

What is topology?

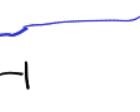
Topological Property: property that can be expressed in terms of continuity alone

E.g. 1 Intermediate values theorem

$$X, Y \subseteq \mathbb{R}$$

$$X = [0, 1]$$

$$Y = [0, 1] \cup [2, 3]$$



- If $f: X \rightarrow \mathbb{R}$ continuous,
 $f(X) \subset \{0, 1\}$, i.e.,
 $\forall x \in X, f(x) \in \{0, 1\}$, then
 f is constant.
- False for Y

(connected)

E.g. 2 Any continuous function $f: [0, 1] \rightarrow \mathbb{R}$ is bounded and it attains its maximum

(compact)

Topological Spaces: spaces between which we have a good definition of continuity

- Includes examples we want:

- subspaces of \mathbb{R}^n

- Constructions we want.

e.g. Möbius band

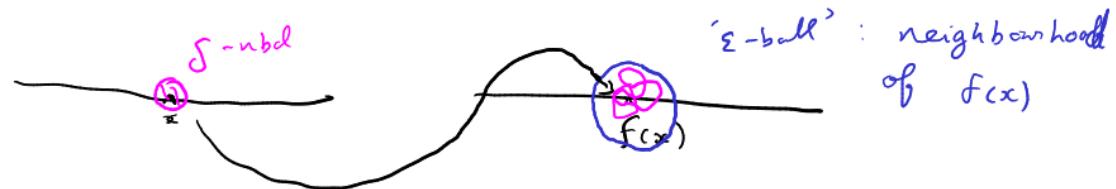
- Good properties for continuity.

- Capture other examples.

Abstracting Continuity

$$f: \mathbb{R}^n \rightarrow \mathbb{R}^n$$

ε - δ continuity



Can: Define & axiomatize 'neighbourhood systems'

Instead: Axiomatize 'open sets' \cup , i.e.



Set $\mathcal{V} \subset X$ s.t. if $x \in V$, some $nbd(x) \subset V$

• Nbd of x 'means' \exists open set V s.t. $x \in V \subset \mathcal{V}$

Definition of a Topological space

- Let X be a set.
- A topology on X is a collection Ω of subsets of X s.t.
 - If $\{U_\alpha\}_{\alpha \in I}$ is a collection of subsets of Ω , then

$$\bigcup_{\alpha \in I} U_\alpha \in \Omega$$

$$(2) \text{ If } U_1, U_2, \dots, U_n \in \Omega, \text{ then } \bigcap_{i=1}^n U_i \in \Omega$$

$$(3) \emptyset, X \in \Omega$$

- (X, Ω) is called a topological space

Rmk. (2) is equivalent to $U, V \in \Omega$ then $U \cap V \in \Omega$

- Sets $U \in \Omega$ are called the open sets in the topology

(Degenerate) Examples

X a set

(1) Discrete topology: $\Omega = \{U \subset X\} = 2^X$ (power set = all subsets)

(1) If $\{U_\alpha\}_{\alpha \in A}$ is s.t. $\{U_\alpha \in \Omega\}$, then $\bigcup_{\alpha \in A} U_\alpha \subset X$, so $\bigcup_{\alpha \in A} U_\alpha \in \Omega$

(2) If $U_1, \dots, U_n \in \Omega$, then $U_1, \dots, U_n \subset X$, so $U_1 \cap \dots \cap U_n \subset X$
 $\Rightarrow U_1 \cap \dots \cap U_n \in \Omega$

(3) $\emptyset \in \Omega$ and $X \in \Omega$ by defn of Ω .

(2) Indiscrete topology: $\Omega = \{\emptyset, X\}$

(1) Suppose $\{U_\alpha\}_{\alpha \in A}$ is s.t. $U_\alpha \in \Omega \forall \alpha$. Then $U_\alpha = \emptyset$ or $U_\alpha = X \forall \alpha$

(a) $U_\alpha = \emptyset \forall \alpha \Rightarrow \bigcup_{\alpha \in A} U_\alpha = \emptyset \in \Omega$

(b) $U_\alpha = X \text{ for some } \alpha, \bigcup_{\alpha \in A} U_\alpha = X \in \Omega$

(2) Let $U_1, \dots, U_n \in \mathcal{Q}$, then $U_i = \emptyset$ or $U_i = X$ for each i

(a) $U_i = X \ \forall i \Rightarrow U_1 \cap \dots \cap U_n = X \in \mathcal{Q}$

(b) $U_i = \emptyset$ for some $i \Rightarrow U_1 \cap \dots \cap U_n = \emptyset \in \mathcal{Q}$

(3) $\emptyset, X \in \mathcal{Q}$ as $\mathcal{Q} = \{\emptyset, X\}$

Indexed Collections (of Subsets)

• S a set

• $2^S = P(S)$: power set of S is a set s.t.

$A \in 2^S \Leftrightarrow A \subseteq S$

Fix X : a set exists by an axiom

• A collection $\{S_\alpha\}_{\alpha \in A}$ of subsets of X is

• A set A (e.g. \mathbb{N})

• A function $A \rightarrow 2^X$, $\alpha \in A \mapsto S_\alpha$

• Union: $\bigcup_{\alpha \in A} S_\alpha := \{x \in X : \exists \alpha \in A, x \in S_\alpha\}$

• Intersection: $\bigcap_{\alpha \in A} S_\alpha := \{x \in X : \forall \alpha \in A, x \in S_\alpha\}$

Empty unions & intersections:

$$A = \emptyset \quad ; \quad S_\alpha \subset X$$

$$\cdot \bigcup_{\alpha \in \emptyset} S_\alpha = \{x \in X : \exists \alpha \in \emptyset, x \in S_\alpha\} = \emptyset$$

$$\cdot \bigcap_{\alpha \in \emptyset} S_\alpha = \{x \in X : \forall \alpha \in \emptyset, x \in S_\alpha\} = X$$

de Morgan's laws:

$$\cdot X \setminus \bigcup_{\alpha \in A} S_\alpha = \bigcap_{\alpha \in A} (X \setminus S_\alpha) \quad \text{as} \quad \text{for } x \in X, \quad x \in X \setminus \bigcup_{\alpha \in A} S_\alpha \Leftrightarrow x \notin \bigcup_{\alpha \in A} S_\alpha$$

$$\cdot X \setminus \bigcap_{\alpha \in A} S_\alpha = \bigcup_{\alpha \in A} (X \setminus S_\alpha)$$

}

$$\Leftrightarrow \bigwedge_{\alpha \in A} (\exists x \in X, x \in S_\alpha)$$

$$\Leftrightarrow \bigwedge_{\alpha \in A} \text{not } (\forall x \in X, x \in S_\alpha)$$

$$\Leftrightarrow \forall \alpha \in A, x \in X \setminus S_\alpha$$

$$\Leftrightarrow x \in \bigcap_{\alpha \in A} (X \setminus S_\alpha)$$

$\{X_\alpha\}_{\alpha \in A}$: collection of sets (spaces)

Axiomatize by $\Gamma = \{X_\alpha\}_{\alpha \in A}$; An indexed collection Γ indexed by A is

- $\exists \in \Gamma \Rightarrow \exists \alpha \in A, S \text{ a set s.t. } \exists = (\alpha, S) (= \{\{\alpha\}, \{\alpha, S\}\})$
- $\forall \alpha \in A, \exists S \text{ a set, } (\alpha, S) \in \Gamma \text{ (here } X_\alpha := S)$
- $\forall \alpha \in A, \forall S_1, S_2 \text{ sets, } (\alpha, S_1) \in \Gamma \text{ & } (\alpha, S_2) \in \Gamma \Rightarrow S_1 = S_2$

Union: $\bigcup_{\alpha \in A} X_\alpha$ is a set with the property

$x \in \bigcup_{\alpha \in A} X_\alpha \Leftrightarrow \exists \alpha \in A, x \in X_\alpha$
Exists? by axiom of union etc. $\bigcup_{\alpha \in A} X_\alpha = \emptyset$ if $A = \emptyset$

Intersection: $\bigcap_{\alpha \in A} X_\alpha$ is a set with property

$x \in \bigcap_{\alpha \in A} X_\alpha \Leftrightarrow \forall \alpha \in A, x \in X_\alpha$.

Exists? No if $A = \emptyset$ | If $A \neq \emptyset$, say $\alpha_0 \in A$

Construct: $\{x \in X_{\alpha_0} : \forall \alpha \in A, x \in X_\alpha\}$

$X = \{S : S \notin S\}$

Qn: $x \in X$?

$x \notin X \Rightarrow x \in X$

$x \in X \Rightarrow x \notin X$

Topology on \mathbb{R} :

$$\overbrace{a}^{\leftarrow} \quad \overbrace{b}^{\rightarrow} \quad ()$$

$$\mathcal{B} = \{ (a, b) \subset \mathbb{R} : a < b, a, b \in \mathbb{R} \} \subset 2^{\mathbb{R}}$$

$$\Omega = \Omega_{\mathcal{B}} = \left\{ \bigcup_{\alpha \in A} S_{\alpha} : A \text{ ref}, S_{\alpha} \in \mathcal{B} \right\} \quad \left(\left(\frac{\bullet}{x} \right) \right) ()$$

Propn: $V \subset \mathbb{R}$ _{on X} . Then $V \in \Omega_{\mathcal{B}}$ iff $\forall x \in V, \exists J \in \mathcal{B}$ s.t. $x \in J$.

Pf: Suppose $V \in \Omega_{\mathcal{B}}$, i.e. $V = \bigcup_{\alpha \in A} S_{\alpha}$ with $S_{\alpha} \in \mathcal{B}$

Let $x \in V$, then as $x \in \bigcup_{\alpha \in A} S_{\alpha}$, $\exists \alpha_0$ s.t. $x \in S_{\alpha_0} \in \mathcal{B}$, $J = S_{\alpha_0}$.

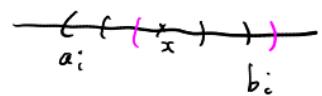
Conversely: Given V s.t. $\forall x \in V, \exists J_x \in \mathcal{B}$ s.t. $x \in J_x$

Claim: $V = \bigcup_{x \in V} J_x$ take $A = V$, $S_{\alpha} = J_{\alpha}$, $\alpha \in A = V$

Pf of claim: If $x \in V$, then $x \in J_{x_0} \subset \bigcup_{x \in V} J_x$; thus $V \subset \bigcup_{x \in V} J_x$

Conversely, $J_x \subset V \ \forall x$, hence $\bigcup_{x \in V} J_x \subset V$.

Axioms for the topology on \mathbb{R}



(1) claim: If $\bigcup_{\alpha \in A} V_{\alpha} \in \Omega = \Omega_B$ for $\forall \alpha \in A$, then $\bigcup_{\alpha \in A} V_{\alpha} \in \Omega$

Pf: If $x \in \bigcup_{\alpha \in A} V_{\alpha}$, then $x \in V_{\alpha} \in B$ for some $\alpha \in A$, i.e.

$\forall x \in \bigcup_{\alpha \in A} V_{\alpha}$, $\exists J \in B$ s.t. $x \in J$

Thus, $\bigcup_{\alpha \in A} V_{\alpha} \in \Omega = \Omega_B$

(2) claim: Suppose $V_1, \dots, V_n \in \Omega = \Omega_B$, then $V_1 \cap \dots \cap V_n \in \Omega_B$

Pf: Suppose $x \in V_1 \cap \dots \cap V_n$, then $x \in V_i \ \forall i$, hence $\exists J_i \in B$ s.t. $x \in J_i, J_i \subset V_i$

• Let $J_i = (a_i, b_i)$, then $a_i < x < b_i$

• Let $a = \max\{a_1, \dots, a_n\}$, $b = \min\{b_1, \dots, b_n\}$

Then $(a, b) \subset (a_i, b_i) \subset V_i \ \forall i \Rightarrow (a, b) \subset \bigcap V_1, \dots, V_n$

and $x \in (a, b)$. Take $J = (a, b)$ $\overset{\uparrow}{B}$

(3). \emptyset is the empty union.

$$\mathbb{R} = \bigcup_{n \geq 1} (-n, n)$$

Thus, $\emptyset, \mathbb{R} \in \Omega$

More Examples: Cofinite topology

X a net

$\Omega = \{\emptyset\} \cup \{V \subset X : X \setminus V = \emptyset\}$

cofinite set

(3) $\emptyset \in \Omega$, $X \setminus \emptyset$ is finite $\Rightarrow X \in \Omega$

(1) $\bigcup_{\alpha \in A} V_\alpha \in \Omega$ if $V_\alpha \in \Omega \forall \alpha$;

• If $V_\alpha = \emptyset \forall \alpha$ (including $A = \emptyset$), then $\bigcup_{\alpha \in A} V_\alpha = \emptyset \in \Omega$

• If $V_{\alpha_0} \neq \emptyset$ where $\alpha_0 \in A$,

then $X \setminus \bigcup_{\alpha \in A} V_\alpha = \bigcap_{\alpha \in A} (X \setminus V_\alpha) \subset X \setminus V_{\alpha_0}$ which is finite

$\therefore X \setminus \bigcup_{\alpha \in A} V_\alpha$ is finite

$\therefore \bigcup_{\alpha \in A} V_\alpha \in \Omega$

(2) $V_1, \dots, V_n \in \Omega \Rightarrow V_1 \cap \dots \cap V_n \in \Omega$:

• If some $V_i = \emptyset$, $V_1 \cap \dots \cap V_n = \emptyset \in \Omega$

• If all $V_i \neq \emptyset$, then $X \setminus V_i$ is finite $\forall i$

$\therefore X \setminus (V_1 \cap \dots \cap V_n) = \underbrace{(X \setminus V_1)}_{\text{finite}} \cup \dots \cup \underbrace{(X \setminus V_n)}_{\text{finite}}$, finite union

Hence $V_1 \cap \dots \cap V_n \in \Omega$

Non-example: \mathbb{N} , $\Omega = \{V \subset \mathbb{N} : V \text{ is infinite}\}$

Then

$V_1 = \text{prime numbers} \in \Omega$

$V_2 = \text{even numbers} \in \Omega$

$V_1 \cap V_2 = \{2\} \notin \Omega$

Exercise: How about
 $\Omega = \{V \subset \mathbb{N} : V \text{ is finite}\}$

$$X = \hat{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$$

$$\Omega = \{V \subset \hat{\mathbb{N}} : V \subseteq \mathbb{N}\} \cup \{V \subset \hat{\mathbb{N}} : \hat{\mathbb{N}} \setminus V \text{ is finite}\}$$

\uparrow
 $\infty \notin V$

$\underbrace{\hspace{100pt}}$
cofinite

Propn: Ω is a topology.

Pf: (3) $\emptyset \subset \mathbb{N}$, $\hat{\mathbb{N}}$ is cofinite

(1) $\{V_\alpha\}_{\alpha \in A}$ all open

• If $V_\alpha \subset \mathbb{N} \nrightarrow \infty$, then $\bigcup_{\alpha \in A} V_\alpha \subset \mathbb{N}$

(2) V_1, \dots, V_n open $\Rightarrow V_1 \cap \dots \cap V_n$ open

• If some V_{α_0} cofinite, ^{so} open, then $\bigcup_{\alpha \in A} V_\alpha \supset V_{\alpha_0} \Rightarrow$ cofinite

• If some $V_i \subset \mathbb{N}$, $V_1 \cap \dots \cap V_n \subset \mathbb{N}$, so open

• If all V_i cofinite, $V_1 \cap \dots \cap V_n$ cofinite.

Motivation:

$\alpha: \hat{\mathbb{N}} \rightarrow \mathbb{R}$ is
 $\{\alpha_n\}_{n \in \mathbb{N}} \in \mathbb{R}$ and
 $\alpha_\infty \in \mathbb{R}$

• Each point in \mathbb{N} is open

• \emptyset \mathbb{N} Ω \mathbb{C} \mathbb{D} .

• 'close to ∞ ' means
 - all but finite

many:
 • We will see:
 α continuous

$\Leftrightarrow \alpha_n \rightarrow \alpha_\infty$

Basis for a topology: e.g. $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}, a < b\}$ is a basis for the topology.

Defn: We say \mathcal{B} is a basis for Ω if

$$\text{(i. } \mathcal{B} \subset \Omega)$$

$$\text{(ii. } \Omega = \{ \bigcup_{a \in A} V_a : A \text{ a set, } \forall a \in A, V_a \in \mathcal{B} \} =: \Omega_{\mathcal{B}})$$

• We have seen:

$$V \in \Omega_{\mathcal{B}} \text{ iff } \forall x \in V, \exists w \in \mathcal{B} \text{ s.t. } x \in w \text{ & } w \subset V$$

Thus, \mathcal{B} is a basis for Ω

$$\Leftrightarrow \Omega = \Omega_{\mathcal{B}} \text{ (by defn.)}$$

$$\Leftrightarrow V \in \Omega \text{ iff } \forall x \in V, \exists w \in \mathcal{B} \text{ s.t. } x \in w \text{ & } w \subset V$$

Given $\mathcal{B} \subset 2^X$, X a set

Question: When is \mathcal{B} a basis for some topology Ω on X ?

- If so $\Omega = \Omega_{\mathcal{B}}$, so the question is equivalent to

Question: When is $\Omega_{\mathcal{B}}$ a topology on X ?

Firstly: $\forall X \in \Omega_{\mathcal{B}} \Leftrightarrow \forall x \in X, \exists V \in \mathcal{B}$ s.t. $x \in V \subset X$

$$\Leftrightarrow \boxed{\bigcup_{W \in \mathcal{B}} W = X}$$

Assume this: $\emptyset \in \Omega_{\mathcal{B}}$ always

E.g. $\mathcal{B} = \{\{A \subset \mathbb{N} : A \text{ is infinite}\}\}$

$$\Omega_{\mathcal{B}} = \{\emptyset\} \cup \{\{A \subset \mathbb{N} : A \text{ is infinite}\}\}$$

We saw: This not a topology, as $\exists V_1, V_2 \in \Omega_{\mathcal{B}}$ s.t. $V_1 \cap V_2 \notin \Omega_{\mathcal{B}}$

(1) $\bigcup_{\alpha \in A} V_\alpha \in \Omega_B$ if $V_\alpha \in \Omega_B \forall \alpha \in A$:

Suppose $V_\alpha \in \Omega_B \forall \alpha \in A$, $x \in \bigcup_{\alpha \in A} V_\alpha$

then $\exists \alpha_0 \in A$ s.t. $x \in V_{\alpha_0}$

$\Rightarrow \exists w \in B$ s.t. $x \in w$, $w \subset V_{\alpha_0} \subset \bigcup_{\alpha \in A} V_\alpha$ as reqd.

(2) We need $V_1, \dots, V_n \in \Omega_B \Rightarrow V_1 \cap \dots \cap V_n \in \Omega_B$

In particular, need: w_1, w_2, \dots, w_n , then $[w_1 \cap \dots \cap w_n \in \Omega_B]$,

i.e. $[w_1 \cap \dots \cap w_n = \bigcup_{\alpha \in A} w_\alpha]$ for some A , $w_\alpha \in B \forall \alpha \in A$

equivalently $\forall x \in w_1 \cap \dots \cap w_n$, $\exists w_x \in B$ s.t. $x \in w_x \wedge w_x \subset w_1 \cap \dots \cap w_n$

((1))

Theorem: Suppose $\mathcal{B} \subset 2^X$ is a collection of sets s.t.

(a) $\bigcup_{W \in \mathcal{B}} W = X$

R.H: Equivalently
 $\forall x \in W_1 \cap \dots \cap W_n$
 $\exists W_x \in \mathcal{B}$ s.t.
 $x \in W_x \subset W_1 \cap \dots \cap W_n$

(b) $\forall W_1, \dots, W_n \in \mathcal{B}$, \exists a collection $\{W_\alpha\}_{\alpha \in A}$ of sets $W_\alpha \in \mathcal{B}$

s.t. $W_1 \cap \dots \cap W_n = \bigcup_{\alpha \in A} W_\alpha$

Then \mathcal{B} is the basis of some topology on X

R.H: This is equivalent to ' $\Omega_{\mathcal{B}}$ is a topology'

The converse is also true.

Pf: (a) \Rightarrow (3) for a topology

(2) is always true

Remain to show: (b) \Rightarrow (1), i.e. can replace $W_i \in \mathcal{B}$ by $V_i \in \Omega_{\mathcal{B}}$

Lemma: If $V_1, \dots, V_n \in \Omega_B$, $x \in V_1 \cap \dots \cap V_n$, then
 $\exists W_x \in \bigcap_{\Omega_B} \text{ s.t. } x \in W_x \text{ and } W_x \subset V_1 \cap \dots \cap V_n$

hence
 $V_1 \cap \dots \cap V_n$
 $= \bigcup_{x \in V_1 \cap \dots \cap V_n} W_x \in \Omega_x$

Pf: As $x \in V_1 \cap \dots \cap V_n$, $x \in V_i \ \forall i$

$\Rightarrow \exists W_i \in B \text{ s.t. } x \in W_i, W_i \subset V_i$

$\Rightarrow x \in W_1 \cap \dots \cap W_n \subset V_1 \cap \dots \cap V_n$.

By hypothesis, $\exists W_x \subset \bigcap_{\substack{W_1 \cap \dots \cap W_n \\ V_1 \cap \dots \cap V_n}} \text{ s.t. } x \in W_x \ \& \ W_x \in B$

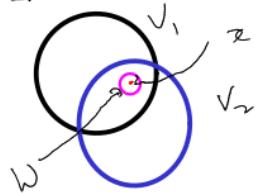
as required

□

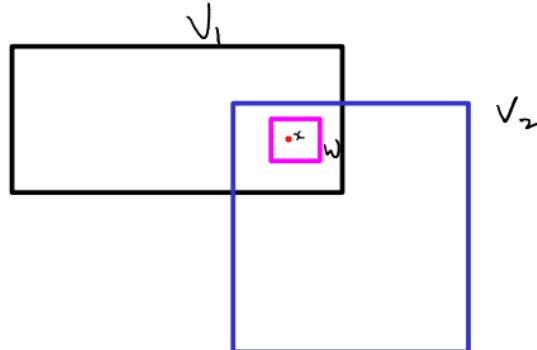
This proves the theorem.

Examples of Bases : $V_1, V_2 \in \mathcal{B} \Rightarrow \forall x \in V_1 \cap V_2 \exists W \in \mathcal{B} \text{ s.t. } x \in W \text{ and } W \subset V_1 \cap V_2$

(1) Open discs form a basis for a topology on \mathbb{R}^2

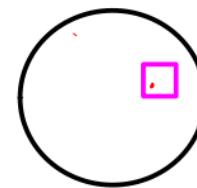


(2) Open rectangles parallel to axes

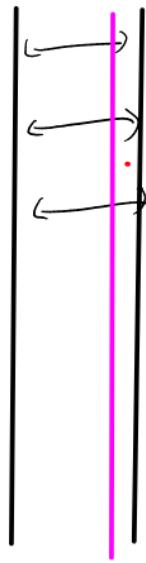


Rk: These give the same topology

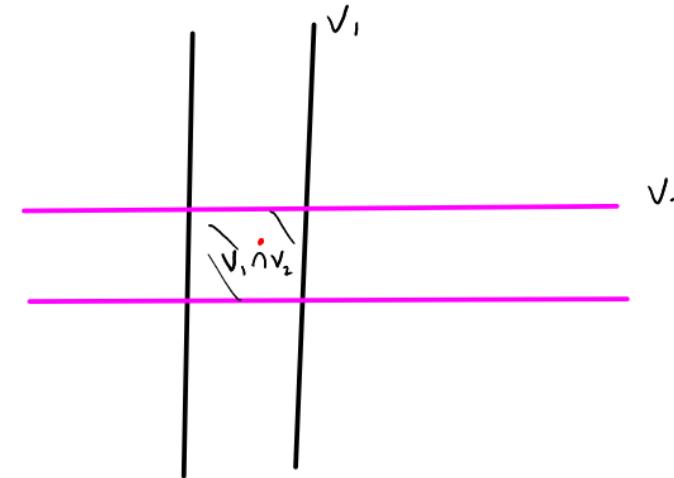
(a)



Example: ^{Open} Vertical strips (infinite)



Non-example: Infinite open vertical and horizontal strips



$$X = \mathbb{R} \cup \{-\infty, \infty\}$$

$$B = \{(a, b) : a, b \in \mathbb{R}, a < b\} \cup \{\tilde{[a, +\infty]} : a \in \mathbb{R}\} \cup \{[-\infty, a) : a \in \mathbb{R}\}$$

where $\tilde{[a, +\infty]} = \{\infty\} \cup \{x \in \mathbb{R} : x > a\}$

Sub-basis: X a set, $\Delta \subset 2^X$, then Δ is a sub-basis (for Ω) if

$\mathcal{B} = \{V_1 \cap \dots \cap V_n : V_i \in \Delta\}$ is a basis (of Ω)

Propn: Δ is a sub-basis iff $\bigcup_{v \in \Delta} v = X$.

Idea of Pf:

$$\bigcup_{v \in \Delta} v = \bigcup_{w \in \mathcal{B}} w$$

• Finite intersections of elements of \mathcal{B} are in \mathcal{B} .

$$\text{e.g. } (V_1 \cap \dots \cap V_n) \cap (V'_1 \cap \dots \cap V'_m) = V_1 \cap \dots \cap V_n \cap V'_1 \dots \cap V'_m \in \mathcal{B}$$

|| ==

Defn: A neighbourhood of $x \in X$ is an open set \cup_{λ} containing x .

Defn: A set $A \subset X$ is closed if $X \setminus A$ is open.

Given closed sets \mathcal{F} , $\Omega = \overline{\{X \setminus A : A \in \mathcal{F}\}}$, so we know the topology.

Question: When does $\mathcal{F} \subset 2^S$ form the closed sets in a topology?

