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Abstract. Suppose A = [aij ] ∈ Mn(C) is a complex n × n matrix and B ∈ B(H) is a bounded
linear operator on a complex Hilbert space H. We show that w(A⊗B) ≤ w(C), where w(·) denotes

the numerical radius and C = [cij ] with cij = w

([
0 aij

aji 0

]
⊗B

)
. This refines Holbrook’s classical

bound w(A⊗B) ≤ w(A)∥B∥ [J. Reine Angew. Math. 1969], when all entries of A are non-negative.
If moreover aii ̸= 0 ∀i, we prove that w(A ⊗ B) = w(A)∥B∥ if and only if w(B) = ∥B∥. We then
extend these and other results to the more general setting of semi-Hilbertian spaces induced by a
positive operator.

In the reverse direction, we also specialize these results to Kronecker products and hence to
Schur/entrywise products, of matrices: (1)(a) We first provide an alternate proof (using w(A)) of a
result of Goldberg–Zwas [Linear Algebra Appl. 1974] that if the spectral norm of A equals its spectral
radius, then each Jordan block for each maximum-modulus eigenvalue must be 1 × 1 (“partial
diagonalizability”). (b) Using our approach, we further show given m ≥ 1 that w(A◦m) ≤ wm(A)
– we also characterize when equality holds here. (2) We provide upper and lower bounds for the ℓp
operator norm and the numerical radius of A ⊗ B for all A ∈ Mn(C), which become equal when
restricted to doubly stochastic matrices A. Finally, using these bounds we obtain an improved
estimation for the roots of an arbitrary complex polynomial.
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1. Introduction and main results

Throughout this work, H denotes an arbitrary but fixed (nonzero) complex Hilbert space. The
study of the numerical radius of a bounded linear operator B ∈ B(H) goes back at least to Toeplitz
[37] and Hausdorff [28] (see also [27]). In fact, it goes back even earlier to Rayleigh quotients in the
19th century. In recent times, the numerical radius has seen widespread usage through applications
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in functional analysis, operator theory, numerical analysis, systems theory, quantum computing,
and quantum information theory. We refer the reader to e.g. [8] for more on this.

In this work, we focus on the numerical radius of the Kronecker product (tensor product) of
two operators, a quantity that has also been well studied (see e.g. [2], [12], [18]–[25], [36]). The
interested reader can also see the norm of the derivative of the Kronecker products, studied by
Bhatia et al. [5]. We introduce the relevant notions here.

Definition 1.1. The numerical range W (B) of a bounded linear operator B ∈ B(H) is defined
as W (B) := {⟨Bx, x⟩ : x ∈ H, ∥x∥ = 1}, and the associated numerical radius w(B) is defined as
w(B) := sup {|⟨Bx, x⟩| : x ∈ H, ∥x∥ = 1} = sup {|λ| : λ ∈ W (B)} .

It is well known that the numerical radius defines a norm on B(H), which is equivalent to the
operator norm ∥B∥ = sup {∥Bx∥ : x ∈ H, ∥x∥ = 1} via: 1

2∥B∥ ≤ w(B) ≤ ∥B∥. It is also weakly
unitarily invariant (see e.g. [26]), i.e. w(U∗BU) = w(B) for every unitary U .

Definition 1.2. The tensor product K ⊗H of two complex Hilbert spaces K,H is defined as the
completion of the inner product space consisting of all elements of the form

∑n
i=1 xi⊗ yi for xi ∈ K

and yi ∈ H, for n ≥ 1, under the inner product ⟨x ⊗ y, z ⊗ w⟩ := ⟨x, z⟩⟨y, w⟩. In particular,
Cn ⊗H ∼= H⊕n, and we will denote this by Hn henceforth.

The Kronecker product A ⊗ B of two operators A ∈ B(K) and B ∈ B(H) is defined as (A ⊗
B)(x⊗ y) := Ax⊗ By for x⊗ y ∈ K ⊗H. In particular, if A = [aij ] ∈ Mn(C) and B ∈ B(H), the
Kronecker product A⊗B := [aijB]ni,j=1 ∈ B(Hn) is an n× n operator matrix.

With this notation in hand, we begin by broadly describing our work. It develops numerical
radius bounds in three themes – the first of which is classical, while the others seem to be novel.

(1) Inequalities and equalities for the numerical radius of A⊗B, where A,B are operators over
Hilbert and semi-Hilbert spaces – with the motivating goal to improve on the 1969 upper
bound by Holbrook [31, Theorem 3.4]:

w(A⊗B) ≤ w(A)∥B∥. (1.1)

This is a question that has seen much subsequent activity in the literature.
(2) We initiate the study of numerical radius bounds for Schur/Hadamard powers of complex

matrices. To the best of our knowledge, these have not been studied before.
(3) Numerical radius and ℓp-norm bounds for Kronecker products of matrices. Surprisingly, the

study of ℓp-norm bounds seems to be very recent, including joint work by one of us [13].
And bounds for ∥A⊗B∥p have – once again to our knowledge – not been studied earlier.

1.1. Main results 1: Refining Holbrook’s bound. We now present our main results in the
three themes listed above, in serial order. Holbrook proved his inequality (1.1) in the setting of
bounded linear operators A and B on an arbitrary Hilbert space H; this easily generalizes to any
A ∈ B(K) and B ∈ B(H), where (K,H) denotes an arbitrary pair of Hilbert spaces – see e.g. [12,
Equation (2)]. Our goal is to refine this inequality; we are able to achieve this when the Hilbert
space K is finite-dimensional. Here is our first main result.

Theorem 1.3. Let A = [aij ] ∈ Mn(C) and B ∈ B(H). Then

w(A⊗B) ≤ w(C) ≤ w(C◦), (1.2)

where C = [cij ], C
◦ = [c◦ij ] have diagonal entries cii = c◦ii = |aii|w(B), and off-diagonal entries

cij = w

([
0 aij
aji 0

]
⊗B

)
, c◦ij = |aij |∥B∥, ∀1 ≤ i ̸= j ≤ n.
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We make several remarks here:

(1) Note that Theorem 1.3 implies Holbrook’s inequality (1.1) in the special case where all aij ≥
0. Indeed, using the Schur product one may rewrite Holbrook’s inequality as: w(A⊗B) ≤
w(A ◦ ∥B∥1n×n), where 1n×n is the all-ones matrix and A ◦A′ denotes the Schur/entrywise
product of two complex matrices A,A′. Our bound, when all aij ≥ 0, says that

w(A⊗B) ≤ w(C◦) = w (A ◦ ∥B∥1n×n − (∥B∥ − w(B))A ◦ In) , (1.3)

and this is at most Holbrook’s bound w(A)∥B∥, via entrywise monotonicity of the numerical
radius (2.3) below. This refinement is moreover strict, as the following example shows. Let

A =

[
1 0
0 2

]
. Then w(A ⊗ B) = w

([
1w(B) 0∥B∥
0∥B∥ 2w(B)

])
= 2w(B) < 2∥B∥ = w(A)∥B∥ if

w(B) < ∥B∥.
(2) Going beyond matrices with non-negative real entries: if A ∈ Mn(C) is normal (with

possibly complex entries), then Theorem 1.3 refines (1.1) via the weakly unitarily invariant
property.

(3) Theorem 1.3 is a special case of an even stronger result, in the setting of a semi-Hilbertian
space (H, ⟨·, ·⟩P ) for any positive operator P . See Theorem 3.7.

We now move to the question of when equality is attained in (1.1). Gau and Wu showed in [22], a
somewhat technical characterization of when (1.1) is an equality for A ∈ Mn(C) and B ∈ Mm(C).
We provide a different, simpler to state characterization. Moreover, in it we assume A has non-
negative entries, but at the same time allow B to be much more general:

Theorem 1.4. Let A = [aij ] ∈ Mn(C) and B ∈ B(H). If w(B) = ∥B∥ then w(A⊗B) = w(A)∥B∥.
Conversely, if all aij ≥ 0, aii ̸= 0, and w(A⊗B) = w(A)∥B∥, then w(B) = ∥B∥.

1.2. Main results 2: Schur powers and partial diagonalizability. We now turn to some ap-
plications of results bounding w(A⊗ B). First, we study the numerical radius of Schur/entrywise
powers of complex matrices w(A◦m). In Proposition 4.7, we show that if A ∈ Mn(C), then
w(A◦m) ≤ w(A)∥A∥m−1 ≤ 2m−1w(A) ∀m ≥ 1. When w(A) = ∥A∥, the first inequality becomes
w(A◦m) ≤ wm(A); in Theorem 4.8(2) we completely characterize when this is an equality:

Theorem 1.5. Suppose w(A) = ∥A∥ for A ∈ Mn(C), and m ≥ 1. Then w(A◦m) = wm(A) if and
only if A⊗m has an eigenvector in the span of e⊗m

1 , . . . , e⊗m
n with eigenvalue ∥A∥m. Moreover, if

this holds then w(A◦m′
) = w(A)m

′
for all 1 ≤ m′ ≤ m.

