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Maps preserving the sum-to-difference ratio

Sunil Chebolu, Apoorva Khare, and Anindya Sen

Abstract. For a field F, what are all functions f: F — F that satisfy the functional equa-

tion £ (( +y)/(z — 1)) = (f(z) + f())/(f() — () forall & # y in F? We solve this
problem for the fields Q, R, and a class of its subfields that includes the real constructible

numbers, the real algebraic numbers, and all quadratic number fields. We also solve it over
the complex numbers, and on any subfield of R, if f is continuous over the reals. The proofs
involve a mix of algebra in all fields, analysis over the real line, and some topology in the
complex plane.

1. INTRODUCTION The problem of finding all functions satisfying a given condi-
tion has been a major and fruitful endeavor in mathematics. The best-known case is
the area of Differential Equations. Here, functions are typically assumed to be smooth,
and the conditions are phrased in terms of the function and its derivatives. In contrast,
the field of “Functional Equations” typically involves imposing an algebraic condition
on the function and no additional restrictions (or fairly weak ones) on the class of
functions to be considered.

A famous example is the problem of finding all functions f : R — R that satisfy
the Cauchy functional equation:

fPR=R,  flr+y)=f(z)+ fly) Yo,y eR. 1)

This equation, introduced by Cauchy in the early 19th century, is often regarded
as the “mother of all functional equations,” as it inspired many related equations later
studied by mathematicians such as Jensen, d’ Alembert, Abel, and others. Their work
helped establish functional equations as a rich branch of mathematics at the crossroads
of analysis, algebra, and number theory. It is worth noting that these equations also
arise naturally in the physical sciences: Jensen’s equation captures thermodynamic
convexity, d’Alembert’s equation underlies the wave equation and oscillatory motion,
and even the additive Cauchy equation expresses the principle of linear superposition,
fundamental to mechanics, electricity, and Fourier analysis.

It is well known that the only continuous solutions to (T)) are the linear maps f(z) =
cx, where ¢ = f(1) — an instructive exercise for a freshman math major. However, re-
laxing the continuity condition leads to extremely wilcﬂ solutions. For instance, any
solution to the Cauchy equation that is discontinuous at even a single point is un-
bounded on every interval in R and has a graph which is dense in R?!

An intriguing aspect of functional equations is the fact that the solution set can
change drastically with an innocuous modification of the equation. For instance, if we
modify the Cauchy functional equation to f(z + y) = f(x) — f(y), then it is an easy
exercise to show that the only solution is the function which is identically zero!

A parallel small modification of the Cauchy functional equation is

flx—y)=f(x) - fy), Y,y €R.

'"We quickly mention how to “construct” all solutions, using the Axiom of Choice. Let B be a Hamel Q-
basis of R including 1, and choose any function fp : B — R. Then extending fo to all of R by Q-linearity
gives a solution, and most of these are not linear (e.g. if fo(r) # fo(1)r for some r € B\ {1}).
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It is easy to see that this leads us back to the Cauchy equation. (Just write x = (x —
y) + v, then rename the variables.)

The problem. The above leads us to a natural question: what if we combine both the
additive and subtractive properties into one functional equation? We pose the problem
over an arbitrary field [F:

Determine all maps f: F — F that satisfy the functional equation

z+y\ _ flx)+ fy) .
f(w—y>_f(w)—f(y)’v FYER @

In other words, what are all self-maps on [ that preserve the ratio of sum to differ-
ence? For brevity of exposition, we will henceforth refer to functions that satisfy (2))
as SD maps — an abbreviation for “Sum-Difference ratio preserving maps.”

In stark contrast to the Cauchy equation, we are able to prove — without assuming
continuity — that the only SD map over R is the identity map f(z) = x.

In fact, we show that the same result holds for SD maps over QQ, as well as all
Euclidean subfields of R, such as the field of constructible numbers (see just before
and after Theorem [13).

