_0$, and has a derivative in the second variable that is integrable, then the function $x \mapsto \int\_a^b F(x,t) dt$ is differentiable at $x_0$ and its derivative is $\int\_a^b F'(x,t) dt$.

intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le

theorem intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le : โˆ€ {๐•œ : Type u_1} [inst : RCLike ๐•œ] {ฮผ : MeasureTheory.Measure โ„} {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace โ„ E] [inst_3 : NormedSpace ๐•œ E] {H : Type u_3} [inst_4 : NormedAddCommGroup H] [inst_5 : NormedSpace ๐•œ H] {a b ฮต : โ„} {bound : โ„ โ†’ โ„} {F : H โ†’ โ„ โ†’ E} {F' : H โ†’ โ„ โ†’ H โ†’L[๐•œ] E} {xโ‚€ : H}, 0 < ฮต โ†’ (โˆ€แถ  (x : H) in nhds xโ‚€, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ™ a b))) โ†’ IntervalIntegrable (F xโ‚€) ฮผ a b โ†’ MeasureTheory.AEStronglyMeasurable (F' xโ‚€) (ฮผ.restrict (ฮ™ a b)) โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ โˆ€ x โˆˆ Metric.ball xโ‚€ ฮต, โ€–F' x tโ€– โ‰ค bound t) โ†’ IntervalIntegrable bound ฮผ a b โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ โˆ€ x โˆˆ Metric.ball xโ‚€ ฮต, HasFDerivAt (fun x => F x t) (F' x t) x) โ†’ HasFDerivAt (fun x => โˆซ (t : โ„) in a..b, F x t โˆ‚ฮผ) (โˆซ (t : โ„) in a..b, F' xโ‚€ t โˆ‚ฮผ) xโ‚€

The theorem `intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le` states the following in natural language: Given an ordered field `๐•œ`, a measure `ฮผ` on the real numbers, normed addition commutative groups `E` and `H`, a real number interval `a..b`, a non-negative real number `ฮต`, a bounding function `bound`, and functions `F : H โ†’ โ„ โ†’ E` and `F' : H โ†’ โ„ โ†’ H โ†’L[๐•œ] E`, as well as a point `xโ‚€` in `H`. Assuming the following conditions are met: 1. The function `F xโ‚€` is interval integrable with respect to `ฮผ` on `a..b`. 2. The function `F x` is almost everywhere strongly measurable, for almost every `x` in a neighborhood of `xโ‚€`. 3. The function `F' xโ‚€` is also almost everywhere strongly measurable. 4. The norm of derivative `F' x t` is uniformly bounded by an integrable function `bound` 5. For almost every `t` in `a..b` and for every `x` in a ball around `xโ‚€` with radius `ฮต`, the function `F x t` has `F' x t` as its derivative at `x`. Then, the function `x โ†ฆ โˆซ F x t โˆ‚ฮผ` for `t` in `a..b`, has its derivative at `xโ‚€` equal to `โˆซ F' xโ‚€ t โˆ‚ฮผ` for `t` in `a..b`. This theorem essentially allows us to differentiate under the integral sign, under certain conditions.

More concisely: If `F` is a function satisfying the given conditions, then the function `x โ†ฆ โˆซ(F x t) dฮผ for t in a..b` has a derivative at `xโ‚€` equal to `โˆซ(F' xโ‚€ t) dฮผ for t in a..b`.

intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_deriv_le

theorem intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_deriv_le : โˆ€ {๐•œ : Type u_1} [inst : RCLike ๐•œ] {ฮผ : MeasureTheory.Measure โ„} {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace โ„ E] [inst_3 : NormedSpace ๐•œ E] {a b ฮต : โ„} {bound : โ„ โ†’ โ„} {F F' : ๐•œ โ†’ โ„ โ†’ E} {xโ‚€ : ๐•œ}, 0 < ฮต โ†’ (โˆ€แถ  (x : ๐•œ) in nhds xโ‚€, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ™ a b))) โ†’ IntervalIntegrable (F xโ‚€) ฮผ a b โ†’ MeasureTheory.AEStronglyMeasurable (F' xโ‚€) (ฮผ.restrict (ฮ™ a b)) โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ โˆ€ x โˆˆ Metric.ball xโ‚€ ฮต, โ€–F' x tโ€– โ‰ค bound t) โ†’ IntervalIntegrable bound ฮผ a b โ†’ (โˆ€แต (t : โ„) โˆ‚ฮผ, t โˆˆ ฮ™ a b โ†’ โˆ€ x โˆˆ Metric.ball xโ‚€ ฮต, HasDerivAt (fun x => F x t) (F' x t) x) โ†’ IntervalIntegrable (F' xโ‚€) ฮผ a b โˆง HasDerivAt (fun x => โˆซ (t : โ„) in a..b, F x t โˆ‚ฮผ) (โˆซ (t : โ„) in a..b, F' xโ‚€ t โˆ‚ฮผ) xโ‚€

This theorem states that under certain conditions, the derivative of the integral function `x โ†ฆ โˆซ F x a` at a given point `xโ‚€ : ๐•œ` (where `๐•œ` is either `โ„` or `โ„‚`) exists. The conditions are as follows: 1. `F xโ‚€` is integrable over the range `[a, b]` with respect to measure `ฮผ`. 2. The function `x โ†ฆ F x a` is differentiable on an interval around `xโ‚€` for almost every `a`, where the radius of the interval is independent of `a`. The derivative is uniformly bounded by an integrable function. 3. `F x` is almost everywhere strongly measurable for `x` in a possibly smaller neighborhood of `xโ‚€`. 4. The function `F' xโ‚€`, which is assumed to be the derivative of `F x a` with respect to `x`, is also almost everywhere strongly measurable over the interval `[a, b]`. 5. For almost every `t` in `[a, b]`, for every `x` in a ball of radius `ฮต` centered at `xโ‚€`, the norm of `F' x t` is less or equal to a given bound function. Under these conditions, the theorem concludes two things: 1. `F' xโ‚€` is interval-integrable over `[a, b]`. 2. The function `x โ†ฆ โˆซ F x a` has derivative at `xโ‚€`, and this derivative is equal to the integral of `F' xโ‚€` over `[a, b]`.

More concisely: Under certain conditions on the integrable function `F` and its derivative, the integral function `x โ†ฆ โˆซ F x a` has a derivative at `xโ‚€`, which is equal to the integral of `F' xโ‚€` over `[a, b]`.