An interesting intermediate step here – see Theorem 4.8(1) – is:

Theorem 1.6. Suppose A is a complex square matrix whose spectral norm equals its spectral radius.
If λ is any eigenvalue of A of maximum modulus, then every Jordan block for λ is 1× 1 (i.e., A is
“partially diagonalizable”).

This leads to a natural speculative generalization of the Spectral Theorem for normal operators;
see Section 7.

1.3. Main results 3: ℓp-norm bounds. Another application of the above results (see Section 5)
is to provide precise values for the ℓp operator norm and numerical radius of (dilations of) doubly
stochastic matrices. Recall for A⊗B ∈ B(Hn) that

∥A⊗B∥p := sup

{
∥(A⊗B)x∥p

∥x∥p
: x ∈ Hn, x ̸= 0

}
, 1 ≤ p ≤ ∞ (1.4)

is its ℓp operator norm, where ∥x∥p =
(∑n

j=1 ∥xj∥p
)1/p

for x = (x1, x2, . . . , xn)
T ∈ Hn.
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In this paper we strengthen some results of Bouthat, Khare, Mashreghi, and Morneau-Guérin [13].
One of these computed the ℓp operator norm of all circulant matrices with non-negative entries.
We now extend this significantly:

• A twofold strengthening is that we work with Kronecker products A⊗B, where A ∈ Mn(C)
and B ∈ B(H) are arbitrary.

• In this setting, we obtain lower and upper bounds for w(A⊗B) and ∥A⊗B∥p for p ∈ [1,∞].
Moreover, these bounds are “tight” – i.e., they coincide – when A is a dilation of a doubly
stochastic matrix (i.e. A has all entries in [0,∞), and all row and columns sums are equal).
This includes all circulant A with entries in [0,∞), recovering the exact calculations in [13].

Theorem 1.7. Let A = [aij ] ∈ Mn(C) and B ∈ B(H) be arbitrary. Then

w(A)w(B) ≤ w(A⊗B) ≤ ∥A∥w(B) ≤

max
1≤i≤n

n∑
j=1

|aij |

1/2(
max
1≤j≤n

n∑
i=1

|aij |

)1/2

w(B). (1.5)

Next, given 1 ≤ p ≤ ∞ we define q via: 1
p + 1

q = 1. Then,

min
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aij

∣∣∣∣∣∣ ∥B∥ ≤ ∥A⊗B∥p ≤

max
1≤i≤n

n∑
j=1

|aij |

1/q (
max
1≤j≤n

n∑
i=1

|aij |

)1/p

∥B∥. (1.6)

As promised, we now record the tightness of these bounds for doubly stochastic matrices A:

Corollary 1.8. If B ∈ B(H), and A ∈ Mn(C) has non-negative real entries and is k times a
doubly stochastic matrix for some k ∈ [0,∞), then ∥A⊗B∥p = k∥B∥ and w(A⊗B) = kw(B).

For example, if H = C and B : C → C is the identity operator, then ∥A∥p = ∥A⊗B∥p is the ℓp
operator norm (1.4) of A ∈ Mn(C). Thus Corollary 1.8 recovers this norm for all rescaled doubly
stochastic matrices, strictly subsuming the circulant non-negative case in [13].

Proof. The result is immediate if k = 0 since A = 0, so we assume k > 0. If k−1A is doubly
stochastic, the first assertion is clear from (1.6), and the second assertion is equivalent to its special
case (for B = (1) ∈ B(C)), i.e. that w(A) = k. Now (2k)−1(A + A∗) is doubly stochastic, so its
spectral radius is at most 1 by the Gershgorin circle theorem; as 1 is an eigenvalue (with eigenvector
(1, . . . , 1)T ), r(A+A∗) = 2k. Now use (2.2) below. □

Organization of the paper. In Section 2, we prove Theorems 1.3 and 1.4 and deduce other
related results. In Section 3, we extend these results for Kronecker products, to the setting of
a semi-Hilbertian space Cn ⊗ H, induced by the operator matrix In ⊗ P for arbitrary positive
P ∈ B(H). In Section 4, by applying numerical radius inequalities for Kronecker products, we
study numerical radius (in)equalities for the Schur/entrywise product of matrices. In Section 5,
we prove Theorem 1.7 (which yields Corollary 1.8). We also compute ∥A ⊗ B∥2 for A a circulant
matrix with diagonals −a and off-diagonals b, for arbitrary complex a, b (extending the case of
a, b ∈ [0,∞) in [13]). In Section 6, using the numerical radius of circulant matrices, we obtain
a new estimation formula for the roots of an arbitrary complex polynomial. We end with some
natural questions that arise from the results in this work, in the concluding Section 7.

2. Numerical radius inequalities for Kronecker products

In this section we obtain numerical radius bounds for A ⊗ B that strengthen (1.1), and then
completely characterize the equality of (1.1) when all aij ∈ [0,∞) (Theorems 1.3 and 1.4).
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Begin by noting from the definitions (see Definition 1.2) that for any two Hilbert spaces K,H
and operators A ∈ B(K), B ∈ B(H), we have

⟨(A⊗B)(x⊗ y), x′ ⊗ y′⟩ = ⟨(B ⊗A)(y ⊗ x), y′ ⊗ x′⟩, ∀x, x′ ∈ K, y, y′ ∈ H.

Taking sums and limits, w(A ⊗ B) = w(B ⊗ A). Thus, from (1.1) (generalized to [12, Equation
(2)]), we obtain w(A⊗B) ≤ w(B)∥A∥. Also, it is easy to see that w(A⊗B) ≥ w(A)w(B), see [12].
We collect all these inequalities together:

w(A)w(B) ≤ w(A⊗B) ≤ min {w(A)∥B∥, w(B)∥A∥} . (2.1)

In particular, if w(A) = ∥A∥ or w(B) = ∥B∥ then w(A⊗B) = w(A)w(B).

We next record a “2 × 2 calculation”: w

([
0 λ
µ 0

])
=

|λ|+ |µ|
2

for all λ, µ ∈ C. This can be

(indirectly) deduced from the results in [30] and [7]; we now extend it to all anti-diagonal matrices,
show this from first principles, and use it below without further mention:

Proposition 2.1. Let A = [aij ]
n
i,j=1 ∈ Mn(C) be anti-diagonal: aij = 1i+j=n+1λi for all i, j. Then

w(A) =
1

2
max

1≤j≤⌈n/2⌉
(|λj |+ |λn+1−j |).

Proof. We first prove the claimed bound is attained. Suppose the maximum is attained at some
j (which is allowed to be the “central” position if n is odd). If λjλn+1−j = 0 then define x =

(x1, . . . , xn) ∈ Cn to have coordinates xj = xn+1−j = 1/
√
2 and all other xi = 0. Then |⟨Ax, x⟩| =

|λj |+|λn+1−j |
2 , as desired. Otherwise λjλn+1−j ̸= 0; now choose θ, µ ∈ [0, 2π] such that

λj

|λj |e
iθ =

λn+1−j

|λn+1−j | = eiµ. Let x ∈ Cn be such that xj = 1/
√
2, xn+1−j = eiθ/2/

√
2, and all other xi = 0.

(There is no ambiguity if j = n+ 1− j is “central”, since θ = 0.) Then

w(A) ≥ |⟨Ax, x⟩| = |eiθ/2eiµ| ·
∣∣∣eiθ/2λj + e−iθ/2λn+1−j

∣∣∣ /2 = (|λj |+ |λn+1−j |) /2.

To show the reverse inequality, compute for any x = (x1, . . . , xn)
T ∈ Cn:

2|⟨Ax, x⟩| = 2

∣∣∣∣∣
n∑

i=1

xiλixn+1−i

∣∣∣∣∣ ≤
n∑

i=1

2|xiλixn+1−i| =
n∑

i=1

(|λi|+ |λn+1−i|) · |xixn+1−i|,

using the triangle inequality. Now by the AM-GM inequality and choice of j, this quantity is at

most (|λj |+ |λn+1−j |) ·
n∑

i=1

(|xi|2 + |xn+1−i|2)/2 = (|λj |+ |λn+1−j |) · ∥x∥2, as desired. □

We also provide a less computational proof of Proposition 2.1, based on the weakly unitarily
invariance property of the numerical radius.