We then extend our solutions to the complex plane, C, in two different ways, cul-
minating in the result that the only R preserving SD maps over C are the identity and
conjugate maps. Here and below, for a subfield F of C, we say thatamap f : F — F
is R preserving if f(FNR) CFNR.

This striking result suggests a possible connection between SD maps over any field,
F, and the field automorphisms of IF — a connection which we investigate over other
well-known fields such as Q(¢), the field of Gaussian rationals. Along the way, we
prove several corollaries imposing further conditions on our solutions. We also provide
counterexamples for some natural conjectures.

Our main results can be summarized in the following theorems.

Theorem 1. Let F be a field and f: F — F be an SD map. Then:

1. f must be the identity map if F is Q, R, or any Euclidean subfield of R.
2. f must be the identity map or the conjugate map if F is any quadratic extension

of Q.
Theorem 2. Let F be a subfield of C and f: F — F be an R preserving SD map.
Then:
1. f must be the identity map or the conjugate map if F is C.

2. f must be the identity map or the conjugate map if F is the quadratic closure of
any Euclidean subfield of R.

Theorem 3. Let F be a subfield of C and f: F — F be a continuous SD map (see
RemarkH)). Then:
1. f must be the identity map for F any subfield of R.

2. f must be the identity or conjugate map for F any subfield of C which contains
the Gaussian rationals Q(3).

Remark 4. Throughout this work, when we discuss continuous SD-maps : F — F, we
will assume that IF is a subfield of C, equipped with the subspace topology inherited
from C.
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Remarkably, all of the statements above hold if we replace the term “SD map”
with “field automorphism”. This prompts the very natural question: Are field automor-
phisms the only solutions to our functional equation? We show this is not the case
by giving explicit SD maps that are not field automorphisms. These counterexamples
suggest that our functional equation belongs to a distinct class and, to the best of our
knowledge, has not been previously studied in the literature.

Our results and methods reveal the rich potential of our functional equation and con-
nect to several tools and techniques from algebra, analysis, and even some topology.
We end the paper with some questions inviting further study.

2. PRELIMINARIES We begin by proving some properties of SD maps that will be
used throughout the sequel.

Proposition 5. Let F be a field of characteristic zero. Let f be an SD map on F. That
is, [ F — T is such that

/(6255

Va#yeP.

Then we have the following.
1. f is injective.
2. f(0) = 0and f(1) = 1.
3. fisan odd function: f(—x) = — f(x) for all x inF.
4. f is multiplicative: f(xy) = f(x)f(y) for all x and y in F.

Proof. 1. If x # y but f(x) = f(y), then the LHS of our functional equation has
some value in I, but the RHS is undefined. Hence, f is injective.

2. Setting y¥ = 0 and letting x # 0 in our functional equation, we see that

_ flz) + f(0)
0= =0y
After simplifying, we get f(z)(f(1) — 1) = f(0)(f(1) +1).1f f(1) # 1, then
OO
f@) == 1 Vz£0€F.

But F contains at least two distinct nonzero values of . This means f(1) = 1
(by injectivity). Since f(1) = 1, the equation

f@)(f(1) =1) = f(0)(f(1) + 1) = 2f(0)
gives us f(0) = 0.

3. Setting y = —x where x # 0 in our functional equation gives
f0) 0= L@+ Ia)
f(x) = f(=x)
This means f(x) = — f(—=z) for any non-zero x. The equation also holds for

x = 0. This shows that f is odd.
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4. Sety = kx, where k # 1 and x # 0 in our functional equation gives:

f<1+k> :f<ac+kx> _ f(x) + f(kx)

1—k r—kx)  f(z)— f(kx)
E41\  flk) T f(=) 2@ 2
1 (5) = flka) = f@) =T FE) = @) T (i )

Notice that the left-hand side is independent of z, so the right-hand side must
be too. That is, the RHS for general x equals its value for z = 1. As f(1) =1,

we get:
2 L (k+1\ 2
(J}@x))_l)_f<k—1> ! f(k) =1
ff((kxl;) —1=f(k)—1 = f(kx) = f(k)f(z)

forall kK # 1 and x # 0. However, when x = 0 or k = 1, this equation is clearly
true. Thus, we get, after relabeling, f(xy) = f(x) f(y) for all z and y.
|

Remark 6. Note that the results also hold for any field F with char(F) # 2. If
char(F) = 2, then 2 = 0, so we cannot prove that f(0) = 0 or that f is multiplicative.