Theorem: \mathcal{F} forms closed sets of a topology iff

(1) If $\{F_\alpha\}_{\alpha \in A}$ is a collection of closed sets, then $\bigcap_{\alpha \in A} F_\alpha$ is closed.
 $F_\alpha = X \setminus V_\alpha \Leftrightarrow V_\alpha = X \setminus F_\alpha$ open sets, $\bigcap_{\alpha \in A} (X \setminus V_\alpha) = X \setminus \bigcup_{\alpha \in A} V_\alpha$ open

(2) F_1, F_2, \dots, F_n are closed, then $F_1 \cup \dots \cup F_n$ is closed

(3) $\emptyset, X \in \mathcal{F}$

Metric Spaces: A set X with a function $d: X \times X \rightarrow \mathbb{R}_{\geq 0} = \{x \in \mathbb{R}: x \geq 0\}$ s.t.

$$(1) \quad d(x, y) = 0 \iff x = y \quad \forall x, y \in X$$

$$(2) \quad d(x, y) = d(y, x) \quad \forall x, y \in X$$

$$(3) \quad \text{triangle inequality} \quad d(x, y) + d(y, z) \geq d(x, z) \quad \forall x, y, z \in X$$

$$\text{e.g. } X = \mathbb{R}, \quad d(x, y) = |x - y|$$

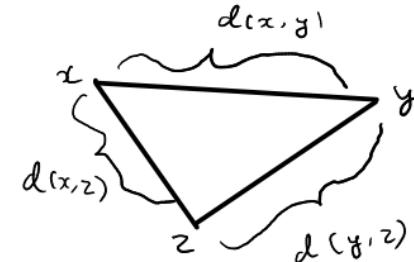
$$\cdot X = \mathbb{R}^n: \underline{d_1, d_2, d_\infty} \quad \cdot d_1((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sum_{i=1}^n |x_i - y_i|$$

$$\cdot d_2((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

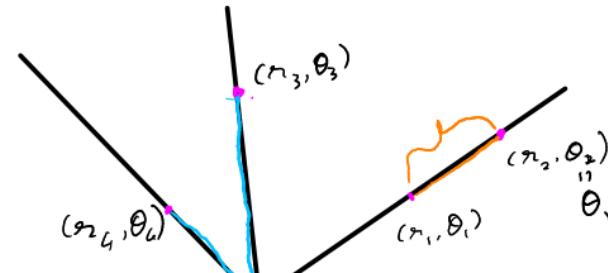
$$\cdot d_\infty((x_1, \dots, x_n), (y_1, \dots, y_n)) = \max \{ |x_i - y_i|: 1 \leq i \leq n \}$$

Defn: For a metric space, $a \in X$, $r > 0$ we define

Open ball: $B_r(a) = \{x \in X: d(x, a) < r\}$ Closed ball: $\overline{B_r(a)} = \{x \in X: d(x, a) \leq r\}$	$\left. \begin{array}{l} \text{Sphere} \\ S_r(a) = \{x \in X: d(x, a) = r\} \end{array} \right\}$
--	---



S NCF metric : Metric on \mathbb{R}^2



Use polar coordinates

Define:

- $d((0,0), (0,0)) = 0$
- $d((r, \theta), (0, 0)) = |r|$
- $d((r_1, \theta_1), (r_2, \theta_2)) = \begin{cases} |r_1 - r_2|, & \text{if } \theta_1 = \theta_2 \\ |r_1| + |r_2|, & \text{if } \theta_1 \neq \theta_2. \end{cases}$

Examples: proofs of Metric properties

d_2, d_1, d_∞ : All 'from norms', i.e., for $p = 1, 2, \infty$

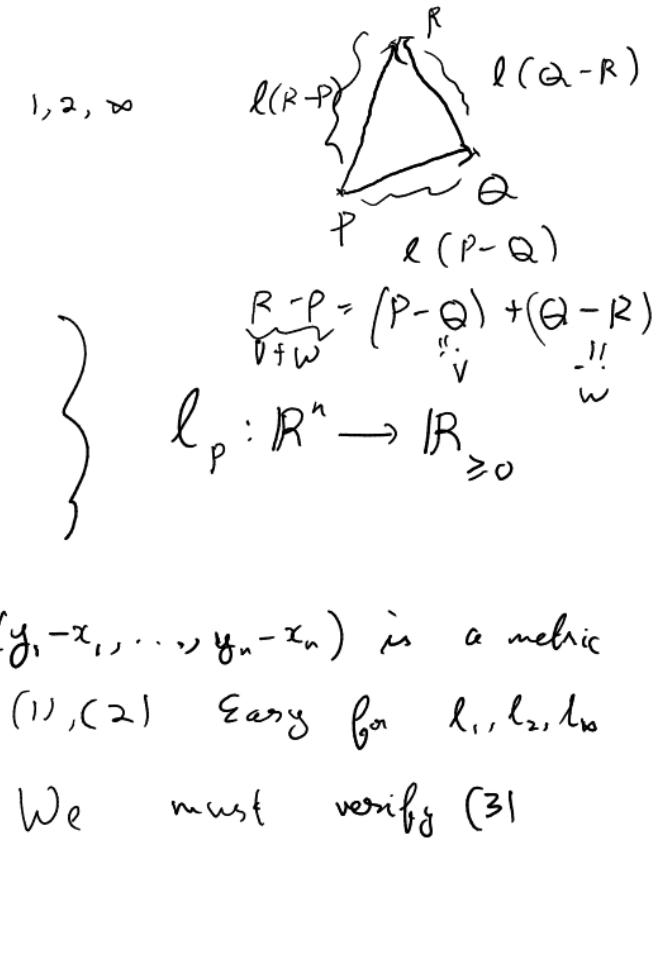
$$d_p((x_1, \dots, x_n), (y_1, \dots, y_n)) = l_p(y - x) \\ \text{where } l_p(y - x) = \sqrt[p]{\sum_{i=1}^n |y_i - x_i|^p}$$

where

$$l_1((u_1, \dots, u_n)) = \sum_{i=1}^n |u_i|$$

$$l_2((u_1, \dots, u_n)) = \sqrt{\sum_{i=1}^n u_i^2}$$

$$l_\infty((u_1, \dots, u_n)) = \max \{ |u_i|; 1 \leq i \leq n \}$$



If
iff

$\ell: \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$, $\ell((x_1, \dots, x_n), (y_1, \dots, y_n)) = \ell(y_1 - x_1, \dots, y_n - x_n)$ is a metric

$$(1) \quad \ell(u_1, \dots, u_n) = 0 \iff (u_1, \dots, u_n) = 0 \quad \left. \begin{array}{l} (1), (2) \text{ easy for } l_1, l_2, l_\infty \\ (3) \text{ we must verify} \end{array} \right\}$$

$$(2) \quad \ell(-v) = \ell(v) \quad \forall v \in \mathbb{R}^n$$

$$(3) \quad \ell(v+w) \leq \ell(v) + \ell(w)$$

$$\underline{\ell_1} : \ell_1(u_1, \dots, u_n) = \sum_{i=1}^n |u_i| = \|\underline{u}\|_1,$$

$|a+b| \leq |a| + |b| \quad \forall a, b \in \mathbb{R}$ by checking cases

$$\|\underline{u} + \underline{v}\|_1 = \ell_1(u_1 + v_1, \dots, u_n + v_n) = \sum_{i=1}^n |u_i + v_i| \leq \sum_{i=1}^n (|u_i| + |v_i|) = \sum_{i=1}^n |u_i| + \sum_{i=1}^n |v_i| = \|\underline{u}\|_1 + \|\underline{v}\|_1$$

$$\underline{\ell_\infty} : \ell_\infty(u_1, \dots, u_n) = \max\{|u_i|\}.$$

$$\therefore |u_i| \leq \ell_\infty(u_1, \dots, u_n) \quad \forall i \quad ; \quad |v_i| \leq \ell_\infty(v_1, \dots, v_n)$$

$$\therefore |u_i + v_i| \leq |u_i| + |v_i| \leq \|\underline{u}\|_\infty + \|\underline{v}\|_\infty \quad \forall i$$

$$\therefore \|\underline{u} + \underline{v}\|_\infty = \max_i |u_i + v_i| \leq \|\underline{u}\|_\infty + \|\underline{v}\|_\infty$$

$$\|\underline{u}\|_2 = \sqrt{\sum_{i=1}^n u_i^2} = \sqrt{\langle \underline{u}, \underline{u} \rangle} = \|\underline{u}\| := \|\underline{u}\|_2$$

$$\underline{\text{Propn:}} \quad \|\underline{u} + \underline{v}\| \leq \|\underline{u}\| + \|\underline{v}\|$$

$$\underline{\text{Pf:}} \text{ claim} (=) \quad \|\underline{u} + \underline{v}\|^2 = (\|\underline{u}\| + \|\underline{v}\|)^2$$

$$\text{i.e.} \quad \langle \underline{u} + \underline{v}, \underline{u} + \underline{v} \rangle \leq \|\underline{u}\|^2 + \|\underline{v}\|^2 + 2\|\underline{u}\| \cdot \|\underline{v}\|$$

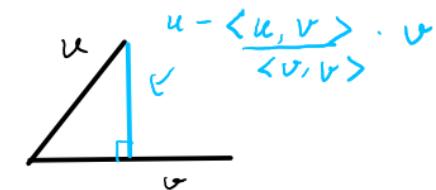
$$\left(\Rightarrow \right) \|\underline{u}\|^2 + \|\underline{v}\|^2 + 2\langle \underline{u}, \underline{v} \rangle \leq \|\underline{u}\|^2 + \|\underline{v}\|^2 + 2\|\underline{u}\| \cdot \|\underline{v}\|$$

$$\left(\Rightarrow \right) \langle \underline{u}, \underline{v} \rangle \leq \|\underline{u}\| \cdot \|\underline{v}\| \quad \underline{\text{Cauchy-Schwarz}}$$

Theorem: (Cauchy-Schwarz): $|\langle \underline{u}, \underline{v} \rangle| \leq \|\underline{u}\| \cdot \|\underline{v}\|$ $\forall \underline{u}, \underline{v} \in \mathbb{R}^n$, and inner product spaces

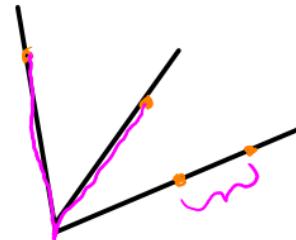
Pf: $0 \leq \langle \underline{u} - \frac{\langle \underline{u}, \underline{v} \rangle}{\langle \underline{v}, \underline{v} \rangle} \cdot \underline{v}, \underline{u} - \frac{\langle \underline{u}, \underline{v} \rangle}{\langle \underline{v}, \underline{v} \rangle} \cdot \underline{v} \rangle = \|\underline{u}\|^2 + \frac{\langle \underline{u}, \underline{v} \rangle^2}{\langle \underline{v}, \underline{v} \rangle} - 2 \frac{\langle \underline{u}, \underline{v} \rangle^2}{\langle \underline{v}, \underline{v} \rangle} = \|\underline{u}\|^2 - \frac{\langle \underline{u}, \underline{v} \rangle^2}{\|\underline{v}\|^2}$

$\therefore (\langle \underline{u}, \underline{v} \rangle)^2 \leq \|\underline{u}\|^2 \cdot \|\underline{v}\|^2$



E.g. S N C F metric: Proof by cases

Exercise



E.g. Discrete metric: X a set

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Subspaces and Topologies

- If (X, d) is a metric space, i.e. X set, $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ satisfies the properties of a metric, and $Y \subset X$ is a subset, then $d|_{Y \times Y}: Y \times Y \rightarrow \mathbb{R}_{\geq 0}$ is a metric.

Topology from (X, d)

Defn: The topology associated to a metric space (X, d) is the topology with basis

$$\mathcal{B} = \left\{ B_a(r) : a \in X, r > 0 \right\}$$

$$\{x \in X : d(x, a) < r\}$$

Theorem: \mathcal{B} is the basis for a topology.

Pf: $\bigcup_{S \in \mathcal{B}} S = X$ as $x \in X \Rightarrow x \in B_x(1) \subset \bigcup_{V \in \mathcal{B}} V$

We also need

Lemma: Given $a_1, a_2 \in X$, $r_1, r_2 > 0$, $\forall x \in B_{a_1}(r_1) \cap B_{a_2}(r_2)$,

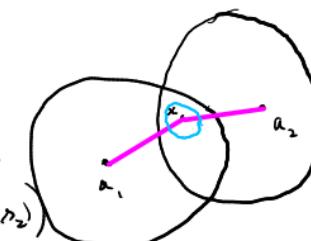
$\exists p > 0$ s.t. $B_p(x) \subset B_{a_1}(r_1) \cap B_{a_2}(r_2)$

Pf: Let $x \in B_{a_1}(r_1) \cap B_{a_2}(r_2)$. Then

$$d(x, a_i) < r_i, \quad i=1, 2.$$

Choose p s.t. $0 < p < \min\{r_1 - d(x, a_1), r_2 - d(x, a_2)\}$

claim: $B_x(p) \subset B_{a_i}(r_i)$ for $i=1, 2$, (hence $B_x(p) \subset B_{a_1}(r_1) \cap B_{a_2}(r_2)$)

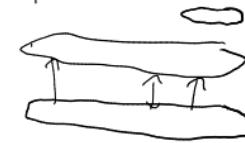


Pf: Let $y \in B_x(p)$, then $d(y, x) < p$, $p < r_i - d(x, a_i)$

$$\therefore d(y, x) < r_i - d(x, a_i) \Rightarrow d(y, a_i) \leq d(y, x) + d(x, a_i) < r_i$$

i.e. $y \in B_{a_i}(r_i)$

Hausdorff distance : (X, d) metric space



• Defn.: $A \subset X$ is bounded if

$$\{d(x, y) : x, y \in A\} \subseteq \mathbb{R}$$

is bounded above

• Defn.: If A is bounded, define

$$\text{diam}(A) = \sup \{d(x, y) : x, y \in A\}$$

• Rk: $\text{diam}(A) = 0 \Leftrightarrow A = \emptyset \text{ or } A \text{ is a singleton}$

Distance from a set : $A \subset X$ set, $x \in X$

$$d(A, x) = \inf \{d(x, a) : a \in A\}$$

E.g. $X = \mathbb{R}$, $d(x, y) = |x - y|$

$A = \mathbb{Q}$, $x = \pi$

Then $d(A, x) = 0$

$$\inf \{d(x, a) : a \in A\}$$

Theorem: If A is closed, then $\forall x \in X$, $d(A, x) = 0 \Leftrightarrow x \in A$

PF: If A is closed, $X \setminus A$ is open,

hence $\forall x \in X$, if $x \notin A$, $\exists r > 0$ s.t. $B_x(r) \subset X \setminus A$,

i.e. $\forall y \in X$, $d(y, x) < r \Rightarrow y \in X \setminus A$, i.e. $y \notin A$

$\therefore a \in A \Rightarrow d(a, x) > r \quad \forall a$.

$$\therefore \inf \{d(x, a) : a \in A\} \geq r > 0.$$

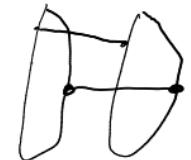
Let A_1, A_2 be bounded sets.

Defn: $d_H(A_1, A_2) = \max \{ \sup \{ d(A_1, a_2) : a_2 \in A_2 \}, \sup \{ d(A_2, a_1) : a_1 \in A_1 \} \}$

E.g. $d_H(\mathbb{Q} \cap [0, 1], [0, 1] \setminus \mathbb{Q}) = 0$

Theorem: The function d_H is a metric on the set of closed and bounded sets in X

Recall: $d_H(A_1, A_2) = \max \{ \sup \{ d(A_1, a_2) : a_2 \in A_2 \}, \sup \{ d(a_1, A_2) : a_1 \in A_1 \} \}$



Theorem: The function d_H is a metric on the set of closed and bounded sets in X

Pf: (1) $d(A, A) = 0$

Suppose $d(A_1, A_2) = 0$, then $\sup \{ d(A_1, a_2) : a_2 \in A_2 \} = 0$

$$\therefore \forall a_2 \in A_2, d(A_1, a_2) = 0$$

$$\Rightarrow a_2 \in A_1, \forall a_2 \in A_2, \text{ i.e. } A_2 \subset A_1$$

Similarly $A_1 \subset A_2$ done

$$\text{i.e. } A_1 = A_2$$

(2) Symmetry is clear.

Fix A_1, A_2, A_3 closed bounded sets.

To show: $d_H(A_1, A_3) \leq d_H(A_1, A_2) + d_H(A_2, A_3)$

Lemma: $\forall \varepsilon > 0$, $\exists a_3 \in A_3$, $d(A_1, a_3) \leq d_H(A_1, A_2) + d_H(A_2, A_3) + \varepsilon$

Pf: By defn. of $d(A_2, a_3)$, $\exists a_2 \in A_2$ s.t. $d(a_2, a_3) \leq d(A_2, a_3) + \frac{\varepsilon}{2}$

$$\leq d_H(A_2, A_3) + \frac{\varepsilon}{2}$$

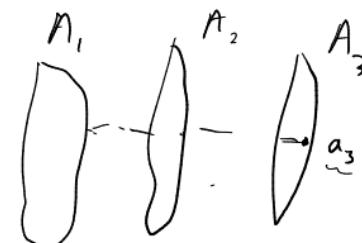
Similarly, $\exists a_1 \in A_1$ s.t. $d(a_1, a_2) \leq d_H(A_1, A_2) + \frac{\varepsilon}{2}$

$$\therefore d(A_1, a_3) \leq d(a_1, a_3) \leq d_H(A_1, A_2) + d_H(A_2, A_3) + \varepsilon \quad \text{as claimed}$$

As ε was arbitrary, $\forall a_3 \in A_3$, $d(A_1, a_3) \leq d_H(A_1, A_2) + d_H(A_2, A_3)$

$$\therefore \sup \{d(A_1, a_3) : a_3 \in A_3\} \leq d_H(A_1, A_2) + d_H(A_2, A_3)$$

$\left(\text{by } \sup \{d(A_3, a_1) : a_1 \in A_1\} \leq d_H(A_1, A_2) + d_H(A_2, A_3) \right)$



Ultra-metrics : $X = \{0, 1\}^{\mathbb{N}} = \{\alpha : \mathbb{N} \rightarrow \{0, 1\}\}$

Let $\delta(\{a_n\}, \{b_n\}) = \max \{j \in \mathbb{N} : \forall i \leq j, a_i = b_i\} \in \mathbb{N} \cup \{\infty\}$

Define $d(\{a_n\}, \{b_n\}) = 2^{-\delta(\{a_n\}, \{b_n\})}$

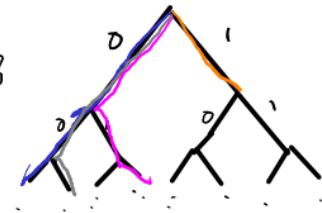
Theorem: d is a metric

(1) $d(\{a_n\}, \{b_n\}) = 0 \iff \delta(\{a_n\}, \{b_n\}) = \infty \iff a_i = b_i \forall i \iff \{a_n\} = \{b_n\}$

(2) Symmetry is obvious.

(3) To show: $d(\{a_n\}, \{c_n\}) \leq d(\{a_n\}, \{b_n\}) + d(\{b_n\}, \{c_n\})$

Lemma: $\delta(\{a_n\}, \{c_n\}) \geq \min \{\delta(\{a_n\}, \{b_n\}), \delta(\{b_n\}, \{c_n\})\}$



$$\delta(\{a_n\}, \{b_n\}) = \max \{ j \in \mathbb{N} : \forall i \leq j, a_i = b_i \} \in \mathbb{N} \cup \{\infty\}$$

Lemma: $\delta(\{a_n\}, \{c_n\}) \geq \min \{ \delta(\{a_n\}, \{b_n\}), \delta(\{b_n\}, \{c_n\}) \} = \mu$

We show $\mu \in \{ j \in \mathbb{N} : \forall i \leq j, a_i = c_i \}$

i.e. $\forall i \leq \mu, a_i = c_i$

But, $\mu \leq \delta(\{a_n\}, \{b_n\})$, so $i \leq \mu \Rightarrow i \leq \delta(\{a_n\}, \{b_n\}) \Rightarrow a_i = b_i$

(Hence $i \leq \mu \Rightarrow b_i = c_i$

$\therefore i \leq \mu \Rightarrow a_i = b_i = c_i$ as claimed

Lemma: $d(\{a_n\}, \{c_n\}) \leq \max \{ d(\{a_n\}, \{b_n\}), d(\{b_n\}, \{c_n\}) \}$ $\left(\leq d(\dots) + d(\dots) \right)$

Defn: $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ is called an ultra-metric if it is a metric &

$$\forall x, y, z \in X, d(x, z) \leq \max \{ d(x, y), d(y, z) \}$$

p -adic metric: $X = \mathbb{Z}$,

$$\| \cdot \|_p : \mathbb{Z} \rightarrow \mathbb{R}_{\geq 0}$$

$$d_p(n, m) = \|n - m\|_p$$

$$\text{Let } \|n\|_p = p^{-\delta_p(n)}$$

Theorem: This is an ultra-metric

$$\text{Pf: (1)} \quad d_p(n, m) = 0 \Leftrightarrow \|n - m\|_p = 0 \Leftrightarrow n - m = 0 \Leftrightarrow n = m$$

(\Rightarrow) Symmetry is clear.

$$(3) \text{ Lemma: } \|n+m\|_p \leq \max \{\|n\|_p, \|m\|_p\}$$

Hence, for $a, b, c \in \mathbb{Z}$

$$d_p(a, c) \leq \max \{d_p(a, b), d_p(b, c)\}$$

by taking $n = b-a$, $m = c-b$

$$\text{Define } \delta_p(n) = \max_{k \in \mathbb{Z}} \{k : p^k \mid n\} \in \mathbb{Z} \cup \{\infty\}$$

'Usually' $\dots n = p^m \cdot q$ for some $m \geq 0$, $\text{and } p \nmid q$
and $\delta_p(n) = m$

For \mathbb{Q} , and $x \in \mathbb{Q}$, $x \neq 0$ can be expressed
as $x = p^k \cdot \frac{m}{n}$, $p \nmid m, p \nmid n$

$$\|x\|_p = p^{-k}$$

$$\text{Lemma: } \delta_p(n+m) \geq \min \{\delta_p(n), \delta_p(m)\} = \mu$$

Pf: Enough to show $\mu \in \{k : p^k \mid m+n\}$, i.e. $p^{\mu} \mid m+n$

$$\text{Now } \mu \leq \delta_p(n) \Rightarrow p^{\mu} \mid n, \quad \|n\|_p = p^{\mu}$$

$$\text{So } p^{\mu} \mid m+n.$$

D

Subspaces : (X, Ω) topological space.

$Y \subset X$.

Let $\Omega_Y = \{Y \cap V : V \in \Omega\}$

Propn: Ω_Y is a topology on Y

Pf: (1) $\bigcup_{a \in A} (Y \cap V_a) = Y \cap \left(\bigcup_{a \in A} V_a\right) \in \Omega_Y$

(2) $(Y \cap V_1) \cap \dots \cap (Y \cap V_n) = Y \cap (V_1 \cap \dots \cap V_n) \in \Omega_Y$

(3) $\emptyset = \emptyset \cap Y ; Y = Y \cap X$.

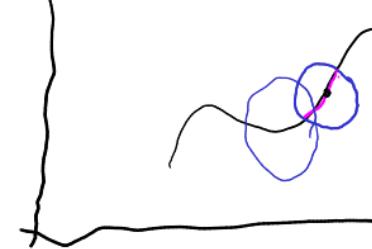
Propn: If (X, d_X) is a metric space, the subspace topology on Y from the metric topology on X is the metric topology on Y w.r.t. d_Y , the restriction.

Exercise

Propn: If \mathcal{B} is a basis for Ω , then $\mathcal{B}_Y = \{Y \cap V : V \in \mathcal{B}\}$ is a basis for Ω_Y

Pf: $\Omega = \{ \bigcup_{a \in A} V_a \text{ for collection } V_a \in \mathcal{B} \}$

$$\begin{aligned} \Omega_Y &= \{ Y \cap \bigcup_{a \in A} V_a \text{ for collection } \\ &= \{ \bigcup_{a \in A} (Y \cap V_a) \dots \} \end{aligned}$$



Inheritance: In general,

$V \subset Y$ open in $Y \not\Rightarrow V$ open in X

$X = \mathbb{R}^2$

$A \subset Y$ closed in $Y \not\Rightarrow A$ is closed in X

not included

Propn: (a) If $Y \subset X$ is open and $V \subset Y$ open in Y , then $V \subset X$ is open
(b) If $Y \subset X$ is closed and $A \subset Y$ closed in Y , then $V \subset Y$ is closed.

Pf: (a) By defn., $V = Y \cap W$, W open in $X \Rightarrow W$ is open

(b) $V \subset Y$ thru below

$\overline{A \subset Y}$ closed $\Rightarrow A = \overline{Y \cap F}$, F closed $\Rightarrow A$ closed in X

closed in Y

Theorem: $A \subset Y$ is closed (in the subspace topology) iff $A = Y \cap F$ for some $F \subset X$ closed

Pf: $A \subset Y$ closed $\Leftrightarrow Y \setminus A$ open $\Leftrightarrow \exists V \subset X$ open s.t. $Y \setminus A = Y \cap V$

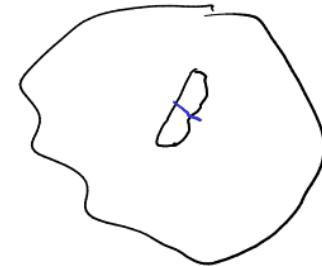
$A = Y \cap (\overline{X \setminus V})$ closed

Theorem: X space, $Y \subset X$, $Z \subset Y$. Then
 the subspace topologies on Z from X
 and Y with subspace topology coincide.

Ps: The two topologies are

$$\Omega_Z^X = \{V \cap Z : V \subset X \text{ open}\}$$

$$\begin{aligned} \text{and } \Omega_Z^Y &= \{V \cap Z : V \text{ open in } Y\} = \{V \cap Z : V = W \cap Y, W \subset X \text{ open}\} \\ &= \{W \cap Y \cap Z : W \text{ open in } X\} \\ &= \{W \cap Y : W \text{ open in } X\} \end{aligned}$$



Interiors, Closures, Frontiers : X topological space, $S \subset X$ a subset

Defn: The interior $\text{int}(S)$ (or $\overset{\circ}{S}$) of S is

$$\bigcup \{V \subset X : V \text{ open, } V \subset S\}$$

Defn: An interior point of S is a point $x \in \text{int}(S)$

Propn: $x \in \text{int}(S) \Leftrightarrow \exists V \text{ open s.t. } x \in V \text{ and } V \subset S.$

Pf: $\begin{array}{c} \Leftarrow \\ \Rightarrow \end{array}$

□

Defn: $\text{int}(S)$ is the (unique) set s.t.

(1) $\text{int}(S)$ is open

(2) $\text{int}(S) \subset S$

(3) $\forall V \text{ open and } V \subset S \Rightarrow V \subset \text{int}(S)$

Pf: • If $\overset{\circ}{S}$ satisfies (1)-(3), $\overset{\circ}{S} = \text{int}(S)$

• $\text{int}(S)$ satisfies (1)-(3) □

Uniqueness: If $\overset{\circ}{S}$ & $\overset{\circ}{S}'$ are two sets satisfying (1)-(3), then $\overset{\circ}{S}$ is open & $\overset{\circ}{S}' \subset \overset{\circ}{S}$ by (3) for $\overset{\circ}{S}' \subset \overset{\circ}{S}$, $\overset{\circ}{S} \subset \overset{\circ}{S}'$. Similarly $\overset{\circ}{S}' \subset \overset{\circ}{S}$

Theorem: $x \in cl(S)$ iff \forall open sets $U \subset X$ s.t. $x \in U$, $U \cap S \neq \emptyset$

Pf: Suppose $x \in cl(S)$, U open, $x \in U$.

Suppose $U \cap S = \emptyset$, then $S \subset \underline{X \setminus U}$, which is closed. $\text{(\textcircled{1})}$

$\therefore cl(S) = \bigcap \{A \subset X : A \supset S, A \text{ closed}\} \subset X \setminus U$

But $x \in U \Rightarrow x \notin X \setminus U$, a contradiction.

Conversely, assume $\forall U$ open in X s.t. $x \in U$, $U \cap S \neq \emptyset$
i.e. $\forall U$ open, $x \in U$, $S \not\subset X \setminus U$

Suppose $x \notin cl(S) = \bigcap \{A \subset X : S \subset A, A \text{ closed}\}$

then $\exists A \subset X$, $S \subset A$, A closed s.t. $x \notin A$.

let $V = X \setminus A$, then $x \in V$, V open, $V \cap S = \emptyset$ and V open
contradicting the hypothesis.

{ Propn: If V is open, then $\text{int}(V) = V$.