Alternate proof of Proposition 2.1. Note that the matrix A is permutationally similar to[
0 λ1

λn 0

]
⊕ . . .⊕

[
0 λ⌊n−1

2
⌋

λn+1−⌊n−1
2

⌋ 0

]
⊕A′,

where A′ =

[
0 λn/2

λ(n/2)+1 0

]
if n is even, and A′ =

(
λ(n+1)/2

)
if n is odd. Now the result follows

from w(X ⊕ Y ) = max{w(X), w(Y )} and the “2× 2 calculation” above. □
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We next study w(A ⊗ B) for operator matrices, where A is anti-diagonal and B ∈ B(H). One

such result [30], used below, is that if A =

[
0 1
λ 0

]
with |λ| = 1 then w(A ⊗ B) = w(A)w(B). We

extend this to a larger class of anti-diagonal A (whose nonzero entries can differ in modulus):

Corollary 2.2. Suppose A is a complex anti-diagonal matrix, and there exists an index 1 ≤ j ≤ n
such that |λj | = |λn+1−j | ≥ |λi| for all other i. Then for any B ∈ B(H), w(A⊗B) = w(A)w(B).

Proof. Since ∥A∥ = maxi |λi| = |λj |, and w(A) = |λj | by Proposition 2.1, the assertion follows
from (2.1) via sandwiching. □

Remark 2.3. Corollary 2.2 is atypical, in that for every anti-diagonal matrix A0 not in Corol-
lary 2.2 (so that 0 < w(A0) < ∥A0∥), and every Hilbert space with dimension in [2,∞], the

inequality w(A0)w(B) ≤ w(A0 ⊗ B) can be strict. Indeed, say H = C2 and B =

[
0 1
0 0

]
. Then

A0 ⊗B is again anti-diagonal, so Proposition 2.1 gives that

w(B) = 1/2, w(A0 ⊗B) = ∥A0∥/2 = ∥A0∥w(B) > w(A0)w(B).

One can carry out a similar computation in any Hilbert space H by choosing orthonormal vectors
u, v ∈ H and letting B := u⟨−, v⟩ ∈ B(H) be a rank-one operator.

Having discussed anti-diagonal matrices, we now continue towards refining Holbrook’s bound.
We need the following operator norm inequality of Hou and Du [34] for operator matrices.

Lemma 2.4 ([34]). Let Pij ∈ B(H) ∀1 ≤ i, j ≤ n and P = [Pij ]. Then ∥P∥ ≤
∥∥[∥Pij∥]n×n

∥∥.
Finally, it is well known ([33, pp. 44] and [10]) that if A ∈ Mn(C) with all aij ∈ [0,∞), then

w(A) =
1

2
w (A+A∗) =

1

2
r (A+A∗) , (2.2)

where r(·) denotes the spectral radius. This and the spectral radius monotonicity of matrices with
non-negative entries imply (see [32, pp. 491]) that for A = [aij ], A

′ = [a′ij ] ∈ Mn(C),

w(A) ≤ w(A′) whenever 0 ≤ aij ≤ a′ij for all i, j. (2.3)

With these results in hand, we can now refine Holbrook’s bound for w(A⊗B):

Proof of Theorem 1.3. From (2.1) and Proposition 2.1, we get

w

([
0 aij
aji 0

]
⊗B

)
≤ w

([
0 aij
aji 0

])
∥B∥ =

1

2
(|aij |+ |aji|) ∥B∥. (2.4)

We now proceed. For any λ ∈ C with |λ| = 1, we have

∥Re(λA⊗B)∥ =

∥∥∥∥[λaijB + λ̄ājiB
∗

2

]
n×n

∥∥∥∥
≤
∥∥∥∥[∥λaijB + λ̄ājiB

∗∥
2

]
n×n

∥∥∥∥ (by Lemma 2.4)

= w

([
∥λaijB + λ̄ājiB

∗∥
2

]
n×n

)
(w(D) = ∥D∥ if D∗ = D)

≤ w

([
max
|λ|=1

∥λaijB + λ̄ājiB
∗∥

2

]
n×n

)
(using (2.3))



NUMERICAL RADIUS AND ℓp OPERATOR NORM OF KRONECKER PRODUCTS AND SCHUR POWERS 7

= w

([
w

([
0 aijB

ajiB 0

])]
n×n

)
= w(C)(

since w(X) =
1

2
sup
|λ|=1

∥∥λX + λ̄X∗∥∥ for every X ∈ B(H)

)
,

where C = [cij ] with cij =


|aii|w(B) if i = j,

w

([
0 aij

aji 0

]
⊗B

)
if i ̸= j.

Maximize over |λ| = 1 and use the

simple fact that w(A ⊗ B) = max
|λ|=1

∥Re(λA ⊗ B)∥. Thus, w(A ⊗ B) ≤ w(C). Now use (2.2), (2.3),

and (2.4) to get: w(A⊗B) ≤ w(C) ≤ w(C◦), where C◦ is as in the theorem. □

Remark 2.5. The inequality w(A ⊗ B) ≤ w(C◦) also follows from the bound w
(
[Aij ]

n
i,j=1

)
≤

w
(
[a′ij ]

n
i,j=1

)
, where Aij ∈ B(H), a′ii = w(Aii) if i = j and a′ij = ∥Aij∥ if i ̸= j (see [1, Theorem 1]

and [6]). Along yet another approach: one might think of using Schur’s triangularization theorem
to assume A triangular, since the numerical radius is weakly unitarily invariant. However, doing
so would change the entries of the matrix A itself, and hence our bounds as well (which explicitly
use the entries of A).

Remark 2.6. Suppose A = [aij ] ∈ Mn(C) with |aij | = |aji| for all i, j. Then using Theo-
rem 1.3, w(C) = w ([|aij |]n×n)w(B), where C is as in Theorem 1.3. This implies: w(A ⊗ B) ≤

w ([|aij |]n×n)w(B). Now if A1 =

[
0 1 + i√
2 0

]
(where i =

√
−1) and B =

[
0 2
0 0

]
, then w(C) =

w ([|aij |]n×n)w(B) =
√
2 < 2

√
2 = w(A1)∥B∥. Thus, while our result reduces to Holbrook’s bound

if A is diagonal, this example shows that our result can improve Holbrook’s bound when one
considers the slightly larger class of normal matrices.

Now Theorem 1.3 yields the following corollary, which also refines Holbrook’s bound.

Corollary 2.7. Let A = [aij ] ∈ Mn(C) and B ∈ B(H). Then the following inequalities hold:

(1) w(A⊗B) ≤ w(A′)w(B), where A′ = [a′ij ] with a′ij = max {|aij |, |aji|} .
(2) w(A⊗B) ≤ w(Ĉ), where Ĉ = [ĉij ] with

ĉij =

{
|aii|w(B) if i = j,
1
2 ∥(|aij ||B|+ |aji||B∗|)∥1/2 ∥(|aji||B|+ |aij ||B∗|)∥1/2 if i ̸= j.

Proof. (1) From (2.1) we get

w

([
0 aij
aji 0

]
⊗B

)
≤ w(B)

∥∥∥∥[ 0 aij
aji 0

]∥∥∥∥ = max {|aij |, |aji|}w(B).

Therefore, Theorem 1.3 together with (2.3) gives w(A⊗B) ≤ w(C) ≤ w(A′)w(B).
(2) From [7, Remark 2.7 (ii)], we have

w

([
0 aij
aji 0

]
⊗B

)
≤ 1

2
∥(|aij ||B|+ |aji||B∗|)∥1/2 ∥(|aji||B|+ |aij ||B∗|)∥1/2 .

Hence, from Theorem 1.3 and (2.3) we get w(A⊗B) ≤ w(C) ≤ w(Ĉ). □
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Remark 2.8. Clearly, 1
2 ∥(|aij ||B|+ |aji||B∗|)∥1/2 ∥(|aji||B|+ |aij ||B∗|)∥1/2 ≤ |aij |+|aji|

2 ∥B∥. From (2.2),

it follows that if aij ≥ 0 for all i, j, then w(A)∥B∥ = w

([
aij+aji

2 ∥B∥
]
n×n

)
. Therefore when aij ≥ 0

for all i, j, Corollary 2.7(2) also refines Holbrook’s bound (1.1) (via (2.3)).

We now use Theorem 1.3 to obtain a complete characterization for the equality w(A ⊗ B) =
w(A)∥B∥, when all entries of A are non-negative. For this, we first show:

Lemma 2.9. Let A = [aij ] ∈ Mn(C) with aii ̸= 0 for all i, and let λ ∈ C. Then∥∥∥∥∥∥∥∥∥


λa11 a12 . . . a1n
a21 λa22 . . . a2n
...