We see from the above proposition that the restriction of f to F* — the multiplica-
tive group of F — is an injective group homomorphism. Moreover, since f is an odd
function, we also infer that f(—1) = —1.

3. SUBFIELDS OF R Since any field of characteristic 0 contains QQ as a subfield,
to understand SD maps over other fields such as R, C, and Q(%) it is important to
understand .S D maps over Q. The following theorem is the foundation upon which all
the subsequent results are built.

Theorem 7. Let f: Q — Q be an SD map. Then f(x) = x for all x in Q.

Proof. We begin by explicitly computing f at the positive integers in terms of f(2)
and via a recurrence relation for f(n). The key observationis to setz = nand y = 1

in @2):
n+1Y\  f(n)+1
(i) ICE

Since f is injective and n # 1, we have f(n) # 1. By multiplicativity, we therefore
obtain a recurrence relation for the f(n):

fln+1)=f(n—-1) - ——=—— Vn>2. 3)

Now using this relation, one can explicitly compute f(n) — in terms of u := f(2).
This is a straightforward verification (left as an exercise for the reader) which yields:

fO) =0, fO) =1 f@=u [fB)="T1 fy=u @

u—1’
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f6)= i SO = —ur D), O
w—uit+u+1

(1) = f) =u*(u* —2u+2). (©

u? —3u? +3u—1’
Since f is multiplicative, f(8) = f(2)f(4), i.e.,
W —2u+2)=v" <= v (u—1)(u—2)=0.

Asu = f(2) and f is injective, u # 0, 1. Thus f(2) = u = 2.
Now we claim by induction on n > 2 that f(n) = n. The induction step follows

from (3):
+1 +1
f(n+1):f(n—1)-§83_1:(n—l)-z_l:n—i-l. (7)
As f is multiplicative, f(p/q) = f(p)/f(q) = p/q for all positive integers p, q. Since
f is odd, it fixes Q. [ |

Our proof gives much more; it applies to any SD map between fields of character-
istic 0. We record this as a theorem.

Theorem 8. Let f be an SD map on a field of characteristic 0. Then f fixes Q point-
wise.

Another result which follows quickly is:
Corollary 9. IfF is any subfield of R, the only continuous SD map on F is the identity.

Proof. By Theorem f fixes Q pointwise. Hence by continuity, it fixes the closure of
Q pointwise. But this closure is I, since Q is dense in R and so in F. [ |

Remark 10. Just as the field of real numbers R is obtained by completing the field of
rational numbers QQ with respect to the usual absolute value norm | - |, for any given
prime p > 2, the field of p-adic numbers Q,, is obtained by completing Q with respect
to the p-adic norm | - |,; see [2] for details. The completed field Q, contains Q as a
dense subfield. Thus, we get the following corollary, which is analogous to the real
case.

Corollary 11. If F is any subfield of Q,, the only continuous SD map on F is the
identity.

These corollaries prompt us to ask whether these results are true for any subfield
without assuming continuity. The answer is negative, as can be seen by considering
the field automorphism f: Q(v/2) — Q(v/2), where f fixes Q and f(v/2) = —v/2.
It is easy to verify that this is a discontinuous function that satisfies our functional
equation.

This motivates us to consider how far these results extend without assuming conti-
nuity.

Theorem 12. Let f: R — R be an SD map. Then f is the identity map.

Analyzing the proof shows that the above result holds for several subfields of R.
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Proof. Note that if z > 0, then

f@) = f(V2)*) = f(Vz)* > 0.

Since f is an odd function, we also get that f(z) < 0 when z < 0.

