LeanAide GPT-4 documentation

Module: Mathlib.CategoryTheory.Monoidal.Functor


Mathlib.CategoryTheory.Monoidal.Functor._auxLemma.2

theorem Mathlib.CategoryTheory.Monoidal.Functor._auxLemma.2 : āˆ€ {C : Type u} [š’ž : CategoryTheory.Category.{v, u} C] [inst : CategoryTheory.MonoidalCategory C] (X : C) {Y₁ Yā‚‚ : C} (f : Y₁ ⟶ Yā‚‚), CategoryTheory.MonoidalCategory.whiskerLeft X f = CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id X) f

This theorem in the field of category theory states that for any category `C` which is also a monoidal category, and for any objects `X`, `Y₁`, `Yā‚‚` in `C`, and a morphism `f` from `Y₁` to `Yā‚‚`, the left whiskering of `f` with `X` (which is the act of pre-composing each morphism in the functor category with `f`) is equal to the tensor product of the identity morphism on `X` and the morphism `f`. This theorem thus provides a relation between the concepts of left whiskering and tensor product in the context of a monoidal category.

More concisely: In a monoidal category, for any object X and morphism f, the left whiskering of f with X is equal to the tensor product of the identity morphism on X and f.

CategoryTheory.LaxMonoidalFunctor.associativity

theorem CategoryTheory.LaxMonoidalFunctor.associativity : āˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uā‚‚} [inst_2 : CategoryTheory.Category.{vā‚‚, uā‚‚} D] [inst_3 : CategoryTheory.MonoidalCategory D] (self : CategoryTheory.LaxMonoidalFunctor C D) (X Y Z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight (self.μ X Y) (self.obj Z)) (CategoryTheory.CategoryStruct.comp (self.μ (CategoryTheory.MonoidalCategory.tensorObj X Y) Z) (self.map (CategoryTheory.MonoidalCategory.associator X Y Z).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator (self.obj X) (self.obj Y) (self.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft (self.obj X) (self.μ Y Z)) (self.μ X (CategoryTheory.MonoidalCategory.tensorObj Y Z)))

This theorem, named `CategoryTheory.LaxMonoidalFunctor.associativity`, states the associativity property for a Lax monoidal functor between two monoidal categories. Given two categories `C` and `D` with monoidal structures, and a Lax monoidal functor `self` from `C` to `D`, for any three objects `X`, `Y` and `Z` in `C`, the composition of the functor's morphisms from `X āŠ— Y` to `Z` and from `X` to `Y āŠ— Z` is equal to the composition of the associator in `D` and the functor's morphisms from `X` to `Y` and from `Y` to `Z āŠ— X`. In mathematical terms, `(self.μ X Y) āŠ— Z ∘ (X āŠ— Y) āŠ— Z ∘ X āŠ— (Y āŠ— Z) = α_D(X,Y,Z) ∘ X āŠ— (self.μ Y Z) ∘ self.μ X (Y āŠ— Z)`, where `α_D` is the associator in `D`, `āŠ—` denotes the tensor product, and `self.μ` is the morphism mapped by the functor.

More concisely: For any Lax monoidal functor `self` between monoidal categories `C` and `D`, and objects `X, Y, Z` in `C`, the composition of `self.μ(X āŠ— Y) āŠ— Z ∘ X āŠ— (Y āŠ— Z)` equals the composition of `α_D(X,Y,Z) ∘ X āŠ— self.μ(Y āŠ— Z)`.

Mathlib.CategoryTheory.Monoidal.Functor._auxLemma.1

theorem Mathlib.CategoryTheory.Monoidal.Functor._auxLemma.1 : āˆ€ {C : Type u} [š’ž : CategoryTheory.Category.{v, u} C] [inst : CategoryTheory.MonoidalCategory C] {X₁ Xā‚‚ : C} (f : X₁ ⟶ Xā‚‚) (Y : C), CategoryTheory.MonoidalCategory.whiskerRight f Y = CategoryTheory.MonoidalCategory.tensorHom f (CategoryTheory.CategoryStruct.id Y)

This theorem, named `Mathlib.CategoryTheory.Monoidal.Functor._auxLemma.1`, is a statement about Monoidal Categories in Category Theory. For any type `C` that forms a category `š’ž` and a Monoidal Category `inst`, and for any two objects `X₁` and `Xā‚‚` in `C` with a morphism `f` from `X₁` to `Xā‚‚`, and any object `Y` in `C`, the result of whiskering on the right by `f` on `Y` is equal to the tensor product of the morphism `f` and the identity morphism on `Y`. The equality here is in terms of morphisms in the Monoidal Category `C`. This theorem asserts that these two ways of manipulating morphisms and objects in a monoidal category are equivalent.

More concisely: For any Monoidal Category `C` with type `š’ž`, object `X₁`, object `Xā‚‚`, morphism `f : X₁ → Xā‚‚`, and object `Y` in `C`, the right whiskering of `f` on `Y` is equal to the tensor product of `f` and the identity morphism on `Y`.

CategoryTheory.LaxMonoidalFunctor.μ_natural

theorem CategoryTheory.LaxMonoidalFunctor.μ_natural : āˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uā‚‚} [inst_2 : CategoryTheory.Category.{vā‚‚, uā‚‚} D] [inst_3 : CategoryTheory.MonoidalCategory D] (F : CategoryTheory.LaxMonoidalFunctor C D) {X Y X' Y' : C} (f : X ⟶ Y) (g : X' ⟶ Y'), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (F.map f) (F.map g)) (F.μ Y Y') = CategoryTheory.CategoryStruct.comp (F.μ X X') (F.map (CategoryTheory.MonoidalCategory.tensorHom f g))

This theorem, `CategoryTheory.LaxMonoidalFunctor.μ_natural`, states that for any two objects `X`, `X'`, `Y`, and `Y'` in a category `C` that has a monoidal category structure, and any two morphisms `f : X ⟶ Y` and `g : X' ⟶ Y'` in `C`, for a lax monoidal functor `F` from `C` to a category `D` that also has a monoidal category structure, the composition of the tensor product of the mappings of `f` and `g` with the `μ` function of `F` applied to `Y` and `Y'` is equal to the composition of the `μ` function of `F` applied to `X` and `X'` with the mapping of the tensor product of `f` and `g`. In terms of category theory, this asserts a form of coherence between the `μ` function, the mapping function of `F`, and the composition and tensor product operations, which is a crucial property for lax monoidal functors.

More concisely: For any lax monoidal functor F between monoidal categories, and objects X, X', Y, and Y' with morphisms f : X ⟶ Y and g : X' ⟶ Y' in the source category, the diagram commutes: μF(Y, Y') ∘ (F(f) āŠ— F(g)) ≔ F(f āŠ— g) ∘ μF(X, X').