...
. . .

...
an1 an2 . . . λann


∥∥∥∥∥∥∥∥∥ = ∥A∥ if and only if λ = 1.

Proof. The sufficiency is trivial; to show the necessity, write A = D + C, where D = (1 −
λ)diag(a11, . . . , ann) and C is the matrix on the left in the lemma. From [38, Theorem 8.13],
σmax(C) + σmin(D) ≤ σmax(C + D) ≤ σmax(C) + σmax(D), where σmax(·) and σmin(·) denote the
maximum and minimum singular values, respectively. Since σmax(C) = σmax(C + D) by the hy-
pothesis, σmin(D) ≤ 0 and σmax(D) ≥ 0. As all aii ̸= 0, we obtain λ = 1. □

Proof of Theorem 1.4. The sufficiency is trivial, from (2.1). To show the necessity, let w(A⊗B) =
w(A)∥B∥. Then from (1.3) and the line following it, we obtain w(C◦) = w(A)∥B∥ by sandwiching,
with C◦ as in (1.3). Using (2.2) twice, we have:

w(C◦) =
1

2
r(C◦ + (C◦)∗) =

1

2
∥C◦ + (C◦)∗∥, w(A)∥B∥ = w(∥B∥A) =

1

2
∥∥B∥(A+A∗)∥ .

So these are equal; now using Lemma 2.9, λ = w(B)/∥B∥ = 1. □

3. Inequalities for Kronecker products in semi-Hilbertian spaces

The goal of this section is to record the extensions of the results studied in Section 2, to the setting
of a semi-Hilbertian space. To do this, first we need the following notations and terminologies. Let
H be a complex Hilbert space and P ∈ B(H) be a nonzero positive operator, i.e., ⟨Px, x⟩ ≥ 0
for all x ∈ H. Consider the semi-inner product ⟨·, ·⟩P : H × H → R induced by P , namely,
⟨x, y⟩P = ⟨Px, y⟩ for all x, y ∈ H. The semi-inner product ⟨·, ·⟩P induces a seminorm ∥ · ∥P on H
given by ∥x∥P =

√
⟨x, x⟩P for all x ∈ H. This makes H a semi-Hilbertian space, and ∥ · ∥P is a

norm on H if and only if P is injective.

Definition 3.1. An operator B1 ∈ B(H) is called the P -adjoint of B ∈ B(H) if for every x, y ∈ H,
⟨Bx, y⟩P = ⟨x,B1y⟩P holds, i.e., if B1 satisfies the equation PX = B∗P .

The set of all operators which admit P -adjoints is denoted by BP (H). From Douglas’ theorem
[15], we get BP (H) = {B ∈ B(H) : B∗ (R(P )) ⊆ R(P )} , where R(P ) denotes the range of P. For
B ∈ B(H), the reduced solution of the equation PX = B∗P is a distinguished P -adjoint of B,
which is denoted by B♯P and satisfies B♯P = P †B∗P , where P † is the Moore–Penrose inverse of P .
Again via Douglas’ theorem, one can show:

BP 1/2(H) =
{
B ∈ B(H) : B∗

(
R(P 1/2)

)
⊆ R(P 1/2)

}
= {B ∈ B(H) : ∃ λ > 0 such that ∥Bx∥P ≤ λ∥x∥P , ∀ x ∈ H}.
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Here BP (H) and BP 1/2(H) are two sub-algebras of B(H) and BP (H) ⊆ BP 1/2(H) ⊆ B(H). The
semi-inner product induces the P -operator seminorm on BP 1/2(H), which is defined as

∥B∥P = sup
x∈R(P )
x̸=0

∥Bx∥P
∥x∥P

= sup{∥Bx∥P : x ∈ H, ∥x∥P = 1}.

Definition 3.2. The P -numerical radius of B ∈ BP 1/2(H), denoted as wP (B), is defined as
wP (B) = sup{|⟨Bx, x⟩P | : x ∈ H, ∥x∥P = 1}.

If P = IH (the identity operator on H), then ∥B∥P = ∥B∥ and wP (B) = w(B). It is well known
that the P -numerical radius wP (·) : BP 1/2(H) → R defines a seminorm and is equivalent to the
P -operator seminorm via the relation 1

2∥B∥P ≤ wP (B) ≤ ∥B∥P .
The semi-inner product ⟨·, ·⟩P induces an inner product on the quotient space H/N (P ) defined

as [x, y] := ⟨Px, y⟩ ∀x, y ∈ H, where N (P ) denotes the null space of P and x = x+N (P ) for x ∈ H.
de Branges and Rovnyak [14] showed that H/N (P ) is isometrically isomorphic to the Hilbert space

R(P 1/2) with inner product [P 1/2x, P 1/2y] := ⟨MR(P )
x,MR(P )

y⟩, ∀x, y ∈ H. Here MR(P )
denotes

the orthogonal projection onto R(P ).
To present our results in this section, we now need the following known lemmas, which give nice

connections between B ∈ BP 1/2(H) and a certain operator B̃ on the Hilbert space R(P 1/2).

Lemma 3.3 ([3, Proposition 3.6]). Let B ∈ B(H) and let ZP : H → R(P 1/2) be defined as

ZPx = Px for all x ∈ H. Then B ∈ BP 1/2(H) if and only if there exists a unique operator B̃ on

R(P 1/2) such that ZPB = B̃ZP .

From this one derives the next lemma:

Lemma 3.4. Let B,B′ ∈ BP 1/2(H) and let λ ∈ C be any scalar. Then

˜B + λB′ = B̃ + λB̃′ and B̃B′ = B̃B̃′.

Lemma 3.5 ([3, 11, 16]). Let B ∈ BP 1/2(H). Then ∥B∥P = ∥B̃∥ and wP (B) = w(B̃).

Lemma 3.6 ([9]). Let P = [Pij ]n×n be an n × n operator matrix such that Pij ∈ BP 1/2(H) for all

i, j. Then P ∈ BIn⊗P 1/2(Hn) and P̃ = [P̃ij ]n×n.

We can now present our results. Using Theorem 1.3, we show the following extension of it:

Theorem 3.7. Let A = [aij ] ∈ Mn(C) and B ∈ BP 1/2(H). Then wIn⊗P (A ⊗ B) ≤ w(C), where

C = [cij ] with cij = |aii|wP (B) if i = j and wI2⊗P

([
0 aij
aji 0

]
⊗B

)
otherwise.

Proof. Following Theorem 1.3 together with Lemmas 3.3, 3.4, 3.5 and 3.6, we obtain that wIn⊗P (A⊗
B) = w(Ã⊗B) = w(A ⊗ B̃) ≤ w(C), where C = [cij ] with cij = |aii|w(B̃) if i = j and

w

([
0 aij
aji 0

]
⊗ B̃

)
otherwise. But then C is as claimed. □

From the inequalities (2.1) and using Lemmas 3.3, 3.4 and 3.5, we obtain that

w(A)wP (B) ≤ wIn⊗P (A⊗B) ≤ min {w(A)∥B∥P , wP (B)∥A∥} , ∀A ∈ Mn(C), B ∈ BP 1/2(H).
(3.1)

From these inequalities and using Theorem 3.7, we can deduce the following.

Corollary 3.8. Let A = [aij ] ∈ Mn(C) and B ∈ BP 1/2(H). Then



10 PINTU BHUNIA, SUJIT SAKHARAM DAMASE, AND APOORVA KHARE

(1) wIn⊗P (A⊗B) ≤ w (C) , where C =


|a11|wP (B) |a12|∥B∥P . . . |a1n|∥B∥P
|a21|∥B∥P |a22|wP (B) . . . |a2n|∥B∥P

...
...

. . .
...

|an1|∥B∥P |an2|∥B∥P . . . |ann|wP (B)

 .

(2) Moreover, if all entries of A are non-negative, then

wIn⊗P (A⊗B) ≤ w (C) ≤ w(A)∥B∥P . (3.2)

Finally, we completely characterize the equality in wIn⊗P (A⊗B) ≤ w(A)∥B∥P in (3.1).

Proposition 3.9. Let A = [aij ] ∈ Mn(C) and B ∈ BP 1/2(H). Then wIn⊗P (A ⊗ B) = w(A)∥B∥P
if wP (B) = ∥B∥P . Conversely, if aij ≥ 0 and aii ̸= 0 for all i, j and wIn⊗P (A⊗ B) = w(A)∥B∥P ,
then wP (B) = ∥B∥P .

