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1. Introduction

A classical knot is a smooth embedding of S1 in S3. Recall here that S3 is R3

with a point added at infinity (for instance, by stereographic projection). So a knot

is a thread in space with its two ends glued together.

We say two knots K1,K2 ⊂ S3 are equivalent if there is an (orientation preserv-

ing) homeomorphism f : S3 → S3 with f(K1) = K2. This is a natural extension

of the idea that two spaces are the same if they are homeomorphic.

Suppose two knots are equivalent. Then their complements are homeomorphic.

So the fundamental group of S3 − K is an invariant of the knot. So if we can

show that the fundamental groups of two knots are different, then the knots are

equivalent. We can see in this way that there are indeed plenty of knots.

In fact the fundamental group is powerful enough to tell knots apart with just a

little more data - but telling whether two groups are the same is an algorithmically

unsolvable problem. But this takes us far from our theme.

In these lectures we shall study smooth embeddings of the torus T 2 in S3, i.e.,

knotted tori. As in the case of classical knots, two such embeddings T1 and T2 are

equivalent if there is an (orientation preserving) homeomorphism f : S3 → S3 with

f(T1) = T2.

Knots give examples of knotted tori. Namely, given a knot K, we can take a

tubular neighbourhood N(K) of the knot. Then T = ∂N(K) is an embedding of

the torus in S3.

The complement of a torus T ∈ S3 has two components, whose closures we denote

by M1 and M2. For equivalent tori, the (unordered) pair of spaces {M1,M2} are the

same. In the tori constructed from a knot, one sees that one of the complementary

regions is the solid torus D2×S1 and the other has interior the complement of the

knot K. So different knots give different knotted tori.

2. The Unknotted torus

Before studying knotted tori further, we take a closer look at the unknotted case.
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2.1. The solid torus. The solid torus is the product D2 ×S1. It is useful to look

at it from a couple of other points of view.

Firstly, one can obtain a solid torus from B3 by attaching a 1-handle. Namely,

to a pair of disjoint discs in S2 = ∂B3, glue the boundary {0, 1}×D2 of [0, 1]×D2,

in such a way as to obtain an orientable manifold.

There is another way to obtain the solid torus from B3. Take a diameter α in

B3. Delete the interior of a regular neighbourhood of this arc. It is easy to see that

B3 \ int(N (α)) = D2 × S1.

More generally, we can take any properly-embedded unknotted arc α ⊂ B3, i.e.,

an arc α such that there exists an arc β embedded in S2 = ∂B3 and an embedded

disc E ⊂ B3 such that ∂E = α∪ β. On deleting the interior of a neighbourhood of

this arc, we get a solid torus.

Both these descriptions play a key role in what follows.

2.2. The unknotted torus. The 3-sphere S3 is the union S3 = B1 ∪ B2 of its

northern hemisphere and its southern hemisphere. Thus, S3 is the union of two

balls, with their boundaries identified using an (orientation reversing) diffeomor-

phism.

Let α be an unknotted properly embedded arc in B1. Let H1 = B1 \ int(N (α))

and H2 = B2 ∪ N (α). Since H1 is the result of deleting an open neighbourhood

of an unknotted arc from a 3-ball, it is a solid torus. On the other hand, H2 is

obtained by adding a 1-handle to a 3-ball, and is hence also a solid torus.

Thus, S3 is the union of two solid tori, glued along their boundary. It is easy to

see that the boundary is the unknotted torus. Thus, for the unknotted torus, the

closures of both the complementary components are D2 × S1.

It is often useful, in 3-manifold topology, to think of S3 as the unit ball in C2.

One can see the unknotted torus from this point of view.

Exercise 1. Let Hi ⊂ S3 ⊂ C2, i = 1, 2, be given by Hi = {(z1, z2) ∈ S2 : |zi|2 ≥
1/2}. Show that this is a decomposition of S3 into solid tori.

3. Knotting on the inside and outside

Consider tori embedded in R3. By taking the neighbouhood of a knot, it is easy

to construct an embedding that is knotted. However, while such an embedding is

knotted on the outside, the inside is still unknotted, i.e., the same as in the case of

an unknotted torus.

With a little ingenuity, one can also construct a torus knotted on the inside but

unknotted on the outside. Conceptually one can start with a torus knotted on the
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outside, add a point at infinity and then delete a point from the interior. to get an

embedding in R3.

However, we shall show in these lectures that a torus cannot be knotted on both

sides. To state this precisely we revert to tori embedded in S3.

Theorem 1. Suppose T ⊂ S3 is a smooth embedding of a torus and Mi, i = 1, 2

are the closures of the complementary regions of M . Then at least one of M1 and

M2 is homeomorphic to a solid torus.

The proof involves some group theory, some algebraic topology and some geo-

metric topology. Our real goal is to give a flavour of these in action. We shall then

build up on these to give basic results in geometric topology.

Henceforth assume that we are given a smoothly embedded torus T ⊂ S3 and

Mi are as above. Note that ∂Mi = T 2 for i = 1, 2.

4. Group theory

Suppose Mj = D2 × S1, then π1(Mj) = Z and the map induced by inclusion

ι∗ : π1(T ) → π1(Mj) is not injective. Our first goal is to show that for some Mj ,

ιj∗ : π1(T ) → π1(Mj) is not an inclusion map.

