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ABSTRACT. We present an overview of a classical theme in analysis and matrix positivity:
the question of which functions preserve positive semidefiniteness when applied entrywise.
In addition to drawing the attention of experts such as Schoenberg, Rudin, and Loewner, the
subject has attracted renewed attention owing to its connections to various applied fields and
techniques. In this survey we will focus mainly on the question of preserving positivity in
all dimensions. Connections to distance geometry and metric embeddings, positive definite
sequences and functions, Fourier analysis, applications and covariance estimation, Schur
polynomials, and finite fields will be discussed.

The Appendix contains a mini-survey of sphere packings, kissing numbers, and their “lat-
tice” versions. This part overlaps with the rest of the article via Schoenberg’s classification of
the positive definite functions on spheres, aka dimension-free entrywise positivity preservers
with a rank constraint — applied via Delsarte’s linear programming method.
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1. INTRODUCING POSITIVITY PRESERVERS

The goal of this article is to survey a foundational result in matrix analysis, whose origins
can be traced back to Pélya and Szegé exactly one hundred years ago (following Schur). This
result, originally proved by Schoenberg (and then Rudin and many others), continues to yield
connections to active areas of mathematics and applied fields.

The result in question combines two evergreen ingredients in mathematics: preserver prob-
lems and positive matrices. The notion of positivity is as old as mathematics — starting with
counting and measuring. More pertinently, positivity of real symmetric matrices occurs at
least as early as the second partial derivative test for local minima (via the Hessian matrix).
On the complex side, an early occurrence of positive semidefinite matrices is in Pick and
Nevanlinna’s solutions of their eponymous interpolation problem (1910s).

Recall that a Hermitian matrix A € C™*" is said to be positive definite if the associated
quadratic form Q(z) := z* Az, x € C" is positive definite (this notation has appeared as early
as 1868 in [I35] — in connection with the existence of the Eg lattice; see Section in the
Appendix). The non-strict relaxation of this condition is that of positive semidefiniteness of
a Hermitian matrix A:

¥ Ax = (Az,z) > 0 Vo € C". (1.1)

Classical results by Sylvester and others provide numerous characterizations of this notion:
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Theorem 1.1. The following are equivalent for a complex (resp. real) Hermitian matriz
Apxn:
(1) A is positive semidefinite (henceforth termed psd, or simply positive): * Az > 0 Vz €
C" (resp. z € R™).
(2) The eigenvalues of A are all in [0, 00).
(3) A= B*B for some B € C"*" (resp. B € R"*").
(4) There exist vectors in C™ (resp. R™), say X1, ..., Xy, such that A is their Gram matrix:
aij = (x4,%;) for all1 <i,j < n.
(5) (Sylvester’s criterion.) The principal minor det Ay« is nonnegative, for all I C [n] :=
{1,...,n}.

The following fact is also standard.

Lemma 1.2. Let A be the Gram matriz of any finite set of vectors drawn from R". Then A
has rank at most r, with equality if and only if the vectors span R”.

In this survey, the question of interest is to understand the functions that are applied to
matrices and preserve positivity. Understanding preservers of mathematical structures is an
age-old question; for example, in matrix theory one of the first such results is by Frobenius,
who in 1897 classified all determinant-preserving linear maps on matrix algebras [49]. Just as
another example: Marcus [100] and Russo-Dye [123] classified linear preservers of the unitary
group in C™"*™ and in general C*-algebras, respectively. However, even after a century of work,
basic questions in preservers of positive matrices remain unanswered. As a first example, the
linear preservers of positive semidefinite matrices are not fully determined; for this and other
aspects of the area, see the survey articles [62, 98] and the monograph [106]. (The goal of this
survey is to discuss nonlinear preservers, and we will mention another open question below.)

Definition 1.3. Returning to the question of interest — and removing the linearity constraint
— there are two natural ways in which a function acts on a Hermitian matrix A,x, = U*DU
(by the spectral theorem), with D = diag(A1, ... Ay):
e On its spectrum, via the functional calculus: f(A) := U*f(D)U, where f(D) =
diag(f(M1), ..., f(An)); and
e On its entries, via the entrywise calculus: f[A] := (f(ai;))} ;-

There is also a second notion of positivity:
A = (a;5) € C™" is entrywise nonnegative if a;; € [0,00) Vi, j € [1,n]. (1.2)

While the functional calculus is the more well-known mechanism, this work will mainly
focus on the entrywise calculus. From above, we find four ways in which a function may act
on matrix spaces and preserve positivity:

(1) f(A) is psd if A is psd.
(2) f[A] is entrywise nonnegative if A is so.
(3) f(A) is entrywise nonnegative if A is so.
(4) f[A] is psd if A is psd.

Notation. Unless otherwise declared, we will henceforth focus on real symmetric matrices,
and real-valued functions acting on them.

Now the first two of the four classifications above are easy:

Proposition 1.4. The functions satisfying conditions (1) or (2) above, are precisely the
functions f :[0,00) — [0, 00).
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The third was worked out by Hansen, for all positive matrices with entries in a symmetric
interval (for completeness, we also mention the related work [10] of Bharali-Holtz):

Theorem 1.5 ([67, Theorem 3.3(1)]). Fiz 0 < p < oo, and let a function f : (—p,p) — R.
The following are equivalent.

(1) If A is any real symmetric matriz (of any dimension) with spectrum in (—p, p) and
nonnegative entries, then f(A) has nonnegative entries.

(2) f is given on (—p,p) by a convergent power series Y ;- cpx® with nonnegative coef-
ficients: ¢ = 0 Vk > 0.

This leaves the fourth and final question, which is the subject of this article:

Question 1.6. Which entrywise maps preserve positive semidefiniteness (of matrices of all
dimensions)?

2. SCHOENBERG’S THEOREM AND ITS (CLASSICAL) VARIANTS

We now embark on the study of the question above. Our journey begins exactly one
hundred years ago, which is when the question was asked, in the well-known 1925 book [117]
of Pélya and Szeg6. The authors also supplied a large class of functions that are entrywise
positivity preservers — the reason behind this is a celebrated 1911 result of Schur:

Theorem 2.1 (Schur product theorem, [128 Satz VII]). If n > 1, and two n X n matrices
A, B are positive semidefinite, then so is their Schur/entrywise product

Ao B := (aijbij)?’jzl. (21)

Among other things, this theorem is useful in proving that the closed convex cone of
positive definite kernels (defined below) on X x X for any set X is moreover closed under
multiplication.

Proof. There are several proofs of this result: for instance, A o B is a principal submatrix of
the Kronecker product A ® B, which is positive semidefinite. Alternately, write

A= Z Aiviv;, B = Zujuju;, with all Aj, puj >0
i1 j>1

by the spectral theorem and Theorem As the entrywise/Schur product is bilinear, Ao B =
Z it (v; 0 uj)(v; o uj)*, and this is positive semidefinite from first principles. O
i,j>1

The Schur product theorem helps find entrywise positivity preservers as follows. It is clear
from the definition that the positive semidefinite (psd) matrices form a closed convex
cone: they are stable under sums, positive dilations, and entrywise limits. In addition, by
Theorem they are also closed under Schur products. Thus, the set of entrywise maps
preserving positivity is also closed under these operations. In addition, this set contains the
functions f(x) = 1,z — since the latter leaves each psd matrix unchanged, while the former
sends it entrywise to the all-ones matrix 1,x, = (1)%:1, and this rank-one matrix is psd.
Thus, the closure of {1,z} under sums, positive dilations, products, and limits preserves
positivity of matrices of all sizes. This closure is precisely the set of convergent power series
with nonnegative coefficients, and this was the 1925 observation of Pdlya—Szego:

Definition 2.2. Given a subset I C C, define P,,(I) to be the set of n xn positive semidefinite
matrices with entries in I.
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Theorem 2.3 ([I17, Problem 37]). Let I C R be an interval, and f(x) = Y 5o, cka® be a
power series convergent on I, with all ¢, € [0,00). Then the entrywise map f[—] sends Py (I)
to P, (R) for alln > 1.

2.1. Matrices with entries in [—1,1]. After stating their result, Pélya—Szeg6 asked if there
are other preservers. This was answered by Schoenberg (a student of Schur and Sanielevici)
17 years later — for continuous functions. The next result — and its later variants stated below
— can be considered as collectively forming a deep converse to the Schur product theorem.

Theorem 2.4 ([127, Theorem 2]). Let I = [-1,1] and let f : I — R be continuous. The
following are equivalent.

(1) The entrywise map f[—] sends P, (I) to P, (R) for alln > 1.
(2) f is given on I by a convergent power series » p- cpx® with all ¢, > 0.

Definition 2.5. Note that each such power series f(z) = > ;- cpx® is infinitely differen-

tiable on I’ = (0,1) and satisfies: f*) > 0 on I’. Such a function is said to be absolutely
monotone/monotonic on I'.

Remark 2.6. The easy implication is (2) == (1), and this is precisely Theorem The
hard part is (1) = (2), which was Schoenberg’s contribution. In fact, Schoenberg assumed
positivity preservation on an even smaller set — the matrices in P, ([—1, 1]) with all diagonal
entries 1, aka correlation matrices — and deduced absolute monotonicity. (From this, one can
deduce the power series representation — and in particular, real analyticity — using a 1929
theorem of Bernstein [9].) This effort to “reduce the test set” will recur in this section.

Let ' denote the multiplicative closed convex cone of entrywise positivity preservers
of U,s1 Pu([=1,1]). In a sense, the countably many (rescaled) monomials R-oz" are the
“extreme rays” of C] that are continuous.

It is natural to ask what happens if the continuity assumption is removed. In this case,
there are two other extreme rays that are discontinuous — but only at the endpoints — and
they are generated by the following functions on [—1, 1]:

fi(z) = nl;rgo 22 = 1(z = +1), f-(x) = nhﬁrgo =T =1) - 1(z = 1),

where 1(FE) denotes the indicator of an event/statement E. Thus, nonnegative linear combi-
nations of f, f_, and the functions in Schoenberg’s theorem are indeed (possibly discon-
tinuous) preservers. A natural question is if there are no others, and this was affirmatively
answered in 1978 by Christensen and Ressel:

Theorem 2.7 ([21, Theorems 1,2]). Let I = [—1,1] and let f : I — R. The following are
equivalent.

(1) The entrywise map f[—] sends P, (I) to P,(R) for allm > 1.

(2) The function f is equal to a convergent power series plus two other terms:

f@)=> b +cq(L@=1)-Lr=-1)+collx=+1), =€l
k=0

with ¢, > 0 for all k > —2 and 21@—2 c < 00.
The methodologies employed in showing the above results are different: Schoenberg used

spherical integrals and ultraspherical polynomials to prove his result, while Christensen—
Ressel’s proof was convexity-theoretic, involving Choquet theory and Bauer simplices.
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2.2. Positive definite sequences, Toeplitz matrices on the circle, and Rudin’s re-
sult. If one removes the endpoints from the domain, then the assumption of continuity may
also be dispensed with, with greater ease. This was first achieved by Rudin in 1959 — here is
a reformulation of his result:

Theorem 2.8 ([122] Theorems L,IV]). Suppose I = (—p, p) where 0 < p < o0, and f : I — R.
The following are equivalent.

(1) The entrywise map f[—]| sends Pp(I) to Pp(R) for alln > 1.
(2) If A € P,(I) is Toeplitz of rank at most 3, then f[A] € Pp(R).
(3) f is given on I by a convergent power series Y reo ckx® with all ¢ > 0.

Note the significant reduction of the test set in part (2), from all positive matrices of all
sizes in part (1) — in the spirit of Remark

Rudin was studying preservers of positive definite sequencesﬂ and we now take some time
to motivate these, from complex function theory. In 1907, Carathéodory published a solution
to the following question:

Characterize all analytic functions f such that f(0) =1 and f maps the unit disk D(0,1)
into the right half-plane R(z) > 0.

His solution [19] was that if one writes f(z) = 1+ > 5o (ax + ibx)2", then the above
condition holds if and only if for each n > 1, the point (ag,b1,...,an,b,) € R?" lies in the
convex hull of the curve

{(2cos 0, —2sin6,2cos20,...,2cosnf,—2sinnf) : 0 < 0 < 27}. (2.2)

In 1911, Toeplitz observed [140] that the constraints (2.2)) can be rephrased algebraically,
in terms of the positivity of certain related Hermitian quadratic forms for all n > 0:

n
Z Ci—jziz; =2 0Vz = (2z1,...,2,) € C", where ¢y = 2, ¢ = ax — ibg, c_ = ¢ (k > 0).
ij—1

In other words, the semi-infinite matrix
T = (tij) := (¢i—j)ij>0 is positive semidefinite. (2.3)

Moreover, Toeplitz’s matrix T here has the property that the entries along any “diagonal
line” (i.e., parallel to the main diagonal) are all equal — a structure that is now called a
Toeplitz matriz.

Thus, Carathéodory’s solution is equivalent to the notion of a positive definite sequence,
and it was the preservers of these that Rudin was classifying in [I122]. Rudin’s motivations
come from Fourier analysis, whose connection to positive definite sequences was established at
the same time as Toeplitz’s work. Indeed, in 1911, Herglotz also published (independently)
the work [69], which showed the equivalence of Toeplitz’s conditions to the trigonometric
moment problem: to characterize all sequences ¢, € C for n € Z, for which there exists
a nonnegative measure p on [—m, 7| such that the ¢, are its Fourier—Stieltjes coefficients
J7_e=™du(8) for all n.

Herglotz showed that the answer is precisely the positivity condition . Thus, positive
definite sequences are precisely the Fourier—Stieltjes coefficients of nonnegative measures p
on S' C C:

IThis is the second occurrence, after “matrices”, of the phrase “positive definite”, and we will see one more,
which naturally leads to entrywise transforms.
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Theorem 2.9 ([69]). A complex sequence (¢ )nez is the Fourier—Stieltjes coefficient-sequence
of a nonnegative measure on S* if and only if the Toeplitz matriz T = (ci—;)i j>0 is positive
semidefinite — in other words, ¢ : Z — C is a positive definite function (defined below).

We add for completeness that alongside the solution to the above function theory problem
by Carathéodory, and the two equivalent conditions by Toeplitz and Herglotz, comes yet
another classical equivalent condition. This is the famous Herglotz—Riesz (integral) represen-
tation theorem for the aforementioned analytic maps, proved by both authors independently
in 1911. We state a more general version, wherein f(0) need not equal 1:

Theorem 2.10 ([69, 118]). A function f(z) = u(z) +iv(z) is analytic on D(0, 1) with image
in the closed right half-plane R(z) = 0, if and only if there exists a finite positive measure
on [0,27] such that

2 10
£ =00+ [ 5 due).
0 e —z
Returning to Rudin: he came to his question about preservers of such sequences in the

context of Fourier analysis. He was considering functions operating on spaces of Fourier
transforms of L' functions on Locally Compact Abelian groups G (such G are abbreviated
LCA groups), or of measures on (. Rudin studied the torus G = S!, while Kahane and
Katznelson were studying similar questions on its dual group Z. The three authors then
proved in 1959 with Helson, a “converse Wiener—Levy theorem” in [68]. In the same year,
Rudin published his related variant of Schoenberg’s theorem [122].