Pf: V satisfies (1) - (3) □

• Propn: $\text{int}(S_1 \cap \dots \cap S_n) = \text{int}(S_1) \cap \dots \cap \text{int}(S_n)$

Pf: Exercise

Propn: $\text{int}(\overbrace{\text{int } S}^{\text{open}}) = \text{int } S$.

Defn: The closure of S is $\bigcap \{A \subset X : A \text{ closed, } A \supset S\}$
($\text{cl}(S)$ or \overline{S})

Propn: $\text{cl}(S)$ is the unique set in X s.t.

(1) $\text{cl}(S)$ is closed

(2) $\text{cl}(S) \supset S$

(3) If $A \supset S$ and A is closed, then $A \supset \text{cl}(S)$

Propn: $\text{cl}(A_1 \cap \dots \cap A_n) = \text{cl}(A_1) \cap \dots \cap \text{cl}(A_n)$

Pf Exercise

E.g. $\mathbb{Q} \subset \mathbb{R}$, $\mathbb{Q} = \emptyset$, $\overline{\mathbb{Q}} = \mathbb{R}$

.....

Defn: $A \subset X$ is dense if $\overline{A} = X$

Defn: X is separable if X has a countable dense sub.

Defn: The exterior of A is $X \setminus \overline{A}$

Propn: $\text{int}(X \setminus A) = X \setminus \overline{A}$

Pf: We use characterization of $\text{int}(\cdot)$.

(1) $X \setminus \overline{A}$ is open as \overline{A} is closed

(2) $X \setminus \overline{A} \subset X \setminus A$

(3) Suppose $V \subset X \setminus \overline{A}$ is open, we show

$V \subset X \setminus \overline{A} \Leftrightarrow V \cap \overline{A} = \emptyset \Leftrightarrow \overline{A} \subset \overline{X \setminus V}$

As $A \subset X \setminus V$ & $X \setminus V$ is closed, $\overline{A} \subset \overline{X \setminus V}$

Defn: $A \subset X$ is nowhere dense if the exterior of A is dense

E.g. $\mathbb{R} \subset \mathbb{R}^2$ nowhere dense.

Defn: The frontier (boundary) $F_n A$ for $A \subset X$ is defined as

$$F_n A := \overline{A} \cap \overline{X \setminus A}$$

Exercise: $F_n (A) = X \setminus (\text{int}(A) \cup \text{int}(X \setminus \overline{A}))$

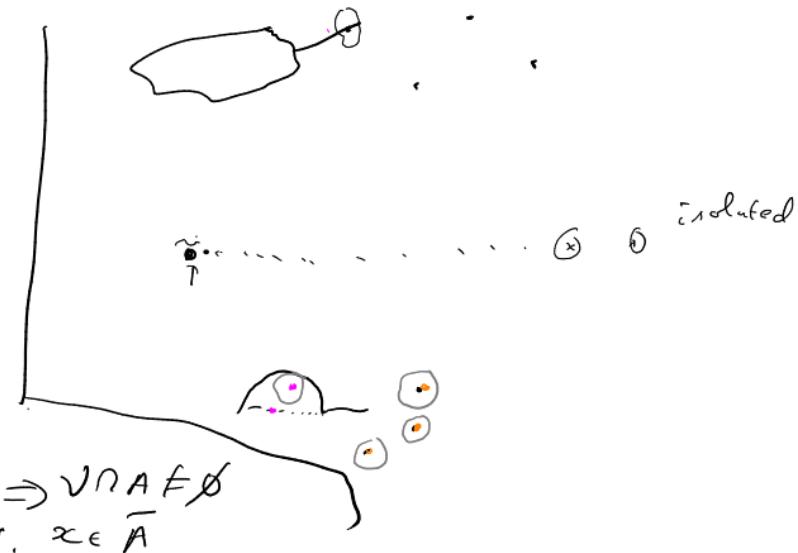
Defn: $x \in X$ is isolated if $\{x\}$ is open.

① isolated point

Defn: Fix $A \subset X$. We say $x \in X$ is a limit point of A if $\forall V$ open s.t.

$$x \in V, V \cap (A \setminus \{x\}) \neq \emptyset$$

Propn: If x is a limit point of A then $x \in \overline{A}$



If: If x is a limit point of A , then

$$\forall V \subset X, V \text{ open}, x \in V \Rightarrow V \cap (A \setminus \{x\}) \neq \emptyset \Rightarrow V \cap A \neq \emptyset \therefore x \in \overline{A}$$

Propn: $A \subset X$ is closed iff A contains all its limit points.

Pf: If A is closed, then $A = \bar{A}$. We have seen that every limit point of A is in \bar{A} , hence A .

Conversely, we show $A = \bar{A}$. Suppose $x \in \bar{A} \setminus A$ (for contradiction), then $\forall V$ open in X s.t. $x \in V$, $A \cap V \neq \emptyset$.

But $x \notin A$, so $A \setminus \{x\} = A$, so $(A \setminus \{x\}) \cap V \neq \emptyset$.
Thus x is a limit point.

Defn: A space X is 'dense in itself' if every point of X is a limit point, i.e., X has no isolated points.

E.g. $X = \{0\} \cup \left\{ \frac{1}{n} : n \geq 1, n \in \mathbb{Z} \right\}$

Then $\{0\}$ is not isolated in X , everything else is.

Inverse images

Let $f: X \rightarrow Y$ be a function.

• If $A \subset X$, then $f(A) := \{f(x) : x \in A\}$

• If $A \subset Y$, then $f^{-1}(A) = \{x \in X : f(x) \in A\}$

Propn: (1) $f^{-1}\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f^{-1}(A_i)$

(2) $f^{-1}\left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} f^{-1}(A_i)$

(3) $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$

Rk: $x \in f^{-1}(A) \Leftrightarrow f(x) \in A$

Do not assume f is invertible

$$(1) \underbrace{f^{-1}\left(\bigcup_{i \in I} A_i\right)}_{x \in f^{-1}\left(\bigcup_{i \in I} A_i\right)} = \bigcup_{i \in I} f^{-1}(A_i)$$

$$x \in f^{-1}\left(\bigcup_{i \in I} A_i\right) \Leftrightarrow f(x) \in \bigcup_{i \in I} A_i \Leftrightarrow \exists i_0 \in I \text{ s.t. } f(x) \in A_{i_0}$$

$$\Leftrightarrow \forall i_0 \in I, x \in f^{-1}(A_{i_0}) \Leftrightarrow x \in \bigcup_{i \in I} f^{-1}(A_i)$$

$$(2) \underbrace{f^{-1}\left(\bigcap_{i \in I} A_i\right)}_{x \in f^{-1}\left(\bigcap_{i \in I} A_i\right)} = \bigcap_{i \in I} f^{-1}(A_i)$$

$$x \in f^{-1}\left(\bigcap_{i \in I} A_i\right) \Leftrightarrow f(x) \in \bigcap_{i \in I} A_i \Leftrightarrow \forall i \in I, f(x) \in A_i$$

$$\Leftrightarrow \forall i \in I, x \in f^{-1}(A_i) \Leftrightarrow x \in \bigcap_{i \in I} f^{-1}(A_i)$$

$$(3) \underbrace{f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)}_{x \in f^{-1}(Y \setminus A) \Leftrightarrow f(x) \in Y \setminus A \Leftrightarrow \text{not } f(x) \in A \Leftrightarrow x \in f^{-1}(A) \Leftrightarrow x \in X \setminus f^{-1}(A)}$$

Rk: $f(A \cup B) = f(A) \cup f(B)$

But: Not true in general that

$$f(A \cap B) = f(A) \cap f(B)$$

or

$$f(X \setminus A) = Y \setminus f(A)$$

e.g. $X = Y = \{0, 1\}$, $f(x) = \{0\} \quad \forall x \in \{0, 1\}$, $A = \{0\}$, $B = \{1\}$

$$\emptyset = f(A \cap B) \neq f(A) \cap f(B) = \{0\}$$

\emptyset $\{0\}$ $\{0\}$

$$f(X \setminus A) = f(\{1\}) = \{0\}$$

But $Y \setminus f(A) = \{0, 1\} \setminus \underbrace{f(\{0\})}_{\{0\}} = \{1\}$

Continuous Functions: X, Y topological spaces, $f: X \rightarrow Y$ function.

Defn.: f is continuous if $\forall V \subset Y$ open, $f^{-1}(V) \subset X$ is open.

E.g.: $(X, d_X), (Y, d_Y)$ metric spaces, $f: X \rightarrow Y$

$X = Y = \mathbb{R}$, $d_X(x, y) = d_Y(x, y) = |x - y|$; $x \in B_\alpha(x) \Leftrightarrow |x - \alpha| < \alpha$

Theorem: f is continuous iff $\forall x \in X$,

(analysis cont.) $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon$

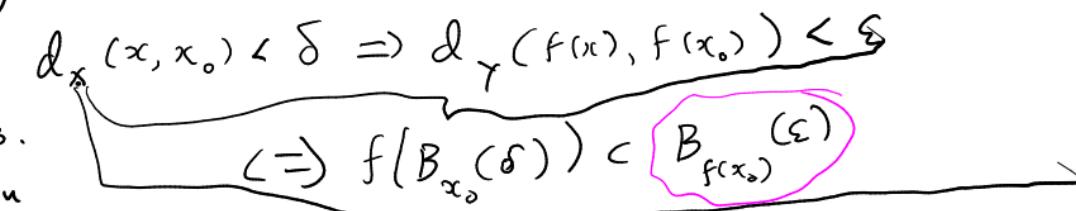
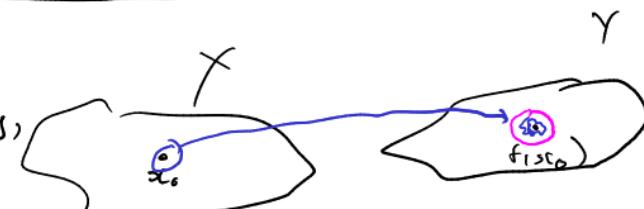
Pf: Assume f is continuous.

Fix x_0 ; let $\varepsilon > 0$ be given

By continuity, $f^{-1}(B_{f(x_0)}(\varepsilon))$ is open,

and $x \in f^{-1}(B_{f(x_0)}(\varepsilon))$. B_g defn. of metric topology,

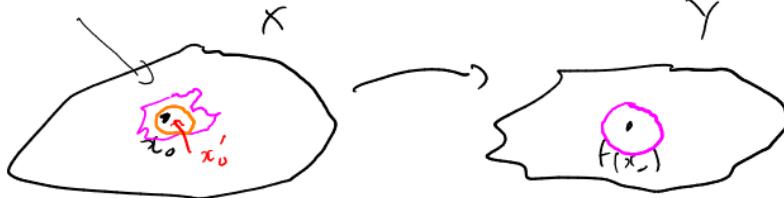
$\exists \delta' > 0, x' \in X$ s.t. $x \in B_{x'}(\delta') \subset f^{-1}(B_{f(x_0)}(\varepsilon))$



As $x_0 \in B_{x_0'}(\delta')$, $d(x, x_0) < \delta'$

$$\text{Let } \delta = \frac{\delta' - d(x_0, x_0')}{2} < \frac{\delta' - d(x_0, x_0)}{2}$$

Claim: $\underbrace{B_x(\delta)}_{\mathcal{B}_{x_0}(\delta)} \subset B_{x_0'}(\delta') \subset f^{-1}(B_{f(x_0)}(\varepsilon))$



Pf of claim: If $x \in B_{x_0}(\delta)$, then

$$d(x, x_0) < \delta$$

$$\begin{aligned} \therefore d(x, x_0') &\leq d(x, x_0) + d(x_0, x_0') < \delta + d(x_0, x_0') \\ &< \delta' - d(x_0, x_0') + d(x_0, x_0') = \delta' \end{aligned}$$

i.e. $x \in B_{x_0'}(\delta')$

Thus, $d(x, x_0) < \delta \Leftrightarrow x \in B_{x_0}(\delta) \Rightarrow f(x) \in B_{f(x_0)}(\varepsilon) \Leftrightarrow d(f(x), f(x_0)) < \varepsilon$.

$$f^{-1}(B_{f(x_0)}(\varepsilon))$$

Conversely, assume 'analytic continuity'

Let $V \subset Y$ be open.

Claim: $f^{-1}(V)$ is open.

Pf: Let $x \in f^{-1}(V)$, we show there
is a basic open set $B_\delta(x) \subset V$ s.t. $x \in B_\delta(x)$. This shows V open
(ϵ arbitrary)

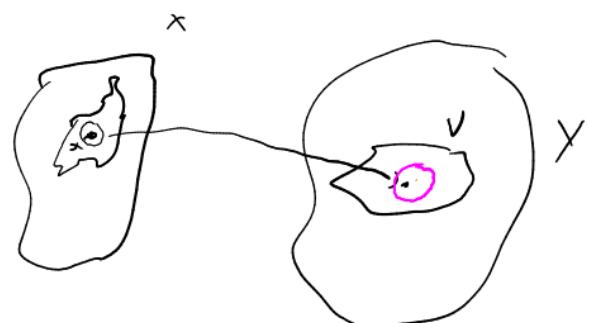
Namely, as V is open & $f(x) \in V$, \exists basic open set $B_\delta(\epsilon') \subset V$
s.t. $f(x_0) \in B_\delta(\epsilon')$ and $B_\delta(\epsilon') \subset V$

As in the other part, $\exists \epsilon > 0$ s.t. $B_{f(x)}(\epsilon) \subset B_\delta(\epsilon') \subset V$

• Pick $\delta > 0$ corresponding to ϵ .

Then $x' \in B_x(\delta) \Rightarrow f(x') \in B_{f(x)}(\epsilon) \subset V$, thus

$B_x(\delta) \subset f^{-1}(V)$ as claimed
and $x \in B_x(\delta)$

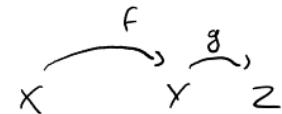


Continuous functions: examples, criteria

E.g.: X a space, $\text{Id}_X: X \rightarrow X$, $\text{Id}_X: x \mapsto$ is continuous

Pf: $V \subset X$ open $\Rightarrow \text{Id}_X^{-1}(V) = V$ is open in X

Propn: If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, so is $g \circ f: X \rightarrow Z$.



Pf: If $V \subset Z$ is open, then $f^{-1}(V) \subset Y$ is open (as f is continuous)
 $\Rightarrow (g \circ f)^{-1}(V) = g^{-1}(f^{-1}(V)) \subset X$ is open. \square

Propn: If $f: X \rightarrow Y$ is a constant function $f(x) = y_0$, then f is continuous.

Pf: Let $V \subset Y$ be open. Then

$$f^{-1}(V) = \begin{cases} X, & \text{if } y_0 \in V \\ \emptyset, & \text{otherwise} \end{cases}$$

hence $f^{-1}(V)$ is open.

• let $A \subset X$ be a subspace

Propn: $i: A \rightarrow X$ is continuous.

Pf: let $V \subset X$ be open. Then $i^{-1}(V) = V \cap A$ is open.

• let X be a discrete topological space

Propn: $f: X \rightarrow Y$ is continuous, $\forall y, \forall f$.

Pf: let $V \subset Y$ be open. Then $f^{-1}(V) \subset X$ is open as every subset is open.

• let Y be an indiscrete topological space.

Propn: $f: X \rightarrow Y$ is continuous \forall spaces X , functions $f: X \rightarrow Y$

Pf: $V \subset Y$ open $\Rightarrow V = \emptyset$ or $V = Y \Rightarrow f^{-1}(V) = \emptyset$ or $f^{-1}(V) = X$
 $\Rightarrow f^{-1}(V)$ is open.

$f: X \rightarrow Y$

Theorem: (a) f is continuous $\Leftrightarrow \forall A \subset Y$ closed, $f^{-1}(A)$ is closed.

(b) f is continuous $\Leftrightarrow \forall W \subset Y$ basic open set, $f^{-1}(W)$ is open.

(c) f is continuous $\Leftrightarrow \forall W \subset Y$ sub-basic open set, $f^{-1}(W)$ is open.

Pf: Suppose f is continuous, then $A \subset Y$ closed $\Rightarrow Y \setminus A$ is open
 $\Rightarrow f^{-1}(Y \setminus A)$ is open
 $\Rightarrow X \setminus f^{-1}(A)$ is open
 $\Rightarrow f^{-1}(A)$ is closed

Conversely, let $V \subset Y$ be open, then $Y \setminus V$ is closed
 $\Rightarrow f^{-1}(Y \setminus V)$ is closed
 $\Rightarrow X \setminus f^{-1}(V)$
 $\Rightarrow V$ is open.

(b) If $f^{-1}(W)$ is open \forall basic open sets and V is open,
then $V = \bigcup_{i \in I} w_i$, w_i basic open $\Rightarrow f^{-1}(V) = f^{-1}\left(\bigcup_{i \in I} w_i\right) = \bigcup_{i \in I} f^{-1}(w_i)$ ^{open} is open

(b) \Rightarrow (c) like (b) with finite intersections.

Propn: Let $X \neq \emptyset$ be indiscrete and $f: X \rightarrow \mathbb{R}$ continuous. Then f is constant.

Pf: Let $y \in f(X)$. Then $\{y\}$ is closed

$\therefore f^{-1}(\{y\}) \subset X$ is closed

But $y \in f(X) \Rightarrow f^{-1}(\{y\}) \neq \emptyset$

$\Rightarrow f^{-1}(\{y\}) = X$, i.e. $\forall x \in X, f(x) \in \{y\}$, i.e. $f(x) = y$.

Rn: The above holds for all Y with the following property.

Defn: A space Y is T , if every point in Y is closed.

Local Continuity

$$f: X \rightarrow Y$$

Defn: f is continuous at $x_0 \in X$ iff given $V \subset Y$ open s.t.

$$f(x_0) \in V, \exists W \subset X \text{ open s.t. } x_0 \in W \text{ & } f(W) \subset V.$$

Recall: W, V are neighbourhoods of x_0 & $f(x_0)$, respectively.

Theorem: f is continuous iff $\forall x_0 \in X$ f is continuous at x_0 .

Pf: Suppose f is continuous, $x_0 \in X$ and $V \subset Y$ is open with $f(x_0) \in V$. Then $W = f^{-1}(V) \subset X$ is open, $x_0 \in W$ and $f(W) \subset V$ as required.

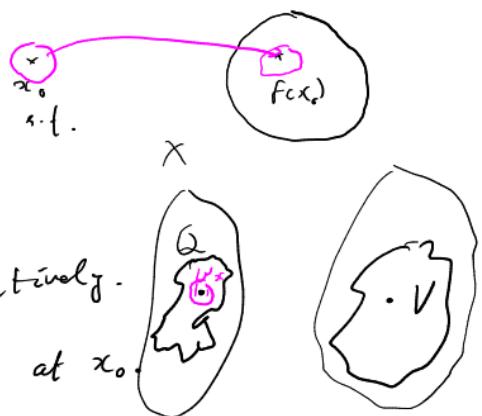
Conversely: Suppose f is continuous at $x_0 \in X$. We show f is continuous. Let $V \subset Y$ be open and $Q = f^{-1}(V)$.

To prove: Q is open.

Let $x_0 \in Q$, then $\exists W_{x_0} \subset X$ open, $x_0 \in W_{x_0}$ s.t. $f(W_{x_0}) \subset V$. ($\Rightarrow W_{x_0} \subset Q$)

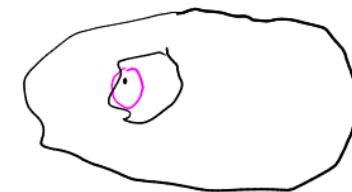
Claim: $Q = \bigcup_{x \in Q} W_x$ $f^{-1}(V)$

$$\left. \begin{array}{l} Q \subset \bigcup_{x \in Q} W_x \text{ or } x_0 \in Q \Rightarrow x_0 \in W_{x_0} \subset \bigcup_{x \in Q} W_x \\ \text{A. } W_x \subset Q \ \forall x, \bigcup_{x \in Q} W_x \subset Q. \end{array} \right\}$$



Neighbourhood bases : X be a topological space

- A neighbourhood basis for X associates to each $x \in X$ a collection \mathcal{N}_x of neighbourhoods of X s.t. $\forall V \subset X$ open s.t. $x \in V$, $\exists W \in \mathcal{N}_x$ s.t. $W \subset V$.
- Rk. We also have $x \in W_x$ & W_x is open.



Theorem : $V \subset X$ is open $\Leftrightarrow \forall x \in V$, $\exists W \in \mathcal{N}_x$ s.t. $W \subset V$.

Pf:

- Suppose V is open and $x \in V$, $W \in \mathcal{N}_x$ exists by defn. of nbd. basis
- Conversely, suppose $V \subset X$ and $\forall x \in V$, $\exists W \in \mathcal{N}_x$ s.t. $W \subset V$.

Then $V = \bigcup_{x \in V} W_x$ is open as each W_x is open.

E.g. For a metric space (X, d) , $\mathcal{N}_x = \{B_x(r) : r > 0\}$ forms a nbd. basis

Pf: Exercise

$|$ The sets $W_x \in \mathcal{N}_x$ are called basic neighborhoods

Suppose we are given nbd bases for X and Y

Theorem: $f: X \rightarrow Y$ is continuous at $x \in X$ iff

\forall basic neighbourhoods V_y of $y = f(x)$, \exists basic neighbourhood W_x of x s.t. $f(W_x) \subset V_y$

Pf: Suppose f is continuous at x , let V_y be as above.

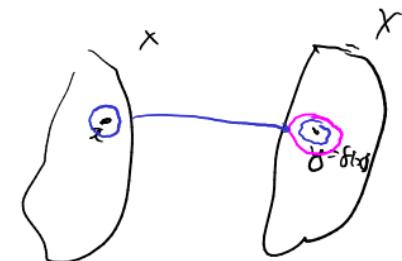
• As V_y is open, $\exists U \subset X$ open, $x \in U$

s.t. $f(U) \subset V_y$.

• By defn of nbd. basis, $\exists W_x \in \mathcal{N}_x$, s.t. $x \in W_x$ and $W_x \subset U$
Hence $f(W_x) \subset V_y$ as needed.

Conversely, suppose $\forall V_y$ basic nbd $\exists W_x$ s.t. $f(W_x) \subset V_y$, we show continuity.
Let $V \subset Y$ be open s.t. $y = f(x) \in V$. Then $\exists V_y \subset V$ basic nbd of y

By hypothesis, $\exists W_x$ open, $x \in W_x$ s.t. $f(W_x) \subset V_y \subset V$



□

Continuous functions to the reals \mathbb{R} : X topological space.

Theorem: Suppose $f, g: X \rightarrow \mathbb{R}$ are continuous

(a) $f + g$ is continuous

(b) $f \cdot g$ is continuous

(c) f/g is continuous provided $g(x) \neq 0 \forall x \in X$.

Rk: The cases $a \cdot f$, $f - g$ etc. follow from the above by composition.

Proof: (a) We prove continuity $\forall x \in X$, using

the neighbourhood basis $N_x = \{B_x(r_n), n > 0\}$ for $x \in \mathbb{R}$

the neighbourhood basis of all neighbourhoods for x .

Fix $x \in X$, and consider $B_\varepsilon(f+g(x))$, $\varepsilon > 0$. We find $V \subset X$, $x \in V$, V open s.t.

$$f(V) \subset B_\varepsilon((f+g)(x))$$



As f, g are continuous, $\exists w_f \times w_g$ open s.t. $x \in w_f$ & $x \in w_g$ s.t

$$f(w_f) \subset \underbrace{B_{\varepsilon_{f_1}}(f(x))}_{\text{and}} \quad \text{and} \quad g(w_g) \subset B_{\varepsilon_{f_2}}(g(x))$$

Let $V = w_f \cap w_g$

Then $x' \in V \Rightarrow |f(x') - f(x)| < \frac{\varepsilon}{2}$ and $|g(x') - g(x)| < \frac{\varepsilon}{2}$
 $\Rightarrow |(f+g)(x') - (f+g)(x)| < \varepsilon$
i.e. $(f+g)(x') \in B_\varepsilon((f+g)(x))$

Thus $(f+g)(V) \subset B_\varepsilon((f+g)(x))$; $x \in V$ & V is open
as required.

For (b), observe that a neighbourhood basis is given by

$$W_x = \{B_x(r); 0 < r < 1\}$$

Pt of (b) : $f \cdot g (x)$

Observe $f \cdot g (x') - f \cdot g (x) = f(x') \cdot g(x') - f(x') \cdot g(x) + f(x') \cdot g(x) - f(x) \cdot g(x)$

$$= \underbrace{f(x')} \cdot (\underbrace{g(x') - g(x)}) + g(x) \underbrace{(f(x') - f(x))}$$

Fix $x \in X$

Fix $\varepsilon \in (0, 1)$ and consider $B_\varepsilon(f \cdot g(x))$, i.e., a basic neighborhood of $f(x)$

By continuity of $f \cdot g$, $\exists w_f, w_g$ nbds of x s.t.

Let $V = w_f \cap w_g$. Observe that $x' \in V \Rightarrow |f(x') - f(x)| < 1 \Rightarrow |f(x')| < |f(x)| + 1$

$$\begin{aligned} \therefore f \cdot g (x') - f \cdot g (x) &\leq |f(x')| \cdot |g(x') - g(x)| + |g(x)| \cdot |f(x') - f(x)| \\ &< (1 + |f(x)|) \cdot \frac{\varepsilon}{2(1 + |f(x)|)} + |g(x)| \cdot \frac{\varepsilon}{2(1 + |f(x)|)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Thus, $f \cdot g (V) \subset B_{f \cdot g(x)}(\varepsilon)$

Continuity of distances: (X, d) metric space, $A \subset X$ (e.g. $A = \{a\}$ is a point)

$$d(A, x) = \inf \{d(x, a) : a \in A\}$$

Propn: $d(A, \cdot) : X \rightarrow \mathbb{R}$ is continuous

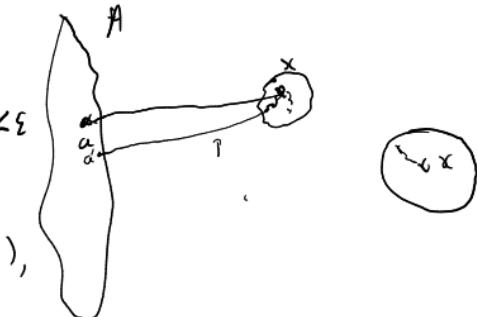
Pf: Fix $x_0 \in X$, $\epsilon > 0$. We find a neighbourhood W of x_0 s.t. $|d(A, x) - d(A, x_0)| < \epsilon \forall x \in W$.

Let $W = B(x, \frac{\epsilon}{2})$. By defn. of $d(A, x_0)$,
 $\exists a \in A$ s.t.

$$d(A, x_0) \leq d(a, x_0) < d(A, x_0) + \frac{\epsilon}{2}$$

Suppose $d(x, x_0) < \frac{\epsilon}{2}$, then $d(A, x) \leq d(a, x) \leq d(a, x_0) + d(x, x_0) < d(A, x_0) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = d(A, x_0) + \epsilon$
i.e. $d(A, x) < d(A, x_0) + \epsilon$

Conversely, $\exists b \in A$ s.t. $d(x, b) < d(A, x) + \frac{\epsilon}{2}$
i.e. $d(A, x) \leq d(b, x) < d(b, x) + d(x, x_0) \leq d(A, x) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = d(A, x) + \epsilon$



Initial and final topologies: Let X be a set, let $\mathcal{L}_1, \mathcal{L}_2$ be topologies on X

• If $\mathcal{L}_1 \subset \mathcal{L}_2$, we say

• \mathcal{L}_1 is coarser than \mathcal{L}_2 (weaker)

• \mathcal{L}_2 is finer than \mathcal{L}_1 (stronger)

• E.g. On any X , the discrete topology is the finest and the indiscrete the coarsest.