By the Van-Kampen theorem,

1 = π1(S3) = π1(M1) ∗ π1(M2)/<< ι1(h) = ι2(h), h ∈ π1(T ) >>

Suppose the maps ιj∗ are both injections, then the fundamental group of S3 is an

amalgamated free product.

Definition 4.1. Suppose A, B and C are (finitely presented) groups and φ : C → A

and ψ : C → B are injective homomorphisms. Then the amalgamated free product

A ∗C B is the group

A ∗C B = A ∗B/<< φ(h) = ψ(h), h ∈ C >>

As π1(S3) = 1, the following general result gives a contradiction if both the maps

ιj∗ are injections.

Theorem 2. For an amalgamated free product, the natural homomorphisms from

A, B and C to A ∗C B are all inclusions.

Proof. The proof of this is topological. Assume that we have connected CW-

complexes X, Y and Z such that π1(X) = A, π1(Y ) = B, and π1(Z) = C. Assume

Z = X ∩Y with the maps on fundamental groups induced by inclusion being φ and

ψ. For arbitrary groups A, B and C this can be achieved by using the mapping

cylinder construction.
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We shall make use of the following result whose proof is elementary algebraic

topology.

Proposition 3. Let A ⊂ X be path connected spaces and let π : X̃ → X be the

universal covering. Then the map ι∗ : π1(A) → π1(X) induced by inclusion is

injective if and only if each component of π−1(A) is connected.

Let πX : X̃ → X be the universal cover and similarly for Y , Z. Let W = Y ∪Z.

We construct the universal cover of W form those for Y and Z. Note that as

the inclusion maps induce injections on the fundamental group, each component of

π−1
X (Z) and π−1

Y (Z) is simply-connected and hence can be identified with Z̃ with

the restrictions of πX and πY being coverings.

Now take a copy of X̃ and to each component of π−1
X (Z) glue a copy of Ỹ along

some component of π−1
Y (Z). For each resulting component of Ỹ , take a copy of X̃

for each component of π−1
Y (Z) not already glued to X̃. Glue these copies to each

copy of Ỹ along a component of π−1
X (Z). Iterate this construction taking alternately

copies of X̃ and Ỹ . In the limit we get a space W̃ which is simply connected by

repeated applications of Van Kampen’s theorem. The covering maps glue together

to give a covering map πW : W̃ →W , which is the universal covering of W .

By construction, the inverse images of X, Y and Z under π−1
W are simply-

connected, and hence the induced map into the amalgamanted free product is an

injection. �

5. Algebraic topology

We next see that any embedding of a torus T ∈ S3 is homologically unknotted,

i.e., the various homology groups of Mi’s and the induced maps in homology are as

in the standard case. We will only consider the case of H1, which is what we need,

but the other cases are similar.

The first step is to observe that by the Mayer-Vietoris exact sequence

· · · → H2(S3) → H1(T ) → H1(M1)⊕H1(M2) → H1(S3)

the map H1(T ) → H1(M1)⊕H1(M2) is an isomorphism. As H1(T ) = Z2, the only

possibilities are that H1(Mi) = Z for i = 1, 2 or that H1(Mi) = 0 for one of them.

In the former case the maps in homology are as in the case of the unknot. The

elements of H1(T ) corresponding to generators of H1(T ) can be represented by a

pair of simple closed curves intersecting at a single point called the meridian and

the longitude. This is because any basis of H1(T ) = Z2 can be represented in this

way.
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Thus it only remains to rule out the case when (without loss of generality)

H1(M1) = 0. Intuitively, the reason for this is as follows. Suppose indeedH1(M1) =

0. Then a meridinal curve µ on T bounds a compact surface F in M1. The

intersection number of the longitude λ with µ, and hence F is 1, and so λ is not

null-homologous in M1.

While this can be formalised using cup products, we shall give a different proof.

Proposition 4. Suppose M is a compact 3-manifold with ∂M = T a torus. Then

H1(M) 6= 0.

Proof. Suppose H1(M) = 0, then the exact sequence of the pair (M,∂M) gives

H2(M,∂M) = Z2. But by Poincare duality,

H2(M,∂M) = H1(M) = Hom(H1(M),Z) = 0

which gives a contradiction. �

6. Geometric topology

Our final step uses one of the most important results in three-manifold topology.

Theorem 5 (Loop theorem). Suppose M is an orientable 3-manifold and F ⊂ ∂M

is a surface. Suppose that the map induced by inclusion π1(F ) → π1(M) is not an

injection. Then there is a properly embedded disc D ⊂M with boundary in F such

that ∂D is not homotopically trivial as a subset of ∂M .

By the results of the previous section, at least one of M1 and M2, say M1, admits

such a disc D. Consider a neighbourhood N of T ∪ D. This has two boundary

components, one of which is a sphere in M1 and the other a torus isotopic to T .

The sphere bounds a ball B in M1 (by the Schoenflies theorem in dimension 3).

We see that N ∪B is a solid torus whose boundary is isotopic to T and hence M1

is homeomorphic to N ∪B = D2 × S1.
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