Proof. These assertions follow from the inequalities (3.1) and (3.2) and Lemma 2.9. □

4. Numerical radius (in)equalities for Schur products and powers

We now apply numerical radius inequalities for Kronecker products to study the analogous
(in)equalities for Schur/entrywise products of matrices. (Thus, H = Cn in this section.) As the
Schur product A ◦B is a principal submatrix of the Kronecker product A⊗B, we first record:

Lemma 4.1. Let A,B ∈ Mn(C). Then w(A ◦B) ≤ w(A⊗B).

This lemma (is well known, and) together with (2.1) gives

w(A ◦B) ≤ min{w(A)∥B∥, w(B)∥A∥} ≤ 2w(A)w(B), ∀A,B ∈ Mn(C). (4.1)

Clearly, if w(A) = ∥A∥ or w(B) = ∥B∥, then w (A ◦B) ≤ w(A)w(B) (also see in [33, Corollary
4.2.17]). Ando and Okubo proved [2, Corollary 4] that if A = [aij ] ∈ Mn(C) is positive semidefinite,
then w (A ◦B) ≤ maxi{aii}w(B). For another proof one can see [20, Propsition 4.1]. The equality
conditions of the above inequalities are studied in [20].

We begin by improving on the numerical radius inequalities (4.1).

Proposition 4.2. Let A,B ∈ Mn(C). Then w(A ◦ B) ≤ w(C), where C is as in Theorem 1.3.
The analogous result by switching A and B also holds (by symmetry of the Schur product).

Proof. We only show the first assertion: it follows from Theorem 1.3 and Lemma 4.1. □

Using similar arguments as Corollary 2.7, from Proposition 4.2 we deduce the following.

Corollary 4.3. Let A = [aij ], B ∈ Mn(C). Then w (A ◦B) ≤ w(A′)w(B), where A′ = [a′ij ] with

a′ij = max {|aij |, |aji|} . In particular, if |aij | = |aji| for all i, j then w (A ◦B) ≤ w ([|aij |]n×n)w(B).

Similar to Theorem 1.3, from Proposition 4.2 we obtain the following bounds.

Corollary 4.4. Let A,B ∈ Mn(C). Then w(A◦B) ≤ w(C◦), where C◦ is as in Theorem 1.3. The
analogous result by switching A and B also holds (by symmetry of the Schur product).

Remark 4.5. Clearly, if either aij ≥ 0 or bij ≥ 0 for all i, j, then Corollary 4.4 gives a stronger
upper bound than the one in (4.1).

Using Corollary 4.4 and proceeding as in Theorem 1.4, we deduce another equality-characterization:

Proposition 4.6. Let A = [aij ], B ∈ Mn(C) with aij ≥ 0 and aii ̸= 0 for all i, j. Then w (A ◦B) =
w(A)∥B∥ implies w(B) = ∥B∥.
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However, the converse is not true in general.
We next derive numerical radius inequalities for Schur powers of complex matrices w(A◦m).

Proposition 4.7. Let A = [aij ] ∈ Mn(C) and m ∈ N. Then:

(1) w(A◦m) ≤ w(A)∥A∥m−1 ≤ 2m−1wm(A).
(2) Moreover, if w(A) = ∥A∥ (e.g. if A is normal), then w(A◦m) ≤ wm(A).
(3) If w(A) = ∥A∥ and w(A◦m) = wm(A) for some m ≥ 1, then

w(A◦m) = ∥A◦m∥ = ∥A∥m = wm(A).

After writing the proof, we will characterize when equality holds in the second part.

Proof. (2) is immediate from (1). To show (1), use Lemma 4.1 and (2.1) to obtain: w(A ◦ B) ≤
w(A⊗B) ≤ w(B)∥A∥ for every B ∈ Mn(C). Successively letting B = A,A◦2, . . . yields w(A◦m) ≤
w(A)∥A∥m−1. The second inequality now holds because ∥A∥ ≤ 2w(A).

Finally, (3) follows from a chain of inequalities:

∥A∥m = w(A)m = w(A◦m) ≤ ∥A◦m∥ ≤ ∥A⊗m∥ = ∥A∥m, (4.2)

where the second inequality holds because A◦m is a submatrix of A⊗m, hence of the form P1A
⊗mP2

for suitable (projection) operators P1, P2. □

We make the following remarks:

(1) The inequalities in Proposition 4.7 are sharp. E.g. if A =

[
0 λ
0 0

]
for any complex λ, then

by Proposition 2.1, w(A◦m) = w(A)∥A∥m−1 = 2m−1w(A)m = |λ|m/2 for all m ≥ 1.
(2) Proposition 4.7 implies that if w(A◦m) = 2m−1wm(A) for some m ∈ N, then w(A) = ∥A∥/2.

However, the converse is not true in general; e.g. consider A =

[
1 1
−1 −1

]
.

Note that the inequality in Proposition 4.7(2) can be strict. For example, let A =

[
a b
b a

]
, where

a, b > 0. Then w(A◦m) = am + bm < (a + b)m = wm(A) for every integer m ≥ 2. Thus, we now
completely characterize the equality in Proposition 4.7(2).

Theorem 4.8. Let m,n ≥ 1, and suppose A ∈ Mn(C) is such that w(A) = ∥A∥. Let the eigenval-
ues of A be listed as a1, . . . , an such that |a1| = · · · = |ak| > |ak+1|, . . . , |an| for some k ≥ 1.

(1) The Jordan blocks of A corresponding to the “maximum-modulus eigenvalues” a1, . . . , ak
are of size 1× 1.

(2) Let U = [u1| · · · |uk|B] be any unitary matrix such that U∗AU = diag(a1, . . . , ak) ⊕ A′ for
some A′ ∈ Mn−k(C). Then w(A◦m) = wm(A) if and only if the subspace

spanC{uj1 ⊗ · · · ⊗ ujm : 1 ≤ j1, . . . , jm ≤ k}
⋂

spanC{e⊗m
j : j = 1, . . . , n}

is nonzero and contains an eigenvector of A⊗m – equivalently, spanC{e⊗m
j : j = 1, . . . , n}

contains an eigenvector of A⊗m with eigenvalue λ such that |λ| = |a1|m = ∥A∥m.

Moreover, if (2) holds: w(A◦m) = wm(A), then the same holds for every 1 ≤ m′ ≤ m.

Before proceeding further, we cite predecessors in the literature to the first part.

(1) After we had shown Theorem 4.8 (following the referee’s suggestions) while this manu-
script was under revision, Tao pointed out to us that Goldberg–Zwas [24] had shown Theo-
rem 4.8(1) in the 1970s! Their proof does not use the numerical radius, so that our proof of
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Theorem 4.8(1) is different from theirs. We also remark for completeness that Goldberg–
Zwas obtain a characterization of when w(A) = ∥A∥ (they term such matrices “radial”).
We do not proceed along these lines, as our main focus was Theorem 4.8(2).

(2) Four decades after Goldberg and Zwas, Gau–Wu also characterized when w(A) = ∥A∥ in
[21, Proposition 2.2]: this happens if and only if A is unitarily similar to [a] ⊕ B, with
∥B∥ ≤ |a| and w(A) = ∥A∥ = r(A) = |a|. It is not immediately clear if this implies
Theorem 4.8(1), since one would need to check if w(B) = ∥B∥ = |a| in order to proceed
inductively.

(3) For completeness we also point out the paper [23] by Goldberg–Tadmor–Zwas, in which the
authors characterize all complex square matrices whose spectral and numerical radii agree.
The authors termed such matrices “spectral”, following Halmos [27].

Returning to the proof of Theorem 4.8, we begin with two preliminary lemmas.

Lemma 4.9. Fix integers 1 ≤ K ≤ N and a matrix X ∈ MN (C). Let T be the leading K × K

principal submatrix of X. Then w(T ) = ∥X∥ if and only if X has an eigenvector x =

[
y

0N−K

]
with corresponding eigenvalue λ satisfying: |λ| = ∥X∥ (and hence Ty = λy too).

Here, T is assumed to be a leading principal submatrix to facilitate stating and proving the result
with simpler notation. However, our proof of Theorem 4.8 will use a variant of this result where
T = A◦m is a non-leading principal submatrix of X = A⊗m. Such a variant can be easily deduced
from Lemma 4.9.

Proof. If X has an eigenvector x as specified, and we rescale y to be unit length (hence so is x),
then

w(T ) ≥ |⟨Ty, y⟩| = |⟨Xx, x⟩| = |λ| = ∥X∥.
Moreover, ∥X∥ ≥ w(X) ≥ w(T ) (the latter by padding by zeros). Hence w(T ) = ∥X∥.

