Baire Theorem and Quotients
due by Monday, Nov 22, 2021
This assignment is based on material in lectures 22 and 23.
-
Let
$A\subset\mathbb{R}^2$be the subset$A = \{(x, y)\in \mathbb{R}^2: x\in \mathbb{Q}\}$. Prove or disprove the following.$A$is dense.- The complement
$\mathbb{R}^2\setminus\bar{A}$of the closure of $A$ is a dense open set. $A$is the countable union of nowhere dense closed sets.
-
Let
$X$be a topological space. Let$\sim$be the equivalence relation on$X$such that$$x\sim y\iff x = y.$$Prove or disprove that$X/\sim$is homeomorphic to$X$. -
Let
$X$be the quotient of$[0, 1]$by the equivalence relation$\sim$generated by$x\sim (1 - x)$for all$x\in [0, \frac{1}{2}]$. Prove or disprove that$X$is homeomorphic to$[0, 1]$. -
Prove or disprove that
$\mathbb{R}P^1$is homeomorphic to$S^1$.