Separation Properties
due by Monday, Oct 18, 2021
This assignment is based on material in lecture 15.
-
Let
$X$be a finite set. Prove or disprove the following.- If
$X$is Hausdorff then the topology on$X$is the discrete topology. - If
$X$is$T_1$, then the topology on$X$is the discrete topology.
- If
-
Let
$X$be a countably infinite set with the indiscrete topology. Prove or disprove the following.$X$is$T_1$.$X$is Hausdorff.$X$satisfies the third separation axiom.$X$satisfies the fourth separation axiom.
-
Let
$X$be a topological space and$f: X \to \mathbb{R}$be a continuous map. For$c\in \mathbb{R}$define$X_c = \{x\in X: f(x) < c\}$. Prove or disprove the following.$X_c$is closed.$X_c$is open.- If
$a \leq b$, then$X_a\subset X_b$. - If
$a < b$, then$\overline{X}_a\subset X_b$.
-
For each of the following spaces
$X$, prove or disprove: if$Y$is a metric space and a sequence of continuous functions$f_n: X\to Y$converges pointwise to a function$f: X\to Y$, then$f_n$converges uniformly to$f$.$X$is finite.$X$is indiscrete.$X = [0, 1]$.
-
For each of the following subsets
$A \subset\mathbb{R}$, prove or disprove: every continuous map$f: A \to [0, 1]$extends to a continuous map from$\mathbb{R}$to$[0, 1]$.$A = (0, 1)$.$A = [0, 1]\cup [2, 3]$.$A = \{x\in \mathbb{R}: x \leq 2\}$.