Conversely, suppose w(T ) = |⟨Ty, y⟩| for some unit vector y ∈ CK . With x the zero-padding of
y, it follows by the Cauchy–Schwarz inequality that

∥X∥ = w(T ) = |⟨Ty, y⟩| = |⟨Xx, x⟩| ≤ ∥Xx∥∥x∥ ≤ ∥X∥.

Hence x and Xx are linearly dependent, so x is an eigenvector of X (and hence, y of T ), and
the corresponding eigenvalue λ = ⟨Xx, x⟩ satisfies: |λ| = ∥X∥. □

Remark 4.10. We stress – from the above proof – that if w(T ) = ∥X∥, then any unit vector
y ∈ CK with w(T ) = |⟨Ty, y⟩| is an eigenvector of T (and its zero-padding x of X), with common
eigenvalue λ such that |λ| = ∥X∥.

In order to characterize when w(A◦m) = w(A)m = w(A⊗m) (by (2.1)), we need to work with
A◦m as a principal submatrix of A⊗m. Thus, we quickly record the coordinates in which A◦m sits
inside A⊗m. More generally, we have (for any tuple of equidimensional matrices over any field):

Lemma 4.11. Given integers p, q,m ≥ 1 and p × q matrices A1, . . . , Am, their Schur product
A1 ◦ · · · ◦Am occurs as a submatrix of their tensor product ⊗m

i=1Ai, in the rows numbered {j(1+p+
p2+· · ·+pm−1)+1 : 0 ≤ j < p} and the columns numbered {j(1+q+q2+· · ·+qm−1)+1 : 0 ≤ j < q}.

In other words, the row numbers are one more than non-negative integer multiples (in base p)
of (11 . . . 1)p; and similarly for the column numbers.

With these lemmas at hand, we have:

Proof of Theorem 4.8.
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(1) If w(A) = ∥A∥ = 0, then A = 0 and the result is immediate. Else: as w(A) ≥ |aj | ∀j ≤ n,
applying Lemma 4.9 with T = X shows that ∥A∥ = |a1| = · · · = |ak|. We now suppose for
some 0 ≤ l < k that

U∗
l AUl = diag(a1, . . . , al)⊕A′

l, with Ul unitary, (4.3)

and proceed inductively on l. (If l = 0 then let U0 = Idn.) Write Ul = [u1| · · · |ul|B′]; then
one verifies that Auj = ajuj for all 1 ≤ j ≤ l. Since l < k, A′ has an eigenvalue al+1 (with
|al+1| = ∥A∥) with a unit-length eigenvector v′ – and U∗

l AUl has an associated eigenvector[
0l
v′

]
. This eigenvector is orthogonal to all ej = U∗

l uj (for 1 ≤ j ≤ l), so ul+1 := Ul

[
0l
v′

]
is

orthogonal to Ulej = uj for all j ≤ l.
Now let Ul+1 = [u1| · · · |ul+1|B] be any unitary matrix (so ajB

∗uj = B∗Auj = 0 ∀j ≤
l + 1). An explicit computation then reveals:

U∗
l+1AUl+1 =


a1 · · · 0 u∗1AB
...

. . .
...

...
0 · · · al+1 u∗l+1AB
0 · · · 0 B∗AB


For 1 ≤ j ≤ l + 1, let rj ̸= 0 denote the jth row of this matrix. Then

|aj | = ∥U∗
l+1AUl+1∥ ≥ ∥vj∥ ≥ |⟨vj , ej⟩|, where vj := (U∗

l+1AUl+1) ·
r∗j

∥r∗j ∥
.

But |⟨vj , ej⟩| = ∥r∗j∥ =
√
|aj |2 + ∥B∗A∗uj∥2, so u∗jAB = 0 and we obtain (4.3) for l + 1,

as desired. It follows by induction on l that A is unitarily similar to diag(a1, . . . , ak)⊕ A′.
We are now done by the uniqueness of the Jordan normal form.

Moreover, the eigenvalues of A′ are necessarily ak+1, . . . , an, and all of them are strictly
less than |a1| = ∥A∥. Thus Lemma 4.9 (modified to work with the trailing principal
submatrix) shows that w(A′) < ∥A∥.

(2) Let U be as in the statement (it exists by part (1)). First note for the matrix A⊗m that

w(A⊗m) = wm(A) = ∥A∥m = ∥A⊗m∥,
e.g. by (2.1). Moreover, its maximum-modulus eigenvalues are precisely the k-fold products

aj1 · · · ajm , 1 ≤ j1, . . . , jm ≤ k, (4.4)

and the associated unit-norm eigenvectors are uj1 ⊗ · · · ⊗ ujm .
Note that A◦m is a principal submatrix of A⊗m, with row and columns corresponding

to the positions of the nonzero entries in e⊗m
j for 1 ≤ j ≤ n (this latter follows from

Lemma 4.11, wherein we set p = q = n). Thus, a “non-leading-yet-principal” version of
Lemma 4.9 implies that w(A◦m) = wm(A) = ∥A⊗m∥ if and only if A⊗m has an eigenvector
in spanC{e⊗m

j : j = 1, . . . , n}, with associated eigenvalue λ satisfying |λ| = ∥A⊗m∥ = |a1|m.

By choice of k in the hypotheses, λ lies in the collection (4.4).

Finally, suppose m > 1 and w(A) = ∥A∥, w(A◦m) = wm(A). By downward induction, it suffices

to show that w(A◦(m−1)) = wm−1(A). Now since A◦m is a principal submatrix of A◦(m−1) ⊗A, by
padding by zeros and (2.1) we have:

wm(A) = w(A◦m) ≤ w(A◦(m−1) ⊗A) = w(A◦(m−1))w(A) ≤ wm(A),

where the final inequality is by Proposition 4.7(2). Hence all inequalities are equalities, and from

the final step we get w(A◦(m−1)) = wm−1(A). □
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Example 4.12. Theorem 4.8(1) shows that if w(A) = ∥A∥, then we have the decomposition
U∗AU = diag(a1, . . . , ak) ⊕ A′, where all eigenvalues of A′ are strictly less than |a1| = · · · = |ak|.
The proof of this part also showed that w(A′) < w(A) = ∥A∥. It is natural to ask if ∥A′∥ < ∥A∥

or not. This turns out to be not always the case; for instance, let A =

1 0 0
0 0 1
0 0 0

. Then

w(A) = 1 = ∥A∥, and A′ = E12, so w(A′) = 1/2 and ∥A′∥ = 1 (and all eigenvalues of A′ are
zero). □

Remark 4.13. In the concluding section 7, we will list some questions that naturally arise from
Theorem 4.8.

We next reformulate the characterization in Theorem 4.8(2) as follows.

Corollary 4.14. Setting as in Theorem 4.8, and let U be as in part (2) there. Let D := U∗AU =
diag(a1, . . . , ak) ⊕ A′, and let Vk := spanC(e1, . . . , ek) ⊆ Cn. Then w(A◦m) = wm(A) if and only
if D⊗m has an eigenvector in V ⊗m

k ∩ spanC{(U∗ej)
⊗m : 1 ≤ j ≤ n}, with eigenvalue λ such that

|λ| = |a1|m.

Proof. This follows from Theorem 4.8(2) at once, using that (a) the Kronecker product is multi-
plicative, so that (AB)⊗m = A⊗mB⊗m for all compatible matrices (or vectors) A,B and integers
m ≥ 1; and (b) U∗uj = ej for all n× n unitary matrices U∗ and all 1 ≤ j ≤ n. □

In Corollary 4.14, we can also recover additional information about the eigenvector of D⊗m.

Proposition 4.15. Setting as in Corollary 4.14. If w(A◦m) = wm(A), then ⊕k
j=1yj ⊕ 0(n−k)nm−1

is a unit eigenvector of D⊗m, with eigenvalue λ such that |λ| = |a1|m and each yj = ⊕k
l=1yjl ⊕

0(n−k)nm−2 is an eigenvector of D⊗m−1, with eigenvalue 1
∥yj∥2 ⟨(D

⊗m−1)yj , yj⟩ = e−iθjwm−1(A)

where θj = θ + arg (aj) for some θ ∈ R.