2.3. Open intervals; Hankel matrices. We return to the story of entrywise preservers.
First note that the rank of the positive Toeplitz matrix in the trigonometric moment problem
above, corresponds to the size of the support of the measure . Thus, Rudin’s Theorem
shows that working with at most three-point measures suffices to recover real analyticity and
absolute monotonicity. This connection between supports of measures and rank constraints
of test matrices resurfaced in positivity preservers very recently, and is described below.

Two decades after Rudin’s work, a variant of the above results was shown for matrices
with strictly positive entries. This was by Vasudeva in 1979:

Theorem 2.11 ([143, Theorem 6]). For I = (0,00), the two assertions of Schoenberg’s
theorem [2.4] are again equivalent.

Vasudeva’s theorem was strengthened twofold very recently: in 2022, Belton—Guillot—
Khare—Putinar obtained the same conclusion of absolute monotonicity from hypotheses that
were significantly weaker in two ways. First, the domain was changed to (0,p) for any
0 < p < oo; and the test set in each dimension was once again reduced, this time to Hankel
matrices of rank at most 2.

Theorem 2.12 ([7, Theorem 9.6 and (proof of) Proposition 8.1]). Suppose I = (0,p) or
[0, p) where 0 < p < oo, and f: I — R. The following are equivalent.

(1) The entrywise map f[—] sends P,(I) to P,(R) for alln > 1.

(2) If A € P,(I) is Hankel of rank at most 2, then f[A] € P,(R).

(3) [ is given on I by a convergent power series y oo cpx® with all ¢, > 0.

Below, we will state the multivariate version of this result. Also note that parallel to
Rudin’s approach (via Herglotz), in [7] the authors considered transforms of discrete data
obtained from a positive measure p on the real line: moment sequences. In other words, a
function f sends the kth moment of a positive measure p on the line, to the kth moment of
another positive measure o,,. Once again, the rank of the test matrices is governed by the
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support set of u, and it turns out that one- and two-point test measures suffice to deduce
absolute monotonicity.

The two-sided version of Theorem [2.12] parallel to Rudin’s characterization above, was
also shown in [7]. Once again, the test set can be greatly reduced in each dimension, from
all positive matrices to low rank Hankel matrices.

Theorem 2.13 ([7, Corollary 6.2]). Suppose 0 < p < 0o and I = (—p,p). Given f: I — R,
the following are equivalent.

(1) The entrywise map f[—] sends P,(I) to P,(R) for alln > 1.
(2) If A € P,(I) is Hankel of rank at most 3, then f[A] € P,(R).
(3) [ is given on I by a convergent power series y oo cpx® with all ¢, > 0.

Notice that all of the above results are “dimension-free”, in that the test set in them
consists of matrices of unbounded size. It is interesting that the proof of the last two results
above uses a result in fized dimension — see Theorem [4.5] A full account of both of these
proofs — which are rather accessible to develop “almost from scratch” — as well as details of
the results in multiple sections below, can also be found in the recent monograph [83]. For
additional connections and results, see the survey [5].

As a parting note in the real case, understanding positivity preservers immediately leads
to characterizing the entrywise maps preserving monotonicity:

Definition 2.14. The Loewner ordering on real symmetric n X n matrices is: A > B if
A—B e P,(R). Now given I C R, a function f: I — R is said to be (a) Loewner positive on
P,(I) if f[A] > 0 whenever A € P,,(I) (i.e., A > 0); and (b) Loewner monotone on P, (I) if
f[A] > f[B] whenever A > B > 0.

In this language, the above “Schoenberg-type theorems” classify the Loewner positive
maps. Setting B = 0, it is also clear that if 0 € I and f is Loewner monotone, then f — f(0)
is Loewner positive. In fact the reverse implication also holds — and is easy to show using
the Schur product theorem, once we know the Schoenberg—Rudin theorem above. Thus, we
have:

Theorem 2.15 (|83 Theorem 19.2]). Suppose 0 < p < oo and I = (—p,p). The following
are equivalent for an arbitrary map f: I — R:

(1) f|—] is Loewner monotone on P, (I) for alln > 1.

(2) fl—] is Loewner monotone on the Hankel matrices in P, (I) of rank at most 3, for all
n>1.

(3) [ is given on I by a power series Y po cxx®, with ¢ > 0 for all k > 0 (and any
Cco € R).

The reader can compare and contrast this to Loewner’s celebrated characterization of
matrix monotone maps in the functional calculus [99, [133].

2.4. Complex domains. We conclude this section by discussing two results proved in the
literature for positivity preserving maps acting on complex Hermitian matrices. Following his
proof for preservers of real positive matrices, Rudin [I22] made an observation parallel to that
of Pélya—Szegd, for complex matrices. Namely, Rudin observed that the conjugation map
z +— Z also preserves positive semidefiniteness. Since the preservers form a multiplicatively
closed convex cone, it follows that the entrywise functions

z > 207 (j,k >0)
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also preserve positivity on complex matrices of all sizes. Again taking nonnegative linear
combinations, followed by limits, yields a large family of preservers; and Rudin conjectured
in his 1959 work [122] that there are no others. This was shown by Herz soon after, in 1963:

Theorem 2.16 (|73, Théoreme 1]). Denote by D(0,1) the open unit disk in C, and say
f:D(0,1) — C. The following are equivalent.

(1) The entrywise map f[—] sends P,(D(0,1)) to P,(C) for allm > 1. ‘
(2) The function f is a convergent power series, of the form f(z) = > -0 iz for
z € D(0,1), with cjp, > 0 Vj, k > 0. Moreover, such a representation for f is unique.

A final result along these “classical lines” returns to the “Schoenberg” version of the
complex setting, of functions on the closed unit disk. The entrywise positivity preservers
were classified in this setting by Christensen—Ressel in 1982, under Schoenberg’s assumption
of continuity:

Theorem 2.17 (22, Corollary 1]). Let f : D(0,1) — C be a continuous map on the closed
unit disk. Let H be an infinite-dimensional complexr Hilbert space, with unit sphere S. The
following are equivalent.

(1) f is a “positive definite kernel” on S — i.e., for any finite set of points z1,...,z, € S,
the matriz with (i,7) entry f((z, z;)) is positive semidefinite.
(2) Asin the previous result: f is a convergent power series of the form f(z) = 3.~ ¢ Zk
for z € D(0,1), with cjr, = 0 Vj,k > 0. Such a representation for f is unique.
As a consequence, these are also equivalent to:

(3) fl-]:Pn(D(0,1)) = P, (C) for allm > 1.

3. SCHOENBERG’S MOTIVATIONS: DISTANCE GEOMETRY

We now discuss the classical motivations of Schoenberg in arriving at Theorem which
is a seminal result that has spawned much subsequent activity (not only in generalizing and
refining it, but in other, modern domains as well, as is mentioned below). Schoenberg was
motivated by the study of metric/distance geometry. Indeed, since the advent of Descartes in
the 1600s, it has been the norm to think of vectors in Euclidean space R™ as n-tuples of real
numbers, and of distances between them via the Pythagorean metric. However, for almost
two millennia before Descartes, geometry meant working with Euclid’s postulates and using
points, lines, angles, distances, etc.

In the early 20th century, there was a revival of this “distance geometry” perspective. We
single out the Vienna Circle of mathematicians and philosophers, in which Karl Menger (a
student of Hahn), Tarski, Hahn, von Neumann, Godel, Taussky, and others met regularly to
discuss mathematics. A prevalent theme of their Kolloquium (1928-1936, see [103]) was the
study of metric spaces and of properties intrinsic to them, such as curvature, homogeneity,
and metric convexity. Indeed, the foundations of metric space theory had been then-recently
established, due to works of Birkhoff, Fréchet, and Hausdorff among others, and the Vi-
enna Kolloquium’s investigations led them to advances not only in mathematics, but also in
mathematical economics (von Neumann’s fixed point theorem — the precursor to the one by
Kakutani that was later used by Nash — is a case in point, as is the work of Abraham Wald).

3.1. Metric embeddings. Let X = {zo,...,2,} be a finite set endowed with a metric
d=dx. A seminal 1910 result by Fréchet states:

Theorem 3.1 ([46]). Fvery metric space of size n + 1 isometrically embeds into (R™, f) —
where loo(x,y) := sup; |x; — yi| denotes the sup-norm.
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Remark 3.2. In fact the embedding Fréchet provides is reminiscent of — and the precur-
sor to — the Kuratowski embedding [93]. Fréchet’s result was subsequently improved by
Witsenhausen [148] to (R"! /) if n > 2.

It is now natural to ask which finite, or separable, metric spaces embed into “usual” Eu-
clidean space R", or into their limit R* = |J,., R", or into its closure /2(R). Following
characterizations by Menger [102] and Fréchet [47], Schoenberg provided in 1935 a charac-
terization that related metric geometry and matrix positivity:

Theorem 3.3 ([125, Theorem 1]). Let a finite metric space X = {zo,...,zy}, and write
dij :=dx(xj,xj) fori,j=0,...,n. Then X embeds isometrically into some Euclidean space
(equivalently, into £2) if and only if its modified Cayley-Menger matrix

CM'(X) := (dj + d?o - d%j)ﬁj:l

is positive semidefinite. Moreover, if this happens then the smallest dimensional space R"
into which X embeds is precisely the rank of CM'(X).

Proof. We outline only one direction, which is the illuminating calculation relating distances
and inner products: if X is Euclidean, so that we identify each z; with an isometrically
embedded copy in RF, then

CM'(X)yj = dip + g — d3; = || — wol|> + || — wol|® = |[(2s — w0) — (x5 — zo)[|?
= 2<33i — X0, x5 — x0>. (3.1)
But these form a Gram matrix, which is positive semidefinite (see Theorem [1.1)). O

Parallel to flat space embeddings, Schoenberg also characterized when a finite metric space
embeds into a Euclidean sphere of unit radius, S”~' € R". Recall that on any such sphere
(for any r), any two antipodal points have distance 7, while two non-antipodal points z,y
and the origin lie on a unique plane, which slices the sphere along a great circle. Now the
intrinsic spherical distance <(z,y equals the length of the shorter arc joining them:

<z, y := arccos(z,y), ie., (x,y) =x -y = cos <x,v, Va,y e S7L (3.2)

This metric exists on each 5’7"*1, hence on their union over r > 2, and hence on its closure
— which is the unit sphere S C ¢2. This means that applying cos(-) entrywise to a spherical
distance matrix (<z;, xj)ijo in S yields a Gram matrix. The converse is also not hard to
show, leading to another 1935 result of Schoenberg:

Theorem 3.4 ([125, Theorem 2]). A finite metric space X = {xo,...,xn} embeds isomet-
rically into a BEuclidean unit sphere (with its intrinsic angle metric) if and only if X has
diameter < 7 and the entrywise map cos[—] sends its distance matriz Dx to a positive semi-
definite matriz cos[Dx]. Moreover, the smallest Euclidean dimension r for which X embeds
spherically in S™~! is the rank of cos[Dx].

3.2. Positive definite functions. We make two observations about Theorem (a) ma-
trix positivity again plays an indispensable role in it; and (b) the theorem features an early
occurrence of the entrywise calculus: maps that take distance matrices to positive ones; or
via composing with the metric, two-variable symmetric maps that take X x X to Px|(R).
This notion was abstracted into

Definition 3.5.

(1) (Schoenberg, 1938, [126].) A positive definite function on a metric space (X,dx)
is a map f : [0,00) — R, such that for any points z1,...,z, € X, the matrix
(f(dx (i, 25)))} =1 is positive semidefinite.
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(2) (Mercer, 1909, [104]; Mathias, 1923, [101].) This is the “traditional” — and different
— definition: a positive definite function on a group G is a map f : G — C such that
for any points g1, ..., gn € G, the matrix (f(g; 1g;))"._, is positive semidefinite.

7 2/)4,5=1

Indeed, it is the latter notion that appears in the Carathéodory—Toeplitz—Herglotz results
discussed after Theorem[2.8 above. We again digress here with a discussion of the early history
of such functions, following the comprehensive survey [137] by James Stewartﬂ Stewart was a
student of J.L..B. Cooper (who descended from Titchmarsh and hence Hardy), and the survey
is an offspring of his doctoral dissertation on “Positive definite functions and generalizations.”

As the name suggests, positive definite functions send “squares of domain sets” to psd ma-
trices. Indeed, following the use of Smith [135] and others of “positive definite” for matrices, it
was Mercer [104] who extended in 1909 the notion to kernels: these are maps f: X x X — C
for an arbitrary set X, such that f(z,2') = f(a/,z) and the quadratic form induced by f
is positive semidefinite. Examples of such kernels had also appeared in Hilbert’s 1904-1910
articles on integral equations [76].

Later, Mathias [I01] independently rediscovered in 1923 such kernels — on the group (R, +).
He called them “positive definite”; observed using the Schur product theorem that they form
a multiplicatively closed convex cone; and showed that if f is such a kernel on (R, +) then
its Fourier transform f(t) = [pe " f(z)dx is nonnegative (if it exists). In a sense this
is Bochner’s theorem over R, but the connection to a density function on R was shown by
Bochner a decade later:

Theorem 3.6 ([14]). A continuous map f : R — R is positive definite if and only if there
exists a (unique) probability measure p on R whose Fourier—Stieltjes transform is f:

f@) = [ auo).
R
We end this part with two historical remarks.

Remark 3.7. Bochner also proved his eponymous theorem for G = R”" in the following
year [I5]; the general version for locally compact abelian (LCA) groups came a few years later,
due to Povzner, Raikov, and Weil. Other uses of positive definite kernels included Moore
and Aronszajn’s works on reproducing kernels (see e.g. [I14]), the theory of harmonics on
homogeneous spaces (Cartan, Weyl, It6), and its comprehensive generalization by Krein [91]
— which subsumes the preceding three authors’ work as well as that of Gelfand and Raikov.
See [137, Section 8] for more details. For a more recent survey taking the reader from positive
definiteness to harmonic analysis and operator theory, see Shapiro’s article [132].

Remark 3.8. Bochner-type theorems characterize positive definite functions on a LCA group
G, as Fourier transforms of probability measures on the dual group G. From this perspective,
one should note that the “general” LCA-form of Bochner’s theorem was first proved by
Herglotz two decades prior to Bochner — see Theorem over the dual groups (S!,Z).

We will mention Herglotz next in Section [A.7]in the Appendix on sphere packings — given
that he is credited by Miiller with the Addition Theorem for spherical harmonics.

3.3. Reconciling the two notions of positive definiteness. Having discussed the “group”
notion of positive definiteness in Definition 2), we now come to Schoenberg’s work on pos-
itive definite functions. He introduced the “metric” variant in Definition (1) in [126], and
showed that a metric space X is Euclidean (or embeds isometrically in ¢¢) if and only if it

2The reader who has taught freshman calculus, may recognize this author for a different reason.
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is separable and the Gaussian family {exp(—cz?) : ¢ > 0} is “metric” positive-definite on X.
Schoenberg then turned his attention to such positive-definite functions on (Euclidean and
Hilbertian) spheres, in the 1942 paper [127] bearing this title.

We explain briefly here, why in the Euclidean sphere context, Schoenberg’s setting rec-
onciles with the “other”, group-setting that was introduced by Mercer/Mathias and taken
forward by Bochner and others. More precisely, we explain how each positive definite function
on the sphere, in Schoenberg’s metric setting, is a G-invariant positive definite kernel (which
incorporates both the “metric” and “group” settings), and on a two-point homogeneous space
G/H. We first introduce the relevant notions.