Recall: X topological space, $A \subset X$ subset has subspace topology \mathcal{L}_A^X with $\mathcal{L}_A^X = \{V \cap A : V \subset X \text{ open}\}$

• $i : A \rightarrow X$ is continuous as $V \subset X \text{ open} \Rightarrow i^{-1}(V) = V \cap A \text{ is open}$

Propn: The subspace topology is the coarsest topology \mathcal{L}_A^X s.t. $i : A \rightarrow X$ is continuous.

Pf: Let \mathcal{L} be a topology on A s.t. $i : A \rightarrow X$ is continuous.

Hence $V \subset X \text{ open} \Rightarrow V \cap A = i^{-1}(V)$ is open in (A, \mathcal{L}) , i.e. $V \cap A \subset \mathcal{L}$

Thus $W \in \mathcal{L}_A^X \Rightarrow W = V \cap A$ where $V \subset X$ is open $\Rightarrow W = V \cap A \subset \mathcal{L}$
i.e. $\mathcal{L}_A^X \subset \mathcal{L}$. \square

In general, given Z and functions $\{f_\alpha : Z \rightarrow Y_\alpha\}_{\alpha \in A}$, Y_α topological spaces.

The initial topology generated by Z is the coarsest topology on Z s.t. f_α is continuous $\forall \alpha \in A$.

Propn: The initial topology always exists.

Pf:

- The intersection of topologies is a topology
- If f_α is continuous in a family of topologies, it is continuous in all of them
- So initial topology = $\bigcap \{\Omega : \Omega \text{ topology on } Z, f_\alpha : (Z, \Omega) \rightarrow Y_\alpha \text{ continuous } \forall \alpha\}$

□

E.g. (X, d) metric space, the metric topology is the initial topology with distances $d(p, \cdot)$ continuous.

Final topology Given 2 sets, $\{f_\alpha: Y_\alpha \rightarrow Z\}$, Y_α topological space,

then the final topology on Z is the finest topology on Z s.t. each f_α is continuous.

Propn: final topology exists

Pf: Take union of topologies with each f_α continuous

$$f: X \rightarrow Y$$

— —

E.g. $X = \bigcup_{\alpha \in A} X_\alpha$, i.e., $X = \bigcup_{\alpha \in A} X_\alpha$, $X_\alpha \cap X_\beta = \emptyset \quad \forall \alpha, \beta \in A$ as sets.

Given topologies \mathcal{T}_α on X_α

The disjoint union topology is the final topology s.t.

$\{i_\alpha: X_\alpha \rightarrow X\}$ is continuous $\forall \alpha \in A$

Concretely: $V \subset X$ open $\Leftrightarrow V \cap X_\alpha$ is open $\forall \alpha \in A$.

D

A

—

Z

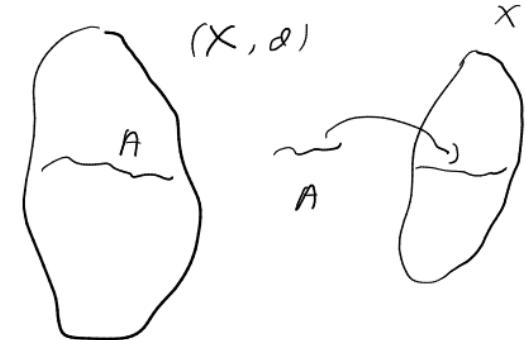
V

Defn: An isometric embedding $f: X \rightarrow Y$ between metric spaces is a function s.t -

$$d(f(x), f(y)) = d(x, y) \quad \forall x, y \in X$$

Theorem: Any isometric embedding is continuous & injective

Pf: Exercise. \square



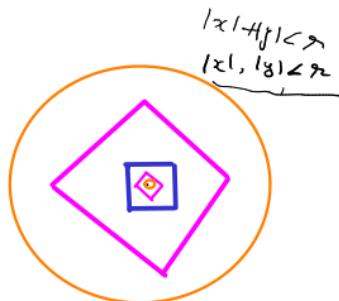
Defn: An isometry $f: X \rightarrow Y$ is a surjective isometric embedding.

Let d_1, d_2 be metrics on X .

Defn: d_1 & d_2 are equivalent if they give the same topology

E.g. l_1, l_2, l_∞ on \mathbb{R}^n are all equivalent.

Exercise: State and prove a criterion for equivalence in terms of open balls.

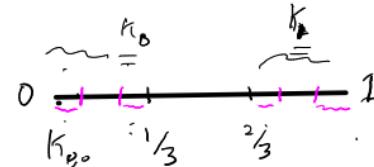


Cantor Set:

$K = \left\{ \sum_{n=1}^{\infty} \frac{2a_n}{3^n} : a_n \in \{0, 1\} \right\}$, i.e. points in $[0, 1]$ with base 3 representations without 1

\cup_K

Propn: $0 \leq \sum_{n=k}^{\infty} \frac{2a_n}{3^n} \leq \frac{1}{3^{k-1}}$ if $a_n \in \{0, 1\} \forall n$



Hence $K \subset [0, 1]$

If $a_1 = 0$, then $\sum_{n=1}^{\infty} \frac{2a_n}{3^n} = \sum_{n=2}^{\infty} \frac{2a_n}{3^n} \leq \frac{1}{3}$

Propn (a) Given $a_1^0, \dots, a_k^0 \in \{0, 1\}$, if $\{a_n\}$ is a sequence in $\{0, 1\}$ s.t.

$a_i = a_i^0 \forall i \leq k$, then $\sum_{n=1}^{\infty} \frac{2a_n}{3^n} \in \left[\sum_{n=1}^k \frac{2a_n^0}{3^n}, \sum_{n=1}^k \frac{2a_n^0}{3^n} + \frac{1}{3^k} \right] =: K_{a_1^0, \dots, a_k^0} \subset K^{(k)}$

Let $\hat{K}_{a_1^0, \dots, a_k^0} = \left\{ \sum_{n=1}^{\infty} \frac{2a_n}{3^n} : a_i = a_i^0 \forall i \leq k \right\} \subset \{0, 1\}$

(b) If $\{a_n\}, \{b_n\} \in \hat{K}_{a_1^0, \dots, a_k^0}$, then $d\left(\sum_{n=1}^{\infty} \frac{2a_n}{3^n}, \sum_{n=1}^{\infty} \frac{2b_n}{3^n}\right) \leq \frac{1}{3^k} \cup \text{all } a_i^0 \rightarrow a_i^k$

(c) If $d\left(\sum_{n=1}^{\infty} \frac{2a_n}{3^n}, \sum_{n=1}^{\infty} \frac{2b_n}{3^n}\right) < \frac{1}{3^k}$, then $a_i = b_i \forall i \leq k$

(a) Exercise.

(b) If $\{\alpha_n\}, \{b_n\} \in K_{\alpha_1^0, \dots, \alpha_k^0}$, then $a_j = b_j \forall j \in \{0, 1\}$

$$\therefore \left| \sum_{n=1}^{\infty} \frac{2a_n}{3^n} - \sum_{n=1}^{\infty} \frac{2b_n}{3^n} \right| \leq \sum_{n=1}^{\infty} 2 \frac{|a_n - b_n|}{3^n} = \sum_{n=k+1}^{\infty} 2 \frac{|a_n - b_n|}{3^n} \leq \frac{1}{3^k}$$

(c) Suppose $\left| \sum_{n=1}^{\infty} \frac{2a_n}{3^n} - \frac{2b_n}{3^n} \right| < \frac{1}{3^k}$, let j be the smallest index s.t. $a_j \neq b_j$ (exists unless $\{\alpha_n\} = \{b_n\}$)

w.l.g. assume $a_j = 0 \Rightarrow b_j = 1$

$$\therefore \sum_{n=1}^{\infty} \frac{2b_n}{3^n} \geq \sum_{n=1}^{j-1} \frac{2b_n}{3^n} + \frac{2}{3^j}$$

and $\sum_{n=1}^{\infty} \frac{2a_n}{3^n} = \sum_{n=1}^{j-1} \frac{2a_n}{3^n} + 0 + \sum_{n=j+1}^{\infty} \frac{2a_n}{3^n} \leq \sum_{n=1}^{j-1} \frac{2b_n}{3^n} + \frac{1}{3^j}$

$$\therefore \frac{1}{3^k} > \sum_{n=1}^{\infty} \frac{2b_n}{3^n} - \sum_{n=1}^{\infty} \frac{2a_n}{3^n} \geq \frac{1}{3^j} \Rightarrow j > k, \text{ i.e. } a_1, \dots, a_k = b_1, \dots, b_k$$

Space filling curves

Homeomorphisms : X, Y topological spaces

Defn: A map $f: X \rightarrow Y$ is a homeomorphism if f is continuous and has a continuous inverse, i.e., $\exists g: Y \rightarrow X$ s.t. $f \circ g = \mathbb{1}_Y$ & $g \circ f = \mathbb{1}_X$

Propn: (a) $\mathbb{1}_X$ is a homeomorphism

(b) The composition of homeomorphisms is a homeomorphism.

□

Propn: A homeomorphism is a bijection.

Note: $f: X \rightarrow Y$ continuous bijection $\not\Rightarrow f$ homeomorphism

e.g. S set, $|S| \geq 2$, $f: X \xrightarrow{\text{discrete}} Y \xrightarrow{\text{indiscrete}}$ with

$X = S$ with discrete topology

$Y = S$ with indiscrete topology

$f(s) = s \forall s \in S$.

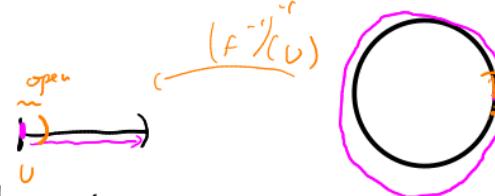
f is bijective & continuous but f^{-1} is not continuous.

• $f: [0, 1) \rightarrow S^1 = \{z \in \mathbb{C} : |z|=1\} = \{(x, y) : x^2 + y^2 = 1\}$

$$f(t) = e^{2\pi i t} \quad \text{for } t \in [0, 1]$$

\Downarrow

$$(\cos(2\pi t), \sin(2\pi t))$$



• f is a continuous bijection but f^{-1} is not continuous.

Defn: We say spaces X and Y are homeomorphic if \exists a homeomorphism from X to Y .

Propn: Homeomorphism is an equivalence relation. 13

Propn: If $f: X \rightarrow Y$ is a homeomorphism and $U \subset X$ is open, then $f(U)$ is open.

Pf: Let $g: Y \rightarrow X$ be the inverse of f , then $f(U) = g^{-1}(U)$ is open.

Examples of homeomorphic spaces

(1) $(0, 1)$ is homeomorphic to (a, b) , $a < b$

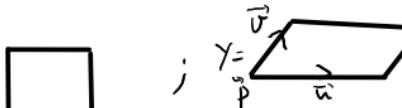
Pf: $f: (0, 1) \rightarrow (a, b)$, $f(t) = a + t(b-a)$ is a homeomorphism

Con: Any two open intervals are homeomorphic

(2) Any two closed intervals are homeomorphic

(3) Any two half-open intervals are homeomorphic

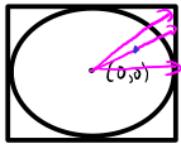
Rk: $f: [0, 1) \rightarrow (0, 1]$ given by $f(t) = 1-t$ is a homeomorphism.

(4) 
 $X: [0, 1] \times [0, 1]$; $Y = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}$, then $f: X \rightarrow Y$, $f(s, t) = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}$ is a homeomorphism.

(5) $(0, 1)$ is homeomorphic to $(0, \infty)$ using $f(t) = -\log(t)$

(6) $(0, 1)$ is homeomorphic to \mathbb{R} using \tan^{-1}

E.g. The disc $D = \{(x, y) : x^2 + y^2 \leq 1\}$ is homeomorphic to $C = [-1, 1] \times [-1, 1]$



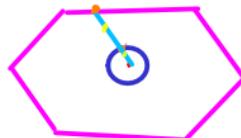
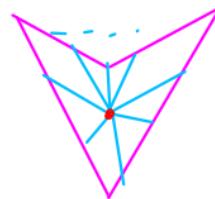
$$\{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} \leq 1\}$$

Define $f : D \rightarrow C$ by

$$f(x, y) = \frac{\sqrt{x^2 + y^2}(x, y)}{\max\{|x|, |y|\}} \quad \text{with inverse } g(x, y) = \frac{\max\{|x|, |y|\}(x, y)}{\sqrt{x^2 + y^2}}$$

when $(x, y) \neq (0, 0)$, $f(0, 0) = (0, 0)$

E.g. Any convex / star-convex polygon in the interior to a disc. is homeomorphic to a circle and including its



(POSET)

Order topology :

A partially ordered set (S, \leq) is a set S with a binary relation \leq s.t.

(1) $a \leq a \quad \forall a \in S$

(2) $a \leq b \wedge b \leq a \Rightarrow a = b \quad \forall a, b \in S$

(3) $a \leq b \wedge b \leq c \Rightarrow a \leq c \quad \forall a, b, c \in S$

Notation: $a < b \Leftrightarrow a \leq b$ and $a \neq b$

Total / linear order: Partial order s.t.

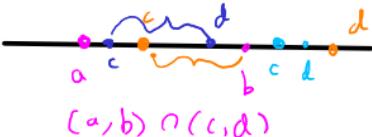
(4) $\forall a, b \in S, a \leq b \vee b \leq a$

Order topology: Let (X, \leq) be linearly ordered. Then the basis for a topology on X is given by:

$$(a, b) := \{x \in X : a < x < b\} \quad \text{for } a, b \in X$$

$$\{x \in X : a < x\} \quad \text{for } a \in X$$

$$\{x \in X : x \leq a\} \quad \text{for } x \in X$$



We see: intersection of basic sets in a basic set
 e.g. $(a, b) \cap (c, d)$, w.l.g. $a \leq c$

Propn: The order topologies on \mathbb{R} and $(a, b) \subset \mathbb{R}$ coincide with the metric topologies

Pf: See that a basic open set V in one is open in the other, by showing any point is contained in a 'basic' open set W with $W \subset V$.

□

E.g. If $S = \{-1\} \cup \{\frac{1}{n} : n \geq 1\}$, then -1 is isolated in the metric topology

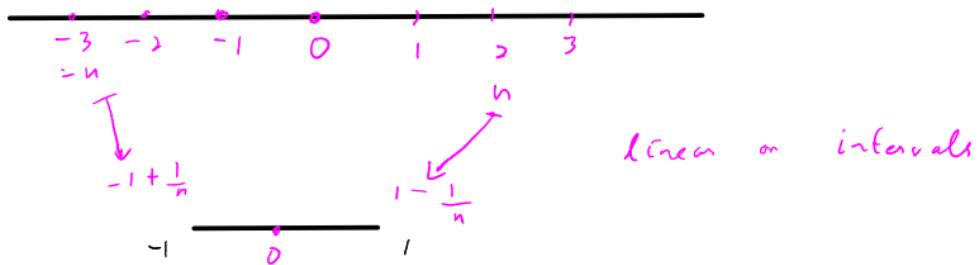
but not in the order topology

Theorem: A surjective, strictly increasing function between ordered sets is a homeomorphism.

Pf: $f^{-1}((a, b)) = (f^{-1}(a), f^{-1}(b))$ where f^{-1} is the inverse function, hence is open

□

E.g. Construct strictly increasing injection $\mathbb{R} \rightarrow (-1, 1)$



$$f(x) = \frac{1}{1 + e^{-x}} \Rightarrow \frac{e^x}{1 + e^x}$$

Pasting/Gluing lemma : $f: X \rightarrow Y$ function, $\{W_\alpha\}_{\alpha \in A}$, $W_\alpha \subset X \neq \emptyset$.

Suppose: $f|_{W_\alpha}: W_\alpha \rightarrow Y$ is continuous $\forall \alpha \in A$ (w.r.t. subspace topology)

Question: Can we conclude that f is continuous?

i.e. for what collections W_α can we conclude f is continuous?

Another formulation: Given $f_\alpha: W_\alpha \rightarrow Y$ continuous, is there a function

$f: X \rightarrow Y$ with $f|_{W_\alpha} = f_\alpha$

Two steps: (a) Do we get a function f ? Ans: iff $f|_{W_\alpha \cap W_\beta} = f_\alpha|_{W_\alpha \cap W_\beta} = f_\beta|_{W_\alpha \cap W_\beta} \forall \alpha, \beta$
(b) Can we conclude f is continuous.

• Firstly, assume $\bigcup_{\alpha \in A} W_\alpha = X$

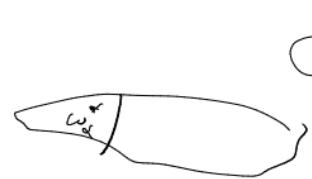
Defn: A collection $\{W_\alpha\}_{\alpha \in A}$ of subsets of X is a cover if $\bigcup_{\alpha \in A} W_\alpha = X$

We have : $f: X \rightarrow Y$

$\{W_\alpha\}$ cover of X

Given $f|_{W_\alpha}: W_\alpha \rightarrow Y$ is continuous $\forall \alpha \in A$

$\Leftrightarrow V \subset Y$ open $(f|_{W_\alpha})^{-1}(V)$ is open
 $W_\alpha \cap f^{-1}(V)$



Want: $f^{-1}(V)$ open.

Defn: $\{W_\alpha\}_{\alpha \in A}$ is a fundamental cover of X if $V \subset X$ is open in X

$\Leftrightarrow V \cap W_\alpha$ is open in $W_\alpha \forall \alpha \in A$

Propn: Any $\overbrace{\text{open cover}}^{\text{i.e. } W_\alpha \text{ open}} \{W_\alpha\}$ is fundamental.

Pf: If $V \subset X$ and $V \cap W_\alpha$ is open in W_α , then $V \cap W_\alpha$ is open in X .

$\therefore V = \bigcup_{\alpha \in A} (V \cap W_\alpha)$ is open in X .

Theorem: If $\{W_\alpha\}_{\alpha \in A}$ is a fundamental cover and $f: X \rightarrow Y$, then f is continuous iff $f|_{W_\alpha} = f \circ i_\alpha$ is continuous $\forall \alpha \in A$.

Pf: If f is continuous, then $\forall \alpha \in A$, $f|_{W_\alpha} = f \circ i_\alpha$ is continuous as the inclusion $i_\alpha: W_\alpha \rightarrow X$ is continuous.

Conversely, suppose $f|_{W_\alpha}$ is continuous $\forall \alpha \in A$, let $V \subset Y$ be open.

Then $V \cap W_\alpha = (f|_{W_\alpha})^{-1}(V)$ is open in $W_\alpha \forall \alpha \in A$

$\Rightarrow V$ is open in X by defn. of fundamental cover.

□

Fundamental closed covers $\mathbb{R} = \bigcup_{x \in \mathbb{R}} \{x\}$, $\{x\} \subset \mathbb{R}$ is closed

For any $V \subset \mathbb{R}$, $V \cap \{x\} = \{x\}$ or \emptyset , so open in $\{x\}$. \square

Propn: Any finite cover of a space X by closed sets F_1, \dots, F_n is a fundamental cover.

Proof: Let $V \subset X$, suppose $V \cap F_i$ is open $\forall i, 1 \leq i \leq n$ in F_i .
Then $F_i \setminus (V \cap F_i)$ is closed in $F_i \forall i$, hence in X

$$(X \setminus V) \cap F_i$$

$\therefore X \setminus V = \bigcup_{i=1}^n ((X \setminus V) \cap F_i)$ is closed in X

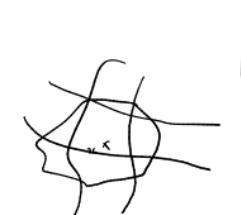
$\therefore V$ is open in X .

locally finite covers: A cover $\{F_\alpha\}_{\alpha \in A}$ is locally finite if

$\forall x \in X \exists W_x \text{ open, } x \in W_x \text{ s.t. } \{F_\alpha \cap W_x\}_{\alpha \in A} \text{ is finite}$

$\{W_x\}_{x \in X}$ form an open (hence fundamental) cover of X

Thus, $V \subset X$ open iff $V \cap W_x$ is open $\forall x \in X$



Theorem: A locally finite cover $\{F_\alpha\}_{\alpha \in A}$ by closed sets is fundamental.

Pf: Suppose $V \subset X$ is a.f. $V \cap F_\alpha$ is open in F_α $\forall \alpha \in A$.
(in W_x or in \mathbb{X})

V is open $\Leftrightarrow V \cap W_x$ is open $\forall x \in X$

Fix $x \in X$. We show $V \cap W_x$ is open.

Now $\{F_\alpha \cap W_x\}_{\alpha \in A_x}$ is a finite closed cover of W_x , where A_x hence a fundamental cover

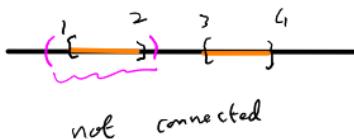
$\{F_\alpha \cap W_x\}_{\alpha \in A_x}$

$V \cap F_\alpha$ open in $F_\alpha \Rightarrow (V \cap W_x) \cap (W_x \cap F_\alpha)$ is open in $W_x \cap F_\alpha \forall \alpha \in A_x$
 $\Rightarrow V \cap W_x$ is open in W_x , hence in X .

□

Topological properties : invariant under homeomorphisms

Connectedness :



not connected

connected

Defn: A space X is connected if the only open and closed subsets of X are X, \emptyset .

Theorem: \mathbb{R} is connected

Pf: Let $A \subset \mathbb{R}$ be open and closed and let $a \in A$. As A is open, $\exists \varepsilon > 0$ s.t. $(a-\varepsilon, a+\varepsilon) \subset A$. Let $S = \{c > 0 : (a-c, a+c) \subset A\}$. If S is unbounded then $A = \mathbb{R}$, as required. Else let $K = \sup(S)$. We see that $\forall \delta > 0$, $(a-K+\delta, a+K-\delta) \subset A$. In particular, $a-K$ & $a+K$ are limit points of A . As A is closed, $a-K \in A$ and $a+K \in A$. As A is open, $\exists \eta > 0$ s.t. $(a+K-\eta, a+K+\eta) \subset A$ and $(a-K-\eta, a-K+\eta) \subset A$. Conclude: $(a-(K+\delta), a+(K+\delta)) \subset A$, so $K+\delta \in S$, contradicting $K = \sup S$.

E.g. X wth cofinite topology.

$\cdot A \subset X$ is open & closed ($\Rightarrow A$ is finite $\wedge X \setminus A$ is finite.

$\therefore X$ not connected $\Rightarrow X$ is finite \square

Connected: $A \subset X$ open & closed (open-closed, clopen) $\Rightarrow A = \emptyset \text{ or } A = X$

$X \setminus A$ open & closed

\uparrow

A open & $X \setminus A \stackrel{B}{=} \text{open}$

\uparrow

A closed & $X \setminus A$ closed

$B = X \setminus A \Leftarrow$

$X = A \cup B$ with $A \cap B = \emptyset$

Theorem: X is connected iff $X = A \cup B$ with $A \cap B = \emptyset$ and

A, B open (or A, B closed) $\Rightarrow X = A \text{ or } X = B$ ($A = \emptyset$ or $B = \emptyset$)

\square

Theorem: X is connected \Rightarrow if $X = F_1 \cup \dots \cup F_n$ with F_i closed, pairwise disjoint, then $X = F_j$ for some j .

Pf: $X = F_1 \cup (F_2 \cup \dots \cup F_n)$, so either $X = F_1$ (done) or $X = F_2 \cup \dots \cup F_n$ (proceed inductively)

Theorem: Suppose $A \subset X$ is connected (e.g. $A = X$ is connected) and $A \subset \bigcup_{\alpha \in A} V_\alpha$, $V_\alpha \subset X$ open, pairwise disjoint. Then $A \subset V_{\alpha_0}$ for some $\alpha_0 \in A$.

Pf: If $A = \emptyset$, true. Otherwise $A \cap V_{\alpha_0} \neq \emptyset$ for some $\alpha_0 \in A$
 $\therefore A = \underbrace{(A \cap V_{\alpha_0})}_{\substack{\text{open in } A \\ \text{non-empty}}} \cup \left(\bigcup_{\substack{\alpha \in A \\ \alpha \neq \alpha_0}} A \cap V_\alpha \right)$; V_1, V_2 are open in A and disjoint, $V_1 \neq \emptyset \Rightarrow V_2 = \emptyset$
 $\Rightarrow A \subset V_{\alpha_0}$ □

Theorem: Suppose $X = \bigcup_{\alpha \in A} X_\alpha$, $x_0 \in X$ and $x_0 \in X_\alpha \forall \alpha \in A$.

If X_α is connected $\forall \alpha \in A$ then X is connected.

Pf: Suppose $X = V_1 \cup V_2$, V_i open, disjoint.

w.l.g. $x_0 \in V_1$.

Then $V_1 \cap X_\alpha \neq \emptyset \quad \forall \alpha$.

As X_α is connected and $X_\alpha = \underbrace{(V_1 \cap X_\alpha)}_{\text{open}} \sqcup \underbrace{(V_2 \cap X_\alpha)}_{\text{open}}$

$\Rightarrow V_1 \cap X_\alpha = \emptyset$ or $V_2 \cap X_\alpha = \emptyset \Rightarrow V_2 \cap X_\alpha = \emptyset \Rightarrow X_\alpha \subset V_1$

Thus $X_\alpha \subset V_1 \quad \forall \alpha \Rightarrow X \subset V_1$

Propn: Suppose $X = \bigcup_{\alpha \in A} X_\alpha$, $\exists \alpha$, X_α connected, $\exists \alpha \in A$

Then X is connected. (Exercise)

disjoint union

Theorem: Suppose $A \subset X$ is connected, then \bar{A} is connected.

Pf: Suppose $\bar{A} = F_1 \cup F_2$, F_i closed & disjointed in \bar{A} , hence in X .

• $A = \underbrace{(A \cap F_i)}_{\text{closed in } A} \cup \underbrace{(A \cap F_i)}_{\text{closed in } A} \Rightarrow A \cap F_i = A$ for some i ,

$$\text{say } A \cap F_1 = A \Rightarrow A \subset F_1$$

• As F_1 is closed in X , $A \subset F_1 \Rightarrow \bar{A} \subset F_1$ as required,

Theorem: Suppose $A \subset X$ is connected and $f: X \rightarrow Y$ is a map.

Then $f(A)$ is connected. [Cor: $f: X \rightarrow Y$ homeomorphism, then X connected $\Rightarrow Y$ connected]

Pf: Suppose $B \subset f(A)$ is open and closed in $f(A)$.