We use this observation to show that f is an increasing function. To this end, let
a > b. We have 3 cases to consider. @ > b > 0,0 > a > b, and a > 0 > b. The last
case follows from the above observation because in this case f(a) > 0 and f(b) < 0.
Since f is an odd function, it suffices to establish the result in the first case @ > b > 0.
Then,

; (a+b) F(a) + £(b)

)= > 0,

fla) = f(b)

since the argument is positive and f maps positives to positives. The numerator of the
RHS is positive, so the denominator must also be positive. This shows f(a) > f(b).
We already know from Theorem (8] that f fixes all rationals. So, take an irrational
x. Suppose x < f(z). Since Q is dense in R, we can pick a rational ¢ € (z, f(x)).
Since f is increasing, z < ¢ = f(x) < f(q) = ¢. But f(z) > f(q), so we have
a contradiction. We get a similar contradiction if f(z) < x. This shows that f(x) = x
for all z. ]

It is an interesting exercise for the reader to prove the above theorem under the
additional assumption that f is continuous, but without assuming Theorem [7} This
special case was, in fact, what initiated this project!

We can extend the above theorem to an important class of subfields of R. A field
is Euclidean if it is ordered and all non-negative elements have a square root. Clearly,
any subfield of R inherits an ordering from R. With this definition in hand, we show
the following result.

Theorem 13. Let F be any Euclidean subfield of R and f: F — F be an SD map.
Then f is the identity map.

Proof. The proof is essentially identical to Theorem|[I2] If x > 0 in I, then by defini-
tion, v/ € F, which implies f(z) > 0. Hence, we can show that f is strictly increas-
ing on F, just as for Theorem [12] But now Q is dense in [F and f fixes Q. Hence, by
the same argument as for Theorem f(z) =xforallx € F. [ |

Remark 14. Note that the proof above does not require f to take values in the Eu-
clidean field IF — it suffices to have f take values in R.

Examples of Euclidean subfields of R include the Constructible Numbers (these
are the reals obtained from 1 via ruler and compass), which are highly relevant to
Euclidean geometry; and the field of Real Algebraic Numbers, which are important in
algebraic number theory.

4. THE FIELD OF COMPLEX NUMBERS Our exploration of subfields of R
leads us, quite naturally, to investigate SD maps over C. As a preliminary, we note
that our results in the previous section imply the following:

Lemma 15. Let f: C — C be an SD map. Then the following are equivalent:

1. f preserves R, ie., f(R) C R
2. f is continuous on R.
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3. f fixes R pointwise.
The lemma above indicates the following fact.

Proposition 16. Let f: C — C be an R preserving SD map and let C* denote the
multiplicative group of C. Then one of the following must hold.

1. f(2/2) = z/zand f(2%) = 22 forall z € C*.
2. f(2/2) =Zz/zand f(2*) = 2%, forall z € C*.

Proof. Since f preserves R, f(x) = x for all z € R. Furthermore,
f(=1) = f(&®) = f(i)* = [f(i) = *i.

1. Suppose f(i) = ¢ and pick any z = a + b in C* where a,b € R.
Then we have:

2\ _ o fat+ib _ fla)+ f@b)  fla)+ fE)f() atib
f< >_f<a—ib)_f(a)—f(ib)—f(@)—f(i)f(b)_a—ib—

But now note that 2| € R = f(|z|) = |z|. Hence, for all z € C*, we have

=@ =@ =1 (fp) = = =T

4

z
z z

2. Suppose f(i) = —i and pick any z = a + ib in C* where a,b € R.
Then we have:

f<i> _ ¢ <a+ib> _ fla)+ f(@b) _ fla) + f(@)f(b) _a—ib _

ISINIRS]]

z

a—ib)  fla) = f@b)  fla) = f(i)f(b) a+ib

Hence, for all z € C*, we have

2

(=)= () =45 = =
|

ISR

74 z

We now look at continuous SD maps over C. Note that continuity over C is a strictly
stronger property than R preserving, which only guarantees continuity over R.

Theorem 17. Let f: C — C be a continuous SD map. Then f must be the identity or
the conjugate map.