Definition 3.9.

(1) A compact metric space (X,dx) is said to be two-point homogeneous if there is a
compact group G acting on X, such that given points p,q,r,s € X with dx(p,q) =
dx(r,s), there exists g € G with gp = r, gq = s.

(2) We also isolate the common structure underlying both notions in Definition 3.5} given
a topological space X, a continuous kernel : X x X — C is positive definite if given
any k > 1 and any points 1, ...,z € X, the matrix (K(:L‘i,xj))ﬁjzl € P, (C).

Remark 3.10. Schoenberg’s (continuous) positive definite functions are real-valued kernels
which factor through the distance map: K(-,-) = f odx(-,-) — whereas the Mathias—Mercer
definition factors through “fractions in G”: K(-,-) = f on(-,-), where (g, h) = g~ 'h.

Two-point homogeneity is a strong condition; for instance, setting ¢ = p,s = r implies
that G acts transitively on X. Let us fix a basepoint zp € X and denote H := Stabg(zo) (a
compact subgroup of G), so that X = G/H.

Remark 3.11. If GG is infinite and connected, then X turns out to be a rank-one Riemannian
symmetric space of compact type; these have been classified by Wang [147]. In this case,
(G, H) is also an example of a Gelfand pair [53].

Let us now turn our attention to a distinguished special case:

Proposition 3.12. Let 7 > 2 and let X = (S"~%, <), the unit sphere in R". This is a two-
point homogeneous space as above, with G = SO(r), and H = SO(r — 1) @ {1} for o = e,,
the north pole.

Proof. Let u € S"~! be any unit vector; then u can be completed to an ordered orthonormal
basis (u1,...,ur—1,u) such that the orthogonal matrix U = [uq]- - - |u,—1|u] has determinant
one. Thus SO(r) acts transitively on S"~!, and the stabilizer of 2o = e, is SO(r — 1) @ 1.
Note that G acts on X = S™~! by isometries, since (-,-) is O(r)-invariant.

It remains to show two-point homogeneity. Given a,b,c,d € S"~! with <a,b = <c,d, we
may first apply the G-transitive action to assume that a = ¢ = e,. We will use here — and
below — the basic fact that the spherical distance on S”~! is connected to the inner
product. Thus, writing b = (b',b,.),d = (d’,d,) as tuples in R", it follows that b, = d,., and
hence ||V/|| = ||d’||. From above, there exists g € SO(r — 1) @ {1} sending b’ — d’ and hence
b+ d. Therefore g € H sends b, e, to d, e,, respectively. O

We next show:

Lemma 3.13. Let X = S" ' G, H,xzy be as above, and let K be a continuous kernel on
X x X into any codomain C. Then K is invariant under the diagonal action of G if and
only if K(z,y) =¢(x-y) Yo,y € X for some continuous map ¢ : [—1,1] — C.

Proof. The sufficiency is clear. Conversely, two pairs (z,y) and (2/,y') in (S"!)? are G-
conjugate if and only if <tz,y = </, ¢/, if and only if x - y = 2’ - /. O
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We can now conclude the analysis. A continuous map f : [0, 7] — R is a positive definite
function on (S"~!, <) in the Schoenberg/metric sense, if and only if

Y= focos !:[-1,1] = R (3.3)

sends Gram matrices from S"~! to positive semidefinite matrices. By Lemma this is
equivalent to a continuous G-invariant positive definite kernel K : §*~1 x §7~! — R. O

3.4. Schoenberg: from positive definite functions on spheres to positivity pre-
servers. Having reconciled the two notions of positive definiteness (and subsumed them by
kernels in Definition , we conclude this section on Schoenberg’s motivations. As we saw
above, Schoenberg began his studies in metric geometry by understanding metric embeddings
into Fuclidean spaces and spheres. The latter case naturally led him to introduce “metric”
positive-definite functions, which he then studied (in the cited and other papers).

Schoenberg then classified in 1942 all continuous positive definite functions on S"~! for
each r > 2 (which he wrote composing with cos™!, so with domain z -y € [-1,1]).

Theorem 3.14 ([127, Theorem 1]). Fiz an integer r > 2. Given a continuous map f :
[—1,1] = R, the following are equivalent:

(1) f o cos is positive definite on (S™71, ).

(2) The map f(x) => 1oy ckC’liT)(:U), where ¢, = 0 Yk, and for varying r, the functions

(r)
{g’@)g; : k > 0} are precisely the first Chebyshev, Legendre, or Gegenbauer orthogonal
pol?momials.

Below, we reinterpret Schoenberg’s result from a modern perspective; and further below in
the Appendix — see Section [A.7]— we will derive the “easier” half (2) = (1) from the theory
of spherical harmonics. Here we continue to the Hilbert sphere S°°, which is the closure in ¢2
of U, S=1. Continuous positive definite functions on S° are in a sense the “intersection”
of the maps in Theorem [3.14] over all r, and Schoenberg showed in the same work:

Theorem 3.15 ([127, Theorem 2]). A continuous map f : [—1,1] — R is positive definite
on S if and only if

f(cos) = Z cr, cos(0)*, 6 € [0, 7]

k=0

where all ¢, > 0 and ), ¢ < o0.

One can free this result from the sphere context by setting x = cosf. The result then
translates into: f[—] sends spherical Gram matrices to positive semidefinite matrices (see
and the next lines) if and only if f(x) = > ;-0 cxx® on [—1,1]. (See Section for a longer
explanation.) This is precisely Schoenberg’s theorem on entrywise positivity preservers.

3.5. From Schoenberg’s positive definite functions to sphere packings. Before we
discuss the connections of Schoenberg and Rudin’s results to applied fields, and a modern
perspective on positivity preservers, we mention that Schoenberg’s theorem has another
interesting and important application: to the old problem of sphere packings in any dimen-
sion. As this is not directly related to the question of preserving positivity, we defer this
discussion to the Appendix; the connection to Schoenberg’s result is given in Section [A7]
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4. MODERN MOTIVATIONS; FIXED DIMENSION

Interest in positivity preservers has also been renewed in recent times, because of their
relevance in modern statistical methodology to analyze high-dimensional data. In classical
statistics, one typically considers a few random variables (p) and has a large number of
observations/data points of them. That is, the sample size n is much larger than p, which
renders robustness to traditional statistical estimators. However, in recent times a new
paradigm has emerged, wherein the number of random variables is very large (~100,000) and
the number of data points is consequently very small. This motivates strongly, and leads to,
many novel results on entrywise positivity preservers in a fixed dimension, as well as their
connections to hitherto disparate areas in mathematics: symmetric function theory, finite
fields, and graph theory, to name a few. We refer the reader to the survey [6] as well as the
monograph [83, Chapter 7] for more on this; here we provide only a short exposition.

4.1. An application to machine learning. Before discussing the fixed dimension setting in
earnest, we begin with a quick digression into an application of entrywise positivity preservers
in the “dimension-free” case, i.e., for matrices of all sizes. In this context, we continue to
discuss positive definite kernels on real Hilbert spaces H: as in Theorem these are
maps K : R — R such that (K((z;, :E]>))f j—1 is positive semidefinite for all choices of points
T1,...,T, € H.

It turns out that every such map K yields a reproducing-kernel Hilbert space, and this is
an important tool in Machine Learning (see, e.g., [116} 136, 142]). By Lemma|[l.2] the Gram
matrices ((z;,2;)) are precisely the positive semidefinite matrices (of all sizes) whose rank is
bounded above by dim H. Thus, Rudin’s theorem yields the complete classification of all
such kernels — and in 1959, predating their application in machine learning by decades.

The next subsection describes how Schoenberg’s theorem also contains in it the seeds
of — and similarly predates by decades — the concept of regularization in modern high-
dimensional data analysis. For now, we remark for completeness that Schoenberg’s results
on positive definite functions on spheres also have applications to Gaussian random fields,
pseudo-differential equations with radial basis functions, and approximating functions and
interpolating data on spheres — such as the earth in geospatial modeling. Moreover, Schoen-
berg’s theorem on Euclidean embeddings of metric spaces is a crucial ingredient in mul-
tidimensional scaling [32].

4.2. Rudin vs. Schoenberg. We take a moment to compare and contrast the two results:
Rudin’s Theorem vs. Schoenberg’s Theorem In both theorems, the test matrices
consist of Gram matrices of arbitrarily large finite sets of vectors drawn from a subset X C R":

e For Rudin, X was the open ball of any fixed radius 0 < p < 0o, and his classification
was independent of the precise value of » > 3. In this case, the positivity preservers
on this test set are positive sums of monomials.

e For Schoenberg, X was the unit sphere S"~!, which led to the test matrices being
correlation matrices — so all diagonal entries are 1 — and the rank bounded above by
r. In this case, the continuous preservers of positivity on this test set are positive
sums of Gegenbauer polynomials.

4.3. Applied fields and regularization. We now come to the study of preservers in fixed
dimension, strongly motivated by applied fields. Let us consider a concrete example: analyz-
ing temperatures on the earth’s surface. This has been a subject of intensive study in recent
years in climate science. With the advent of technology, there are thousands of weather
stations and other locations where one has temperature markers.
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Another concrete example involves understanding gene-gene interactions, in trying to de-
tect the early onset/early warning for cardiovascular diseases or cancer, say. There are
thousands of genes that are studied today. Alternately, one can consider the behavior over
time of financial instruments (e.g. in the stock market) and their interdependencies.

The common theme in all of these examples is of “complex multivariate structures” and
trying to understanding their interactions. This is a key challenge in modern applied fields —
and one of the simplest measures of dependency between any two such variables is the linear
dependency, captured in their covariance or correlation:

Cov(X,Y) :=E[(X — EX)(Y — EY)].

Covariance analysis has been a leading and robust mechanism for data analysis. The differ-
ence now is that the sample covariance matrices

1
n—1

n

> (@i —7) (i —7)" (4.1)

=1

S =

are enormous in dimension, since there are p > 0 random variables being measured. More-
over, as the sample size n is very small, the p X p matrix S is highly singular, which is
unfavorable to subsequent statistical analysis.

Thus, various workarounds have been suggested to “improve the properties” of such ma-
trices and render them more amenable to statistical techniques. A popular approach has
been to apply iterative methods (“compressed sensing”) — some names in this regard are
Donoho, Daubechies, Candes, and Tao. While these methods work well for a few thousand
random variables, they are too expensive for matrices of order ~100,000. As a result, new
methodologies are called for.

One alternative in the field of (ultra-)high dimensional covariance estimation, which has
emerged in recent times, is to regularize sample covariance matrices. In other words, one
applies a regularizing function entrywise to each covariance or correlation.

Example 4.1. A popular regularizer is hard-thresholding. Suppose the true covariance ma-
trix of the population (or of a probability distribution) underlying the sampled data, is:

1 02 0 R 0.95 0.18 0.02
=102 1 0.5]. Whereas the sample covariance matrix is > = | 0.18 0.96 0.47
0 05 1 0.02 0.47 0.98

It is then natural to threshold small entries (i.e., change them to zero if their absolute
value is below a “threshold”), with the idea that the variables are actually independent but

_ 095 018 O
the observed value is noise: > = | 0.18 0.96 0.47
0 047 0.98

Such an operation applies directly on the cone, induces sparsity (number of zero entries),
and is scalable because it is entrywise — no iterative or algorithmic procedures required. It also
displays good consistency and other properties. (See e.g. [11}, [71} [72] 07, [150] for some papers
that study regularization.) However, one also needs to ensure that the thresholded (or more
generally, regularized) matrix is itself a proxy for the true covariance — and in particular, is
positive semidefinite. This is where one has a theoretical gap, in that it is not clear for which
reqularizing entrywise maps is the transformed matriz guaranteed to be positive semidefinite.
Thus, while the problem emerges directly and naturally from applied fields, it brings us back
squarely to the question of classifying entrywise positivity preservers.

Moreover, there is motivation from this perspective to study the question of preservers
in a fixed dimension — because in a given applied problem, the number of random variables
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(aka the dimension of the problem) is known. So there is no need to study dimension-free
preservers; indeed, only studying these restricts one to using power series with nonnegative
coefficients to regularize covariance matrices, which is unnecessarily restrictive and which
does not induce or preserve sparsity. This strongly motivates trying to classify entrywise
positivity preservers — aka regularizing maps — in fixed dimension.

4.4. Positivity preservers in fixed dimension: rank and sparsity constraints. Re-
suming the narrative from the previous section, Schoenberg’s 1942 classification of positive
definite functions can be interpreted today in terms of regularization. Namely, a continuous
function is positive definite on S™~! for some r, if and only if — via — f o cos sends
Gram matrices, of any size / number of vectors but with all vectors in S"~!, to positive
semidefinite matrices. By Theorem and Lemma this is equivalent to the entrywise
maps preserving positivity, on matrices of any dimension but with rank at most r.

Similarly, if one lets the dimension grow unbounded, f : [-1,1] — R is positive definite on
S if and only if f[—] is a positivity preserver on correlation matrices (i.e., psd matrices with
diagonal entries 1). Thus, Schoenberg’s theorems and classified the regularizers of
correlation matrices of any size, but constraining (or not) the rank.

The question we are discussing here is different: now the dimension itself is constrained
(and hence, so is the rank). This is not only a natural theoretical “next step” after Schoen-
berg’s and Rudin’s results, it is also motivated from the modern perspective of big data (as
discussed above).

Unfortunately, few results are known in this setting. We mention results along a few of
these fronts. First, the problem in fixed dimension n = 1 is trivial: the preservers are clearly
all functions : [0,00) — [0,00). For n = 2, the situation is more involved, and was resolved
in 1979 by Vasudeva. We write here his result in a slightly more general setting; the proof is
virtually unchanged.

Theorem 4.2 ([143]; taken from [83, Theorem 6.7]). Suppose 0 < p < oo, and the domain
I is either [0,p) or (0,p). Now an entrywise map f : I — R preserves positivity on Pay(I) if
and only if [ is nonnegative, nondecreasing, and multiplicatively midconvex on I (this last
means that f(\/zy)* < f(x)f(y) for all z,y € I).

In particular, if we set It := I\ {0}, then: any such function is continuous on I't, and is
either never zero or always zero on IT.

The next case is n = 3. Remarkably, in this case the problem remains open. Thus, we do
not have a classification of the dimension-n positivity preservers for any n > 3.

In the absence of a classification for arbitrary functions acting on all matrices in P,,, several
refinements have been proposed and studied, yielding “restricted” preserver results. We list
a few of these in which the test matrices are additionally constrained.

(1) One can impose rank-constraints: f[—] sends matrices in P, with rank at most [ to
matrices in P,, with rank at most k. Rank-constraints are natural in both theory and
applications: on the theoretical side, Gram matrices arising from Euclidean spheres
S"=1 have rank at most r (in Schoenberg’s work [127]), and Rudin’s theorem as
well as Theorems|[2.12]and [2.13]also had rank constraints, arising from the support sets
of measures on the circle and line, respectively. On the applied side, rank constraints
arise naturally from the sample size, which is typically small in applications. For
results along these lines, see the 2017 paper [60].