Then $f^{-1}(B) \cap A$ is open and closed $\Rightarrow f^{-1}(B) = A$ or $f^{-1}(B) = \emptyset$
 $\Rightarrow B = f(A)$ or $B = \emptyset$ □

Connected Components : X topological space $\xrightarrow{\text{[]}} \xrightarrow{\text{[]}} \dots \dots \text{Q}$

- For $x \in X$, define 'the connected component' of x to be

$$C_x = \bigcup \{ A \subset X : x \in A, A \text{ is connected} \}$$

- C_x is connected (as all the sets A contain x and are connected)

- $A \subset X$, $x \in A$ and A is connected, then $A \subset C_x$

- i.e. C_x is the maximal connected set containing x .

- If $z \in C_x$, then as C_x is connected, $C_x \subset C_z$

$$\Rightarrow x \in C_z; \text{ as } C_z \text{ is connected, } C_z \subset C_x. \text{ Thus } C_x = C_z$$

- If $C_y \cap C_x \neq \emptyset$, then if $z \in C_x \cap C_y$ then $C_x = C_z = C_y$.

Thus, connected components form a partition of X (as $x \in C_x \forall x \in X$)

- The connected components are the maximal connected sets.

E.g. \mathbb{R} connected; hence 1 component.

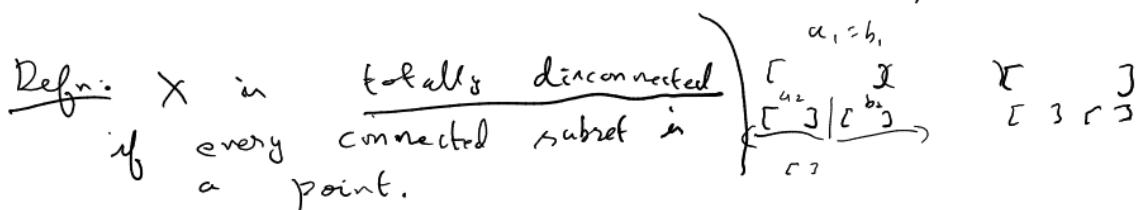
- $(0, 1)$ connected as $(0, 1)$ is homeomorphic to \mathbb{R} .
- (a, b) connected if $a < b$ closure in \mathbb{R}
- $[a, b]$ connected as $\overline{(a, b)} = [a, b]$
- $[a, b]^X$ connected as $X = \overline{A}$ where $A \subset X = (a, b)$
- \mathbb{Q} : connected components are points.

Pf: If $A \subset \mathbb{Q}$ is connected, $A \neq \emptyset$, A not a point,
then $\exists a, b \in A$, $a < b$. Pick $c \in (a, b) \setminus \mathbb{Q}$

Then $A = (A \cap (a, c)) \sqcup (A \cap (c, b))$ contradicting
connectness.

- In the cantor set K , connected components are points

Defn: X is totally disconnected if every connected subset in X is a point.



$K = \left\{ \sum \frac{2a_n}{3^n} : \dots \right\}$, suppose $A \subset K$,

$\sum \frac{2a_n}{3^n}, \sum \frac{2b_n}{3^n} \in A$

These are separated.

Intermediate value theorem

We allow $\pm\infty$ for endpoints of intervals (a, b) etc. and for \inf & \sup

Theorem: A non-empty set $J \subset \mathbb{R}$ is connected iff J is an interval.

Pf: We have seen intervals are connected.

- Conversely, suppose J is connected, $J \neq \emptyset$.

Let $a = \inf J$, $b = \sup J$

Lemma: if $a < c < b$ then $c \in J$.

Pf: Otherwise, $J = \underbrace{(J \cap \{x \in \mathbb{R} : x < c\})}_{\text{open in } J} \sqcup \underbrace{(J \cap \{x \in \mathbb{R} : x > c\})}_{\text{open in } J}$

a contradiction.

Thus $c \in (a, b) \Rightarrow c \in J$, i.e. $(a, b) \subset J$

also $J \subset \{x \in \mathbb{R} : a \leq x \leq b\}$

It follows that J is one of (a, b) , $[a, b)$, $(a, b]$, $[a, b]$

Cor: If X is connected, $f: X \rightarrow \mathbb{R}$ is continuous, then
 $f(X) \subset \mathbb{R}$ is an interval.

Cor: If $a, b \in \mathbb{R}$, $a < b$ and $f: [a, b] \rightarrow \mathbb{R}$ is continuous,
then $f([a, b])$ is an interval.

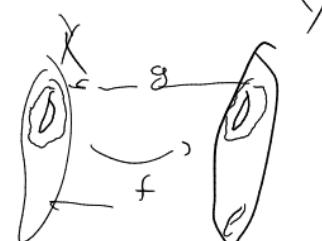
□

Connectedness and Homeomorphisms :

Theorem: If X and Y are homeomorphic, then X has the same number of connected components as Y .

Idea of Pf: A homeomorphism $f: X \rightarrow Y$ gives a bijection on connected components.

E.g. $\underbrace{[0, 1]}_{\text{connected}}$ is not homeomorphic to $[0, 1] \cup [2, 3]$
2 connected components.



Thm: # Connected components is a topological invariant

Propn: (a, b) is not homeomorphic to $[a, b]$

Pf: We use

- If $x \in (a, b)$, then $(a, b) \setminus \{x\}$ has 2 components $\{x\} \cup (a, x) \cup (x, b)$

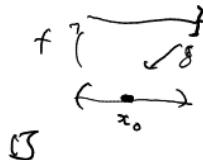
- For $x \in [a, b]$, $[a, b] \setminus \{x\}$ has

{	2 components except when $x = b$
{	1 component when $x = b$

Suppose $f: (a, b) \rightarrow (a, b]$ is a homeomorphism with inverse $g: (a, b] \rightarrow (a, b)$

- Let $x_0 \in (a, b)$ be $g(b)$. Then $f(x_0) = b$.
- We see $g|_{(a, b)}: (a, b) \rightarrow (a, b) \setminus \{x_0\}$ is a homeomorphism with inverse $f|_{(a, b) \setminus \{x_0\}}: (a, b) \setminus \{x_0\} \rightarrow (a, b)$

But $(a, b) \setminus \{x_0\}$ has 2 components while (a, b) is connected, a contradiction.



Lemma: If $f: X \rightarrow Y$ is a homeomorphism, then for $x \in X$, the number of components of $X \setminus \{x\}$ is the # of components of $Y \setminus \{f(x)\}$.

Lemma: If X, Y homeomorphic, $k \in \mathbb{N}$, then

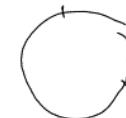
$$\#\{x \in X : X \setminus \{x\} \text{ has } k \text{ components}\} = \#\{y \in Y : Y \setminus \{y\} \text{ has } k \text{ components}\}$$

Pf: A homeomorphism gives a bijection between the sets. B

Propn: $[\alpha, \beta] = X$ is not homeomorphic to $(\alpha, \beta] = Y$

Pf: $\#\{x \in X : X \setminus \{x\} \text{ has 1 component}\} = 2$

but $\#\{y \in Y : Y \setminus \{y\} \text{ has 1 component}\} = 1$



Propn: S^1 is not homeomorphic to an interval. ()

Pf: $S^1 \setminus \{x_0\}$ is connected $\forall x_0$.

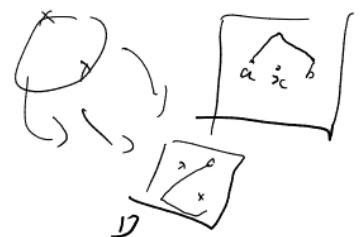
Theorem: \mathbb{R} is not homeomorphic to \mathbb{R}^n if $n > 1$.

Pf: $\mathbb{R} \setminus \{x\}$ is ^{not} connected $\forall x \in \mathbb{R}$, but $\mathbb{R}^n \setminus \{x\}$ is connected $\forall x \in \mathbb{R}$.

Theorem: \mathbb{R}^n is not homeomorphic to $S^1 \quad \forall n > 1$.

Pf: $S^1 \setminus \{x, y\}$ is not connected $\forall x, y \in S^1$, $x \neq y$

but $\mathbb{R}^n \setminus \{x, y\}$ is connected $\forall x, y \in \mathbb{R}^n$, $x \neq y$.



Locally constant and local connectedness : $f: X \rightarrow Y$

$$\overbrace{\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}}^1, \overbrace{\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}}^2, \overbrace{\{0, 1\}}^3$$

Def'n: f is locally constant if $\forall x \in X \exists$ a neighbourhood V_x of x s.t. $f|_{V_x}$ is constant.

Theorem: If X is connected and $f: X \rightarrow Y$ is locally constant, then f is constant.

Pf: Lemma: For $y \in Y$, $f^{-1}(y)$ is open.

Pf: Suppose $x \in f^{-1}(y)$. $\exists V_x$ open s.t. $f|_{V_x}$ is constant, so $f|_{V_x} = f(x) = y$

$\therefore x \in f^{-1}(y) \Rightarrow \exists V_x$ open s.t. $x \in V_x \subset f^{-1}(y)$
Thus $f^{-1}(y) = \bigcup_{x \in f^{-1}(y)} V_x$ is open.

Hence $X = \bigcup_{y \in Y} f^{-1}(y)$, where each $f^{-1}(y)$ is open
 $\therefore X = f^{-1}(y_0)$ for some y_0 , i.e. f is constant

Exercise: Any locally constant function is continuous (show continuous at $x \in X$)

local connectedness:

E.g. Is $\mathbb{Q} \times \mathbb{R}$ homeomorphic to $\mathbb{Z} \times \mathbb{R}$?

Ans: They are distinguished by local connectedness

Naive defn: X is locally connected if

$\forall x \in X \exists V_x$ neighbourhood s.t.

V_x is connected.

E.g.: $X = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ and } y = 0\}$

By the above defn, this is locally connected by taking $V_x = X \forall x \in X$

Correct defn: X is locally connected if $\forall x \in X$ and neighbourhood W_x of x $\exists V_x$ open s.t. $x \in V_x \subset W_x$ s.t. V_x is connected. (\Rightarrow Naive connected)

Naive defn (\Rightarrow) correct defn for hereditary properties, i.e. those inherited by smaller sets.

Path-Connectedness : X topological space

Defn: A path in X is a continuous map $\alpha: [0, 1] \rightarrow X$

• We say α is a path from $\alpha(0)$ to $\alpha(1)$

Defn: X is path-connected if $\forall a, b \in X$,

\exists a path $\alpha: [0, 1] \rightarrow X$ s.t.

$\alpha(0) = a$ and $\alpha(1) = b$

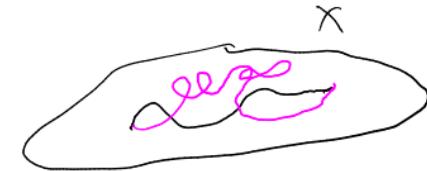
Theorem: If X is path-connected, then X is connected

Pf: If $a, b \in X$ and α is a path from a to b .

Then $\alpha([0, 1]) \subset X$ is a connected set containing a & b .

$\Rightarrow a$ & b are in the same component $\forall a, b \in X$

$\Rightarrow X$ is connected.



We define a relation on (points in) X by

$a \sim b$ iff \exists a path α from a to b in X .

Theorem: \sim is an equivalence relation. Hence gives a partition, into path components / path-connected components

PF: • Reflexive: $a \sim a$

A path from a to a is $\alpha(s) = a \forall s \in [0, 1]$

• Symmetry:

Suppose $a, b \in X$ and $a \sim b$. Then $\exists \alpha: [0, 1] \rightarrow X$ s.t. $\alpha(0) = a$ and $\alpha(1) = b$.

A path from b to a in X is given by $\bar{\alpha}: [0, 1] \rightarrow X$

$$\bar{\alpha}(s) = \alpha(1-s)$$

• Transitivity:

Suppose $a, b, c \in X$, $a \sim b$ and $b \sim c$.

Let α, β be paths from a to b and b to c , respectively.

A path from a to c is given by $\alpha * \beta: [0, 1] \rightarrow X$

$$\alpha * \beta(s) = \begin{cases} \alpha(2s), & 0 \leq s \leq \frac{1}{2} \\ \beta(2s-1), & \frac{1}{2} \leq s \leq 1 \end{cases}$$

; well-defined $\Rightarrow \alpha(2 \cdot \frac{1}{2}) = \alpha(1) = b$
 $\beta(2 \cdot \frac{1}{2} - 1) = \beta(0) = b$
continuous by pasting lemma

Topologists sine curve :

$$A = \left\{ \left(x, \sin\left(\frac{\pi}{x}\right) \right) : x \in (0, 1) \right\}$$

$$\bar{A} = A \cup \{(0, y) : y \in [-1, 1]\}$$

A homeomorphic to $(0, 1)$ using
 $x \mapsto \left(x, \sin\left(\frac{\pi}{x}\right) \right)$

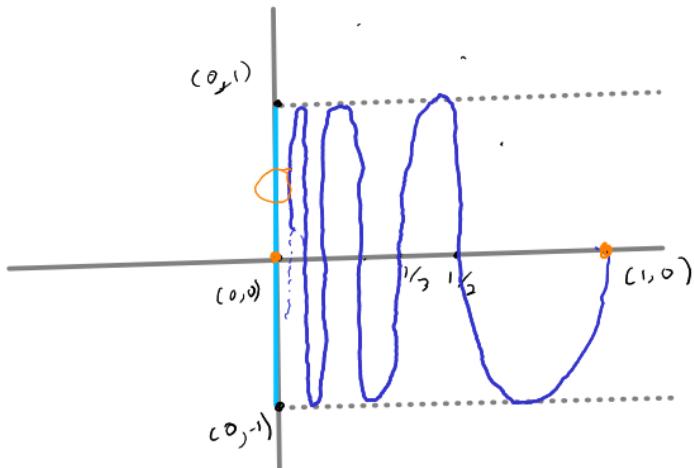
and $p_x : (x, y) \mapsto x$ on A

• let $p_y : (x, y) \mapsto y$

• hence A is connected

• hence \bar{A} is connected

Propn: \bar{A} is not path-connected



Propn: There is no path α in \bar{A} from $(0,0)$ to $(1,0)$

Pf: let $\alpha: [0,1] \rightarrow \bar{A}$ be a path s.t. $\alpha(0) = (0,0)$, $\alpha(1) = (1,0)$

let $t_0 = \sup \{t \in [0,1] : p_x(\alpha(t)) = 0 \ \forall t \in [0, t_0)\}$

let $\alpha = (\alpha_x, \alpha_y)$, $\alpha_x = p_x \circ \alpha$, $\alpha_y = p_y \circ \alpha$

We see $\alpha_x(t_0) = 0$, as, if $t_0 > 0$, t_0 is a

limit point of $\alpha_x^{-1}(0)$ (as $\sup S$ is a limit point of S if S is infinite),
 $\Rightarrow t_0 \in \overline{\alpha_x^{-1}(0)} = \alpha_x^{-1}(0)$ as $\alpha_x^{-1}(0)$ is closed

let $\varepsilon = 1/2$ and find $\delta > 0$ s.t. $t \in (t_0 - \delta, t_0 + \delta)$

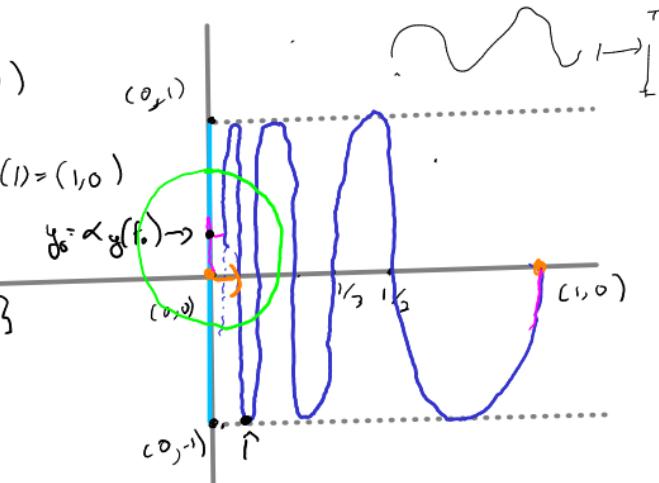
where $y_0 = \alpha_y(t_0)$.

By continuity at 1, $t_0 < 1$ as $\alpha_x(t) > 0$ for t close to 1.

As t_0 is a sup, $\exists t_1 \in [t_0, t_0 + \delta)$ s.t. $\alpha_x(t_1) > 0$.

Hence $\alpha_x([t_0, t_1]) \supset (0, \alpha_x(t_1))$. If follows $\alpha_y([t_0, t_1]) = [-1, 1]$

But if w.l.g. $y_0 > 0$, $\alpha_y(t) = -1 \Rightarrow d(\alpha(t), (0, y_0)) > 1$, a contradiction.



$$d(\alpha(t), (0, y_0)) < \frac{1}{2}$$

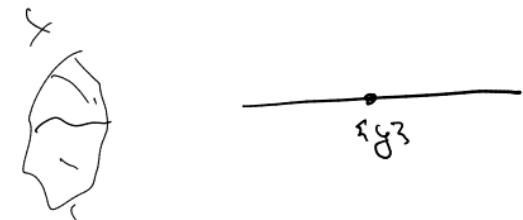
Separation properties :

(more generally γ with γ a T_1 -space)

Propn: If $f: X \rightarrow \mathbb{R}$ with X indiscrete in continuous, then f is constant.

Defn:

A space X is T_1 if every point in X is closed.



E.g. Indiscrete topology on X is not T_1 as long as $\# X \geq 2$.

E.g. X with the co-finite topology is T_1 .

We also see that metric spaces are T_1 .

Hausdorff (T_2): A space X is in T_2 if given $p, q \in X$

s.t. $p \neq q$, $\exists V_p, V_q$ open s.t. $p \in V_p, q \in V_q, V_p \cap V_q = \emptyset$

Propn: A metric space is Hausdorff

Pf: If $p \neq q$, then $d(p, q) > 0$. Let $V_p = B_p\left(\frac{d(p, q)}{3}\right)$, $V_q = B_q\left(\frac{d(p, q)}{3}\right)$

Propn: A T_2 space X is in T_1

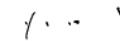
Pf: Let X be T_2 , $p \in X$. Then $\forall q \in X, p \neq q, \exists V_q$ open s.t. $q \in V_q$ and $p \notin V_q$.

Hence $\{x\} = X \setminus \bigcup_{\substack{q \neq p \\ q \in X}} V_q$ is closed.

Sequences and Convergence : X topological space

$\{x_n\}_{n \in \mathbb{N}}$ sequence in X .

Defn: We say $x_n \rightarrow x_\infty$, $x_\infty \in X$ 'if' given U nbd. of x_∞ $\exists N \in \mathbb{N}$ s.t. $n > N \Rightarrow x_n \in U$.

Rk: If X has the indiscrete topology, then every sequence converges to every point. 

Exercise: What happens to $\{n\}$ in \mathbb{N} with co-finite topology.

Theorem: If X is Hausdorff and $x_n \rightarrow p$ & $x_n \rightarrow q$ then $p = q$.

Pf: If $p \neq q$, \exists nbd. U_p of p and U_q of q that are disjoint. $\exists N_p, N_q$ s.t. $n > N_p \Rightarrow x_n \in U_p$ & $n > N_q \Rightarrow x_n \in U_q$

Hence $x_{N_p + N_q + 1} \in U_p \cap U_q$, a contradiction.

Regular and Normal spaces: X topological space

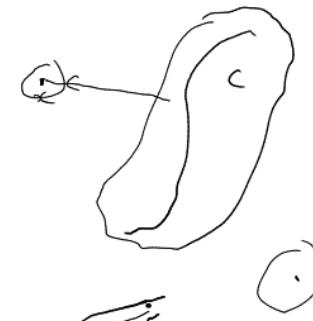
3rd separation axiom:

Given $x \in X$, $C \subset X$ closed, $x \notin C$

\exists open sets $U, V \subset X$ s.t. $x \in U$, $C \subset V$

and $U \cap V \neq \emptyset$

Regular: X is regular if X is T_1 and satisfies the 3rd separation axiom.



4th separation axiom: Given $C_1, C_2 \subset X$ closed and disjoint,

$\exists U_1, U_2$ open s.t. $C_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$

Normal: X is normal if X is T_1 and satisfies the 4th separation axiom.

Easy to see: Normal \Rightarrow Regular \Rightarrow Hausdorff

Theorem: A metric space (X, d) is normal.

Pf: We know X is T_2 , hence T_1 .

Let $C_1, C_2 \subset X$ be disjoint closed sets.

Define $f: X \rightarrow \mathbb{R}$ by

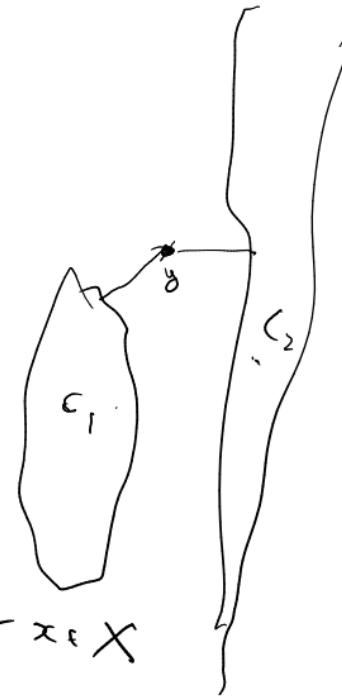
$$f(x) = \frac{d(x, C_1)}{d(x, C_1) + d(x, C_2)}$$

As $C_1 \cap C_2 = \emptyset$, $d(x, C_1) + d(x, C_2) > 0 \quad \forall x \in X$

Further, $x \in C_1 \Leftrightarrow f(x) = 0$; and $x \in C_2 \Leftrightarrow f(x) = 1$.

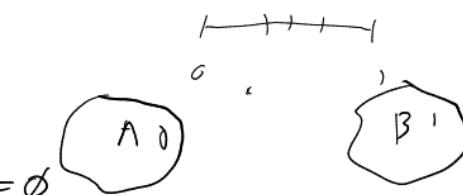
Define $U_1 = f^{-1}(-\infty, \frac{1}{3})$ and $U_2 = f^{-1}(\frac{1}{3}, \infty)$

are as required.



Urysohn lemma: X topological space

Theorem: If X is normal, $A, B \subset X$ closed, $A \cap B = \emptyset$.



Then $\exists f: X \rightarrow [0,1]$ continuous map s.t. $f|_A = 0$ and $f|_B = 1$.

Pf: By normality, $\exists U_0, V$ open s.t.

$A \subset U_0$, $B \subset V$ and $U \cap V = \emptyset$,

i.e.

$$U_0 \subset X \setminus V$$

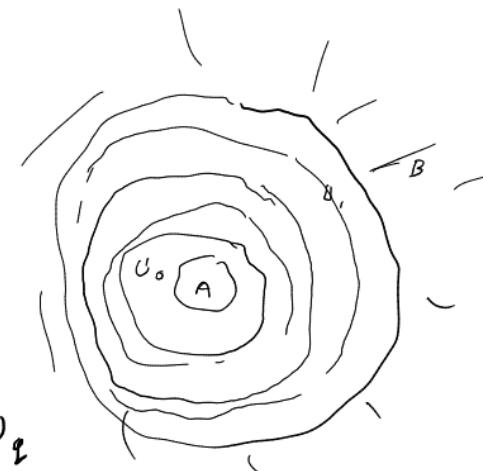
closed

Hence $\overline{U_0} \subset X \setminus V \subset X \setminus B =: U_1$

We construct sets U_p associated to dyadic rationals

$$p = \frac{m}{2^n} \text{ s.t. if } p < q, \overline{U_p} \subset U_q$$

and U_p is open ∇p .



U_0 and U_1 are as above.

We define inductively on n U_p for $p = \frac{m}{2^n}$, lowest terms, $0 \leq p \leq 1$.

We have $\overline{U_0} \subset U_1$, so $\overline{U_0}$ and $X \setminus U_1$ are disjoint closed sets.

Hence by normality, $\exists V_{\frac{1}{2}}$ \forall open s.t. $\overline{U_0} \subset U_{\frac{1}{2}}$,

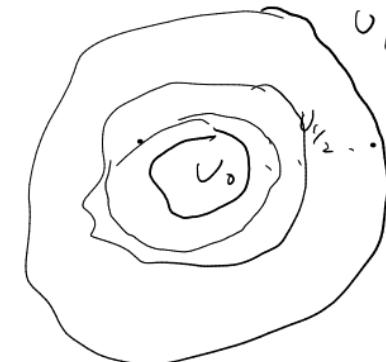
$$X \setminus U_1 \subset V \quad \text{and} \quad U_{\frac{1}{2}} \cap V = \emptyset$$

$$\therefore U_{\frac{1}{2}} \subset X \setminus V \Rightarrow \overline{U_{\frac{1}{2}}} \subset X \setminus V \subset U_1$$

$$\text{Also } \overline{U_0} \subset U_{1/2}$$

In general, if we have constructed U_i for $i = \frac{m}{2^n}$, $n \geq 0$
 we define $U_{\frac{m}{2^{n+1}}}$, $m = 2k+1$ odd as follows:

By normality, \exists open sets $U_{\frac{m}{2^{n+1}}}$ and V s.t. $\overline{U_{\frac{m}{2^{n+1}}}} \subset U_m$ and
 $\overline{X \setminus U_{\frac{m}{2^{n+1}}}} \subset V$. Then $U_{\frac{m}{2^{n+1}}}$ is as required, i.e. $\overline{U_{\frac{m}{2^{n+1}}}} \subset U_{\frac{m}{2^n}}$, $\overline{U_{\frac{m}{2^{n+1}}}} \subset U_{\frac{m+1}{2^n}}$,
 hence $p < q \Rightarrow \overline{U_p} \subset U_q$ for all sets defined so far inductively.



Define $f: X \rightarrow [0, 1]$ as

$$f(x) = \inf \left(\{x \in U_p : p \text{ dyadic}\} \cup \{1\} \right)$$

Lemma: f is continuous.

Pf: Fix $x \in X$, assume $x \notin A, B$. (Exercise)

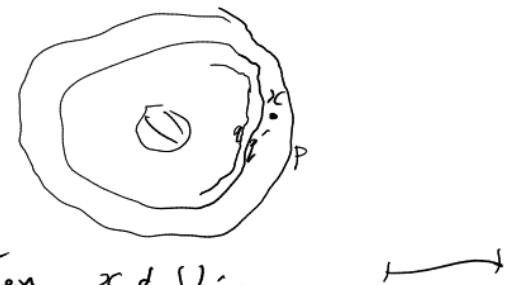
Let $\varepsilon > 0$ be given. By defn. of $f(x)$,

• $\exists p$ dyadic integer s.t. $x \in U_p$, $p < f(x) + \frac{\varepsilon}{2}$

• Also pick q' dyadic s.t. $q' \in (f(x) - \frac{\varepsilon}{2}, f(x))$ then $x \notin U_{q'}$.

and $q \in (f(x) - \frac{\varepsilon}{2}, q')$ also dyadic. Then $x \notin U_q$, hence $x \notin \bar{U}_q$

• Let $W = U_p \setminus \bar{U}_q$. Then $x \in W$ and by defn., if $y \in W$,
 $f(y) \in (f(x) - \varepsilon, f(x) + \varepsilon)$



Uniform convergence : $f_n: X \rightarrow (Y, d)$

Let Y be a metric space, X topological space

Defn: A sequence $\{f_n: X \rightarrow Y\}$ of functions converges uniformly to

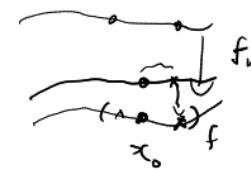
$f: X \rightarrow Y$ if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ s.t.