Proof. The proof involves considering the two cases from Proposition Since f is
continuous, it follows from Lemma [13] that f is R preserving. Hence, we have two
cases:

1. f(2)? =2 = f(2) =tz = f(2)/z==*1forall z € C*.
The continuity of f implies that ! (Z) is continuous on C* and takes values in
the discrete set {—1, 1}. Furthermore C* is a connected set and f(1)/1 = 1.
Hence, @ is identically equal to 1 over C*, which implies that f(z) = z for
all z € C*.

2. f(2)’=2* = f(2)=+xz = f(2)/z=+1forallz € C*.
Using the continuity of f and the conjugation function z — Z, we argue as above
to show that f(z) = z forall z € C*.

0] MAPS PRESERVING THE SUM-TO-DIFFERENCE RATIO 7
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Now the fact that f(0) = 0 completes the proof. [

However, we need not assume f is continuous and, in fact, f being R preserving
suffices for the result above.

Theorem 18. Let f: C — C be an R preserving SD map. Then f must be the identity
or the conjugate map.

In light of Lemma [I53] it is clear that Theorem [I7]is a corollary of Theorem [I8]
However, we decided to present the above proof of Theorem[I7]as it utilizes a tool not
used elsewhere: the connectedness of C*. This contrasts with all other proofs in this
work, which use the denseness of Q or of Q(7).

Proof of Theorem[I8] Since f is R preserving, f fixes R. Now let z € C*. Then z =
|z|e" where |z| € R and e’ € S, the unit circle in the complex plane. Hence,

f(z) = f(lzle”) = f(12Df(e”) = |2]£(e”).
Now we consider the two cases from Proposition [16]
1. Suppose f(z/z) = z/z forall z € C*. Let e’ € S* and let w = ei%. Then
w

fe) =f (%)=

w

w_ ot
- .
Hence, f(z) = |z|f(e") = |z|e? = z forall z € C*.
2. Suppose f(z/Z) = z/z forall z € C*. Let ¢ € S' and let w = ¢'2. Then
wo_ e

fe=f(=)===¢

w w
Hence, f(2) = |z|f(e?) = |z|e™" = Z forall z € C*.
Now the fact that f(0) = 0 completes the proof in either case. [ |

The result above is remarkable because the same conclusion holds for R preserv-
ing field automorphisms over C. In fact, it is easily verified that field automorphisms
satisfy our functional equation and are, therefore, SD maps.

Automorphisms of C which do not preserve R are extremely wild — not contin-
uous, not even measurable, and not describable explicitly. Their existence relies on
the Axiom of Choice and arises from model-theoretic constructions; see, e.g., [3l, [4].
Hence, we cannot expect SD maps over C to exhibit nice properties without imposing
additional conditions.

We conclude this section with another result similar to the result for Euclidean fields
in the previous section.

Proposition 19. Ler E be an Euclidean subfield of R and let F = E(i). Then:

1. Ifei® €T, then ¢ € F.
2. T is closed under square roots.
3. F is the quadratic closure of E.

Proof. We prove each result in sequence.
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1. If € = cosf + isin6 € F, then cosf,sinf € E. Now €2 = cos(0/2) +
isin(0/2), with cos(0/2) = +1/(1 + cos ) /2 and sin(0/2) = ++/(1 — cos ) /2.
Since E is Euclidean, cos(#/2), sin(6/2) € E. Hence, ¢'% € F.

2. Let z = a + ib € F where a,b € E. Note that z = |z]e?’ where § = arg(z).
Now 2| = Va> + 17 € E = ¢ = z/|z| € F. Thenw = +/[z[e'? satisfies
w? = z. Furthermore, \/W € E, since E is Euclidean and e'% € F by the result
above. Hence, £w € T are the square roots of z.

3. Finally, consider the quadratic equation az? + bz + ¢ = 0 with a, b, ¢ € F. By
the above, v/b?> — 4ac € F, which implies that all roots of the equation lie in FF.
But if K is any quadratically closed field containing E, then: € K — F =
E(i) C K, which implies that I is the quadratic closure of E. [

We use this to prove the final result in this section.