(2) Alternately, one can impose sparsity constraints: impose zero entries in pre-fixed
positions. These positions may be determined from a combinatorial perspective (one
forms graphs associated to a zero pattern) or from domain-specific knowledge in
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applications, where various random variables are known to be independent or at least
uncorrelated, e.g., Gaussian graphical models. For such results, see the work [58].
(3) One can instead also study preservers of structured matrices such as Toeplitz or

Hankel matrices, as was done in Theorems and

Independently, one can constrain the set of functions that act on test matrices. We discuss
two families; the first consists of power functions. These are a natural family of entrywise
maps to consider, and they are also used in practice to induce sparsity on matrices by sending
very small / spurious observed correlations to (very close to) zero.

By the Schur product theorem, all integer powers z*, k > 0 entrywise preserve positivity
in every dimension. We now turn to non-integer powers — and hence, only consider matrices
with positive entries. The following result was shown in 1977 by FitzGerald and Horn:

Theorem 4.3 ([44, Theorem 2.2]). Given an integer n > 2, the entrywise power x%, o € R
preserves positivity on P ((0,00)) if and only if & € Z=o U [n — 2,00).

This interesting result has seen variants for preservers of positive matrices with negative
entries and variants of power maps; rank constraints; and sparsity constraints. See e.g. [57,
59, [74]. In all of these papers, entrywise powers preserving certain matrix properties are
classified, and in all cases the solution set equals the non-negative integers up to some integer
C, followed by all real numbers in [C, 00). This point of phase transition is called the critical
exponent (for that particular matrix property). In particular, in [59] a new graph invariant
is defined and computed for all chordal graphs.

We conclude this part with a significant strengthening of Theorem It turns out that
there is a multiparameter family of rank two positive matrices, each of which encodes the
entire set of power preservers of Loewner positivity. This was shown by Jain in 2019:

Theorem 4.4 ([80, Theorem 1.1]). Given n > 2, choose distinct positive reals x1,...,Ty.
Also let o« € R. Then x® entrywise preserves positivity on the matriz (1 + %%‘)ijl if and
only if o € Z=o U [n — 2,00).

4.5. Connection to symmetric polynomials. In addition to these modern results, there
is essentially only one classical result for entrywise preservers of positivity in a fixed dimension
(without any restrictions on the test matrices or the functions). This is due to Loewner, who
wrote it in a letter to Josephine Mitchell in 1967 (courtesy: Stanford Library Archives).
Later, the result appeared in the 1969 PhD thesis of his student, Roger A. Horn [79], and
was subsequently refined in [60}, 84]. We state an alternate version from [7, Theorem 4.2]:

Theorem 4.5 (“Stronger” Loewner—Horn, [79, Theorem 1.2]). Fiz a dimension n > 3 and
a scalar 0 < p < oo, and let I = (0,p). Let f: I — R be such that f|—] preserves positivity
on Py(I) and on all Hankel matrices in Py (I) of rank at most two. Then f € C"=3)(I), with
. f ..., ™3 nonnegative on I. Moreover, f"=3) is convex and nondecreasing on I.

Interestingly, this result, combined with Bernstein’s theorem on absolutely monotone func-
tions [9], provides a pathway to proving the dimension-free Schoenberg—Rudin theorem for
preservers of positive matrices with positive entries. See e.g. [7] for this treatment in one and
several variables.

The proof of Theorem originally due to Loewner, contains the seeds of a surpris-
ing connection to symmetric function theory. We now describe this connection, which was
discovered only about ten years ago, and is now better understood.

Recall the century-old observation by Pélya—Szegd (or a special case thereof) from 1925:
if f(z) is a polynomial with nonnegative coefficients, then f[—] entrywise preserves P, (R)
for all n > 1. Thus, if one seeks preservers of P, (R) or of P, ((—p, p)) for fixed n, then one
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should expect more polynomial preservers: ones which have negative coefficients. However,
apart from Vasudeva’s 2 x 2 characterization (see above), no example of such a polynomial
was known for almost a century. Certainly, work of Fischer—Stegeman [43] had shown that if
such a preserver on P, ((—p, p)) is to exist, the n nonzero coefficients of lowest degrees should
be positive, as should those of highest degrees if p = co. This is “morally” along the lines of
the Loewner—Horn theorem The question remains:

Can at least one other coefficient be negative? More generally, which coefficients in a
polynomial preserver of P, ((—p,p)) can be negative, for fired n > 1 and p € (0,00)?

This was first answered in 2016 for a special class of polynomials by Belton—Guillot—Khare—
Putinar [4], and then in 2021 for all polynomials by Khare-Tao:

Theorem 4.6 ([80]). Fiz an integer n > 1 and a scalar 0 < p < oco. If a polynomial
f(x) with real coefficients is an entrywise positivity preserver of P, ((—p, p)), then its first n
coefficients (of lowest degree) are positive. Moreover, it is possible for every other coefficient
to be negative.

If f has precisely n + 1 nonzero coefficients, there exists a closed-form expression for the
negative threshold for the unique negative coefficient possible (which is the leading term).

As the focus of this article is on studying the dimension-free preservers (originally classified
by Schoenberg and then Rudin), we do not provide more details here, referring the reader to
the aforementioned papers, as well as the survey [6] and the monograph [83]. We mention,
however, that the determinantal calculation that is at the heart of obtaining the closed-form
threshold in Theorem as well as at the heart of Loewner’s theorem is as follows:

Given a smooth function f(t), and real scalars u;,v; for 1 < i < n, compute the Taylor
coefficients of the n x n determinant A(t) := det f[(tu;vj)] ;4]

The first (72‘) + 1 such derivatives/Taylor coefficients were worked out by Loewner in the
1960s. However, all Taylor coefficients had been worked out in the special case f(t) = 1/(1—t)
by Cauchy [20], more than a century ago! This is the famous Cauchy Determinantal Formula,
which is an important result in symmetric function theory, and which turns out to involve
Schur polynomials in the (x;) and in the (y;) separately. In the 1880s, Frobenius generalized
this to f a sum of two geometric series [4§].

Eventually, this question was settled by Khare in full generality — in both the analytic
and algebraic settings. Here is the latter result (and it subsumes the calculations by Cauchy,
Frobenius, and Loewner):

Theorem 4.7 ([84, Theorem 2.1]). Fiz a commutative unital ring R, and let t be an indeter-
minate. Let f(t) :== 3 1150 futM € R[[t]] be an arbitrary formal power series. Given vectors

u,v € RN for some N > 1, we have:

N
A(t) := det fltuv"] = V(@)V(v) Y M > sa(Wsn(v) - ] fu:
Jj=1

M>(1;) n=(ny,...,n1) M
where V(u) := [];;(wi —u;) is the Vandermonde determinant for u, and similarly for V(v).

This result (or its analysis counterpart, wherein the inner sum is precisely the Mth Maclau-
rin coefficient of A(t)) yields the interesting conclusion that every smooth function / power
series “gives rise to” all Schur polynomials. This bridges analysis and symmetric function
theory, and also helps explain the appearance of Schur polynomials in the preserver problem
in fixed dimension in [4} [86].

Later, Khare and Sahi [85] worked out the analogue of Theorem [4.7] for the matrix perma-
nent permf[(tu;v;);';—;], and in fact for all irreducible characters — even more generally, all
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complex class functions — of the symmetric group and of every subgroup. Thus, the entrywise
calculus also connects (surprisingly) to group representations and symmetric functions.

As a concluding trivia, we sketch in the next figure the closely knit academic lineage of
several of the experts in this area, having mentioned some of their contributions aboveE|

K. T.W. Weierstrass E.E. Kummer
H.A. Schwarz F.G. Frobenius L.I. Fuchs L. Konigsberger
L. Fejér 1. Schur G. Pick
G. Pélya I.J. Schoenberg C. Loewner
(Source: Math-Genealogy) R.A. Horn

FiGUrE 4.1. Math-Genealogy of some of the experts in positivity, its pre-
servers, and connections

4.6. Acting only on off-diagonal entries. A variant of Schoenberg’s theorem [2.4] with a
modern twist, is as follows. Recall that Schoenberg was classifying the entrywise maps sending
Gram matrices to themselves — equivalently, sending covariance matrices to themselves. Now
if the test matrices are correlation matrices (i.e., Gram matrices of vectors on S°°), then one
may want to preserve the self-correlations 1 along the diagonals, while regularizing the other
correlations. Thus, a natural variant of the entrywise action is as follows:

Definition 4.8. Given a domain I C R, a function f : I — R, and a square matrix A = (a;;),
define f*[A] to have diagonal entries a;; and other entries f(a;;).

In 2015, Guillot and Rajaratnam showed that, perhaps surprisingly, the dimension-free off-
diagonal entrywise preservers are once again solutions to Schoenberg’s theorem — but with
an additional constraint:

Theorem 4.9 ([61, Theorem 4.21)). Fiz a scalar 0 < p < oo and let I := (—p,p). The
following are equivalent for a function f: I — R:

(1) f*[—] preserves positive semidefiniteness on Py, (I) for all sizes n > 1.
(2) The function f(x) =3 ;- cpx® on I for some scalars ¢, > 0, and such that | f(z)| <
|z| on I. (So if p = o0, then f(x) = cx on R with ¢ € [0,1].)

3Fejér had a remarkable list of PhD students — here we name some others who feature in this article and
the Appendix: Paul Erdos, Lészlé Fejes Téth, P4l Turdn, and John von Neumann.


https://www.genealogy.math.ndsu.nodak.edu/id.php?id=7488
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This line of inquiry was taken forward by Vishwakarma [146], who generalized the problem
in two ways. First, the function f now avoids prescribed principal submatrices / diagonal
blocks in each dimension, not just 1 x 1 blocks / diagonal entries; and second, on these
diagonal blocks a different function g acts. Vishwakarma classified most of these cases, for
g(x) = az® with a € (0,00) and k € Z=q. Here is a special case of his main result.

Theorem 4.10 ([146]; taken from [83, Theorem 20.3]). Fiz 0 < p < oo, and let I = (—p, p)
and f,g: 1 — R. Now fiz for each n > 1 a collection T,, of subsets of [n] :={1,...,n} —i.e.,
T, C 2" Given A € I™*™, define (g, f)1,[A] € R™™ to be the matriz with (i, j) entry g(a;;)
if there exists E € T,, with i,j € E. If no such E exists then set (g, f)r, [Alij := f(asj).

Now assume T, € {{1},...,{n}} for some n > 3; and T, partitions a subset of [n] for
alln > 1. If g(z) = az® with a € (0,00) and k € Z=o, and (g, f)1,[A] € Pa(R) for all
A € P,(I), then there are three cases:

(1) If for all n > 3 we have T,, = {[n]} or {{1},...,{n}}, then f is a convergent power
series with nonnegative coefficients, and 0 < f < g on [0, p).

(2) If T), is not a partition of [n] for some n > 3, then f(x) = cg(x) for some c € [0, 1].

(8) If neither (a) nor (b) holds, then f(x) = cg(x) for some c € [-1/(K —1),1], where

K :=max |T,| € [2, +o0].
n=1

The first case is akin to Schoenberg’s theorem, in the form of the final solution set. The
next case is much more restrictive; but it is the third part of the result that is striking. Recall
the profusion of Schoenberg-type results above, which unanimously reveal absolutely mono-
tonic functions (power series with nonnegative coefficients) as the dimension-free preservers.
Nevertheless, part (3) — in the special case g(x) = = — reveals the possibility of f(z) = cz
with ¢ < 0. This is the first — and to date, the only — instance of a dimension-free setting, in
which the positivity preserver is not absolutely monotonic.

5. ALLOWING NEGATIVE EIGENVALUES; MULTIVARIATE VERSIONS

5.1. Preservers of matrices with negative inertia. We now discuss some results that are
mostly taken from very recent preprints, beginning with negative inertia preservers. Having
discussed entrywise maps preserving matrices with all nonnegative eigenvalues, it is natural
to ask what happens if one allows a few negative eigenvalues. This was worked out by
Belton—Guillot—-Khare—Putinar in [8], and we present a few of the findings.

Definition 5.1. Given integers n > 1 and 0 < k < n, and a domain I C C, let S,(lk)(l)
denote the Hermitian n x n matrices with all entries in I and exactly k negative eigenvalues.

Also denote by S}Lk) (I) the “closure”, wherein the entries still stay in I but the negative
_ k
inertia (i.e., number of eigenvalues < 0) is at most k: Sflk)(f) = |_| SU().
j=0

Finally, the inertia of an n x n Hermitian matrix is the triple (n_,ng,n4), where the
coordinates denote the numbers of negative, zero, and positive eigenvalues, respectively.

Our goal is to understand the entrywise preservers of negative inertia on (J,,-, ST(Lk) (I) for
all integers k£ > 0. Note that the case of k = 0 is precisely the (dimension-free) Schoenberg—
Rudin theorem above. We state the next result only for I = (—p, p) (and in it, compute the
inertia preservers as well). The cases of I = (0, p) and [0, p) will be presented through their
multivariate versions below.
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Theorem 5.2 ([8, Theorems 1.2 and 1.3]). Fiz an integer k > 0 and a scalar 0 < p < oo.
Let I = (—p,p) and f: I — R.

(1) Then f[—] preserves the inertia of all matrices in Sr(lk) (I) for all n > k if and only if
f(z) = cx for some ¢ > 0.
(2) The map f[—] preserves the negative inertia of all matrices in ST(Lk)(I) foralln >k
if and only if:
(a) k = 0: This is the Schoenberg—Rudin theorem, and f must be a convergent power
series on I with nonnegative Maclaurin coefficients.
(b) k=1: f(x) =cx or f(x) = —c, for some ¢ > 0.
(c) k=2: f(x) =cx for some ¢ > 0.

Thus, the class of dimension-free (negative) inertia preservers is very rigid for £ > 0. It
turns out that a more interesting question is to classify the entrywise maps sending Sék) (I)

to Sg). This too admits a complete solution, whose multivariate version is perhaps more
clarifying to state. For now, we provide the meat of the assertion in the form of a summary:

Theorem 5.3 ([8, Theorem A}). Fiz nonnegative integegk‘,l and a scalar 0 < p < co. Let
I=(—p,p) and f : I — R be such that f[—]: 87(116)([) — S}Ll)(R) for alln > k1.
(1) If k =0, then f(z) equals a(ny) real number f(0) plus a convergent power series with

nonnegative Maclaurin coefficients and vanishing at x = 0.
(2) If k > 0, then f is linear or constant.

5.2. Preservers of positivity and of inertia, in several variables. Schoenberg’s the-
orem has a natural multivariable generalization, for any number of variables m > 1. Note
by the Schur product theorem that if Ay, ..., A,, are any matrices in P, (C) for some n > 1,
then their entrywise product Ajo---0A,, € P,(C). Reformulated, this says that the function
f(x) =1 -z, entrywise sends P, (C)™ to P,,(C) for all n > 1. In general, we define
fIAL Al = @), ), A= (@)r.
Restricting to real matrices, the easy implication of the following 1995 generalization of
Schoenberg’s theorem — by FitzGerald—Micchelli-Pinkus — is clear:

Theorem 5.4 ([45, Theorem 2.1]). Let I = R. An entrywise map f : I'"™ — R sends P, (I)™
to Pp(R) for all m > 1, if and only if f equals a convergent power series with nonnegative
coefficients on I :

f(x) = Z Cax® forallx € I, with all co, > 0. (5.1)

an;”O

This result was recently strengthened by Belton—Guillot—Khare—Putinar in two ways. First,
the domain was reduced and also varied, to one- and two- sided domains. Second, the test
set of matrices was severely reduced, to low rank Hankel ones.