$n > N \Rightarrow d_\infty(f_n, f) < \varepsilon$ where $d_\infty(f, g) = \sup \{d_Y(f(x), g(x)): x \in X\}$
i.e. $\forall x \in X, d_Y(f_n(x), f(x)) < \varepsilon$.

Theorem: Suppose f_n is continuous $\forall n$ and $f_n \rightarrow f$ uniformly. Then f is continuous.

Pf: Let $x_0 \in X, \varepsilon > 0$ be given. By uniform convergence,
 $\exists n \in \mathbb{N}$ s.t. $\forall x \in X, d_Y(f_n(x), f(x)) < \varepsilon/3$.

As f_n is continuous, $\exists V$ open s.t. $x_0 \in V$ and $x \in V \Rightarrow d(f_n(x), f_n(x_0)) < \frac{\varepsilon}{3}$
Hence, if $x \in V, d_Y(f(x), f(x_0)) < d_Y(f(x), f_n(x)) + d_Y(f_n(x), f_n(x_0)) + d_Y(f_n(x_0), f(x_0)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$.



Tietze extension theorem : X normal space.

Theorem: Suppose $A \subset X$ is closed, $f: A \rightarrow [a, b]$ is a continuous map. Then f extends to a continuous map $\tilde{f}: X \rightarrow [a, b]$.

Lemma: Let $f: A \rightarrow \mathbb{R}$ be a continuous function, $C > 0$ s.t. $\forall x \in A, |f(x)| \leq C$.

Then $\exists g: A \rightarrow \mathbb{R}$ s.t.

$$\cdot |g(x)| \leq \frac{C}{3} \quad \forall x \in X$$

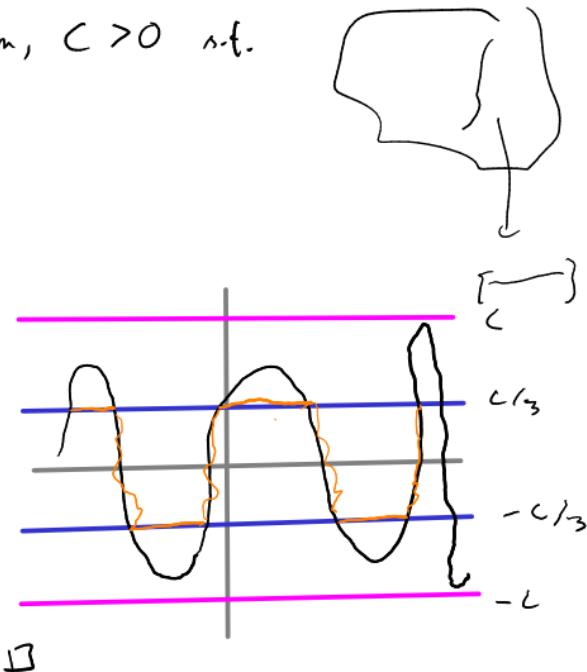
$$\cdot |f(x) - g(x)| \leq 2 \frac{C}{3} \quad \forall x \in A$$

Pf: Let $K = f^{-1}([c + \frac{C}{3}, c])$, $L = f^{-1}([-c, -\frac{C}{3}])$

• K and L are closed.

• By Urysohn, $\exists h: X \rightarrow [0, 1]$ s.t. $h|_L = 0, h|_K = 1$

$$\text{Let } g(x) = -\frac{C}{3} + \frac{2Ch(x)}{3} \quad \forall x \in X$$



Pf of theorem: By rescaling, assume $f: A \rightarrow [0, 1]$, i.e. $[a, b] = [0, 1]$

• By lemma, $\exists g_1: X \rightarrow [0, 1]$ s.t.

$$|g_1(x)| \leq \frac{1}{3} \quad \forall x \in X$$

$$|f - g_1(x)| \leq \frac{2}{3} \quad \forall x \in X$$

Inductively, $\exists g_1, g_2, \dots$ s.t.

$$\cdot |f - g_1(x) - g_2(x) - \dots - g_n(x)| \leq \left(\frac{2}{3}\right)^n$$

$$\cdot |g_n(x)| \leq \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$

It follows that $\sum_{i=1}^n g_i \rightarrow g$ uniformly where $g(x) = \underbrace{\sum_{i=1}^n g_i(x)}_{\text{Cauchy.}} \in \mathbb{R}$
and $g|_A = f$.

Hence g is continuous.

Hausdorff but not regular

$X = \mathbb{R}$, open sets $U \setminus C$, U open in \mathbb{R} , C countable.

Topology for the same reason as cofinite.

Hausdorff: \mathbb{R} is Hausdorff

Rk: If a topology is Hausdorff, so is a finer topology.

Not regular: Take $p = 0$, $C = \left\{ \frac{1}{n} : n \geq 1 \right\}$ (closed as it is countable).

Cannot separate: given $U_1 \setminus C_1$ & $U_2 \setminus C_2$ s.t. $p \in U_1 \setminus C_1$, $C_2 \subset U_2 \setminus C_2$
we claim $(U_1 \setminus C_1) \cap (U_2 \setminus C_2) \neq \emptyset$

As $\frac{1}{n} \rightarrow 0$, $U_1 \cap U_2 \neq \emptyset$, in fact $U_1 \supset B(0, \delta)$ for some $\delta > 0$, $\exists n \in \mathbb{N}$
s.t. $\frac{1}{n} \in B(0, \delta)$

$\therefore \exists \delta' \text{ s.t. } B_{\frac{1}{n}}(\delta') \subset U_2$. Hence $U_1 \cap U_2$ is uncountable,
 $\therefore (U_1 \setminus C_1) \cap (U_2 \setminus C_2) \neq \emptyset$

Countability properties : X topological space

Defn: X is separable if X has a countable dense set.

E.g. \mathbb{R} is separable as $\mathbb{Q} \subset \mathbb{R}$ are dense.

Defn: X is second countable if there is a countable basis for the topology on X .

Theorem: Suppose X is second countable, then X is separable.

Pf: Let \mathcal{B} be a countable basis and for $U \in \mathcal{B}$, pick a point $x_U \in U$. Let $S = \{x_U : U \in \mathcal{B}\}$

Claim: S is dense.

Given W open, $W \neq \emptyset$, $\exists U \in \mathcal{B}$ s.t. $U \subset W$, hence $x_U \in U \subset W$.

Theorem: Let (X, d) be a metric space. If X is separable then X is second countable.

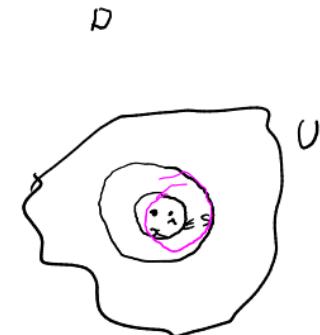
Pf: If $S \subset X$ is a countable dense set, then a basis of X is

$$\mathcal{B} = \{B_x(r) : x \in S, r > 0, r \in \mathbb{Q}\}$$

E.g. $X = \mathbb{R} \cup \{\infty\}$ with

$$\Omega = \{A : \infty \in A\} \cup \{\emptyset\}$$

- Then $\{\infty\}$ is dense, so X is separable
- X is not second countable as if \mathcal{B} is
 - a basis, $x \in \mathbb{R}$, then $\exists V \in \mathcal{B}$ s.t. $x \in V \wedge V \subset \{x, \infty\}$
 $\Rightarrow V = \{x, \infty\}$
 - $\therefore \mathcal{B} \supset \{\{x, \infty\} : x \in \mathbb{R}\}$ which is uncountable.



Sorgenfrey line: Topology on \mathbb{R} with basis $[a, b)$, $a < b$

• Finer than the usual topology

• \mathbb{Q} is still dense, so separable

Propn. The Sorgenfrey line is not second countable.

Pf: Let \mathcal{B} be a basis. Then given $x \in \mathbb{R}$, $\exists V_x \in \mathcal{B}$ s.t.

$x \in V_x$ and $V_x \subset [x, x+1)$

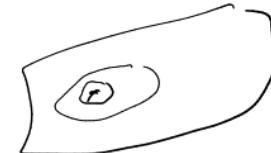
• Hence $\inf V_x = x$ & $x \in \mathbb{R}$

$\therefore x \neq y \Rightarrow V_x \neq V_y$, i.e. $x \mapsto V_x$, $\mathbb{R} \rightarrow \mathcal{B}$ is $\#-1$

But all sets V_x are in \mathcal{B} . Hence \mathcal{B} is uncountable.

First Countability: X topological space

Def'n: Every $x \in X$ has a countable neighbourhood basis.



Theorem: If X is a metric space, then X is first-countable.

Pf.: For $x \in X$, $\{B_x(\frac{1}{n}) : n \geq 1\}$ is a neighbourhood basis.

Propn: Second countable \Rightarrow first countable.

□

Rk: First & second countable are hereditary, i.e. if Y is a subspace of X , then X being first/second countable $\Rightarrow Y$ is the same

• Separable is not hereditary (e.g. $\mathbb{R} \cup \{\infty\}$ with 'dense point topology')

Sequential closure:

• $A \subset X$ subset.

Propn: If $\{x_n\}$ is a sequence in A , $x_n \rightarrow x \in X$ then $x \in \bar{A}$.

Pf: Given V nbd. of x , by defn. of convergence $\exists x_n$ s.t. $x_n \in V$.

As $x_n \in A$, $A \cap V \neq \emptyset$

□

Theorem: If X is first countable, then $x \in \bar{A}$ iff $\exists \{x_n\}$ sequence in A s.t. $x_n \rightarrow x$

Pf: Let $\{V_n\}_{n \geq 1}$ be a countable neighbourhood basis for $x \in X$ with $x \in \bar{A}$. Then choose

$x_n \in \bigcap_{i=1}^n V_i$, which is non-empty.

Then $x_n \rightarrow x$ as if W open in X , $x \in W$ then $V_N \subset W$ for some N . It follows that for $n \geq N$, $x_n \in \bigcap_{i=1}^n V_i \subset V_n \subset W$.

□

Sequential criterion for continuity : X, Y topological spaces

Propn: Suppose $f: X \rightarrow Y$ continuous, $\{x_n\}$ is a sequence in X

s.t. $x_n \rightarrow x$. Then $f(x_n) \rightarrow f(x)$.

Pf: Let W be a nbd of $f(x)$. By continuity $\exists V \subset X$ nbd.

of x s.t. $f(V) \subset W$. As $x_n \rightarrow x$, $\exists N > 0$ s.t. $n > N$,

$x_n \in V$, hence $f(x_n) \in W$

□

Theorem: Suppose $f: X \rightarrow Y$ map, X first-countable. Then f is continuous at $x \in X$ if for all sequences x_n s.t. $x_n \rightarrow x$, $f(x_n) \rightarrow f(x)$.

Pf: Let W be an open nbd. of $f(x)$, and let U_1, \dots, U_n, \dots be a nbd. basis of X . Suppose $f(\bigcap_{i=1}^n U_i) \subset W$ for some n , we are done.

Otherwise pick $x_n \in \bigcap_{i=1}^n U_i$ s.t. $f(x_n) \notin W$.

Then $x_n \rightarrow x$ but $f(x_n) \not\rightarrow f(x)$, a contradiction

$f(x)$

First uncountable ordinal : ω_1

0, 1, 2, . . . , ω , $\omega+1$, . . . , 2ω , . . .

ω_1

Ex: \mathbb{R} with cofinite topology is not first countable

Defn: A linearly ordered set (S, \leq) is well-ordered if any non-empty \subset of S has a minimum.

Theorem: Any set S can be well-ordered.

Pf: We consider well-orderings of subsets of S , which are \subset ordered by $(B, \leq_B) \leq (A, \leq_A)$ if $B \subset A$ and \leq_B restricts \leq_A partially

• Any chain is bounded above. by taking union.
(totally ordered subset)

• Hence, by Zorn's lemma, there is a maximal element
• If this is a well-ordering on $T \subset S$ and $T \neq S$, then pick $s \in S \setminus T$ and order with s bigger than all elements in T . \square

- Take a well-ordering on \mathbb{R} .
- Let ω_1 be the minimal element st.

$$\{a \in \mathbb{R} : a < \omega_1 \text{ is uncountable}\}$$
- $[\omega_1, \omega_1] = \{a \in \mathbb{R} : a \leq \omega_1\}$ is an ordered set, so a space with the order topology
- This is not first-countable.

$\{ \dots, \omega_1 \}$

Regular + Second-Countable = Normal : X second-countable topological space

Lindelöf property: Let $\mathcal{U} = \{U_\alpha\}_{\alpha \in A}$ be an open cover of X . Then $\{U_\alpha\}$ has a finite subcover.

Proof: Let $\{V_n\}_{n \in \mathbb{N}}$ be a countable basis for X . Each U_α is a union of basic open sets, so

$$U_\alpha = \{V_n : V_n \subset U_\alpha\}$$

Hence $X = \bigcup_{\alpha \in A} U_\alpha = \bigcup \underbrace{\{V_n : \exists \alpha \text{ s.t. } V_n \subset U_\alpha\}}_{\text{countable}}$

Let $B(\alpha) = \{n \in \mathbb{N} : V_n \subset U_{\alpha_n} \text{ for some } \alpha_n\}$
 $\forall \alpha$ $n \in B(\alpha)$, choose α_n s.t. $V_n \subset U_{\alpha_n}$

$$\therefore X = \bigcup_{\alpha \in A} U_\alpha = \bigcup_{n \in B(\alpha)} V_n = \bigcup_{\substack{n \in B(\alpha) \\ \in \mathbb{N}}} U_{\alpha_n}, \text{ so } U_{\alpha_n} \text{ form a countable subcover}$$

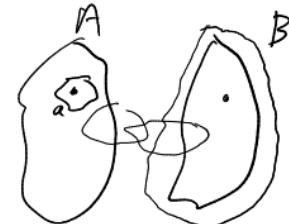
(second-countable)

Theorem: If X_λ is regular then X is normal.

Pf: Let A, B be disjoint closed sets.

Using regularity^{and Lindelöf} we have covers $\{U_n\}_{n \in \mathbb{N}}$ of A

and $\{V_n\}_{n \in \mathbb{N}}$ of B s.t. $\overline{U_n} \cap B = \emptyset \forall n$
 $\overline{V_n} \cap A = \emptyset \forall n$



Let $U'_n = U_n \setminus \bigcup_{i=1}^n \overline{V_i}$

$$V'_n = V_n \setminus \bigcup_{i=1}^n \overline{U_i}$$

Then U'_n, V'_n cover A, B , so if $U = \bigcup_{n=1}^{\infty} U'_n$ & $V = \bigcup_{n=1}^{\infty} V'_n$

then $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

$$\bigcup_{i,n} (U'_i \cap V'_n)$$

Compactness : Compact space X & continuous function \sim finite set, function

E.g. $f: K \rightarrow \mathbb{R}$ continuous, K compact, then f is bounded.

Defn: A topological space X is compact if every open cover $\mathcal{U} = \{U_\alpha\}_{\alpha \in A}$ has a finite subcover $\{U_{\alpha_1}, \dots, U_{\alpha_n}\}$, i.e. $X = U_{\alpha_1} \cup \dots \cup U_{\alpha_n}$.

Equivalently: Suppose $\{F_\alpha\}_{\alpha \in A}$ is a collection of closed subsets of X

1. $\bigcap_{\alpha \in A} F_\alpha = \emptyset$, then $F_{\alpha_1} \cap \dots \cap F_{\alpha_n} = \emptyset$ for some $\alpha_1, \dots, \alpha_n$.

Theorem: Any closed subset $F \subset X$ of a compact space is compact.

Pf: Let $\{U_\alpha\}_{\alpha \in A}$ be an open cover of F , i.e. $U_\alpha \supset F \cap V_\alpha$ where V_α are open in X . Then $\{V_\alpha\}_{\alpha \in A} \cup \{X \setminus F\}$ is an open cover for X , hence has a finite subcover $V_{\alpha_1}, \dots, V_{\alpha_n}, X \setminus F$. Then $U_{\alpha_1}, \dots, U_{\alpha_n}$ is a finite cover of F .

K

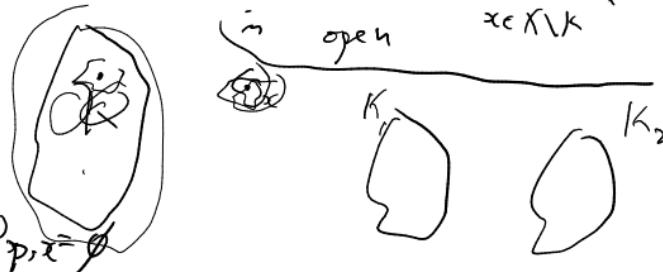
Theorem: A compact subset K of a Hausdorff space X is closed.

Pf.: Given $x \in X \setminus K$, we construct open $U_x \subset X \setminus K$. Then $X \setminus K = \bigcup_{x \in X \setminus K} U_x$

Given $p \in K$, as X is Hausdorff,

$\exists V_{p,x}$ and $W_{p,x}$ open s.t.

$p \in V_{p,x}$ and $x \in W_{p,x}$, $V_{p,x} \cap W_{p,x} = \emptyset$



Observe the sets $\{V_{p,x} : p \in K\}$ are an open cover for K ,

so there is a finite subcover $V_{p_1,x} \cup \dots \cup V_{p_n,x}$

Let $V = V_{p_1,x} \cup \dots \cup V_{p_n,x}$ and $U_x = W_{p_1,x} \cap \dots \cap W_{p_n,x}$

Then $V \cap U_x$ are disjoint, U_x is open and $U_x \subset X \setminus K$

Similarly: X compact Hausdorff $\Rightarrow X$ regular, X normal as $K \subset V$

D

Theorem: The image $f(X)$ of a compact set under a continuous function $f: X \rightarrow Y$ is compact.

Pf: Let $\{V_\alpha\}_{\alpha \in A}$ be an open cover of $f(X)$. Then

$\{f^{-1}(V_\alpha)\}_{\alpha \in A}$ is an open cover of X ,

hence has a finite subcover. Take image.

B

Compact subsets of Euclidean space (\mathbb{R}^n)

Theorem: A subset $K \subset \mathbb{R}^n$ is compact iff K is closed & bounded

Pf: Suppose K is compact

• K is closed as \mathbb{R}^n is Hausdorff

• K is bounded: K has an open cover $\{K \cap B_0(n) : n \in \mathbb{N}\}$,

which must have a finite subcover $K \cap B_0(n_i)$, $i=1, \dots, m$

• If $N = \max(n_1, \dots, n_m)$, then $K \subset B_0(N)$, hence is bounded.

Conversely: If K is bounded and closed, then K is a

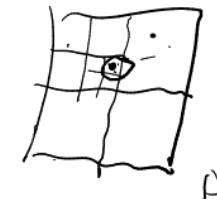
closed subset of $\underbrace{[-m, m]^n}$ for some $m > 0$.
cube of diameter $2m$.

• Hence K is compact by the following lemma

Lemma: Let C_D be a cube of diameter D in \mathbb{R}^n . Then D is compact.

Pf: Let $\mathcal{U} = \{U_\alpha\}_{\alpha \in A}$ be an open cover of C_D .

If \mathcal{U} has no finite subcover, then one of the 2^n cubes of diameter $D/2$ into which C_D is broken has no finite subcover.



\mathbb{R}^2

Iterating, we get a sequence of cubes $C_0 \supset C_1 \supset \dots \supset C_m \supset \dots$ with $\text{diam}(C_m) = 2^{-m}$ and with no C_m having a finite sub-cover.

$\{C_m\}$

Pick $x_i \in C_i$. Then $\{x_i\}$ is Cauchy, hence convergent to x_∞ say. But $x_\infty \in U_{\alpha_\infty}$ for some $\alpha_\infty \in A$

As U_{α_∞} is open, $C_m \subset U_{\alpha_\infty}$ for m large, a contradiction.

Consequences:

Theorem: If $f: X \rightarrow \mathbb{R}$ and X is compact, then f is bounded and attains its maximum.

Pf: $f(X) \subset \mathbb{R}$ is compact, hence bounded, i.e. f is bounded.

• If $y_{\max} := \sup \{f(x) : x \in X\}$, then $y_{\max} \in \overline{f(X)}$
 $\sup \{y : y \in f(X)\}$

• But $f(X)$ is closed, hence $\overline{f(X)} = f(X)$
 $y_{\max} \in f(X)$

Sequential Compactness : X topological space

Defn: X is sequentially compact if every sequence $\{x_n\}$ in X has a convergent subsequence.

Assume X is compact

Lemma: Any infinite set $A \subset X$ has an accumulation point.

Pf: Else A is closed and discrete. So singletons form an infinite cover without a finite subcover

Theorem: If X is compact and first-countable, then X is sequentially compact.

Pf: If $\{x_n\}$ has finite image, then it has a constant subsequence. Else the set $\{x_n\}$ has an accumulation point x_∞ , with nbhd. basis $U_1, U_2, \dots, U_N, \dots$. As x_∞ is an accumulation point, $\forall N \in \mathbb{N}$ $\exists n_k$ s.t. $x_{n_k} \in U_1 \cap \dots \cap U_N$. We see $\{x_{n_k}\} \rightarrow x_\infty$.

Theorem:

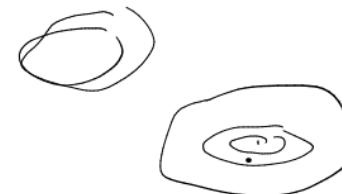
Suppose X is sequentially compact and second countable. Then X is compact.

Pf: Let $\mathcal{U} \{V_\alpha\}_{\alpha \in A}$ be an open cover. By second countability,

\mathcal{U} has a countable sub-cover $V_1 = \bigcup_{\alpha_1} V_2 = \bigcup_{\alpha_2} \dots$.

Let $F_n = X \setminus \bigcup_{i=1}^n V_i$. If $F_n = \emptyset$ for some n , then V_1, \dots, V_n is a finite subcover. Else we have

- F_i closed, non-empty
- $F_1 \supset F_2 \supset F_3 \supset \dots$



Claim: $\bigcap_{i=1}^{\infty} F_i \neq \emptyset$.

Pf: Pick $x_i \in F_i$ and consider a convergent subsequence $x_{n_i} \rightarrow x_\infty$ of $\{x_{n_i}\}$. Then $x_\infty \in \bigcap_{i=1}^{\infty} F_i$ (as x_{n_i} is eventually in F_i for all i)

But $\bigcap_{i=1}^{\infty} F_i = X \setminus \bigcup_{i=1}^{\infty} V_i = X \setminus X = \emptyset$, a contradiction.

Compactness and Homeomorphisms

Defn: A map $f: X \rightarrow Y$ is closed (open) if $\forall x \text{ closed} \Rightarrow f(x) \text{ closed}$
($\forall x \text{ open} \Rightarrow f(x) \text{ open}$)

Propn: If $f: X \xrightarrow{g} Y$ is a continuous bijection which is open or closed,
then f is a homeomorphism.

Pf: $f(v) = (f')^{-1}(v) = g^{-1}(v)$ where $g = f'$, so for open/closed
maps $g \circ f^{-1}$ is continuous. \square

Theorem: Any continuous bijection $f: X \rightarrow Y$ is a homeomorphism.

Pf: We show f is closed if $f: X \rightarrow Y$ continuous, X compact
and Y Hausdorff.

Namely $F \subset X$ closed $\Rightarrow F$ compact $\Rightarrow f(F) \subset Y$ is compact
 $\Rightarrow f(F)$ is closed.

• E.g. S to be an infinite set.

$X = S$ with cofinite topology $\Rightarrow X$ compact.

$Y = S$ with indiscrete topology

$\cdot (-, -) \rightarrow \text{b! b!}$

$f: X \rightarrow Y$ the identity.

Then f is continuous and bijective but not a homeomorphism.

Compactness and metric spaces

Def'n: A metric space (X, d) is complete if every Cauchy sequence in X is convergent.

• $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0 \ \exists N > 0$ s.t. $n, m > N, d(x_n, x_m) < \varepsilon$.

Theorem: If X is compact, then X is complete.

Pf: Assume X compact, $\{x_n\}$ Cauchy. Then some subsequence

$\{x_{n_k}\}$ is convergent, say to x_∞ , where w.l.g. n_k strictly increasing

Claim: $x_n \rightarrow x_\infty$

Pf: Let $\varepsilon > 0$ be given. As $x_{n_k} \rightarrow x_\infty, \exists N' > 0$ s.t.
 $k > N' \Rightarrow d(x_{n_k}, x_\infty) < \varepsilon/2$. As $\{x_n\}$ is Cauchy, $\exists N'' > 0$
s.t. $n, m > N'' \Rightarrow d(x_n, x_m) < \varepsilon/2$.

If $n > N''$, find k s.t. $n_k > \max(N, N')$. Then

$$d(x_n, x_\infty) \leq d(x_n, x_{n_k}) + d(x_{n_k}, x_\infty) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Lebesgue number theorem: X compact metric space.

Theorem: If $\{U_\alpha\}_{\alpha \in A}$ is an open cover of X , $\exists \varepsilon > 0$ s.t. if $Y \subset X$ and $\text{diam}(Y) < \varepsilon$, then $\exists \alpha_0 \in A$ s.t. $Y \subset U_{\alpha_0}$.

Pf: Suppose not, then $\forall n \geq 1 \exists Y_n \subset X$ s.t. $\text{diam}(Y_n) < \frac{1}{n}$ and Y_n is not contained in $U_\alpha \forall \alpha \in A$.

• Pick points $y_n \in Y_n$. The sequence $\{y_n\}$ has a convergent subsequence $\{y_{n_k}\}$, i.e., $y_{n_k} \xrightarrow{k \rightarrow \infty} y_\infty$, $\text{diam}(Y_{n_k}) \rightarrow 0$.

• But $y_\infty \in X$, so $\exists \alpha_0$ s.t. $y_\infty \in U_{\alpha_0}$, hence $\exists \eta > 0$

s.t. $B_{y_\infty}(\eta) \subset U_{\alpha_0}$. For k large enough,

$d(y_{n_k}, y_\infty) < \frac{\eta}{2}$ & $\text{diam}(Y_{n_k}) < \frac{\eta}{2}$, hence $Y_{n_k} \subset B_{y_\infty}(\eta) \subset U_{\alpha_0}$, a contradiction.

ε -net: (X, d) a metric space.

Defn: A set $E \subset X$ is an ε -net (for $\varepsilon > 0$) if $\forall x \in X \exists e \in E$ s.t. $d(x, e) \leq \varepsilon$, i.e. $d(E, x) \leq \varepsilon \quad \forall x \in X$.

Rk: $d_H(S, X) \leq \varepsilon$.

Theorem: If X is sequentially compact, then $\forall \varepsilon > 0$,
 \exists a finite ε -net $E \subset X$.

Pf: Inductively pick points $x_1, \dots, x_n, \dots \in X$ s.t. $d(x_n, x_j) \geq \varepsilon \quad \forall j \leq n$.

if possible, i.e.,

'pick x_1 ,

'if $\exists x \in X$ s.t. $d(x_1, x) \geq \varepsilon$, pick x_2 - - -'

Two possibilities: (1) None x_1, \dots, x_n can pick x_{n+1} as } for some n

$\forall x \in X, \exists i \leq n$ s.t. $d(x, x_i) \leq \varepsilon$

This means that x_1, \dots, x_n is a finite ε -net.