Proof. Throughout this proof, x = (x1, . . . , xn)
T denotes a unit length vector in Cn. Choose x such

that |⟨(A◦m)x, x⟩| = w(A◦m). We have

wm(A) = |⟨(A◦m)x, x⟩| = |⟨(A⊗m)x′, x′⟩| (where x′ =

n∑
j=1

xj

(
e⊗m
j

)
∈ Cnm

)

= |⟨(D⊗m)(U∗⊗m)x′, (U∗⊗m)x′⟩|
= |⟨(D⊗m)y, y⟩| (where y = (U∗⊗m)x′ = ⊕k

j=1yj ⊕ y′(n−k)nm−1 ∈ Cnm
)

= |⟨
(
⊕k

j=1aj(D
⊗m−1)⊕ (A′ ⊗D⊗m−1)

)
⊕k

i=1 yi ⊕ y′,⊕k
i=1yi ⊕ y′⟩|

=

∣∣∣∣∣∣
k∑

j=1

aj⟨(D⊗m−1)yj , yj⟩+ ⟨A′ ⊗D⊗m−1y′, y′⟩

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑

j=1

aj⟨(D⊗m−1)yj , yj⟩

∣∣∣∣∣∣+ ∣∣⟨A′ ⊗D⊗m−1y′, y′⟩
∣∣

≤
k∑

j=1

∣∣aj⟨(D⊗m−1)yj , yj⟩
∣∣+ ∣∣⟨A′ ⊗D⊗m−1y′, y′⟩

∣∣
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≤
k∑

j=1

|aj |wm−1(A) ∥yj∥2 + w(A′ ⊗D⊗m−1)
∥∥y′∥∥2

≤
k∑

j=1

|aj |wm−1(A) ∥yj∥2 + w(A′)wm−1(A)
∥∥y′∥∥2 (since w(D⊗m−1) = wm−1(A))

≤ wm(A)

 k∑
j=1

∥yj∥2 + ∥y′∥2
 (since w(A′) ≤ w(A))

= wm(A)∥y∥2 = wm(A)∥x′∥2 = wm(A)∥x∥2 = wm(A).

Thus the above are all equalities. Since w(A′) < |a1| = w(A), y′ = 0; and so
∣∣∣∑k

j=1 aj⟨(D⊗m−1)yj , yj⟩
∣∣∣ =∑k

j=1 |aj |
∣∣⟨(D⊗m−1)yj , yj⟩

∣∣ =∑k
j=1 |aj |wm−1(A) ∥yj∥2 . Hence

⟨(D⊗m−1)yj , yj⟩ = e−iθjwm−1(A)∥yj∥2 with θj = θ + arg (aj) for some θ ∈ R.

From the above, we also have |⟨(D⊗m)y, y⟩| = ∥(D⊗m)y∥∥y∥ = |a1|m and |⟨(D⊗m−1)yi, yj⟩| =
∥(D⊗m−1)yj∥∥yj∥ = wm−1(A)∥yj∥2. This concludes that y and yj are eigenvectors of D⊗m and

D⊗m−1, respectively. Again, using a similar approach we can show yj = ⊕k
l=1yjl ⊕ 0(n−k)nm−2 . □

5. Numerical radius and ℓp operator norm inequalities for Kronecker products

We now show Theorem 1.7 (and hence Corollary 1.8 for doubly stochastic matrices), leading to
refinements/extensions of results of Bouthat, Khare, Mashreghi, and Morneau-Guérin [13].

Proof of Theorem 1.7. We begin by showing (1.6). Let p ∈ [1,∞). For x = (x1, x2, . . . , xn)
T ∈ Hn,

∥(A⊗B)x∥pp =
n∑

i=1

∥∥∥∥∥∥
n∑

j=1

aijBxj

∥∥∥∥∥∥
p

≤
n∑

i=1

 n∑
j=1

|aij | ∥Bxj∥

p

≤ ∥B∥p
n∑

i=1

 n∑
j=1

|aij |∥xj∥

p

≤ ∥B∥p
n∑

i=1

 n∑
j=1

|aij |

p/q n∑
j=1

|aij |∥xj∥p
 (Hölder)

≤ ∥B∥p
max

1≤i≤n

n∑
j=1

|aij |

p/q
n∑

i=1

 n∑
j=1

|aij |∥xj∥p


≤ ∥B∥p
max

1≤i≤n

n∑
j=1

|aij |

p/q
n∑

j=1

(
∥xj∥p

n∑
i=1

|aij |

)

≤ ∥B∥p
max

1≤i≤n

n∑
j=1

|aij |

p/q (
max
1≤j≤n

n∑
i=1

|aij |

)
n∑

j=1

∥xj∥p

= ∥B∥p
max

1≤i≤n

n∑
j=1

|aij |

p/q (
max
1≤j≤n

n∑
i=1

|aij |

)
∥x∥pp.
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Take the pth root, divide by ∥x∥p (for x ̸= 0), and take the supremum over all x ̸= 0, to obtain

∥A⊗B∥p ≤ ∥B∥
(
max1≤i≤n

∑n
j=1 |aij |

)1/q
(max1≤j≤n

∑n
i=1 |aij |)

1/p .

We now show ∥A ⊗ B∥p ≥ ∥B∥min1≤i≤n

∣∣∣∑n
j=1 aij

∣∣∣ . Since B ∈ B(H), there exists a sequence

{xm}∞m=1 in H \ {0} with limm→∞
∥Bxm∥
∥xm∥ = ∥B∥. Letting zm = (xm, xm, . . . , xm)T ∈ Hn,

∥A⊗B∥pp ≥ lim
m→∞

∥(A⊗B)zm∥pp
∥zm∥pp

= lim
m→∞

∑n
i=1

(∥∥∥∑n
j=1 aijBxm

∥∥∥)p
∥zm∥pp

= lim
m→∞

∑n
i=1

(
|
∑n

j=1 aij | ∥Bxm∥
)p

∥zm∥pp

≥ min
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aij

∣∣∣∣∣∣
p

lim
m→∞

∑n
i=1 ∥Bxm∥p

∥zm∥pp

= min
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aij

∣∣∣∣∣∣
p

∥B∥p
∑n

i=1 ∥xm∥p

∥zm∥pp
= ∥B∥p min

1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aij

∣∣∣∣∣∣
p

.

Hence, ∥A ⊗ B∥p ≥ ∥B∥min1≤i≤n

∣∣∣∑n
j=1 aij

∣∣∣. Similar arguments help show these bounds for
p = ∞.

Now we show (1.5). Using (2.1), we have w(A)w(B) ≤ w(A ⊗ B) ≤ ∥A∥w(B). To complete

the proof we need to show that ∥A∥ ≤
(
max1≤i≤n

∑n
j=1 |aij |

)1/2
(max1≤j≤n

∑n
i=1 |aij |)

1/2; but this

follows by taking p = 2 and B : C → C to be the identity operator in (1.6). □

5.1. Further (twofold) extensions. The next result from [13] that we improve involves a special
class of doubly stochastic matrices. Recall that a circulant matrix Circ(a1, a2, a3 . . . , an) is

Circ(a1, a2, a3, . . . , an) =


a1 a2 a3 . . . an
an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
...

. . .
...

a2 a3 a4 . . . a1

 .

It was shown in [13, Theorem 4.1] that for scalars a, b ∈ [0,∞),

∥Circ(−a, b, b, . . . , b)∥2 =

{
a+ b if (n− 2)b ≤ 2a,

(n− 1)b− a if (n− 2)b ≥ 2a.
(5.1)

We now provide a twofold extension (as well as a simpler proof) of (5.1): the scalars a, b need
not be non-negative or even real; and instead of just the matrix A = Circ(−a, b, b, . . . , b) we work
with A⊗B for arbitrary H and B ∈ B(H). (Note below that ∥B∥2 = ∥B∥ for all H, B ∈ B(H).)

Theorem 5.1. Fix any a, b ∈ C and B ∈ B(H), and let A = Circ(−a, b, b, . . . , b). Then:

(1) ∥A⊗B∥2 = max{|a+ b|, |(n− 1)b− a|}∥B∥.
(2) w(A⊗B) = max{|a+ b|, |(n− 1)b− a|}w(B).

In particular, setting B : C → C as the identity, we get: ∥Circ(−a, b, b, . . . , b)∥2 ∀a, b ∈ C.
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Proof. Here A = −(a + b)In + b1n×n is normal, with In,1n×n ∈ Mn(C) the identity and all-
ones matrix, respectively. Hence max{|a + b|, |(n − 1)b − a|} = r(A) = w(A) = ∥A∥. Thus
∥A⊗B∥2 = ∥A∥∥B∥ and w(A⊗B) = w(A)w(B) are as claimed. □

Our second twofold extension is of a result in [13] that computes ∥A⊗B∥2. We extend from real
to complex matrices, and also using any H and B ∈ B(H) (vis-a-vis H = C and B = (1) in [13]).

Proposition 5.2. Let A = [c1|c2| . . . |cn] ∈ Mn(C), whose columns satisfy c∗i ci = α and c∗i cj = β
(for all i < j) for some real scalars α, β, and let B ∈ B(H). Then

∥A⊗B∥2 = max
{√

|α− β|,
√
|α+ (n− 1)β|

}
∥B∥.