Theorem 5.5 ([7]). Let 0 < p < oo, and let I = (0,p),[0,p), or (—p,p). Fiz a positive
integer m and suppose f : I"™ — R. The following are equivalent.
(1) The entrywise map f[—] sends m-tuples in P, (I)™ to P, (R).
(2) Let Hy,(I) denote the Hankel matrices in P, (I) — of rank at most 2 for I = (0, p), [0, p),
and rank at most 3 for I = (—p,p). Then f[—]: H,(I)™ — P, (R) for alln > 1.

(8) The map f is as in (5.1)), on all of I™.
Skeleton of proof. That (3) = (1) is via the Schur product theorem, and that (1) = (2)
is immediate. That (2) = (3) was shown in [7] in the following locations:
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e For I = (0, p): see Theorem 9.6 in loc. cit.
e For I =0, p): see Theorem 9.6 and the proof of Proposition 9.8.
e For I = (—p, p): see Theorem 9.11 and the subsequent remarks. O

Having understood positivity preservers, we turn to the multivariate analogue of Theo-
rem 5.3l The following is [8, Theorem B]:

Theorem 5.6 (Schoenberg-type theorem with negativity constraints). Let I := (—p,p),

(0,p), or[0,p), where 0 < p < 0o. Also fix integers m > 1 and ki, ..., kpy,l > 0. Rearrange
the negative inertias k, such that any zero values are at the start; thus there exists 0 < mg < m
such that k1 = - = kg =0 < Emgt1, -+ - km.-

Now given any function f : I"™ — R, the following are equivalent.
(1) The entrywise map f[—| sends lezl&(f”)(l) to Sr(ll)(R) for allmn >
(2) The entrywise map f[—] sends x;”zl&(fp)(]) to S,gl)(R) for all n > max, ky.
(3) There exists a function F : (—p,p)™ — R and a non-negative constant c, for each
p=mg+1,...,m such that
(a) we have the representation

maxy, k.

m

f(x)=F(x1,...,Zm) + Z CpTp forallx e I™, (5.2)
p=mo+1

(b) the function X' = (x1,...,%m,) = F(X') — F(0p,) is absolutely monotone, that
18, it is represented on I™° by a convergent power series with all Maclaurin
coefficients non-negative, and

(¢) the inequality 1p )< + Z k, <1 holds.

picp>0

In addition to judiciously chosen test matrices and analysis techniques, an interesting
additional ingredient in the proof involves the use of Sidon sets (also termed B-sets) from
number theory and additive combinatorics, whose use was pioneered by Singer [134] and
Erdos—Turan [39]; see also Bose-Chowla [16].

Having discussed the real case, we end by mentioning the multivariable complex case too.
In this case — following Herz’s theorem [2.16] its multivariate counterpart was again shown in
1995 by FitzGerald—Micchelli-Pinkus:

Theorem 5.7 ([45, Theorem 3.1]). Given an integer m > 1 and a function f: C™ — C, the
following are equivalent.

(1) The entrywise map f[—| sends Pp,(C)™ to P,(C) for alln > 1.
(2) The function f(z) = Za,ﬁezgo Cap2z°ZP for allz € C™, with all cop > 0.

This result was extended to classify the preservers of negative inertia. Here we present the
complex analogue of Theorem this is [8, Theorem CJ:

Theorem 5.8. Let the integers m, ki, ..., kny,l be as in Theorem [5.6. Given any function
f:C™ — C, the following are equivalent.

(1) The entrywise transform f[—] sends x;”zlSq(zkp)((C) to SY (C) for alln

=
(2) The entrywise transform f[—] sends lezlSq(@kp)((C) to S (C) for all n > maxy, ky.
(3) There exists a function F : C"™ — C and non-negative constants ¢, and d, for each
p=mg+1,...,m such that

max, k.
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(a) we have the representation
m
f(z) =F(z1,...,2m,) + Z (cpzp + dpZzp) for allz € C™, (5.3)
p=mo+1
(b) the function z’ := (z1,...,2m,) > F(2') — F(0p,) is represented on C™ by a
convergent power series in z' and z' with non-negative coefficients, as in Theo-

rem 5.7, and
(¢c) f(Om) = F(0p,) is real, and we have 1pg)<o + Z kp + Z k, < 1.

picp>0 p:dp>0

Thus, the rich class of preservers in this result and Theorem mix the absolutely mono-
tone class of Schoenberg, with the rigid class of nonnegative homotheties. Notice that if all
k, =1 =0, we recover Schoenberg’s (multivariate) real and complex theorems.

6. RECENT DEVELOPMENTS ON POSITIVITY PRESERVERS

We are nearing the end of this survey. This rather short section has three relatively
disconnected parts.

6.1. Preservers of positivity and of non-positivity. In all of the results mentioned
above, we have focused on classifying the functions f such that f[A] is positive if A is so.
(We omit the inertia and multivariate considerations of Section [5]) Here we consider the
natural parallel question: what are the functions such that f[A] is positive semidefinite if
and only if Aisso? A close variant is to replace “positive semidefinite” by “positive definite”.
Here are the answers, from recent work by Guillot—Gupta—Vishwakarma—Yip. Remarkably,
the answers are the same for all dimensions and for any fixed dimension greater than two:

Theorem 6.1 ([56, Theorem 1.8]). Fiz a dimensionn > 3 and letF =R or C. The following
are equivalent for an arbitrary function f :F — F:
(1) A € F™ " is a positive definite matriz if and only if f[A] is.
(2) A € F"™ " is a positive semidefinite matriz if and only if f[A] is.
(3) f is a positive multiple of a continuous field automorphism of F. That is, f(x) = cx
if F =R, and f(z) = cz or ¢z if F = C, for some ¢ > 0.

In fact the authors prove significantly stronger results in [56], in that they study the
problem for matrices with entries in a wide class of sub-domains of R and C.

6.2. Preservers over finite fields. We next study Schoenberg’s theorem over a nonstan-
dard setting: finite fields F = F,. In analogy to the real case, here one defines a scalar to be
positive if it is the square of a nonzero element — i.e., a nonzero quadratic residue. Notice
that these elements still form half of the units IF; when the prime power ¢ is odd.

Defining positive matrices is more challenging. It turns out that over finite fields, even
the basic characterizations of positive semidefinite matrices — in Theorem — are not all
available. Instead, we use a different characterization of positive definite matrices, one that
is unavailable for semidefinite matrices:

A real symmetric matrix is positive definite if and only if its leading principal minors are
all positive.

It turns out that this notion can be adapted usefully to finite fields. This was studied in
detail by Cooper—-Hanna—Whitlatch in [31], and they showed that when ¢ is even or ¢ = 3
mod 4, such matrices A,x, admit a Cholesky decomposition: A = LLT, where L is lower
triangular with entries in F, and positive diagonal entries. Thus, we work with:



24 APOORVA KHARE

Definition 6.2. A symmetric n x n matrix over a finite field F, is positive definite if its
leading principal 1 x 1,...,n x n minors are squares of nonzero elements in F,,.

We now present a natural class of entrywise preservers of positive definiteness over Fg, in
the spirit of Pélya and Szegé’s century-old result. Namely, if char(F,;) =: p and = — 2P is
the Frobenius automorphism, then

det A°? = det(a Z det(o H ( Z det(o H Qio (i )) (det A)P.

gESy i=1 gESy
From this it follows that the same functions as in Theorem [6.1] - are preservers: positive
multiples of field automorphisms z cxpk, with ¢ € F, positive and £ > 0 in Z. Remarkably,
Guillot—Gupta—Vishwakarma—Yip showed that — akin to Theorem [6.1] - for every fixed n > 3,
there are no other preservers:

Theorem 6.3 ([55]). Let ¢ = p* for a prime p > 2 and an integer £ > 1, and f : F, — F,.
The following are equivalent.

(1) The map f[—] preserves P, (Fy) for some n > 3.
(2) The map f[—] preserves P, (Fy) for all n > 3.

(3) f(z) =ca® for some c € Fy positive and 0 < k < € — 1.
If moreover p is odd, these are also equivalent to:

4) f(0) =0 and f is an automorphism of the Paley graph over F,, i.e.,
q
(f(a) = f(0)) V2 = (a =)@V VabeF,

Thus, unlike the “classical” Schoenberg—Rudin theorem, both the “if-and-only-if” version
in Theorem as well as Theorem over finite fields, admit solutions in each fixed
dimension (and hence in the dimension-free setting). Moreover, the proof over finite fields
is completely different than over the reals or complex numbers, and involves an interesting
mix of tools: the quadratic character 2(4~1/2 the celebrated Weil character bounds, results
of Carlitz on Paley graphs, and the Erdos—Ko—Rado theorem, to name a few.

Remark 6.4. We add that the papers [56] and [55] prove many more results on “if-and-
only-if” positivity preservers as well as preservers over finite fields; what is provided above
and here are merely a sample. We refer the reader to these works for more details.

6.3. Schoenberg’s theorem for integer matrices. We end this section by returning full
circle to Schoenberg’s theorem in characteristic zero — but this time over matrices with integer
entries. In this case, one works with functions f : Z — R — which have a discrete domain, so
one cannot even take limits of function-values!

Remarkably, Schoenberg’s theorem still holds here, with somewhat stronger hypotheses:

Definition 6.5. A real matrix is said to be partially defined if a subset of its entries are
unspecified. Such a matrix is said to be positive (semi)definite if there exists a choice of each
unspecified entry such that the resulting matriz completion is positive (semi)definite.

We now come to the main new tool that is required to state the result.

Definition 6.6. Given a subset I C R, a function f : I — R is a partially defined entrywise
positivity preserver if for every partially defined psd matrix A with specified entries in I, the
partially defined matrix f[A] is also psd.

In other words, for every partially defined psd matrix A with specified entries in I, both
A and f[A] can be completed (via some choices of real scalars) to psd matrices.
With these notions at hand, we state “Schoenberg’s theorem over Z”:
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Theorem 6.7 (Damase—Pascoe [34], forthcoming). A function f : Z — R is a partially
defined entrywise positivity preserver, if and only if f(n) = Zk>0 cpnf for all integers n,
with all ¢, € [0, 00).

In other words, as “usual” f is the restriction to Z of an entire function that is absolutely
monotonic on (0, 00). Note that one implication is precisely the Pélya—Szegé 1925 observation,
via the Schur product theorem.

Remark 6.8. Theorem is valid even if one replaces Z by any X C R with sup X = oo.

While Theorem is indeed a pleasing addition, it is natural to ask if one can get rid of
the “partially defined” test matrices:

Question 6.9. Suppose a (continuous) entrywise map f : Z — R preserves positivity on
U1 Pa(Z). Is f the restriction to Z of an entire function with nonnegative Maclaurin
coefficients?

APPENDIX A. SPHERE PACKINGS AND KISSING NUMBERS IN EUCLIDEAN SPACE

This Appendix contains a parallel mini-survey of two famous problems in discrete geometry:
understanding sphere packings and kissing numbers for spheres in Euclidean space. This also
connects to the main body of this article via Schoenberg’s theorem (which classifies the
dimension-free entrywise positivity preservers with a rank constraint). See Section

Much of this material can be found in the well known monograph [30] by Conway and
Sloane. See also [I51], as well as the classic 1964 text by Rogers [121].

The question of sphere packings is informally stated as follows: given a dimension n > 1,
how does one stack the maximum amount of congruent balls — or spheres — Brn(ay,r) for a
fixed r > 0 and centers aq, ao, ... € R™ which can intersect only along their boundaries.

A.1. Problem statement and early history. We now write the question more formally
in order to set notation. We will work with unit spheres — i.e., r = 1 — and denote each
sphere by its center, so that the condition of non-overlaps is equivalent to all centers being
at least distance 2 apart.

Definition A.1. Fix a dimension n > 1.
(1) A (sphere) packing in R™ (or in general, in any metric space) is a countably infinite
subset (of “centers”) P C (R",| - ||2) such that ||z —y|2 > 2 for all z # y in P.
(2) A packing is a lattice packing if P is a lattice in R™.
(3) The density of a packing P is (informally) the maximum proportion of space filled
by the spheres, and is defined via the formula

1
Ap :=1lim sup ———Volgn | [-M, M]|" N Brn(x,1) | . Al
pi=lim sup oo Vol ([ "0 B >) (A1)

In other words, take a large cube [—M, M]™ in R™ and intersect it with P; now compute
the percentage of this intersection inside the cube; and take M — oco. Finally, we have:

Definition A.2. The sphere packing density of R” is Agn := sup Ap.
packings P
On a related note, define the lattice packing density of R™ to be

A]g;) = sup Ap. (A.2)

lattice packings P
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The question of interest is to compute ARn,AI(RLn) € [0,1] for n > 1 (for n = 1, they
are clearly 1). This question has a storied history. Perhaps the earliest version in modern
times involves understanding close-packing of spheres, which came up in the 1580s when Sir
Walter Raleigh asked the English astronomer and mathematician Thomas Harrioﬁ about
efficiently stacking cannonballs (on ships). Harriot published in the 1590s an analysis of
stacking patterns — which also led towards atomic theory — and later corresponded with
his German contemporary Johannes Kepler, who stated a conjectural form in 1611 in the
work [82]: the maximum packing density in three dimensions is achieved by a pyramidal
piling, akin to oranges in grocery stores.

It took almost four centuries to fully (and positively) settle Kepler’s conjectureﬂ During
this time, many researchers studied the problem in three and two dimensions. For n = 2:
in 1773, Lagrange [94] studied extremal quadratic forms and deduced that the lattice density

(L)

in R? is achieved by the hexagonal /honeycomb packing: Ap, = % However, the bound

R2
for all packings was realized much later. In 1910, Thue showed [I39] that this is indeed the
unconstrained packing density: Age = Lg; however, it is generally believed that his proof

has a gap. A complete proof was provided in the 1940s by Fejes Téth [40] [41].
The n = 3 case was harder, and an early result is by Gauss, who showed in his book
review [51] of Seeber’s book on quadratic forms [I30[ that Lagrange’s 1773 methods could

be modified to yield the 3-dimensional analogue: A]%) = ;W In other words, Kepler’s
cannonball packing achieves the lattice packing density in R3. (See Section for the
connection of Lagrange’s and Gauss’ study of extremal quadratic forms to sphere packings.)

Note that there are not one, but at least two different ways to achieve the optimal can-
nonball packing density. Namely, on top of each “sheet” of spheres, one arranges the next
sheet according to either the FCC' (face-centered cubic) arrangement — also denoted CCP —
or the HCP (hexagonal close-packed) arrangement. As one gets two such choices each time,
both with the same density, there are uncountably many arrangements of “sheets” in 3-space
which yield the Kepler packing density. This uncountable family is collectively termed as
Barlow packings, in honor of the crystallographer William Barlow’s 1883 work [3].

Subsequently, the Kepler conjecture featured in Hilbert’s 18" problem [75], at the turn of
the 20th century.