Soln (2): We can choose such an x_n & n .

Then $\{x_n\}$ is a sequence in X s.t. $\forall i, j$,
if $i \neq j$, $d(x_i, x_j) \geq \varepsilon$

Hence no subsequence of $\{x_n\}$ is Cauchy, so not convergent.
contradicts sequential compactness.

'Totally bounded': Having a finite ε -net $\forall \varepsilon > 0$

Rq: Sequential compact metric spaces are complete, totally bounded.

Theorem: If X is a sequentially compact metric space, then X is separable (hence second countability)

Pf: Let E_n be a $1/n$ ε -net. Then $E = \bigcup_{n=1}^{\infty} E_n$ is a countable dense set.

Cor: For a metric space, sequentially compact \Leftrightarrow compact.

(X, d) metric space

Theorem: Suppose X is complete and $\forall \varepsilon > 0$, X has a finite ε -net. Then X is sequentially compact (hence compact)

Pf: Let $\{x_n\}$ be a sequence in X . We construct a convergent subsequence. We construct subsequences $x_n^{(1)}, x_n^{(2)}, \dots$, with $x_n^{(k+1)}$

$x_n^{(1)}$ is Cauchy, X
 by completeness,
 $x_n^{(1)}$ is convergent. ε -net
 and by
 completeness,
 $x_n^{(1)}$ is convergent.

As $E_{1/2}$ is finite, $\exists x \in E_{1/2}$ s.t. $d(x_n, x) < 1/2$.

$\exists n_0$, $d(x_{n_0}, x) < 1/2$. Thus $\forall n, m$,

$d(x_n, x_m) < 1$. Inductively, we construct using a ε -net. $\forall n, m$, $d(x_n^{(k)}, x_m^{(k)}) < \frac{1}{k}$; construct using a $\varepsilon(1/2k)$ -net. We see the diagonal subsequence $x_n^{(k)}$ is Cauchy,

as $i, j \geq N$, $x_i^{(k)} \in x_j^{(k)}$ are elements of $x_n^{(N)}$, hence $d(x_i^{(k)}, x_j^{(k)}) < 1/N$.

Compactification : X Hausdorff space, Ω topology

$$X^* = X \cup \{\infty\} \quad \text{open in } X$$

$$\Omega^* = \Omega \cup \{X^* \setminus C : C \subset X \text{ is compact}\}$$

don't contain ∞

contain ∞

Theorem: Ω^* is a topology

Pf: (1) Suppose $\{V_\alpha\}_{\alpha \in A}$ are open, then either (i) some $V_{\alpha_0} = X^* \setminus C$
or (ii) all $V_\alpha \subset X \Rightarrow V_\alpha \in \Omega$

$$\text{For (i), } \bigcup_{\alpha \in A} V_\alpha \in \Omega \subset \Omega^*$$

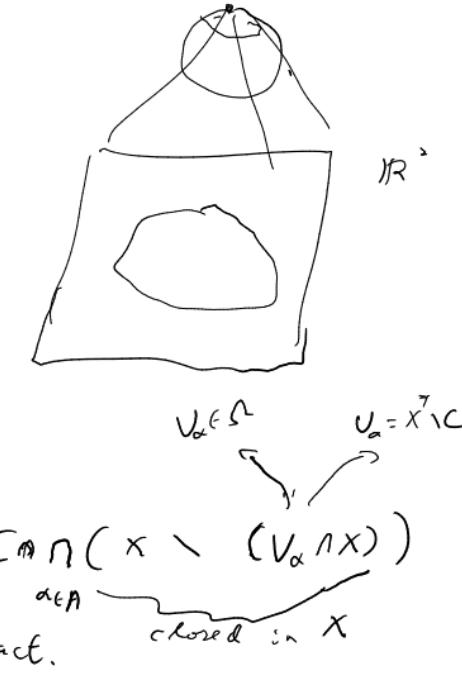
For (ii), say $V_{\alpha_0} = X^* \setminus C$. Then $X^* \setminus \bigcup_{\alpha \in A} V_\alpha = C \cap (X \setminus (V_{\alpha_0} \cap X))$
 $C = X^* \setminus V_{\alpha_0}$ which is compact.

hence $\bigcup_{\alpha \in A} V_\alpha$ is open.

(2) Suppose $A, B \in \Omega^*$. If $A \setminus B \in \Omega$, then $A \cap B \in \Omega$.
 If $A = X^* \setminus C_A$ & $B = X^* \setminus C_B$, then $A \cap B = X^* \setminus (C_A^* \cup C_B^*) \in \Omega^*$

Lemma: Finite union of compact sets is compact.

Exercise



$A \in \Omega$, $B = X^* \setminus C$, so $A \subset X$

Then $A \cap B = A \cap (X^* \setminus C) = A \cap (X \setminus C)$, $X \setminus C$ open in X as

(3) $\emptyset, X^* \in \Omega^*$ \rightarrow C is compact, hence closed

• We have $X \hookrightarrow X^*$

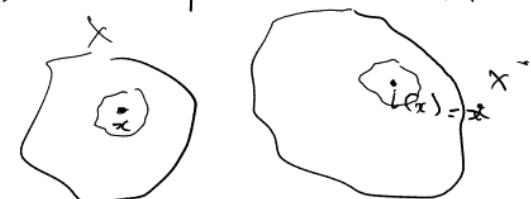
Defn: A topological embedding $f: X \rightarrow Y$ is an injective continuous map s.t. $f: X \rightarrow f(X)$ is a homeomorphism.

Theorem: $i: X \rightarrow X^*$ is a topological embedding.

Pf: i is continuous: Let $x \in X$ and let V be an open set in X^* with $i(x) \in V$.

If $V \in \Omega$, then $i(V) \subset V$.

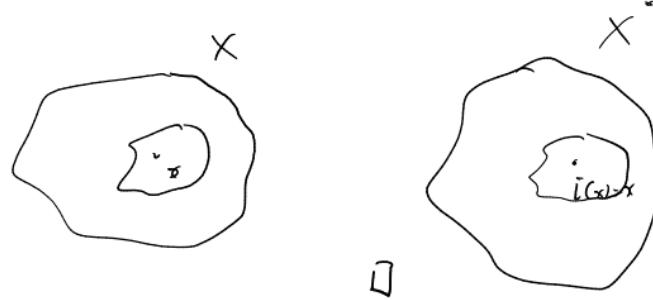
If $V = X^* \setminus C$, then we see
 $X \setminus C$ is open, $x \in X \setminus C$
and $i(X \setminus C) \subset X^* \setminus C$



Let $x \in X$, then $i^{-1}(x) = x$

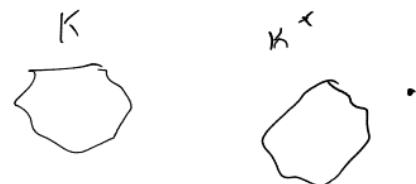
Let V be a nbd. of x in X .

Then $V \subset \Omega^*$ and $i^{-1}(V) \subset V$.



Propn: ∞_X is isolated ($\Leftrightarrow X$ is compact).

Pf: ∞_X isolated $\Leftrightarrow X^* \setminus X \in \Omega^*$
 $\Leftrightarrow X$ compact.



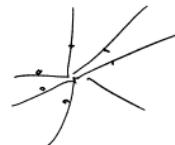
Defn: A compactification of a space X is a space \bar{X} with a topological embedding $i: X \rightarrow \bar{X}$ such that $i(X)$ is dense in \bar{X} .

Locally compact (Hausdorff) spaces : X topological space

Defn. X is locally compact 'if' every $x \in X$ has a nbd. V s.t. \bar{V} is compact.

E.g. \mathbb{R}^n is locally compact.

E.g. (Exercise): \mathbb{R}^2 with SNCF metric is not locally compact.
(as $x \in \mathbb{R}^2$, $d(x, 0) = \varepsilon$ is discrete for $\varepsilon > 0$)



Theorem: If X is locally compact and Hausdorff, then X^* is Hausdorff. (and compact)

Pf. Given $x, y \in X^*$, \exists U, V, \dots as X is Hausdorff.

If $y = \infty$, then take V as in defn. of local compactness i.e. \bar{V} is compact. Then $V \cap X \setminus \bar{V}$ are disjoint neighbourhoods of x & $y = \infty$

Theorem: X^* is compact.

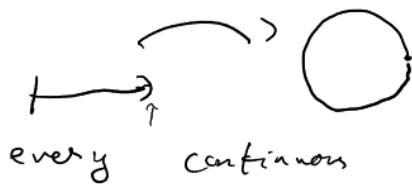
Pf: let $\{U_\alpha\}$ be an open cover for X^* . Then $\forall x \in U_{\alpha_0}$ for some α_0 , hence $U_{\alpha_0} = X^* \setminus K$. The sets $U_\alpha \cap K$ form an open cover for K , so $K \subset U_{\alpha_1} \cup \dots \cup U_{\alpha_n}$, so $X^* \subset U_{\alpha_0} \cup U_{\alpha_1} \cup \dots \cup U_{\alpha_n}$. \square

Proper map: Defn: $f: X \rightarrow Y$ continuous is proper if $\forall K \subset Y$ compact $f^{-1}(K)$ is compact.

Bk: If X compact, and Y is Hausdorff, then every continuous map is proper.

Suppose $f: X \rightarrow Y$ is a continuous map.

Qn: When does f extend continuously to $\tilde{f}: X^* \rightarrow Y^*$ s.t. $\tilde{f}(\infty_X) = \infty_Y$?



Theorem: Let $f: X \rightarrow Y$ be continuous. Define

$$f^*: X^* \rightarrow Y^*$$

by $\begin{cases} f^*(x) = f(x) & \text{for } x \in X \\ f^*(\infty_x) = \infty_Y \end{cases}$

Then f^* is continuous $\Leftrightarrow f$ is proper.

Pf: • Easy to see f^* is continuous at $x \neq \infty_x$ as f is continuous.

• If f is proper, any nbd. of ∞_Y in $Y^* \setminus K$

where $K \subset X$ is compact. We see

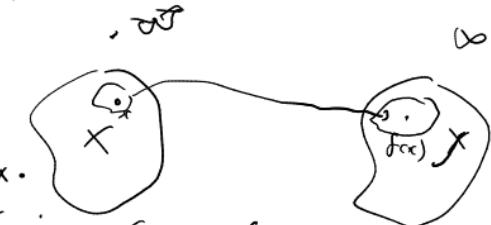
$X^* \setminus f^{-1}(K)$ is a nbd. of ∞ n.l.

$f^*(X^* \setminus f^{-1}(K)) \subset Y^* \setminus K$. Thus continuous at ∞_x .

Conversely, suppose f^* is continuous and $f \subset X$ is compact

Then $Y^* \setminus K$ is a nbd. of ∞ . Hence $\exists L \subset X$ cpt., $L \subset X$ s.t.

$f^*(X^* \setminus L) \subset Y^* \setminus K$. Hence $f^{-1}(K) \subset L$, so is a closed subset of a compact set, hence compact.



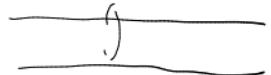
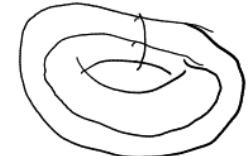
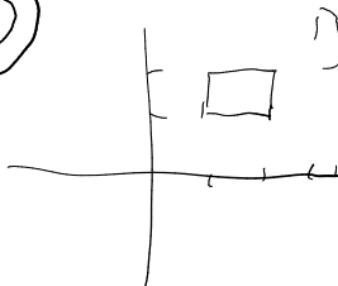
Theorem: If X is Hausdorff, Y locally-compact Hausdorff, then any proper map $f: X \rightarrow Y$ is closed.

Pf: f extends to $f^*: \overset{\text{compact}}{X^*} \rightarrow \overset{\text{Hausdorff}}{Y^*}$, which is a closed map.

If $F \subset X$ is closed, then $F = X \cap F^*$, F^* closed in X^* , so $f(F) = Y \cap f(F^*)$ is closed in Y .

Product of Spaces

E.g. $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$, $S^1 \times \mathbb{R} = \text{cylinder}$, $S^1 \times S^1$



Let X, Y be topological spaces

Then $X \times Y$ is the set $\{(x, y) : x \in X, y \in Y\}$ with topology

with basis $\mathcal{B} = \{A \times B : A \subset X \text{ open}, B \subset Y \text{ open}\}$

Propn: This is a basis.

Pf: $(U_1 \times V_1) \cap (U_2 \times V_2) \dots \cap (U_n \times V_n) = (U_1 \cap \dots \cap U_n) \times (V_1 \cap \dots \cap V_n) \in \mathcal{B}$

We have a canonical homeomorphism $X \times Y \cong Y \times X$.
 $(x, y) \mapsto (y, x)$

Finite products: Let X_1, \dots, X_n be topological spaces.

Then $X_1 \times \dots \times X_n = \prod_{i=1}^n X_i$ the set $\{(x_1, \dots, x_n) : x_i \in X_i\}$

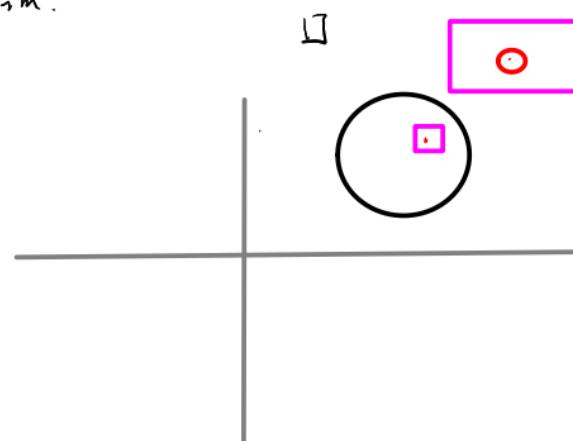
with topology with basis $\mathcal{B} = \{V_1 \times \dots \times V_n : V_i \subset X_i \text{ open}\}$.

Propn: This is a basis.

Propn: $(A \times B) \times C = A \times (B \times C) = A \times B \times C$ where '=' means
there is a canonical homeomorphism. □

Theorem: $\mathbb{R}^n \times \mathbb{R}^m = \mathbb{R}^{n+m}$

Pf: Check that the topologies coincide,
by checking bases of each are open
(Exercise) or the other. □



• Projections: $p_j : \prod_{i=1}^n X_i \rightarrow X_j$, $p_j : (x_1, \dots, x_n) \mapsto x_j$

This is continuous as if $U_j \subset X_j$ is open,

$$p_j^{-1}(U_j) = \bigcap_{\substack{\text{open} \\ i \neq j}} X_i \times \dots \times U_j \times \dots \times X_n \quad \text{is a basic open set.}$$

Conversely, if Ω is a topology on $\prod_{i=1}^n X_i$ s.t. each p_j is continuous.

Then, given $\text{open } U_j \subset X_j$, we have $p_j^{-1}(U_j) = X_1 \times \dots \times U_j \times \dots \times X_n$ is open.

Suppose U_1, \dots, U_n with $U_j \subset X_j$ open $\forall j$, then

$$U_1 \times \dots \times U_n = \bigcap_{j=1}^n p_j^{-1}(U_j) \quad \text{is open}$$

Conclusion:

- The product topology is the initial topology s.t. p_j is continuous $\forall j$
- The sets $X_1 \times \dots \times U_j \times \dots \times X_n$ form a sub-basis.

Infinite products : $\{X_\alpha\}_{\alpha \in A}$ topological spaces. E.g. $X_1 \times X_2 \times \dots \times X_n \times \dots$, $A = \mathbb{N}$

• Product topology: Initial topology s.t. p_α are continuous.

• Box topology: Given $U_\alpha \subset X_\alpha$ open & take basis $\prod_{\alpha \in A} U_\alpha$, e.g. $U_1 \times U_2 \times \dots \times U_n \times \dots$ open $X_1 \times X_2 \times \dots \times X_n \times \dots$

Product topology: On set $\prod_{\alpha \in A} \{(x_\alpha)_{\alpha \in A} : x_\alpha \in X_\alpha\}$

• $p_\beta : \prod_{\alpha \in A} X_\alpha \rightarrow X_\beta$: $(x_\alpha)_{\alpha \in A} \mapsto x_\beta$ e.g. $\{(x_1, x_2, \dots) : x_i \in X_i\}$

• If p_β are continuous, for $U_\beta \subset X_\beta$, $p_\beta^{-1}(U_\beta)$ is open

$$p_\beta^{-1}(U_\beta) = \{(x_\alpha)_{\alpha \in A} : x_\alpha \in X_\alpha, x_\beta \in U_\beta\}$$

$$= \prod_{\alpha \in A} Z_\alpha \text{, where } Z_\alpha = \begin{cases} U_\beta, & \alpha = \beta \\ X_\alpha, & \alpha \neq \beta \end{cases}$$

e.g. $X_1 \times X_2 \times \dots \times U_n \times \dots \times X_n \times \dots$

Fix $\alpha_1, \dots, \alpha_n \in A$ distinct, $U_{\alpha_i} \subset X_{\alpha_i}$ open, then $B = \{z_1 \times z_2 \times \dots \times z_n \times \dots\}$
with $z_i = x_i$

$$\bigcap_{i=1}^n p_{\alpha_i}^{-1}(U_{\alpha_i}) = \prod_{\alpha \in A} z_{\alpha}, \quad z_{\alpha} = \begin{cases} U_{\alpha_i} & \text{if } \alpha = \alpha_i, i = 1, \dots, n \\ X_{\alpha} & \text{otherwise} \end{cases}$$

} for all but
finitely many
 i 's
 $z_i \subset X_i$ open

These form a basis for a topology. (Exercise)

$$B = \left\{ \prod_{\alpha \in A} z_{\alpha} : z_{\alpha} \subset X_{\alpha} \text{ open } \forall \alpha, z_{\alpha} = X_{\alpha} \text{ for all but } \text{finitely many } \alpha \right\}$$

Finite intersections: $\bigcap_{i=1}^m \prod_{\alpha \in A} z_{\alpha}^{(i)} = \prod_{\alpha \in A} \bigcap_{i=1}^m z_{\alpha}^{(i)}$

$\underbrace{\phantom{\bigcap_{i=1}^m \prod_{\alpha \in A} z_{\alpha}^{(i)}}}_{\text{open in } X_{\alpha}}$

For all but finitely many α , $z_{\alpha}^{(i)} = X_{\alpha} \forall i$,
so $\bigcap_{i=1}^m z_{\alpha}^{(i)} = X_{\alpha}$.

Thus, $\prod_{\alpha \in A} \bigcap_{i=1}^m z_{\alpha}^{(i)}$ is in B

Theorem: Let Y be a topological space and $f: Y \rightarrow \prod_{\alpha \in A} X_\alpha$ be a map. Then f is continuous $\Leftrightarrow p_\alpha \circ f: Y \rightarrow X_\alpha$ is continuous $\forall \alpha \in A$.

Rh.: $f(y) = (f_\alpha(y))_{\alpha \in A} \in \prod_{\alpha \in A} X_\alpha$, where $f_\alpha = p_\alpha \circ f$ $\left| f(y) = (f_1(y), f_2(y), \dots)$

By the above, $\{p_\alpha^{-1}(U_\alpha) : U_\alpha \subset X_\alpha \text{ open, } \alpha \in A\}$ where $f_\alpha(y) = p_\alpha \circ f(y)$ is a sub-basis for the topology.

Pf: If f is continuous, then p_α is continuous \Leftrightarrow p_α .

Conversely, enough to show that $f^{-1}(W)$ is open for a sub-basis open set W .

But a sub-basis set is $W = p_\alpha^{-1}(U_\alpha)$

$\therefore f^{-1}(W) = f^{-1}(p_\alpha^{-1}(U_\alpha)) = (p_\alpha \circ f)^{-1}(U_\alpha)$ which is open as $p_\alpha \circ f$ is continuous.

Box topology

$$\prod_{n \in \mathbb{N}} \mathbb{R} = \{(x_1, x_2, \dots, x_n, \dots) : x_i \in \mathbb{R}\}$$

Open sets: $U_1 \times U_2 \times \dots \times U_n \times \dots$ with $U_i \subset \mathbb{R}$ open $\forall i$

Let $a_n = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, \dots)$

$a_\infty = (0, 0, \dots, 0, \dots)$

Proposition: $a_n \rightarrow a_\infty$ is not true for the box topology.

Pf: Consider the neighbourhood of a_∞ given by U .

$$U = (-\frac{1}{1}, \frac{1}{1}) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{3}, \frac{1}{3}) \times \dots \times (-\frac{1}{n}, \frac{1}{n}) \times \dots$$

Then $\forall n$, $a_n \notin U$ as the $(n+1)^{\text{th}}$ component of a_n is $\frac{1}{n}$

but $U_{n+1} = (-\frac{1}{n+1}, \frac{1}{n+1})$ and $\frac{1}{n} \notin (-\frac{1}{n+1}, \frac{1}{n+1})$

D

Universal property : Given $\{x_\alpha\}_{\alpha \in A}$, 'the' product is

• a topological space $\prod_{\alpha \in A} X_\alpha$

• continuous maps' $p_\alpha : \prod_{\beta \in A} X_\beta \rightarrow X_\alpha \quad \forall \alpha \in A$

such that

given γ topological space

and $f_\alpha : \gamma \rightarrow X_\alpha$

$\exists !$ continuous map $f : \gamma \rightarrow \prod_{\beta \in A} X_\beta$ s.t. $\forall \alpha \in A, f_\alpha = p_\alpha \circ f$.

Propn: Given two 'products' $(\prod_{\alpha \in A} X_\alpha, \{\hat{p}_\alpha\})$ & $(\prod_{\alpha \in A} X_\alpha, \{\hat{p}'_\alpha\})$ satisfying the above, \exists homeomorphism

$\Phi : \prod_{\alpha \in A} X_\alpha \rightarrow \prod_{\alpha \in A} X_\alpha$ 'compatible with $p_\alpha, \hat{p}'_\alpha$ '.

Pf: Taking $\gamma = \prod_{\alpha \in A} X_\alpha$, $f_\alpha = p_\alpha$ in the universal property for $\prod_{\alpha \in A} X_\alpha$, we get

$\Phi : \prod_{\alpha \in A} X_\alpha$ s.t. $\hat{p}'_\alpha \circ \Phi = p_\alpha$.

Taking $Y = \bigcap_{\alpha \in A} X_\alpha$, $f_\alpha = p_\alpha$, we get $\bar{\Psi}: \prod_{\alpha \in A} X_\alpha \rightarrow \bigcap_{\alpha \in A} X_\alpha$ s.t.

$$p_\alpha \circ \bar{\Psi} = \hat{p}_\alpha$$

Hence $\bar{\Psi} \circ \bar{\Phi}: \prod_{\alpha \in A} X_\alpha \rightarrow \prod_{\alpha \in A} X_\alpha$ is a continuous

$$f \circ \bar{\Phi} = p_\alpha$$

Thus $\bar{\Psi} \circ \bar{\Phi}$ corresponds to the universal property for $\prod_{\alpha \in A} X_\alpha$ with $f_\alpha = p_\alpha$ and $Y = \bigcap_{\alpha \in A} X_\alpha$.

But $\prod_{\alpha \in A} X_\alpha$ also corresponds to the same Y, f_α .
By uniqueness, $\bar{\Psi} \circ \bar{\Phi} = \text{Id}$. Similarly, $\bar{\Phi} \circ \bar{\Psi} = \text{Id}$.

Thus $\bar{\Phi}$ is a homeomorphism as claimed. □

Products and metrizability

Defn. A $\underset{\text{topological}}{\wedge}$ space X is metrizable if \exists a metric d on X which induces the topology on X .

Ex. $X = \prod_{x \in \mathbb{R}} \{0, 1\}$, where $\{0, 1\}$ is discrete.

Propn. X is not first countable.

Ps. Let $\{V_n\}$ be a countable collection of nbds. of $(0)_{x \in \mathbb{R}}$

Then $V_n = \prod_{x \in \mathbb{R}} W_x^{(n)}$ with $W_x^{(n)} = \{0, 1\}$ except for finitely

many x 's, say $x_1^{(n)}, \dots, x_m^{(n)}$ indices

Hence all $W_x^{(n)}$'s are $\{0, 1\}$ except for countably many $x \in \mathbb{R}$

• Pick x_0 not one of these indices.

Then $V_n \notin V$ $\forall n$, where $V = \prod_{x \in \mathbb{R}} Z_x$, $Z_x = \begin{cases} \{0\}, x = x_0 \\ \{0, 1\} \text{ otherwise} \end{cases}$

Cor. X is not metrizable.

Metrics on countable products : Let $(X_1, d_1), (X_2, d_2), (X_3, d_3), \dots$ be metric spaces

Theorem: $\prod_{n \in \mathbb{N}} X_n = X_1 \times X_2 \times \dots$ is metrizable.

Pf: If (Z, d) is a metric space, then d is equivalent to the metric $\bar{d}(x, y) = \min\{d(x, y), 1\}$

• Hence we can assume all X_i have $d_i(x, y) \leq 1 \quad \forall x, y \in X_i$

• Define $d_\infty((x_n), (y_n)) = \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x, y) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} = 1$

• This is a metric

Lemma: d_∞ induces the product topology.

Pf: Let $W = \prod_{i=1}^{\infty} U_i$ be open in $\prod_{i=1}^{\infty} X_i$. Then $\exists n$ s.t. $n > N \Rightarrow U_i = X_i$

so $W = U_1 \times \dots \times U_N \times X_{N+1} \times \dots$

Let $(x_1, x_2, \dots) \in W$.

Then $x_i \in U_i$ which is open, so for $\delta_i > 0$ s.t. $B_{x_i}(\delta_i) \subset U_i$

let $\delta_\infty = \min_{1 \leq i \leq N} \left(\frac{\delta_i}{2^i} \right)$

We see that $B_{(x_n)}(\delta_\infty) \subset W$, as if $(y_n) \in B_{(x_n)}(\delta_\infty)$,

if $j > N$, then $y_j \in V_j = X_j$

if $j \leq N$, $d_\infty((x_n), (y_n)) = \sum_{i=1}^n \frac{1}{2^i} d_i(x_i, y_i) < \delta_\infty$

$$\therefore \frac{1}{2^j} d_j(x_j, y_j) < \frac{\delta_j}{2^j}$$

$$\Rightarrow d_j(x_j, y_j) < \delta_j \Rightarrow y_j \in V_j$$

Thus $(y_n) \in \prod_{j \in N} V_j = W$.

Let $W \subset \prod_{n \in \mathbb{N}} X_i$ be open, $(x_n) \in W$.
 in $\underline{d_\infty}$

Then $\exists r_0 > 0$ s.t. $B_{(x_n)}(r_0) \subset W$

Let N be s.t. $\frac{1}{2^N} < \frac{r_0}{2}$, $r_0 = \frac{r_0}{2^N}$

Consider the open set in $\prod_{n \in \mathbb{N}} X_i$ with the product topology
 given by

$$U = B_{x_1}(r_0) \times B_{x_2}(r_0) \times \dots \times B_{x_N}(r_0) \times X_{N+1} \times X_{N+2} \times \dots$$

Claim: $U \subset W$.

