Components & Inclusions
due by Monday, Sep 11, 2023
-
Let
$X$be a topological space and$x_0$be a point in$X$. Let$Z$be the path-component of$x_0$in$X$. Show that the inclusion$i: Z \hookrightarrow X$induces an isomorphism on fundamental groups. -
Let
$f: (X, x_0)\to (Y, y_0)$be a map between based topological spaces and let$f_*: \pi_1(X, x_0)\to \pi_1(Y, y_0)$be the induced map on fundamental groups. Prove or disprove the following statements:- (a) If
$f$is injective then so is$f_*$. - (b) If
$f$is surjective then so is$f_*$. - (c) If
$f$is a homeomorphism then$f_*$is an isomorphism.
- (a) If