A.2. Applications. A quick digression: the problem of sphere packings was not only of
intrinsic mathematical interest (or for efficiently stacking cannonballs or oranges, in real life),
it features in other fields too — starting with Harriot and Barlow, whose aforementioned works
relate sphere packings to crystallography. Sphere packings are a reasonable starting point for
modeling the structure of gases, liquids, crystals, and granular media, and can yield density
estimates for “idealized materials”.

40n a historical note, Thomas Harriot made remarkable contributions to mathematics and physics: he
was the first to observe sunspots using a telescope, preceded Galileo in drawing a map of the moon using a
telescope, and is said to have studied refraction and discovered Snell’s law before Snell. In mathematics, he
pioneered the modern way of computing with algebraic unknowns, and proved Girard’s theorem on the area
of a triangle on the unit sphere (predating Girard).

°0n a light note: this means in particular that it isn’t only Fermat’s Last Theorem that had to wait for
centuries for a resolution.

6Seeber was a German mathematician and physicist who is especially known for his mathematical work
focusing on crystallography. Thus, between Lagrange, Gauss, Seeber, and the French physicist Auguste Bravais
— who is known for working on the lattice theory of crystals — one can regard this as the time when lattices
became formalized and mainstream in mathematics.
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In the mathematical sciences, we now know that sphere packings are related to number
theory (via modular forms) and to optimization. One can also connect the question to physics,
including statistical mechanics and the Thomson problem. E.g. one imagines the centers of
the spheres to be electrons that repel one another, and the densest packing is a “minimum
energy configuration” of electrons.

However, arguably the most important application of (higher-dimensional) sphere packings
is to communication theory: they are the continuous analogues, in a sense, of length n error-
correcting codes. This emerges from work of Shannon, Hamming, and others. Roughly
speaking, one is transmitting a set of signals — represented here by points x € R", with n
usually large. (E.g., the coordinates may be amplitudes at different frequencies, typically
in the hundreds or more.) The transmission channel may have a noise level € > 0, so one
expects the transmitted signal z to be received at the other end as some y € Bgn (z, ). Thus,
if one builds the signal set / “vocabulary” such that any two signals have distance at least
2¢, then this allows the mechanism to “error-correct”. Whereas if this is not the case, certain
received signals could not be “decoded” to recover uniquely the transmitted signal.

Moreover, we would like to have as large a vocabulary as possible — which translates
precisely into maximally packing e-spheres in a fixed space. This is an important real-world
application: error-correcting codes are used by cell phones, the internet, and even space
probes to send signals reliably.

Example A.3. We provide an early example of such a code, and it is discrete in nature.
Given a set F' and integers n, k > 1, we first set some notation.
(1) A code (or F-code) of length n is a subset S C F".
(2) Such a subset is a k-error correcting code if the Hamming distance between any
x #y €S (ie., the number of coordinates where z; # y;) is at least 2k + 1.
(3) A k-error correcting F-code of length n is perfect if every word in F™ is “detectable”
by S up to error at most k (in particular, the balls in the next equality are disjoint):

F" = |_| BHamming(Sa k)
seS
For instance, here is a binary 1-error correcting code of length 7:

(1,1,0,1,0,0,0), (0,1,1,0,1,0,0), (0,0,1,1,0,1,0), (0,0,0,1,1,0,1).

It is easy to check that the Hamming distance between any two unequal points is 4. Thus,
the code can detect (and correct) errors in data transmission of a single bit. O

The first perfect 1-error correcting codes were discovered in 1947 by Hamming (but pub-
lished in 1950) [66], and in 1949 by Golay [54], in two landmark papers in the field. Since
these works and another concurrent seminal work by Shannon [I31], a problem of consid-
erable interest in mathematics, information theory, and applications has been to try and
construct binary codes with large minimum distance. (For sphere packings, in the sequel we
will consider subsets/codes on the surface of a sphere, termed spherical codes.)

A.3. Optimizing quadratic forms: from Lagrange to Hermite, to lattice packings.
Before we return to Kepler’s conjecture and sphere packings in other dimensions, we explain
how Lagrange’s study of quadratic forms leads to lattice packings, via work of Hermite (and
via a constant that is named after him). Some of this account is taken from [I12] Section 1].

Given integers a, b, ¢, Lagrange was studying which integers can be represented by quadratic
forms ax? 4 bxy + cy? for x,y € Z — inspired by previous work of Euler and of Fermat (who
had studied the “sum of two squares” case a = ¢ = 1,b = 0). Thus, in his 1770s work [94],
Lagrange generalized Euclid’s algorithm to such binary quadratic forms. This was further
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generalized in 1850 by Hermite [70] along a common theme to this survey and to Theorem 1.1
for x = (z1,...,2,) € R", define the quadratic form Q(x) := szzl gijrixj for some real
symmetric positive definite matrix/quadratic form Q. Hermite showed:

Theorem A.4 ([70]). Given a positive definite real matriz Qunxn, there exist integers xy, . .., Ty
such that
0<Q((x1,- .. 1)) < (4/3) V2 det(Q) /™.

If we define ||Q := infyezn\ oy @(), it turns out that this infimum is positive and is
attained. Thus the ratio ||Q||/ det(Q)"/™ can be bounded above for all positive definite Q.
This yields the constant named after Hermite:

Q1

T (This

Definition A.5. The nth Hermite constant v, := sup
Q=QT positive definite det(Q)

supremum is in fact attained.)
Moreover, the bivariate case of these facts had been shown by Lagrange:
Theorem A.6 ([94]). The supremum 2 exists/is attained, and equals \/4/3.

It turns out that determining the Hermite constant is equivalent to a restricted version of
computing the packing density: doing so for lattices. Recall that a lattice in R™ is the Z-span
of an R-basis.

Definition A.7. Given a lattice L C R", its covolume is the n-dimensional volume of R"/L;
and its least length \1(L) is the length of any shortest nonzero element of L.

The Hermite constant can be described in lattice-theoretic terms:

Proposition A.8. v, equals the supremum of A1 (L)? over all unit covolume lattices:
Y := sup{A1(L)* : Volgn(R"/L) = 1}. (A.3)

Proof. At the outset, note that if L is any lattice, then rescaling L by ¢ > 0 rescales the least
length by ¢ and the covolume by ¢™. Thus,

)\1 (CL)Z - )\1 (L)2
Volgn (R"/cL)2/m ~ Volgn (R /L)2/n’
and so we need to compare the supremum of this right-hand side to ~,,.
This is done using a standard correspondence between quadratic forms @ > 0 and lattices

L. Given @, Theorem [1.1]yields an invertible matrix By = [vi]- - - |v,] whose columns have
Gram matrix @. This leads to the lattice L(Bg) := @] ;Zv;. Moreover, the choice of basis

is unique up to an orthogonal change: BgBQ =Q = C’gC’Q if and only if BQCE1 € O(n).
Now if Bg = UC( for orthogonal U, then we compute:

(A.4)

n 2
Ql= inf 27Qr= inf 2"BLBozr= inf zivill = M\ (L)2,
Il xeZ™\{0} xeZ™\{0} QPe z€ZM\{0} |1 “— )
det(Q)!/™ = det(BLHBg)" /™ = | det(Bg)[*™ = Volgs (R"/L)*/™, (A.5)
and both calculations are unchanged under Bg — UBg = Cg.
Conversely, given a lattice L, choose an ordered basis that generates it, say (vi,...,vp).

Now define By, := [v1|---|v,], and Qr, := BY Br. Also note that if Cf, is any other generating
basis then Cf, = PB, for some matrix P € GL,(Z) (so det P = +1), and hence Q ~ PTQP.
Now ||PTQP]|| = A1(L)* = ||Q|| by (A.5), since the lattice L is unchanged; and det(PTQP) =
det(Q). Moreover, one can reverse both calculations in , with Bg replaced by Br.
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It follows that the set of ratios in the definition of ~, (across all () > 0) equals the set of
ratios on the right side in (A.4)) (across all L). Taking suprema, the result follows. ]

Having gone from quadratic forms to lattices, we now mention the lattice packing problem:
L)

given a dimension n > 1, compute Al .. This turns out to be equivalent to the above:
Proposition A.9. Given n > 1, computing the lattice packing density of R™ is equivalent to
determining the Hermite constant .

Proof. The result holds because of a simple equation governing the dependence between three
quantities: (a) the lattice packing density A]E%Ln), (b) the Hermite constant =, and (c) the n-
dimensional volume v, of the unit ball in R™ — see [12, Equation (1)]:

n/2

s
= AAG ) = A = (/) = (/A (A.6)

(n/2+41)

In fact this relationship holds for each lattice, and is not mysterious. Define the packing
radius r(L) to be the largest scalar such that placing an n-sphere of this radius at each point
of L yields a packing. Thus, r(L) = A\ (L)/2. Now a “fundamental domain” for R” is the
n-dimensional parallelopiped R™/L (also called “parallelotope”), and the space covered in it
by the packing is 2"-many spherical “sectors/caps” — which make up exactly one sphere of
radius A1(L)/2, so of n-volume vy, - (A\1(L)/2)™. Thus, the density of the packing for L is:

A @ @y
L7 Nolgn (R?/L) "~ Volgn(R"/L) T(n/2+1)
Clearly, rescaling the lattice by ¢ changes both the numerator and denominator by a factor
of ¢", so we may normalize to assume that L has covolume 1. This is precisely (A.6|) before

taking the supremum, because of the proof of Proposition (and it holds for every L of
covolume 1), so now take the supremum. O

A 4. Lattice packing densities in low dimensions; Hermite constants. We now re-
turn to the story of the Kepler conjecture, following Lagrange, Gauss, Barlow, and Hilbert
(see above). In 1953, Laszl6 Fejes T6th suggested a recipe for ascertaining Kepler’s conjecture
(see [42]), via checking a finite — but very large — number of cases to solve a finite-variable op-
timization problem. This would require advanced computing tools, which have since become
available. In the 1990s Hales, together with his student Ferguson, applied linear program-
ming techniques to try and minimize a function with 100+ variables, which they had shown
would suffice to compute the sphere packing density of R3. Their research program took up
2+ years, 100,000 linear programming problems, and 3 gigabytes of computer programs. The
findings appeared in the long articles [63] [65] in 2005-06. A decade later, Hales and many
coauthors completed and published a formal proof of the computer-assisted calculations [64].
(There was also a proof of Kepler’s conjecture by Wu-Yi Hsiang; but following criticism by
Géabor Fejes Téth and others, the proof is currently regarded as incomplete.)

This ends the story of sphere packings in three dimensions; note that in all cases discussed
so far, the centers of the spheres in at least one configuration in each dimension (which is
the only one in R and R?) lie on a lattice. These are precisely the lattices of Lie type A,, for
n = 1,2,3 — i.e., the lattices generated in the hyperplane (1,..., 1)l C R™*! by the simple
roots a; = €; — ;41 for 1 < i < n.

From above, the search for the Hermite constant is the same as that for the lattice packing
density of Euclidean space. We have discussed the n = 1,2, 3 cases above, and ~,, A]g;) are
precisely known for just six other values of n to date. In the following table we summarize
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these results — via noting the values of ~,, v, A]%Ln), the associated lattices (and all but one
)

are of simple Lie type), and their discoverers — or the discoverers of A]%Ln , which is equivalent.

. on [ 2 [ 3 [ 415 | 6 | 7 |8/ 24 |
o 1 3 2 4 8 g 64 | 28 | 4™
Un, 2 T %ﬂ' %772 %71'2 %71'3 %71’3 iﬂA ﬁﬂm
O i s L B T
R 23 3v2 | 16 | 152 | 483 105 | 384 | 12!
Lattice
(Lie) type || Ay As As Dy Ds FEs E~ Eyg Leech
Korkine, Hofreiter; Cohn,
By: — | Lagrange | Gauss | Zolotareff | Blichfeldt | Blichfeldt | Kumar
Reference: || — [94] LI | (88 | [90] [78]; [13] 13 [26]
Year: — 1773 1831 | 1872 | 1877 | 1933; 1935 1935 2009

TABLE 1. The known Hermite constants and lattice packing densities

A.5. Kissing numbers: exact answers and bounds. Having discussed exact answers in
a few dimensions for the lattice packing density, before moving to all packings we take a
detour into a related problem: determining the kissing number in R™. This is the largest
number of non-overlapping unit spheres that a unit sphere can simultaneously touch, or
“kiss” tangentially, and we will denote it by k(n). It is not hard to show that k(1) = 2 and
k(2) = 6. The n = 3 case was the subject of a famous 1694 debate between Newton (who
thought it was 12) and Gregory (who thought it was 13). Thus, this question is also called
the thirteen spheres problem, and the integer of interest is also called the Newton number or
contact number. It was solved more than 250 years later — in 1952 — by Schiitte and van der
Waerden [129], who showed that k(3) is indeed 12.

In four dimensions, the kissing number was computed by Musin in 2008 to be 24 [111].
The only other kissing numbers that are known are in dimensions n = 8,24 — and they were
both computed independently in 1979 by Levenshtein [96] and by Odlyzko—Sloane [113]:
k(8) = 240 and k(24) = 196560. Remarkably, these two numbers also arise from spheres with
centers in the same two lattices as for sphere packings! We will sketch their proofs below.

| n | t]2] 3 | 4 | 8 | 24 |
k(n)=A(n,7/3)| 2 | 6 12 24 240 196560
Lattice Ap | As Hsy Dy Ex Leech
(Coxeter) type
By: — | - Schiitte, Musin Levenshtein;

van der Waerden Odlyzko—Sloane

Reference: = [129] [T | [96]; 113 | [06]; 3]
Year: — | - 1952 2003 1979 1979

TABLE 2. The known kissing numbers

In addition to these exact results, and decades before Musin’s 2008 article, upper and
lower bounds were sought — for general n, not specific values. (This will also be the theme
when we consider the (lattice) packing density of R™ for general n.) E.g., Coxeter [33]
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proposed some upper bounds in 1963. Wyner provided in 1965 an asymptotic lower bound
of 20-2075n(1+0(1)) [149]. But the object of our focus here and below is a ~50-year old upper
bound due to Kabatiansky and Levenshtein [81].

Definition A.10. Given an angle ¢ € [0, 7] and a dimension n > 2, a finite subset X c S"~!
is a spherical 1 -code if the spherical distance between any two vectors in X is at least 1):

Qx,y =Y — (x,y) < cosp.
Let A(n, 1) denote the size of any maximum-cardinality spherical 1-code in S"~1.

Remark A.11. The name “code” is akin to that in “error-correcting code” — see Example[A-3]
—in that it too stands for a set of points in a metric space, with all nonzero distances uniformly
bounded below.

Additionally, spherical codes have their origins in a well-known question in mathematical
biology: the Tammes problem, formulated in 1930 by Tammes [138]. The problem asks: given
integers n, N > 2, pack N points on S"~! such that the minimum distance between distinct
points gets maximized.

As far as sphere packings and kissing numbers go, note that if two non-overlapping unit
spheres kiss a common unit sphere, the closest that their centers can get is precisely when the
three centers form an equilateral triangle. Thus, every packing or kissing problem involves
Y > 7/3, i.e., costp < 1/2. In particular, the kissing number is

k(n) = A(n,7/3), Vn > 2. (A.7)
Now the celebrated 1978 upper bound of Kabatiansky-Levenshtein is:
Theorem A.12 ([81, Corollary 1]). For all ¢ € (0,63°), we have

—1
n"tlogy A(n, 1) < 5 logy (1 — cosvp) — 0.099 4 o(1).