Pf: let $(y_n) \in U$. Then $d_j(x_j, y_j) \leq r_0 \forall j \leq N$. ≤ 1

$$\begin{aligned} \therefore d_\infty((x_n, y_n)) &= \underbrace{\sum_{j=1}^N \frac{1}{2^j} d(x_j, y_j)}_{\leq N \cdot \frac{r_0}{2^N}} + \underbrace{\sum_{j=N+1}^{\infty} \frac{1}{2^j} d(x_j, y_j)}_{\sum_{j=N+1}^{\infty} \frac{1}{2^j} = \frac{1}{2^N} < \frac{r_0}{2}} \\ &< \frac{r_0}{2} + \frac{r_0}{2} = r_0 \end{aligned}$$

□

Urysohn metrization theorem: X topological space.

(hence normal)

Theorem: If X is second-countable and regular, then X is metrizable.

Pf: We deduce this by embedding X in $\prod_{p \in P} [0, 1]$, where P is countable (hence $\prod_{p \in P} [0, 1]$ is metrizable)

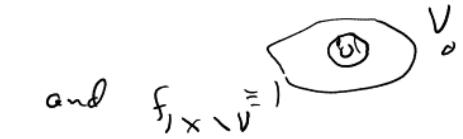
Let \mathcal{B} be a countable basis, and

$$\mathcal{P} = \{ (U, V) : U, V \in \mathcal{B}, \overline{U} \subset V \}$$

By Urysohn's lemma, $\forall (U, V) \in \mathcal{P}$,

$$\exists f_{U,V} : X \rightarrow [0, 1] \text{ s.t. } f_{U,V} \mid_{\overline{U}} = 0 \text{ and } f_{U,V} \mid_{V \setminus \overline{U}} = 1$$

We get a map $\Phi : X \rightarrow \prod_{(U, V) \in \mathcal{P}} [0, 1]$
 $\mapsto (f_{U,V})_{(U, V) \in \mathcal{P}}$



For ϕ to be injective, we need $\forall x, y \in X, x \neq y. \exists (v, v) \in \mathcal{P}$
 s.t. $f_{v,v}(x) \neq f_{v,v}(y)$

Lemma : ($f_{v,v}$ 'separates points from closed sets')

Let $A \subset X$ be closed and $x \in X \setminus A$.

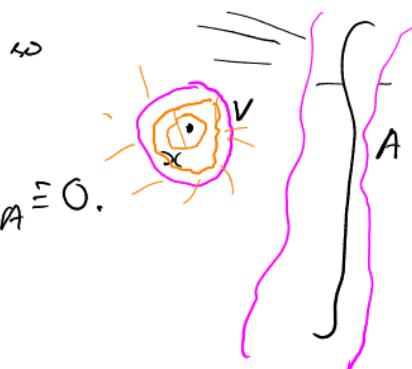
Then $\exists (v, v) \in \mathcal{P}$ s.t. $f_{v,v}(x) > 0$ and $f_{v,v}(A) = 0$

Pf. By regularity, \exists basic open set V s.t. $x \in V$ and $\bar{V} \cap A = \emptyset$
 in particular $A \subset X \setminus V$

As V is open, $X \setminus V$ is closed, so

by regularity $\exists U$ basic s.t. $\bar{U} \subset V$

By construction, $f_{v,v}(x) = 1$ and $f_{v,v}|_A = 0$.



Φ is an embedding, i.e., $(\Phi|_{\Phi(x)})^{-1}$ is continuous

i.e., given $\bar{U} \in \bar{\mathcal{P}}(x) \subset \Phi(x)$, an open set $U \subset X$ containing $(\Phi|_{\Phi(x)})^{-1}(\bar{U}) = x$
 we have $U \subset \bar{\mathcal{P}}(x)$ open s.t.

$$(\Phi|_{\Phi(x)})^{-1}(U) \subset U.$$

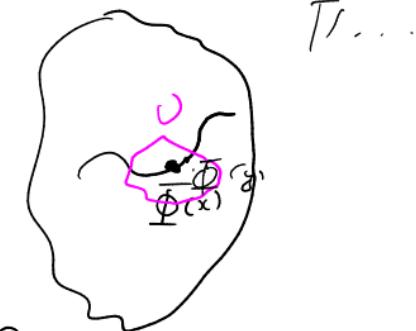
equivalently, $\Phi(y) \in U \Rightarrow y \in W$.

As $X \setminus W$ is closed and $x \notin X \setminus W$, $\exists (U, V) \in \mathcal{P}$ s.t.

$$f_{U, V}(x) > 0 \quad \text{and} \quad f_{U, V}|_{X \setminus W} \equiv 0.$$

Let $Q = \bigcap_{P \in \mathcal{P}} Q_P$, where $\begin{cases} Q_{(U, V)} = (0, 1] \\ Q_P = \{0, 1\} \text{ if } P \neq (U, V) \end{cases}$

If $\Phi(y) \in U$, then $f_{U, V}(y) \in (0, 1]$, i.e., $f_{U, V}(y) > 0$
 $\Rightarrow y \notin X \setminus W \Rightarrow y \in W \Rightarrow$ required.



Tychonoff's theorem : $\{X_\alpha\}_{\alpha \in A}$ is a collection of topological spaces.

Theorem: If X_α is compact $\forall \alpha \in A$, then $\prod_{\alpha \in A} X_\alpha$ is compact.

We use Alexander sub-basis theorem.

Theorem (Alexander sub-basis theorem)

Suppose X is a topological space, \mathcal{B} a sub-basis s.t. every cover of X by elements of \mathcal{B} has a finite sub-cover.

Then X is compact.

Pf: Suppose not. let \mathcal{U} be a maximal open cover s.t. \mathcal{U} has no finite subcover. (exists by Zorn's lemma)

As \mathcal{U} has no finite subcover, $\mathcal{U} \cap \mathcal{B}$ is not a cover. let x be a point not in any set in $\mathcal{U} \cap \mathcal{B}$. Then $\exists U \in \mathcal{U}$ s.t. $x \in U$ and $B_1, \dots, B_n \in \mathcal{B}$ s.t. $x \in B_1 \cap \dots \cap B_n \subset U$. Now $B_i \notin \mathcal{U}$ & is, so by maximality of \mathcal{U} , $\mathcal{U} \cup \{B_i\}$ has a finite sub-cover & is, say $B_i, C_1^i, C_2^i, \dots, C_m^i$.

$$\text{Then } B_i \cup (C_1^i \cup C_2^i \cup \dots \cup C_{m_i}^i) = X \text{ for } i$$

$$\therefore (B_1 \cap \dots \cap B_n) \cup \bigcup_{i=1}^n \bigcup_{j=1}^{m_i} C_j^i = X$$

Thus $\{U_i \cup \{C_j^i : 1 \leq j \leq m_i\} : 1 \leq i \leq n\}$ is a finite sub-cover of U , a contradiction.

Proof of Tychonoff: Let U be a sub-basic open cover for

$\prod_{\alpha \in A} X_\alpha$. The sub-basic elements correspond to

- indices $\alpha \in A$ i.e. $V_\alpha^B \leftarrow Z_\alpha$ with $B \in A$
- A subset $U_\alpha^B \subset X_\alpha$ $Z_\alpha = U_\alpha^B \times \prod_{\beta \neq \alpha} X_\beta$ with U_α^B
- Claim: that for some index, the sub-basic cover X_α

Pf. of claim
 If not, for each index pick x_α not in any set corresponding to that index (arbitrary if no set corresponds).

We set $(x_\alpha)_{\alpha \in A}$ is not covered by

U , a contradiction.

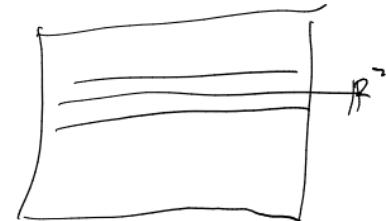
$$V_{\alpha_0}^\beta = \dots \cup \alpha$$

Now, if the sets corresponding to some index α_0 cover X_{α_0} , then there form a cover of $\prod_{\alpha \in A} X_\alpha$, and $V_{\alpha_0}^\beta$ have a finite subcover. This gives a finite subcover of U .

Baire Category : X complete metric space

Theorem (Baire) X is not the countable union of nowhere-dense (closed) subsets (of X).

Theorem (Baire) : If $\{U_n\}_{n \in \mathbb{N}}$ is a countable collection of open dense sets, then $\bigcap_{n \in \mathbb{N}} U_n$ is dense.



Pf: Let $V \subset X$ be open. Let $B_0 \subset V$ be a ball s.t. $\overline{B_0} \subset V$.

As U_1 is dense, $\exists x_1 \in U_1 \cap B_0$
 and $\exists B_1$ open ball containing x_1
 s.t. $B_1 \subset U_1 \cap V$

As U_2 is dense, $\exists x_2 \in B_2$ open nbd. s.t. $\overline{B}_2 \subset B_1 \cap U_2 \subset U_1 \cap U_2 \cap V$.

We inductively obtain x_i, B_i , ensuring $\text{diam}(B_i) \rightarrow 0$.

Then $\{x_i\}$ is Cauchy, so convergent to x_∞ say.

Cauchy, so convergent to $x_\infty \in \bigcap_{i=1}^n \overline{B_i} \subset \bigcap_{i=1}^n V_i \cap V$

1

Niemytski space: Regular but not normal

$$X = \{(x, y) : y \geq 0\}$$

Basic open sets: two kinds

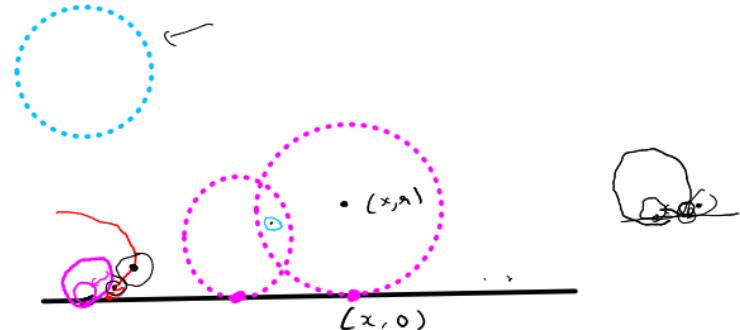
- $B_{(x,y)}(r)$ s.t. $y > 0, r \leq y$
- For $r > 0, x \in \mathbb{R}, B_{(x,r)}(r) \cup \{(x,0)\}$

\mathbb{R} with the subspace topology is discrete.

Propn: X is regular.

Pf: Let $A \subset X$ be closed, $P \in X \setminus A$. If $P \in \mathbb{R}^2$, as in metric spaces we can separate A & P .

- Suppose $P \in \mathbb{R}$. As A is closed, there is a basic open set U containing P disjoint from A , and let $U' \subset U$ be smaller, so $\bar{U} \subset U'$.
- For any $Q \in A$, we can find a disc D_Q centered at Q and open if $Q \in \mathbb{R}$ or touching \mathbb{R} at Q if $Q \in \mathbb{R}$, disjoint from U . Take $V = \bigcup_{x \in A} D_x$



Theorem: X is not normal

Pf: Let $A = \mathbb{R} \setminus \mathbb{Q}$, $B = \mathbb{Q}$. These are closed in X as \mathbb{R} has discrete topology and \mathbb{R} is closed in X .

Let $A \subset U$, $B \subset V$ be open. We claim $U \cap V \neq \emptyset$

For all $x \in \mathbb{R} \setminus \mathbb{Q}$, $\exists r(x) > 0$ s.t. $B_x(r(x)) \subset U$.

Define $Z_n = \{x \in \mathbb{R} \setminus \mathbb{Q} : r(x) > \frac{1}{n}\}$, $\mathbb{R} = \mathbb{Q} \cup \bigcup_{n \in \mathbb{N}} Z_n$

Apply Baire's theorem for \mathbb{R} (with the usual topology). \mathbb{Q} is countable (and points are nowhere dense), so we cannot have Z_n nowhere dense. That is, $\exists n \in \mathbb{N}$ s.t. $\mathbb{R} \setminus \bar{Z}_n$ is not dense.

Hence there is an interval $[a, b] \subset \bar{Z}_n$. It follows that if $x \in \mathbb{Q} \cap (a, b)$, then any basic neighbourhood of x intersects V .

Hence $U \cap V \neq \emptyset$ as V must contain some basic nbhd. of x .

Quotient topology : X topological space

• let \sim be an equivalence relation on X

• $\bar{X} = \{[x] : x \in X\}$ is a quotient set

• $q : X \rightarrow \bar{X}, x \mapsto [x]$

Quotient topology on \bar{X} : final topology induced by $q : X \rightarrow \bar{X}$, i.e.

the finest topology on \bar{X} s.t. q is continuous.

• q is continuous iff $V \subset \bar{X}$ open $\Rightarrow q^{-1}(V)$ open.

• So if Ω is the final topology,

$$V \in \Omega \Rightarrow q^{-1}(V) \text{ open}$$

$$\text{i.e. } \Omega \subset \Omega_0 := \{V \subset \bar{X} : q^{-1}(V) \text{ open}\}$$

and Ω is the largest such topology

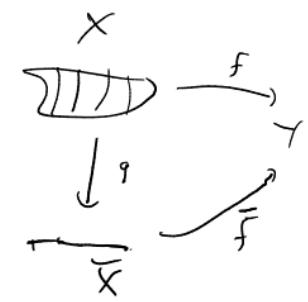
Propn: Ω_0 is a topology, hence $\Omega = \Omega_0$

Ps: (1) $V_\alpha \subset \bar{X}$ open $\Rightarrow q^{-1}(V_\alpha)$ open $\forall \alpha \in A \Rightarrow q^{-1}(\bigcup_{\alpha \in A} V_\alpha) = \bigcup_{\alpha \in A} q^{-1}(V_\alpha)$
which is open, hence $\bigcup_{\alpha \in A} V_\alpha$ open. Rest similar. \square

Thus, quotient topology on $\bar{X} = \{V \subset \bar{X} : q^{-1}(V) \subset X \text{ is open}\}$

Theorem: Let Y be a topological space, $\bar{f} : \bar{X} \rightarrow Y$ a function and $f = \bar{f} \circ q : X \rightarrow Y$. Then \bar{f} is continuous $\Leftrightarrow f$ is continuous.

Pf: \bar{f} is continuous $\Leftrightarrow \forall V \subset Y \text{ open, } \bar{f}^{-1}(V) \text{ is open}$
 $\Leftrightarrow \forall V \subset Y \text{ open, } q^{-1}(\bar{f}^{-1}(V)) \text{ is open}$
 $\Leftrightarrow \forall V \subset Y \text{ open, } (\bar{f} \circ q)^{-1}(V) \text{ is open}$
 $\Leftrightarrow \forall V \subset Y \text{ open, } f^{-1}(V) \text{ is open}$
 $\Leftrightarrow f \text{ is continuous}$



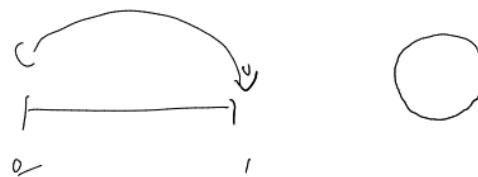
Consequence: Suppose $f : X \rightarrow Y$ is continuous, \sim an equivalence relation,

and $\frac{x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2) \in Y}{\bar{f} : \bar{X} \rightarrow Y \text{ s.t. } f = \bar{f} \circ q}$. Then we have a continuous function [Define $\bar{f}([x]) = f(x)$ and see this is well-defined]

the equivalence relation

Variant: If \sim is generated by $R \subset X \times X$, $f: X \rightarrow Y$ is a continuous map s.t. $(x_1, x_2) \in R$ then $f(x_1) = f(x_2)$, then f induces $\bar{f}: \bar{X} \rightarrow Y$ s.t. $\bar{f} \circ g = f$.

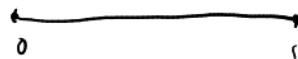
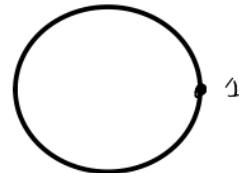
Pf: Given $f: X \rightarrow Y$, the relation \sim_f $f(x_1) = f(x_2)$ is an equivalence relation. By hypothesis $R \subset \sim_f$, hence $\sim \subset \sim_f$ i.e. $x_1 \sim x_2$ then $f(x_1) = f(x_2)$. Now use the previous result.



Some quotients

E.g. 1: $[0, 1] /_{0 \sim 1}$, i.e.

$X = [0, 1]$, \sim equivalence relation generated by $0 \sim 1$



Propn: $\bar{X} = X / \sim$ is homeomorphic to S^1

Pf: Define $\bar{f}: \bar{X} \rightarrow S^1$ as follows:

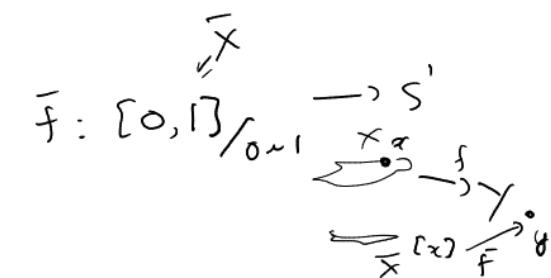
let $f: [0, 1] \rightarrow S^1$ be $f(t) = e^{2\pi i t}$

Then $f(0) = f(1)$, hence we have
s.t. $\bar{f} \circ q = f$.

We see that \bar{f} is a bijection.

f is surjective, hence \bar{f} is injective.

\bar{f} is injective as $\bar{f}([x_1]) = \bar{f}([x_2]) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ or
 $x_1, x_2 \in [0, 1] \Rightarrow [x_1] = [x_2]$



Thus \bar{f} is a continuous bijection from \bar{X} compact to a Hausdorff space, hence a homeomorphism.

E.g.

, $X = [0, 1] \times [0, 1]$, \sim generated by $(0, y) \sim (1, y) \forall y \in [0, 1]$.

then $X_{/\sim} = S^1 \times [0, 1]$ (cylinder),

Sketch of Pf.: Define $\bar{f}: X_{/\sim} \rightarrow S^1 \times [0, 1]$ as induced by

$$f: [0, 1] \times [0, 1] \rightarrow S^1 \times [0, 1], f(x, y) = (e^{2\pi i x}, y)$$

We see this is a homeomorphism.

□

E.g.

, $X = [0, 1] \times [0, 1]$, \sim generated by $(0, y) \sim (1, 1-y)$

the quotient is the Möbius band M .

Observe that this has one 'boundary component'.
 Namely, we have a map $[0, 1] \times [0, 1] \rightarrow M$
 (two intervals)

We have a function $[0,1] \times \{0,1\} \rightarrow M$, $M = [0,1] \times [0,1]$

$$\xrightarrow{[0,1] \times \{0\}} \xrightarrow{[0,1] \times \{1\}}$$

$$(0,y) \sim (1,1-y)$$

The equivalence relation \sim restricted to $[0,1] \times \{0,1\}$ is generated by $(1,0) \sim (0,1)$ and $(1,1) \sim (0,0)$

The quotient

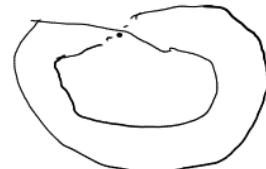
$$[0,1] \times \{0,1\} / \sim \stackrel{\text{restricted}}{\cong} S^1$$

Notation: Suppose $A \subset X$ (often closed), can define

$$\sim_A \text{ as } x \sim_A y \Leftrightarrow x = y \text{ or } x, y \in A$$

$$X/A := X / \sim_A$$

E.g. $D^n / S^{n-1} = S^n$



$$\mathbb{R}^n \xrightarrow{D^n / S^{n-1}} S^n \subseteq \mathbb{R}^{n+1} = \{ (x_0, x_1, \dots, x_n) : x_i \in \mathbb{R} \}$$

$$\|x\| \in [1]$$

$$1 - 2\|x\| = -1$$

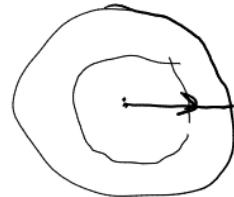
$$\sqrt{1 - (-1)^2} = 0$$

We define $f: D^n \rightarrow S^n$ by

$$f(x_0, \dots, x_n) = (\hat{x}_0, \hat{x}_1, \dots, \hat{x}_n),$$

$$\text{with } \hat{x}_0 = 1 - 2\|x\|,$$

$$\hat{x}_i = \sqrt{1 - \frac{(1-2\|x\|)^2}{\|x\|^2} x_i}, \quad x \neq (0, \dots, 0)$$



$$0, \quad x = (0, \dots, 0)$$

Observe $f(S^{n-1}) = 1$, so $x \in S^{n-1}, x' \Rightarrow f(x) = f(x')$

& f is continuous, so we get

$f: D^n / S^{n-1} \rightarrow S^n$.

We see this is bijective, hence homeomorphism

(In general, given $f: X \rightarrow Y$, we get $\bar{f}: X/A \rightarrow Y$ iff $\bar{f}(A)$ is a point)

Projective spaces : 'Complete' the plane.

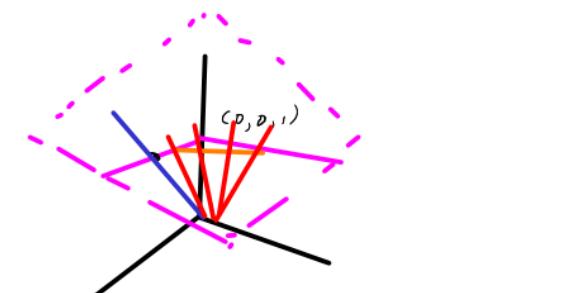
- Embed $\mathbb{R}^2 \subset \mathbb{R}^3$ by $(x, y) \mapsto (x, y, 1)$
- Then points in $\mathbb{R}^2 \rightarrow$ lines through $(0, 0, 0)$ in \mathbb{R}^3
- Lines in $\mathbb{R}^2 \rightarrow$ planes through $(0, 0, 0)$ in \mathbb{R}^3
- Extra: 'line at ∞ ', consisting of points at ∞
- Distinct 'lines'
planes through 0 always intersect in a point.

Topology : $\mathbb{R}P^{n-1} = \mathbb{R}^n \setminus \{(0, \dots, 0)\} / \sim$ where

$$(x_1, \dots, x_n) \sim (y_1, \dots, y_n) \text{ if } \exists \alpha \in \mathbb{R} \setminus 0 \text{ s.t. } (y_1, \dots, y_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

Generally, $\mathbb{R}P^n = \mathbb{R}^{n+1} / \sim$ where $\mathbb{R}^{n+1} = \{(x_0, \dots, x_n) : x_i \in \mathbb{R}\}$

- Equivalence classes are denoted $[x_0 : x_1 : \dots : x_n]$
- Versions $\mathbb{C}P^{n-1}, \dots$



- Note each element $(x_0, \dots, x_n) \in \mathbb{R}^{n+1}$ is equivalent to exactly two norm 1 elements; if one is \hat{x} , the other is $-\hat{x}$.

Hence $\mathbb{R}P^n = S^n / \underbrace{\mathbb{R}^n - \mathbb{R}}$.

Sketch of Pt: Define $\mathbb{R}^{n+1} \xrightarrow{\text{?}} S^n / \underbrace{\mathbb{R}^n - \mathbb{R}}$ by

$$x \mapsto \left[\frac{x}{\|x\|} \right]$$

- Induces $\mathbb{R}P^n \rightarrow S^n / \underbrace{\mathbb{R}^n - \mathbb{R}}$
- Also define $S^n \rightarrow \mathbb{R}P^n$ as the composition $S^n \hookrightarrow \mathbb{R}^{n+1} \xrightarrow{\text{?}} \mathbb{R}P^n$
- Induces $S^n / \underbrace{\mathbb{R}^n - \mathbb{R}} \rightarrow \mathbb{R}P^n$

These maps are inverses.

We embed $\mathbb{R}^n \rightarrow \mathbb{R}P^n$ by $x_1, \dots, x_n \mapsto [1 : x_1 : \dots : x_n]$

by $x_1, \dots, x_n \mapsto [(1, x_1, \dots, x_n)]$

This has image $\mathbb{R}P^n \setminus \mathbb{R}P^{n-1}$, the image in $\mathbb{R}P^n$ of $\{(x_0, \dots, x_n) \in \mathbb{R}^{n+1}, x_0 \neq 0\}$

On the image, can define a continuous map:

$\mathbb{R}_+^{n+1} \rightarrow \mathbb{R}^n$

by $(x_0, \dots, x_n) \mapsto (x_1/x_0, \dots, x_n/x_0)$

This induces a continuous map, which is the inverse of

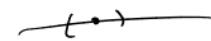
$(x_1, \dots, x_n) \mapsto [1 : x_1 : x_2 : \dots : x_n]$

More quotients :

Ex: \mathbb{R}/\mathbb{Q} - this is not Hausdorff

Let $x, y \in \mathbb{R} \setminus \mathbb{Q}$, $x \neq y$

If $\bar{U}, \bar{V} \subset X$ are
nbds,

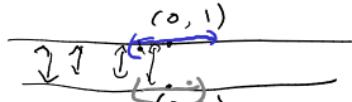


then $q^{-1}(\bar{U}) = U$ & $q^{-1}(\bar{V}) = V$ are open in \mathbb{R} .

but $\mathbb{Q} \cap U \neq \emptyset$ & $\mathbb{Q} \cap V \neq \emptyset$, $\therefore \{q\} \in \bar{U} \cap \bar{V}$,

so $\bar{U} \cap \bar{V} \neq \emptyset$

(2) $X = \mathbb{R} \times [0, 1]/\sim$ where \sim is generated by $(y, 0) \sim (y, 1)$ if $y < 0$.



- This is non-Hausdorff: any nbhd. of $[(0, 0)]$ intersects any nbhd. of $[(0, 1)]$
- Every point has a neighbourhood homeomorphic to an open interval

(3) \mathbb{R}^2/\sim where $P \sim Q$ if they are in the same 'leaf'

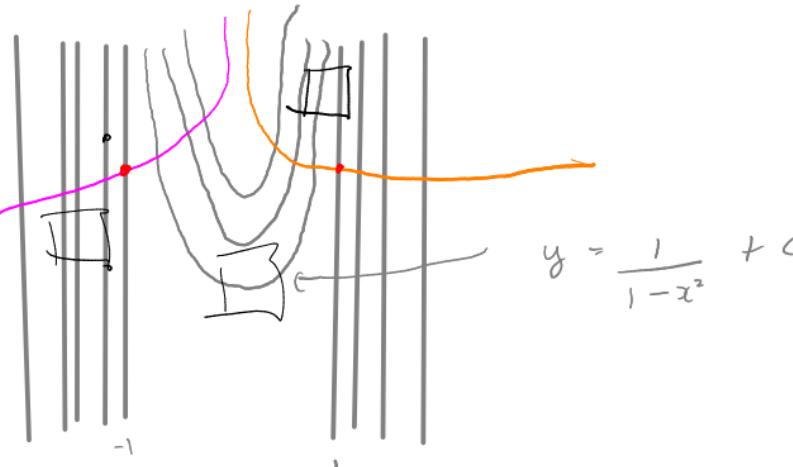
i.e. $(x_1, y_1) \sim (x_2, y_2)$ iff

one of the following happens:

- $x_1 \leq -1$ or $x_1 \geq 1$ & $x_1 = x_2$

- $x_1, x_2 \in (-1, 1)$ and

$$y_1 - \frac{1}{1-x_1^2} = y_2 - \frac{1}{1-x_2^2}$$



- The quotient is the same as e.g. 2.

