intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_lip
theorem intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_lip :
โ {๐ : Type u_1} [inst : RCLike ๐] {ฮผ : MeasureTheory.Measure โ} {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace โ E] [inst_3 : NormedSpace ๐ E] {a b ฮต : โ} {bound : โ โ โ} {F : ๐ โ โ โ E} {F' : โ โ E}
{xโ : ๐},
0 < ฮต โ
(โแถ (x : ๐) in nhds xโ, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ a b))) โ
IntervalIntegrable (F xโ) ฮผ a b โ
MeasureTheory.AEStronglyMeasurable F' (ฮผ.restrict (ฮ a b)) โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ LipschitzOnWith (Real.nnabs (bound t)) (fun x => F x t) (Metric.ball xโ ฮต)) โ
IntervalIntegrable bound ฮผ a b โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ HasDerivAt (fun x => F x t) (F' t) xโ) โ
IntervalIntegrable F' ฮผ a b โง
HasDerivAt (fun x => โซ (t : โ) in a..b, F x t โฮผ) (โซ (t : โ) in a..b, F' t โฮผ) xโ
This theorem states that the function `x โฆ โซ F x a` has a derivative at a given point `xโ` in either the real or complex number system, under the following conditions:
- The function `F xโ` is interval integrable.
- The function `x โฆ F x a` is Lipschitz continuous in a neighborhood around `xโ` for almost every `a`, with the size of the neighborhood being independent of `a`, and the Lipschitz bound is also integrable.
- The function `F x` is almost everywhere measurable for `x` in a potentially smaller neighborhood around `xโ`.
- The function `F'` is almost everywhere strongly measurable and interval integrable.
- The function `F x` has a derivative `F'` at `xโ` for almost every `t` in the interval.
In this case, the derivative of the integral function at `xโ` is the integral of `F'` over the interval.
More concisely: Given a function `F` that is interval integrable, Lipschitz continuous with an integrable Lipschitz constant, almost everywhere measurable, and has a almost everywhere defined derivative `F'` that is interval integrable, then the function `x โฆ โซ F x a` has a derivative at `xโ` equal to `โซ F' x dx`.
|
intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip
theorem intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip :
โ {๐ : Type u_1} [inst : RCLike ๐] {ฮผ : MeasureTheory.Measure โ} {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace โ E] [inst_3 : NormedSpace ๐ E] {H : Type u_3} [inst_4 : NormedAddCommGroup H]
[inst_5 : NormedSpace ๐ H] {a b ฮต : โ} {bound : โ โ โ} {F : H โ โ โ E} {F' : โ โ H โL[๐] E} {xโ : H},
0 < ฮต โ
(โแถ (x : H) in nhds xโ, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ a b))) โ
IntervalIntegrable (F xโ) ฮผ a b โ
MeasureTheory.AEStronglyMeasurable F' (ฮผ.restrict (ฮ a b)) โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ LipschitzOnWith (Real.nnabs (bound t)) (fun x => F x t) (Metric.ball xโ ฮต)) โ
IntervalIntegrable bound ฮผ a b โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ HasFDerivAt (fun x => F x t) (F' t) xโ) โ
IntervalIntegrable F' ฮผ a b โง
HasFDerivAt (fun x => โซ (t : โ) in a..b, F x t โฮผ) (โซ (t : โ) in a..b, F' t โฮผ) xโ
The theorem `intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip` states that differentiation under the integral of a function $x \mapsto \int_{a}^{b} F(x, t) dt$ at a given point $x_0$ exists, given certain conditions. These conditions are:
- the function $F(x_0, \cdot)$ is interval integrable,
- the function $x \mapsto F(x, a)$ is locally Lipschitz continuous on a ball around $x_0$ for almost every $a$, with the radius of this ball being independent of $a$, and the Lipschitz constant is integrable,
- the function $F(x, \cdot)$ is almost everywhere strongly measurable for $x$ in a possibly smaller neighborhood of $x_0$,
- the derivative of the function $x \mapsto F(x, t)$ at $x_0$ exists for almost every $t$ in the interval $a$ to $b$.
The theorem then concludes that the function $F'(x,\cdot)$ is interval integrable and the derivative of the function $x \mapsto \int_{a}^{b} F(x, t) dt$ at $x_0$ exists, and is equal to $\int_{a}^{b} F'(x, t) dt$.