In particular, k(n) = A(n,7/3) < 9n(0.401+0(1))

A.6. The Es and Leech lattices. Notice in the aforementioned results — on both the lattice
packing and kissing number problems — that beyond the first three or four dimensions, two
dimensions stood out: n = 8,24. This is because in both of these dimensions, both of the
above problems get solved when the centers lie in the same, remarkable lattice of rank 8 or
24. Thus, for completeness we write down characterizations for both lattices.

The Ejg lattice is widely studied in the context of Lie theory, mathematical and particle
physics, and Hamming codes (among other areas). It is a rank 8 lattice with any of the
following properties:

(1) Tt is at once integral, even, and unimodular. Namely, z-y is an integer for all z,y € Eg;
x - x is moreover even for all z; and Eg has a covolume 1.

(2) An alternate description is the set of points z = (1, ..., z3) € R® such that >, z; is
an even integer, and the x; are either all integers or all half-integers.

Ej is also the root lattice for the largest exceptional complex simple Lie algebra; we provide
its Dynkin diagram.

It is known that the norm-square Q : Fs — R, Q(z) := ||z||? is a positive definite quadratic
form. (Thus, up to isometry, Eg is also the unique even, unimodular, positive definite lattice
of rank 8.) This connects Eg to both themes in this article: positivity and lattice packings.
Indeed, the existence of such a form was proved in the very first article cited in this article,
in 1868 by Smith [I35]. It was then explicitly constructed first by Korkine—Zolotareff [89]
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FIGURE A.1. The nodes (or simple roots) of the Eg Dynkin diagram

in 1873, in the same series of works in which they computed the Hermite constant in dimen-
sions 4 and 5 (see above). In 1938, Mordell [I07] showed the uniqueness of a lattice with the
above properties (he wrote a related work on lattice packings and 7, mentioned below).

Remark A.13. Moreover, one checks that the shortest norm-square of a nonzero vector in
Fg is M\(Fg)? = 2, and there are precisely 240 such vectors “nearest” to the origin. Thus, if
one places spheres of packing radius r(Eg) = A1(FEg)/2 at these lattice points, they kiss the
congruent sphere centered at the origin. Thus, k(8) > 240.

We next mention the Leech lattice Aoy, which also features outside sphere packings in
geometry (including higher-dimensional versions of the Tammes problem in mathematical
biology), modular forms, group theory (via Conway groups), coding theory, and moonshine
theory and vertex operator algebras. This lattice was introduced in 1967 by Leech [95],
following lifting from (Z/2Z)* to Z?* the extended Golay code [54] — this has minimal
Hamming distance 8 (see Example [A.3)). The Leech lattice is the unique (up to isometry)
unimodular even lattice in R?4, and it has least length 2. Once again, one checks that there
are 196560 points in Agy of least length (i.e., closest to the origin). Thus, k(24) > 196560.

A.7. Kissing numbers and spherical codes, via Delsarte — and Schoenberg. Here
we elaborate on the linear programming method that led to the Kabatiansky—Levenshtein
asymptotic upper bound for the kissing number k(n). This method was pioneered by Delsarte
in the 1970s — originally in [36] for cardinalities of binary codes; then in [37] for more general
“association schemes”; and finally in 1977 with Goethals and Seidel [38], where Gegenbauer
polynomials enter into the picture. This is the promised connection to Schoenberg’s work
(see Theorem and to the above survey on positivity preservers.

A.7.1. Refresher on Gegenbauer polynomials. We recall here some basics on Gegenbauer poly-

nomials G,(Cn) (t), which formed the basis (literally!) of Schoenberg’s classification of positive
definite functions over spheres S?~!. These can be defined in multiple ways: for instance,
via their generating function

)

(1 —2rt +72)™ rkC’ G(n)(t) =
Z a0

if n > 3 — and for n = 2, we have:
1—1rt k
G
1—2rt+12 Z
A second recipe to define these polynomials is via a three term recurrence, for any n > 2:

(2k +n — G (1) — (k — )G, (1)

k> 2.
k+n-—3 v

=1, ¢Mwy=t, "=

A third description is that the Gén) (t) are degree k polynomials that are normalized —

G,(Cn)(l) =1 — and form an orthogonal system with respect to integrating on [—1,1] against
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the measure (1 —t2)("=3)/2 dt. (This is the projection to [—1, 1] of the surface measure dw,_1
of the sphere.)

These orthogonal polynomials subsume various special cases. Setting n = 2,3,4, we re-
cover, respectively: Chebyshev polynomials of the first kind, Legendre polynomials, and
Chebyshev polynomials of the second kind. Moreover, while the above are perfectly ade-
quate, self-contained definitions/characterizations of Gegenbauer polynomials, we now pro-
vide a fourth, beautiful description, wherein they arise naturally through spherical harmonics.

A.7.2. Spherical harmonics and the Addition Theorem. The following account is taken from
the survey [115] and the early part of Miiller’s notes [110].

We work over the sphere S"~! C R™. Thus, for 0 # x € R", write * = ||z||¢, with
¢ € 8. The area element on the sphere S"~! will be denoted by dw, 1 = dw,_1(£), and
the (n — 1)-dimensional “surface area” of the sphere is

J 27.‘.71/2
= fo = Ty

Thus wp = |SY| = 2, w1 = 27, wy = 4, and so on.

noo92

Next, we have the Laplace operator A,, := E 922" and its null vectors among polynomials:
4
j=1 "3

Definition A.14. Given integers n > 2 and k > 0, a spherical harmonic in n dimensions
of degree/order k is a harmonic (i.e. A, f = 0) polynomial Hy(x) = Hi((x1,...,2,)) that is
homogeneous of degree k, and is now restricted to S"~'. We will denote these by Hy(¢). Let
SH,, 1 denote the space of such polynomials.

The above integral defines an inner product on the span of all spherical harmonics (of all
degrees) Dy>q SHn

)= [ 10 du. (A38)

By Green’s theorem, one checks that for nonnegative integers k # k' and corresponding

degree spherical harmonics Hy, Hy,
OHy 0H
(Hk C - Ho ’“) dwp 1
r

0= / (HkAnHk:’ — Hk’AnHk) dr = /
el <1 or

Sn—1

_ /S (K = R)H(§) Hi(§) dwn,

since H}, has normal derivative on S"~! (in the r = ||| direction) equal to
0 .
5o H(rg)| = Er* = H (€) = kH(), k>0
r=1 r=

Thus, spherical harmonics of differing degrees are orthogonal — and for a given degree
k > 0, one uses e.g. Gram—Schmidt to obtain an orthonormal basis of SH,, ;. One also has:

k:+n—2>+(k:+n—3

N(n, k) :=dimSH, = ( I b1

), Vn =2, k> 0. (A.9)

Example A.15 (n = 2). We consider a well known special case, where n = 2 and the sphere
is the unit circle. In this case dimSHsy = 2 for £ > 0, and SHop = R-1. For k > 0, two
linearly independent degree k spherical harmonics are R (z2 + iz1)F and S (2o + iz1)*. Now
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introduce polar coordinates: 1 = rcosf,xo = rsinf. Using this, we obtain an orthonormal
set of spherical harmonics for each k > 0:

1
S]{/-7]_ = ﬁ
1
Sk = f —— (22 + ixp)F = NG sink(§ —0).
This example shows that when one thinks of S not as a torus but as a one-dimensional

sphere, the way to generalize Fourier series to higher dimensions is via spherical harmonics.
Now we bring in the orthogonal group.

Lemma A.16. If u:R"™ — R is smooth and A € O(n), then A,(uo A) = (Apu) o A on R™.
Thus, if Hy(&) is a spherical harmonic then so is Hy(Af).

1
R(zo +iz1)F = NG cos k(g —0),

Proof. The first assertion is an explicit computation, and immediately yields the second. [

Proposition A.17. Fiz integers n > 2 and k > 0 and an orthogonal matric A € O(n).
Suppose {Sp;: 1 <1< N(n,k)} is an orthonormal basis of (SHp k. (-,))-

(1) Then so is {& +— Sy (AE) : 1 <1< N(n,k)}.

(2) Define the matriz O via expanding Sy, (A - —) in the orthonormal basis above:

N(n,k)
9= 3 0, O =

Ir

Then C4) is also orthogonal, and A — C) is a group homomorphism : O(n) —
O(N(n,k)). In other words, SH,j is a finite-dimensional unitary representation of
O(n), under A - S, (&) := S, (ATE).
(8) The kernel
N(n,k)
F:S" ' xS =R F(En) = Y Suu(&)Sniln) (A.10)
=1

is invariant under the diagonal action of O(n) on its arguments, and hence depends
only on their cosine t = (£,n).

Note that the group map A +— C@ need not be injective. For instance, let n be even and
A = —Id,. Then S, ;(A¢) = Sp(€) forall k >0, 1 <1< N(n,k), and £ € S"1L,

Proof.
(1) Fix A € O(n) and define T, ;(§) := Sy 1(AE). This is also in SH,, ; by Lemma

so we have structure constants:

N(n,k)
Sna(A8) = Toa(€) = Y VS (€)
r=1

Now compute (T3, 7, Tn,m) in two ways: as an inner product and as an integral.
N(n,k)

First, since the S, ; are orthonormal, (T}, ;, Ty m) = Z cl(r)cg,ﬁ) Second, since
r=1

S"~1 and its surface measure dw,_; are invariant under the orthogonal group,

<Tn,l7Tn,m> - /Sn—l Sn,l(Ag)Sn,m(Ag) dwn—l - /5’”—1 Sn,l(g)sn,m(f) dwn—l - 5l,m-



ENTRYWISE CALCULUS, DIMENSION-FREE POSITIVITY PRESERVERS, SPHERE PACKINGS 35

Equating the two expressions proves the assertion — and also shows that the matrix
c) = (05;4)) is orthogonal: C)(CANT = Id (1) -

(2) It suffices to show A — C) is multiplicative. This is just a formal exercise — given
A, B € O(n), we have:

Spi(ABE) = s, (BE) = Z A Z

I
=z
Mé

N(n,k)
Z cl rq nq(g)

q=1
N(n,k)
On the other hand, S, (ABE) = > "7, 4(€). Hence CUB) = CWCP). The
q=1

translation into SH,, ;. being a unitary representation is now another formal exercise.
(3) To show lb first note that F is invariant under the diagonal action of O(n):

(n.k N(n,k) N(n,k)

A) (A

F(Ag, An) = Z Z A AN S ©Suam) = Y Sum(©Sugln) 3 el
=1

m,q=1 m,q=1
But the inner sum is the (m, ¢)th entry of (C4)TC(A) = Id N (n,k), SO We get
F(Ag, An) = F(&n)  ¥Eme S"™, AeO(n).

In particular, this invariance holds for A € SO(n). We are now done by Lemma
since K = F' is clearly continuous. (|

With these preliminaries on spherical harmonics and Gegenbauer polynomials, one can
identify exactly what is the function of the cosine in (A.10)):

Theorem A.18 (Addition Theorem, [109, Equation (3.18)]). Let n,k, and {S,; : 1 <
| < N(n,k)} be as in Proposition [A.17. Then the function in (A.10) is the rescaled kth

Gegenbauer polynomial:

N(n,k)
N(n, k) n
> Sn(©Sniln) = o) (e ), (A1)
=1 n
h — Lﬂﬂ s th f fSnfl
wnere Wp—1 = F(n/2) 18 € surjace area o .

Remark A.19. This result likely first appeared in work of Miiller [I09]; but at the start of
this paper he attributes the ideas in the entire paper to a lecture given by Herglotz to the
Gottingen Mathematical Society on November 1, 1945. Miiller again credits Herglotz for the
Addition Theorem in his book [110].

Example A.20. Before proceeding further, we write down the Addition Theorem in the
special case discussed above: n = 2. Write £ = e, 1 = €'®, so that

(€,m) = cos B cos ¢+ sinfsin g = cos(f — ¢),

which is the addition formula for cos(-). Now

52(6)52:1(n) + 52.2(6)$2(n) = - cos(n(6 — 9)).



36 APOORVA KHARE

Thus, as a function of ¢ = (£, n), the Addition Theorem specializes to yield:
t = cos(f — @) — cos(n(0 — ¢)),
which is precisely the Chebyshev polynomial (in ¢) of the first kind. O

A.7.3. The easier half of Schoenberg’s theorem on Gegenbauer polynomials. We now come
to Schoenberg’s theorem For spherical code bounds like the one by Kabatiansky—
Levenshtein, and to compute the kissing numbers in dimensions 8 and 24, we only need the
“easier” implication, and this follows quickly from the Addition Theorem:

Proof of Theorem easier half. The claim to be proved is: any Ry -linear combination of
Gegenbauer polynomials G,(cn) o cos is positive definite on distance matrices of STL.
To show this, we can remove the cos(-) and replace distance matrices by their entry-

wise cosines, aka Gram matrices drawn from S™!. Now it suffices to work with a sin-
gle Gegenbauer polynomial G,(Cn). But by the Addition Theorem given any vectors

&1,...,6v € 8" ! and scalars z1,...,zx € R, we have:
N
TG N = Y m G (60 6) (A12)
i,j=1
N(n,k
= i\[: (z:)w”—lmix.s 1(&)Sna(€))
= N(n, k)~ e
i,j=1 I[=1
N(n,k) N
—_— wnil . . . .
~ N(n,k) lz; i]z:lxlxﬂsn,l(&)sn,l(fj)
" N(nk) / N 2
n—1
— . ) >
N(n,k) ; (;xzsn,l(gz)> 2 0,

and so G,(cn) [~] indeed sends Gram matrices from S™~! to positive semidefinite matrices. [

Remark A.21. In fact, we do not even need the full power of the “easier half” of Schoenberg’s
theorem. Below, we will only need that the sum of the matrix entries 2%:1 G,(Cn)(@i, &j)) is
nonnegative. But this follows by setting all x; = 1 in (A.12).

We conclude with some remarks on Schoenberg’s 1942 paper [127] and a footnote in it.
First, to show the above easier half of Theorem Schoenberg did not use the Addition
Theorem as it was unavailable at the time; instead, he used an inductive and intrinsic Addition
Formula for Gegenbauer polynomials {G,(Cn) : k> 0} in terms of {G,(Cn_l) :k >0}

Second, there is a path from Schoenberg’s results in [127] to not just regularization of
covariance matrices, but also to a celebrated conjecture in complex analysis. Note that
G,(c") o cos is positive definite on S"~! for all k, hence on S" 2. Hence by the “harder half”

of Schoenberg’s theorem m G,(Cn) must be a nonnegative real combination of lower order

Gegenbauer polynomials {Gkn_l) : k > 0}. Schoenberg noted this in [127, Footnote 2], and
then remarked that this should hold when one replaces the integer parameter n > 2 by p+ 2,
for a nonnegative real parameter p. It later emerged that this had already been worked out
in 1884 by Gegenbauer himself [52]. Almost a century later, in 1976 Askey and Gasper used
these results to show in [I] the nonnegativity of a sequence of generalized hypergeometric
functions 3F5. These ideas were subsequently used in 1985 by de Branges, in his famous
resolution of the Bieberbach conjecture [17].
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A.7.4. Application: kissing numbers are attained on Eg and Aoy, via the Delsarte—Goethals—
Seidel bound. To take stock of the last few pages: we have come from spherical harmonics,
to the Addition Theorem, to the easier half of Schoenberg’s theorem [3.14] on positive definite
functions on spheres, aka positivity preservers on correlation matrices with rank bounded
above. We now use this result to compute the kissing numbers k(8) and k(24), via Delsarte’s
method. In fact we show a stronger statement, which involves one more notion.