Theorem 20. Let F be the quadratic closure of an Euclidean subfield I of R and let
f:F — T be an R preserving SD map. Then f must be the identity or the conjugate
map.

An example of such an F is the field of Algebraic Numbers — the algebraic closure

of Qin C.

Proof. By Proposition [19] F = E(7). Since f preserves R, we know that f(z) = z
for all x € E. (See Theorem |13[and the remark after the proof.) Hence, if F* is the
multiplicative group of IF, the same reasoning as Proposition[I6] gives us two possible
cases.
1. f(z/z) = z/zforall z € F*.
2. f(z/z) =z/zforall z € F*.
(Since ' = E(i), 2 exists for all z € F.) Now any z € F* may be written as z =
|z|e" where § = arg(z). Furthermore, from Proposition |z| €E, e € F and
w = ¢'% € F. Then
F(z) = f(Iz1e”) = f(l2) f(e”) = |2l f(e”)
because f fixes [E. Using all the above, we consider the two cases:
1. Suppose f(z/Z) = z/z forall z € F*. Let ¢ € F and let w = €'%. Then
. w w .
f(ew) — f (T) = — = 610.
w w
Hence, f(2) = |z|f(e?) = |z|e? = z forall z € F*.
2. Suppose f(z/z) = z/z forall z € F*. Let ¢’ € F and let w = ei%. Then
w

Fe =1 ()=

w

Z= e .
w

Hence, f(z) = |z|f(e") = |z|e " = z forall z € F*.

Now the fact that f(0) = 0 completes the proof in either case. ]
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5. NUMBER FIELDS We now ask if there are other non-real subfields of C for
which the only SD maps are z and Z without additional assumptions. The answer is
positive, and to show these results, we first provide a novel, powerful approach. This
approach is algebraic, and works well in algebraic number fields, i.e. finite extensions
of @ (which in particular are finite-dimensional Q-vector spaces). We illustrate this
approach with the simplest class of number fields: quadratic extensions of Q — which
include Q(+/2) and the Gaussian rationals Q(7).

We begin with a key lemma, which, loosely speaking, states that if an SD map fixes
two consecutive terms and the common difference of an arithmetic progression, then
it fixes all the terms.

Lemma 21 (AP Lemma). Suppose F is a field of characteristic 0 and let {- - - ,a,a +
d,a+ 2d, ...} be an arithmetic progression in I that does not contain 0. If f : F — F
is an SD map that fixes a, a + d, and d, then f fixes all terms of this progression.

Proof. The result is obvious when d = 0. So assume d # 0. By Theorem [8] f is
injective and multiplicative on IF. Now setting x = a + d and y = d in (2)), we get:
f<a+2d>_f(a+d)—|—f(d)_(a+d)+(d) a-+2d

~ flatd) = f(d)  (a+d)—(d)  a ’

a

where the denominators are nonzero because f injective. Now, by multiplicativity,
and using the fact that f(a) = a, we get f(a + 2d) = a + 2d. One can now proceed
“forward” inductively.

The backward direction is similar: set z = ¢ and y = —d. Since f is an odd func-
tion,

f(a—d) fla)+ f(=d) _ fla)—f(d) a—d

at+d)  fla+f@d)  fla)+fd a+d

Using multiplicativity of f and the fact that f(a + d) = a + d, we get that f(a —
d) = a — d. Similarly, one can proceed “backward” inductively. ]
Proposition 22. Suppose d € Q is such that \/d & Q. Define the conjugation auto-

morphism on Q(\/d) via: a + bvV/d := a — bv/d for a,b € Q. Let f be an SD map on
Q(V/d). Then exactly one of the following happens:

1. f(\/&) =/d, and for any z, f(z) = +z; or

2. f(\/&) = —\d, and for any z, f(z) = £Z.
Proof. By Theorem [8] f is multiplicative on the quadratic extension Q(\/ﬁ) Next,
using the hypotheses, f(v/d)? = f(d) = d, we get f(v/d) = £+/d. Now there are

two cases.

