Bases
due by Wednesday, Aug 27, 2025
In each of the following, prove or disprove that $\mathcal{B}$ is a base for a topology on $X$.
$X=\R$,$\mathcal{B} = \{(a, a+ \frac{1}{2^n}) : a \in \R, n \in \N\}$.$X=\R$,$\mathcal{B} = \{(a, a+ 2^n) : a \in \R, n \in \N\}$.$X=\Z$,$\mathcal{B} = \{A \subset \Z : \textrm{$A$ is finite}\}$.$X=\Z$,$\mathcal{B} = \{A \subset \Z : \textrm{$A$ is infinite}\}$.