Definition A.22. Given an integer n > 1, let k(L)( ) denote the lattice kissing number of
R™ i.e., the largest number of unit spheres that touch S™ 1, and whose centers lie on a lattice
L with Ai(L) = 2.

The following observations are clear. First, we have 2n < k()(n) < k(n) for all n, since
one can place sphere-centers at {£2e; : 1 < j < n} to kiss the unit sphere around the origin.
(Thus, L = ®7_,Z(2e;).) Second, if k(n) is attained at a lattice, then k(n) = k() (n). This
is indeed the case for n =1,2,3,4. Now one can show:

Theorem A.23 ([96, 1T3]). We have k(8) = k)(8) = 240 (attained on Eg) and k(24) =
E()(24) = 196560 (attained on Agy).

The proof uses a famous upper bound on spherical codes, by Delsarte-Goethals—Seidel:
Theorem A.24 ([38]). Fiz an integern > 2 and an angle ¢ € (0,7]. Let f(t) Z Ck G( (¢t

where n > 2 and all ¢, € [0,00). Further assume that co > 0 and f() < 0 for all
€ [—1,cos®]. Then we have the upper bound

An, ) < T8 (A.13)

As promised, this will use the entrywise calculus and Schoenberg’s positivity preserver f!

Proof. Choose N := A(n,v)-many points &i,...,&x on the sphere with pairwise angles at
least 1. Apply the entrywise map f[—] to their Gram matrix. Then,

N
3T gL E)) ch Z G () = co Z Gy (€. 65)) = coN?,

i,j=1 i,j=1 i,j=1
using Remark and that GO =1.
Also note that by hypothesis, f applied to any off-diagonal entry is non-positive, since
distinct points have inner product at most cos(). Therefore,

N
D fUE &) =N+ F(&, ) < NF(L).
ij=1 itj
Combining the two bounds gives A(n,v) = N < f(1)/co. O
Finally, we employ Theorem to show:

Proof of Theorem taken from [113]. We first prove the n = 8 case. We in fact showed
(but did not state) in Section that k(8) > kU)(8) > 240. Now consider the carefully
chosen degree 6 polynomial

320
FO) = 22+ D+ DH(E- D) (A.14)
16 200 832 1216 5120 2560
_o®  Bgm  Wae  820m 1216 46 a® G
o *7 632 T3 T 3003 > 26416
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where we suppress the “(¢)” from the Gegenbauer polynomials, and one solves for the coeffi-
cients of the polynomials GECB) by a triangular change of basis from the monomial basis.
Then f < 0 on [—1,1/2], so one can apply Theorem with ¢ = /3 to upper bound
the kissing number:
kE(8) = A(8,7/3) < f(1)/co = 240.
Combined with the above lower bounds, we are done by sandwiching.
The proof is similar for n = 24: we had seen that k(24) > k(%) (24) > 196560. Now consider

1490944
f(t) = 175(15 1)+ 2+ D - D2t -3) (A.15)
L (29) 4i§ (24) 1144 24y 12992 _(24) 73888 _(24)
=Go '+ 23 Gyt 425 G 3825 Gy + 22185 Gy

2169856 (20) , 59062016 1) 4472832 (o)

687735 ° 25365285 0 2753575
23855104 _(24) 7340032 (24 7340032 (24

— G —G —— Gy -

28956015 ° 20376455 ° 80848515 '°
Once again f < 0 on [—1,1/2], so we apply Theorem with ¢» = 7/3 to obtain k(24) <
196560. Combined with the above lower bounds, we are again done. ([l

A.8. From spherical codes to sphere packing upper bounds. We now return from
Delsarte, Schoenberg, and kissing numbers, back to packing densities for Euclidean spaces.
Recall Theorem by Kabatiansky—Levenshtein, which involved using linear programming
to obtain an upper bound on the Kissing number/spherical code A(n,n/3). From this, the
authors deduced an upper bound on the packing density itself — which remained the state-
of-the-art for many years:

Theorem A.25 ([81]). For all angles 0 € /3, 7], we have the relation

Agn < (1 —cos0)"/2272A(n+1,0) = sin(0/2)"A(n + 1,0). (A.16)
In particular, for 6 = /3, we have using Theorem .'
ARH < 2—71(0.599"!‘0(1)). (A17)

Sketch of proof, taken from [29]. Let P be any packing of R with unit spheres, with density
A. Consider a solid sphere Bgn+1(0,R) C R""! whose radius R we choose later. Also
fix a hyperplane P passing through the origin, and consider the n-dimensional closed disk
D := PN Bgni1(0,R). Given that D has n-volume equal to that of R™ unit spheres, one
expects that on average, a translation of the above sphere packing of R™ 2 P should intersect
D in AR™ many centers of unit spheres. Choose such a translation, and project these centers
onto the upper hemisphere of the boundary R -S™. The spherical distance between any two
of these points is bigger than their Euclidean distance, which in turn exceeds the distance
between their projections in D.

Now we bring in . Ensuring that any two projected points in the hemisphere are at least
0 angle apart, is equivalent to their arc having length > R, which holds if the chord joining
them has length > 2Rsin(0/2). But we know that all chords have length at least 2, so we
equate these bounds and set R = 1/sin(6/2) > 1/(6/2). Then

A-R"<A(n+1,0),
and this is the desired bound. OJ

In 2014, Cohn and Zhao improved this bound, using a similarly short argument:
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Theorem A.26 ([29]). For all angles 0 € /3, 7], we have the relation
Aprn < sin(0/2)"A(n, ). (A.18)
This is at least as good, because all A(n,#)-many points can be arranged along the equa-

torial sub-sphere S™~! in S® C R™*1.
We now list a few previously shown upper bounds. The first is by Rogers in 1958:

Theorem A.27 ([120]). Let X be a regular (n+ 1)-point simplex in R™ of side length 2 and
a vertex at the origin. Then
Agn < 0, where o, ;= ( ) \ilﬂ({n éRX() ) ) (A.19)
In other words, the packing density of R"™ cannot exceed the packing density of a regular
simplex of edgelength 2 with unit spheres at the vertices.

Our final two bounds here are older: in 1929, Blichfeldt showed in [12] that Agn < %52 -

2-"/2 and in 1944, Mordell [108] provided a bound in the language of the Hermite constant:
Yn < 77(31:11)/(”72). (A.20)
Remark A.28. Repeated use of Mordell’s bound (A.20]) shows that

n—1 n—1

n—1

Yo Yl SYpls <o <75

But Lagrange’s theorem shows 75 = /4/3; now combining these two facts yields Her-
mite’s original theorem reformulated as: -, < (4/3)""1/2 = 42~ 1,

We end this part by mentioning that work on upper bounds continues — see the very
recent work [124], where new upper bounds are shown both for spherical codes (for angles
0 < 62.997°), and then for sphere packings in dimensions n > 2000. (This work improves by
a constant factor the Kabatiansky-Levenshtein upper bound [81], as did Cohn-Zhao [29].)
We add that Cohn maintains a webpage with the latest numerical upper bounds in low
dimensions, and references for these.

A.9. Lower bounds on sphere packings. In comparison, there are many results in the
20th and 21st centuries that address lower bounds for the packing density Agrn. The first is
a simple “folklore” estimate.

Lemma A.29. Agn > 277,

Proof. In fact, we claim that this estimate is achieved by any “saturated” packing P — one in
which no additional sphere can be inserted. To see why, note as above that all spheres in a
packing have centers separated by a distance of 2. Now we claim that | J,p Brn(2,2) = R" —
for if not, there would be a point in the complement, which is 2 apart from all other centers.
But then one can add another unit sphere here, which contradicts saturation. Now since the
density of the “doubled spheres” is 1, the result follows. O

This bound has seen several improvements throughout the past century and this one —
many of the following are lower bounds even for lattice sphere packing densities.

Theorem A.30. The packing density Agrn - 2™ is at least as large as:

(1) (Minkowski, 1905 [105] and Hlawka, 1943 [T1].) 2¢(n) =232, j~" =24+ 0(27").
2n¢(n)
e(l—e™m)
also Davenport and Rogers [35].)

(2) (Rogers, 1947 [119].) . In particular, this exceeds 0.73n for n > 0. (See


https://cohn.mit.edu/sphere-packing/
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(3) (Ball, 1992 2].) 2(n — 1){(n).
(4) (Krivelevich—Litsyn—Vardy, 2004 [92].) n/100.

(5) (Vance, 2011 [141].) o[ = /1)’ if 4|n.

(6) (Venkatesh, 2012 [144].) 65963n for all sufficiently large n; and (the first super-linear
growth:) %nlog logn for infinitely many n.

(7) (Campos—Jenssen—Michelen—Sahasrabudhe [1§].) 1_%(l)nlogn.

(8) (Gargava—Viazovska [50].) nloglogn—O(e~cloen+OM) for infinitely many n, where
¢ > 0 is a universal constant.

(9) (Klartag [87].) cn?, where ¢ > 0 is a universal constant. (In a sense, this is an
adaptation/follow-up of the work of Rogers.)

Thus, the search for better — maybe even sharp — lower and upper bounds for sphere
packings in general (and large) dimension n is by no means over, and should see more
exciting developments in the years ahead.

A.10. Conclusion: Cohn—Elkies and Viazovska. Having discussed (asymptotic) upper
and lower bounds for the packing density in all/large dimensions, as well as low-dimensional
special cases (n = 1,2,3), we now conclude this section by mentioning the recent success in
determining Agrn for n = 8,24 — once again using the lattices Fg and Aoy, respectively. In
these specific dimensions, one uses linear programming bounds once again — not on spherical
codes via Delsarte’s methods, but directly on R" via a 2003 result of Cohn and Elkies. To
state it, we first recall that the Fourier transform of an L' map f : R” — R is:

fly):= | fla)e2m@v gy,
Rn

We also need the following notion.

Definition A.31. An L! map f: R™ — R is said to be admissible if there exists § € (0, c0)
such that |f(z)| and |f(z)| are bounded above by a constant times (1 + |Jz||)~"7°.

Now Cohn and Elkies show:
Theorem A.32 ([25]). Suppose f:R™ — R is admissible, and r > 0 is such that

~

(1) £(0), f(0) >0,

(2) f(z) <0 whenever ||z|| > r, and

(3) f(y) =0 for ally € R™.
Then one can upper bound the packing density of R™:

F(0) /2

wed € Vol (Bro (0.1/2) = (/2" = (2 s (A2)
If moreover A1 (L) = r for some lattice L, then it attains the packing bound,
— Agn = fO)
AL = ARTL = VOan (B]Rn (07 7'/2)) = (A22)

£(0)
if and only if f =0 on L\ {0} and f=0onL* \ {0}.

Recall here that the dual lattice L* is defined to be the lattice either generated by the dual
basis to a given basis of L, or equivalently,

L*={teR" : (z,t) e ZVx € L}.
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Remark A.33. Note that the volume on the right of (A.21)) may be > 1, in which case the
bound is trivial. However, for fixed r the n-volume decreases to 0T as n — oo, and so the
bound is certainly relevant for large n.

The proof of Theorem 2| and the subsequent analysis use the Poisson summation for-
mula. Note that if f is adm1ss1ble then f, f are both in L' and continuous. Now we have:

Theorem A.34 (Poisson summation). Suppose f : R™ — R is admissible, and L C R™ is a
lattice. Then for every v € R™,

Y flatv) = \WZ e~ 2wl £ (1), (A.23)

z€eL teL*

with both sides converging absolutely.

Sketch of proof of Theoremfor lattice packings, taken from [23]. Let L be any lattice in
R™. Since any lattice packing of L by spheres of packing radius 7(L) = A1(L)/2 has the
same packing density under rescaling the lattice and the spheres, let us rescale L such that
r(L) = r/2. Then the lattice packing density is
VOan (BRn (0, 7’/2))

Volgn (R?/L)

so it suffices to show the claim that if (L) = /2 then L has covolume at least f(0)/f(0). To
see this, apply Poisson summation (A.23) with v = 0. As A\;(L) = r, the hypotheses give us
that (a) the left side of (A.23) is bounded above by f(0), while (b) the right side is bounded
below by the ratio of f(O) and the covolume of L. This proves the claim.

For the final assertion, the preceding paragraph says that

f(0)
0> fa) = S fity> LD (A.24)
; VolR (R”/L tEZL:* Voan(]R”/L)
Hence (by the previous working,) (A.22)) holds if and only if the extremal terms in ((A.24)
are equal, and this happens if and only if both inequalities in (A.24]) are equalities. This
completes the proof. O

A =

This proof is remarkable, in that one ends up throwing out all but one terms on both sides
of the Poisson summation formula! So if this approach is to yield a lattice that attains the
packing density Agn (and hence AI(RL,L)), then a remarkably constrained function f would need
to exist with all of the above properties. In [23], Cohn calls such an f a magic function.

Let us now get even more restrictive. If the lattice achieving this result is to be one of the
two special lattices — L = Eg, Aoy — then we also note that L* = L! Moreover, r = A\ (L),
which is v/2 for Eg and 2 for the Leech lattice Aoy, as mentioned in Section

Thus, we would then need a magic function f which satisfies the hypotheses of Theo-
rem and all other constraints above; and moreover, f and f vanish on all nonzero
points in Eg or Ags. (Finding such an f seems truly “magical”’!) Otherwise, one has to try
a completely different approach to attaining the packing density.

Initial investigations did seem to be promising. For instance, Cohn—Kumar showed that

in 24 dimensions, the packing density is very close to the lattice packing density:
AL = Ap,, < Ages < Any, - (1+1.65-1079),

So, does such a magic function exist? The first answer came for n = 8 — in which case,
it does exist! This was the main result of Viazovska [145], which she announced in an
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arXiv preprint on “Pi Day 2016”E| The proof and the underlying magic function quickly
got understood, and within a week, Viazovska along with Cohn—Kumar—Miller—Radchenko
posted another paper [27] where they found the analogous magic function for the Leech lattice
as well. These magic functions show:

Theorem A.35 ([145, 27]). For n =8, the packing density and lattice packing density agree,
and equal 7 /384 at the lattice Ey. For n = 24, the same statement holds, except that the
lattice is Aoy and the density is w2 /12!,

In these works, Viazovska (et al) used the theory of modular forms to come up with
the relevant magic functions. This was followed by the 2022 work of Cohn—-Kumar—Miller—
Radchenko—Viazovska [28], where they also showed that the lattices Eg and Agy in fact
minimized energy for every potential function that is a completely monotonic function of
|lz||> — such a phenomenon was previously known to hold only for n = 1. In particular,
this also generalizes the optimality of the sphere packing densities on these lattices. For
additional background and details, we refer the reader to two articles by Cohn. The first
is his beautiful account [23] of Viazovska’s work and its recent predecessors. The second
consists of his lecture notes [24], which address not only sphere packing and kissing numbers,
but also spherical harmonics, energy minimization, and more.
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