More concisely: If $F(x,t)$ is a function that is locally Lipschitz continuous and integrable in the first variable at $x_0$ for almost every $a$, strongly measurable in the second variable for $x$ near $x_0$, and has a derivative in the second variable that is integrable, then the function $x \mapsto \int\_a^b F(x,t) dt$ is differentiable at $x_0$ and its derivative is $\int\_a^b F'(x,t) dt$.
|
intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le
theorem intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le :
โ {๐ : Type u_1} [inst : RCLike ๐] {ฮผ : MeasureTheory.Measure โ} {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace โ E] [inst_3 : NormedSpace ๐ E] {H : Type u_3} [inst_4 : NormedAddCommGroup H]
[inst_5 : NormedSpace ๐ H] {a b ฮต : โ} {bound : โ โ โ} {F : H โ โ โ E} {F' : H โ โ โ H โL[๐] E} {xโ : H},
0 < ฮต โ
(โแถ (x : H) in nhds xโ, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ a b))) โ
IntervalIntegrable (F xโ) ฮผ a b โ
MeasureTheory.AEStronglyMeasurable (F' xโ) (ฮผ.restrict (ฮ a b)) โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ โ x โ Metric.ball xโ ฮต, โF' x tโ โค bound t) โ
IntervalIntegrable bound ฮผ a b โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ โ x โ Metric.ball xโ ฮต, HasFDerivAt (fun x => F x t) (F' x t) x) โ
HasFDerivAt (fun x => โซ (t : โ) in a..b, F x t โฮผ) (โซ (t : โ) in a..b, F' xโ t โฮผ) xโ
The theorem `intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le` states the following in natural language:
Given an ordered field `๐`, a measure `ฮผ` on the real numbers, normed addition commutative groups `E` and `H`, a real number interval `a..b`, a non-negative real number `ฮต`, a bounding function `bound`, and functions `F : H โ โ โ E` and `F' : H โ โ โ H โL[๐] E`, as well as a point `xโ` in `H`.
Assuming the following conditions are met:
1. The function `F xโ` is interval integrable with respect to `ฮผ` on `a..b`.
2. The function `F x` is almost everywhere strongly measurable, for almost every `x` in a neighborhood of `xโ`.
3. The function `F' xโ` is also almost everywhere strongly measurable.
4. The norm of derivative `F' x t` is uniformly bounded by an integrable function `bound`
5. For almost every `t` in `a..b` and for every `x` in a ball around `xโ` with radius `ฮต`, the function `F x t` has `F' x t` as its derivative at `x`.
Then, the function `x โฆ โซ F x t โฮผ` for `t` in `a..b`, has its derivative at `xโ` equal to `โซ F' xโ t โฮผ` for `t` in `a..b`. This theorem essentially allows us to differentiate under the integral sign, under certain conditions.
More concisely: If `F` is a function satisfying the given conditions, then the function `x โฆ โซ(F x t) dฮผ for t in a..b` has a derivative at `xโ` equal to `โซ(F' xโ t) dฮผ for t in a..b`.
|
intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_deriv_le
theorem intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_deriv_le :
โ {๐ : Type u_1} [inst : RCLike ๐] {ฮผ : MeasureTheory.Measure โ} {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace โ E] [inst_3 : NormedSpace ๐ E] {a b ฮต : โ} {bound : โ โ โ} {F F' : ๐ โ โ โ E} {xโ : ๐},
0 < ฮต โ
(โแถ (x : ๐) in nhds xโ, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (ฮ a b))) โ
IntervalIntegrable (F xโ) ฮผ a b โ
MeasureTheory.AEStronglyMeasurable (F' xโ) (ฮผ.restrict (ฮ a b)) โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ โ x โ Metric.ball xโ ฮต, โF' x tโ โค bound t) โ
IntervalIntegrable bound ฮผ a b โ
(โแต (t : โ) โฮผ, t โ ฮ a b โ โ x โ Metric.ball xโ ฮต, HasDerivAt (fun x => F x t) (F' x t) x) โ
IntervalIntegrable (F' xโ) ฮผ a b โง
HasDerivAt (fun x => โซ (t : โ) in a..b, F x t โฮผ) (โซ (t : โ) in a..b, F' xโ t โฮผ) xโ
This theorem states that under certain conditions, the derivative of the integral function `x โฆ โซ F x a` at a given point `xโ : ๐` (where `๐` is either `โ` or `โ`) exists. The conditions are as follows:
1. `F xโ` is integrable over the range `[a, b]` with respect to measure `ฮผ`.
2. The function `x โฆ F x a` is differentiable on an interval around `xโ` for almost every `a`, where the radius of the interval is independent of `a`. The derivative is uniformly bounded by an integrable function.
3. `F x` is almost everywhere strongly measurable for `x` in a possibly smaller neighborhood of `xโ`.
4. The function `F' xโ`, which is assumed to be the derivative of `F x a` with respect to `x`, is also almost everywhere strongly measurable over the interval `[a, b]`.
5. For almost every `t` in `[a, b]`, for every `x` in a ball of radius `ฮต` centered at `xโ`, the norm of `F' x t` is less or equal to a given bound function.
Under these conditions, the theorem concludes two things:
1. `F' xโ` is interval-integrable over `[a, b]`.
2. The function `x โฆ โซ F x a` has derivative at `xโ`, and this derivative is equal to the integral of `F' xโ` over `[a, b]`.
More concisely: Under certain conditions on the integrable function `F` and its derivative, the integral function `x โฆ โซ F x a` has a derivative at `xโ`, which is equal to the integral of `F' xโ` over `[a, b]`.
|