1. f(v/d) = Vd. Then f(y'\/d) = y'v/dforally € Q.Nowletz € Qandy =
y'V/d fory' € Q,in [@). Then for (z,3') # (0,0) we have:

F <w+y’\/3> @)+ fyVd)  x+yVd

v—yVd)  f@) = fyVd)  x—yVd
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Now let z = x + 3/v/d € Q(v/d)* and define |z| := 2z = 2% — d(y')? €
Q* (and define |0| := 0). The multiplicativity and “fixing of Q” by f yields:

TRl = Rl () = [P = 1ef7) = 27 = 2[R @

Hence f(z)? = 22 for all z, including z = 0. This means, for any z, f(z) =
+z.

2. f(v/d) = —V/d. This case is similar: f(y/\/d) = —y/+/d for all 3/ € Q, and
the above choice of y = vy/v/d and z, with z = z + y/\/d yields:

Tl = FG/2) =32 = 2

Hence f(z)? = z? for all 2, including z = 0. This means, for any 2, f(z) =
+Z.

We now prove the main theorem of this section.

Theorem 23 (All quadratic fields). Suppose d is an integer with \/d & Q. If
f: Q(Wd) — Q(Vd) is an SD map, then f is either the identity or the conjugate
map.

Proof. Any element in Q(v/d) can be written as r(m + n\/d) where r € Q and m
and n are integers. Since our SD map f is multiplicative and fixes rationals, it is

enough to prove the result for elements of the form m + n+/d, where both m and n
are integers. We apply Proposition[22] and consider the two possibilities separately:

1. f(\/d) = Vd: By Proposition f(1 ++d) = +(1 4 V/d). We will show
that f(1 ++/d) = (1 + +/d). Suppose for contradiction that f(1 + v/d) =
—(1 4 v/d). From this and f(v/d) = V/d, by Lemmawe get

4V +1 _ d
—(1+Vd) -1 24vd

If this equaled £(2 + v/d), then 0 = (2 + V/d)?> + d, so 4Vd = —4 —
d F d € Q, which is false. Thus f(2 + v/d) # (2 + v/d), which contradicts
Proposition [22]

Now, we repeatedly apply our AP lemma to show that f fixes m + n+/d for
all integers m and n. Place each m + nv/d at the corresponding lattice point
(m,n) and note that f fixes elements on the coordinate axes. Since 1 + Vd

and \/& are fixed, f fixes all elements at the vertical line = 1. To see that all
elements along each horizontal line y = n are fixed, apply the AP lemma for the

arithmetic progression with consecutive terms n+v/d and 1 + n+/d.

0] MAPS PRESERVING THE SUM-TO-DIFFERENCE RATIO 11



Mathematical Assoc. of America American Mathematical Monthly 0:0 December 22,2025 7:12a.m. AMMV3.tex page 12

2. f(Vd) = —V/d: we claim that f(1 ++/d) = 1 — v/d. This is proved as above:
if not, then f(1 4+ v/d) = v/d — 1; now

a Vd-1+1  —d
ﬂ2+V@)__VE'V&—1—1__vE—2

By Proposition this equals +(2 — \/&), SO we again get 4V/d € Q, which
is false The rest of the proof is again similar to the above, using the AP lemma
applied to the map f; we leave this as an exercise to the reader. ]

Theorem 23] is a strong result with several consequences worth mentioning explic-
itly. For instance, it implies, without any additional assumptions, that the only SD
maps over Q(\/&) C R are precisely the only possible field automorphisms, z and
Z. (In fact, these are the two maps on Q(1/2) that we alluded to immediately after
Corollary [TT])

Moreover, this also covers all quadratic extensions of Qﬂincluding the “Gaussian
fields” Q(4) as well as the cyclotomic field Q((3), where (3 = _1%“/5 is a primitive
cube root of unity (so d = —3).

Finally, if we add a continuity condition, the following result is immediate.

Corollary 24. Let IF be a field such that Q(i) CF C Cand let f: F — F be a con-
tinuous SD map. Then f must be the identity or the conjugate map.

6. SD MAPS THAT ARE NOT AUTOMORPHISMS At this point, it is natural
for the reader to wonder whether field automorphisms are the only solutions to our
functional equation. After all, pure algebraic manipulation of the functional equation
showed that all solutions must be injective and multiplicative. Could further manipu-
lation perhaps yield surjectivity and additivity as well?

Note that if this were the case, then the result would hold over all fields. However,
the following example shows that unlike injectivity, surjectivity need not follow from
the functional equation.

Example 25. Let K be any field, and consider its transcendental extension:
F := K(zo, 1, xa, ... ).

Define a map f : F — T that fixes all elements of K and sends x,, — z,; for all
n > 0. This is a field monomorphism, and hence an SD map. However, this is not an
automorphism for any base field K because it is not surjective.

Here is yet another example of an SD map that is not surjective. The field here is,
in fact, a subfield of R.

Example 26. Consider the subfield F = Q(7) — since 7 is transcendental over Q —
and for k € Z define the map f;, : F — F by

p(r)  p(")
froi == ,  p,q€Qa]. ©)
q(m)  q(7)
Then f5, f3, ... are all SD maps, but not surjective.

2To see why: all such extensions are Q[X]/(aX? + bX + ¢) with a, b, c rational and a # 0. Thus, we
attach to Q a root « of the rational quadratic polynomial X2 4 (b/a)X + (c/a), i.e. of (X + (b/2a))? —

b2 —4dac

oo le, we attach /p/q where p, ¢ € Z and p/q = b> — 4ac. This is equivalent to attaching V/d, where

d = pq.
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The above, of course, leaves open the question of whether automorphisms are the
only surjective SD-maps over a field. However, rather than imposing surjectivity ar-
tificially, it would be more interesting to consider SD-maps over a finite field, where
injectivity automatically implies surjectivity. So, are automorphisms the only SD-maps
over a finite field? To our surprise, even that is not true as shown in the example below.

Example 27. Consider F5 — the field of 5 elements. Note that if f is an SD map on
this field, then the restriction of f to its multiplicative group F: = C; must be an
automorphism. But what are automorphisms of C,? It is either x +— x or x > 3.
The identity map is clearly an automorphism of F5. What about the z — x> map on
F5? We leave it as an amusing exercise to the reader to verify that this map is not an
automorphism, but an SD map on 5!

The above examples hint at something deeper underlying our functional equation
and raise several natural questions. The final example, especially, provides a strong
motivation to explore SD maps over fields of characteristic p. What, if anything, is
special about the field with five elements? Can we classify SD maps over other finite
fields? Are field automorphisms the only SD maps over algebraic extensions of finite
fields? These questions point to a broader and richer theory, which we will address in
a forthcoming sequel [5].

Concluding remarks. We end on a philosophical note. The Cauchy functional equa-
tion (IJ) is a hundred years old and has seen much study. Nowadays, one frequently
encounters functional equations in mathematics contests — where they are typically
solved via ingenious algebraic manipulations. However, solving (I) quickly led math-
ematicians to a fruitful study of deeper topics in analysis such as continuity, bounded-
ness, and measurability.

Similarly, in this work, we see many different proof-philosophies emerging from
our equation (2) whose full ramifications go beyond merely solving (2)). The first is
algebraic: showing via clever manipulations that (2)) implies fixing Q, via solving the
cubic f(8) = f(2)f(4) in a field. The second relates to analysis: a “freshman calcu-
lus” level density argument and ordering inside R (or the real/complex constructible or
algebraic numbers in it). The third is topological, in the case of continuous solutions
over C. Finally, a fourth approach using arithmetic progressions is useful in number
fields like Q(v/d). Thus, the functional equation (Z) leads one to explore a rich body
of results in multiple branches of mathematics.
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