Proof. As ∥A ⊗ B∥2 = ∥A∥∥B∥, it suffices to show the result for H = C and B = (1). Clearly,

A∗A = Circ(α, β, β, . . . , β) = (α − β)In + β1n×n. Therefore, ∥A∥ = ∥A∗A∥1/2 = r1/2(A∗A) =

max
{√

|α− β|,
√
|α+ (n− 1)β|

}
. □

If A = Circ(a1, a2, a3) with all aj real, A satisfies the conditions of Proposition 5.2, and so:

Corollary 5.3. Let A = Circ(a1, a2, a3) ∈ M3(C), where a1, a2, a3 ∈ R. If B ∈ B(H), then

∥A⊗B∥2 = max

{
|a1 + a2 + a3|,

√∣∣a21 + a22 + a23 − (a1a2 + a2a3 + a1a3)
∣∣} ∥B∥.

Our third and final (threefold) extension, is of bounds in [13] for ∥A ⊗ B∥p where p ̸= 2. It is
shown in [13, Theorem 5.1 and Section 6] that if a, b ∈ [0,∞) and n ≥ 2, then

max{a+ b, |(n− 1)b− a|} ≤ ∥Circ(−a, b, b, . . . , b)∥p ≤ a+ b+ nbκ, ∀p ∈ [1,∞], (5.2)

where (as we show below) κ ∈ (1,∞). We extend this in our next result, with (i) a, b ∈ C allowed
to be arbitrary; (ii) the upper bound replaced by a quantity that is at most |a + b| + n|b| (so κ is
also replaced, by 1); and (iii) A = Circ(−a, b, b, . . . , b) replaced by A⊗B for arbitrary B ∈ B(H).

Theorem 5.4. Let a, b ∈ C, n ≥ 2, A = Circ(−a, b, b, . . . , b) ∈ Mn(C), and B ∈ B(H). Then

max
{
|a+ b|, |(n−1)b−a|

}
∥B∥ ≤ ∥A⊗B∥p ≤ min

{
|a+ b|+n|b|, |a|+(n−1)|b|

}
∥B∥, ∀p ∈ [1,∞].

(5.3)

Before proving the result, we explain the quantity κ and why it is > 1. The lower bound in (5.2)
easily follows from the fact that ∥A∥p ≥ r(A) for all A ∈ Mn(C) and p ∈ [1,∞]. The upper bound
in (5.2) was shown in [13] using harmonic analysis; we now provide a few details. Consider the
matrix K = 1n×n as an operator on Pn−1, the space of all polynomials of degree at most n − 1.
Explicitly, for each p(z) = a0+a1z+ · · ·+an−1z

n−1 ∈ Pn−1, (Kp)(z) := (a0+a1+ · · ·+an−1)ϕ(z),
where ϕ(z) = 1 + z + z2 + · · ·+ zn−1. With the above, it was shown in [13, Section 6] that

∥Circ(−a, b, b, . . . , b)∥p ≤ a+ b+ nb∥ϕ∥L1(T), ∀a, b ∈ [0,∞),

where κ = ∥ϕ∥L1(T) is the L1-norm on the circle T, with respect to the normalized Haar measure.

Having defined κ, its L1-norm is easily estimated:

1 =

∣∣∣∣ ∫ 2π

0
ϕ(eiθ)

dθ

2π

∣∣∣∣ ≤ ∫ 2π

0
|ϕ(eiθ)|dθ

2π
= ∥ϕ∥L1(T) = κ.

In fact this inequality is strict (κ > 1), because equality occurs if and only if ϕ is a positive-valued –
in particular, R-valued – function on the circle, which is clearly false (e.g. since ϕ is a non-constant
entire function on the complex plane).
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We now negatively answer a question asked in [13]: For a, b ∈ [0,∞), does the estimation
∥A∥p ≤ a+b+nb∥ϕ∥L1(T) lead to a precise formula for ∥A∥p? While Theorem 5.4 provides a negative
answer via a strict improvement, we show a strict improvement using even simpler means. Namely,
one can easily find a better estimation directly from the decomposition A = −(a+ b)In + b1n×n:

∥A∥p ≤ (a+ b) + b∥1n×n∥p = a+ b+ nb < a+ b+ nbκ,

which holds because ∥1n×n∥p = n (since 1n×n = Circ(1, 1, . . . , 1)).
Finally, we end this section with

Proof of Theorem 5.4. Since A⊗B = −(a+ b)In⊗B+ b1n×n⊗B, we get ∥A⊗B∥p ≤ ∥(a+ b)In⊗
B∥p + ∥b1n×n ⊗B∥p. The upper bound now follows by using Theorem 1.7 (twice):

∥A⊗B∥p ≤ (|a+ b|+ n|b|)∥B∥, ∥A⊗B∥p ≤ (|a|+ (n− 1)|b|)∥B∥.

To show the lower bound, take a nonzero sequence of vectors {xm}∞m=1 ⊆ H such that ∥Bxm∥ →
∥B∥∥xm∥. Let zm = (xm, xm, . . . , xm)T , z′m = (xm, xm, 0, . . . , 0)T ∈ Hn. Then the lower bound
follows:

∥A⊗B∥p ≥ lim
m→∞

∥(A⊗B)zm∥p
∥zm∥p

= |(n− 1)b− a|∥B∥,

∥A⊗B∥p ≥ lim
m→∞

∥(A⊗B)z′m∥p
∥z′m∥p

= |a+ b| ∥B∥. □

6. Estimations for the roots of a polynomial

As a final application of the numerical radius formula for circulant matrices, we develop a new
estimate for the roots of an arbitrary complex polynomial. Consider a monic polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0, n ≥ 2,

where a0, a1, . . . , an−1 ∈ C. The Frobenius companion matrix C(p) of p(z) is given by

C(p) =

[
−an−1 − an−2 . . . − a1 −a0

In−1 0(n−1)×1

]
.

It is well known (see [32, pp. 316]) that all eigenvalues of C(p) are exactly the roots of the
polynomial p(z). By this argument and using the numerical radius inequality for C(p), Fujii and
Kubo [17] proved that if λ is a root of the polynomial p(z), then

|λ| ≤ cos
π

n+ 1
+

1

2

(
|an−1|+

√
|a0|2 + |a1|2 + · · ·+ |an−1|2

)
. (6.1)

Here, using the numerical radius for circulant matrices in Corollary 1.8 (or [13]), we obtain a
new estimation formula for the roots of p(z). We need the following known lemma.

Lemma 6.1 ([17]). Let D =

[
a1 a2 . . . an

0(n−1)×n

]
, where a1, a2, . . . , an ∈ C. Then

w(D) =
1

2

(
|a1|+

√
|a1|2 + |a2|2 + · · ·+ |an|2

)
.

Theorem 6.2. If λ is a root of p(z), then

|λ| ≤ 1 +
1

2

(
|an−1|+

√
|a0 + 1|2 + |a1|2 + |a2|2 + · · ·+ |an−1|2

)
.
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Proof. Consider C(p) = A+D, where

A =

[
01×(n−1) 1
In−1 0(n−1)×1

]
and D = −

[
an−1 an−2 . . . a1 (a0 + 1)

0(n−1)×n

]
.

Since A = Circ(0, 0, . . . , 0, 1) is a unitary (permutation) matrix, clearly w(A) = 1. Also, Lemma 6.1

yields w(D) = 1
2

(
|an−1|+

√
|a0 + 1|2 + |a1|2 + |a2|2 + · · ·+ |an−1|2

)
. This yields the result:

|λ| ≤ w(C(p)) ≤ w(A) + w(D) = 1 +
1

2

(
|an−1|+

√
|a0 + 1|2 + |a1|2 + |a2|2 + · · ·+ |an−1|2

)
. □

Remark 6.3. Suppose p(z) = zn + an−1z
n−1 + · · · + a1z + a0, where |a0 + 1| < |a0| (e.g. where

Re(a0) ≤ −1). For this class of polynomials, Theorem 6.2 gives a stronger estimate than (6.1) for
all sufficiently large n.

7. Some questions arising from Theorem 4.8

Finally, we consider some questions that arise naturally from Theorem 4.8. We begin with a
variant of the Spectral Theorem for normal matrices. Note that in this line of work, one considers
three non-negative real numbers associated to a complex square matrix A: (a) the spectral radius
r(A) = maxλ∈σ(A) |λ|; (b) the numerical radius w(A) = sup∥x∥=1 |⟨Ax, x⟩|; and (c) the spectral

norm ∥A∥ = sup∥x∥=1 ∥Ax∥. It is well known that r(A) ≤ w(A) ≤ ∥A∥, and if ∥A∥ = w(A) then

∥A∥ = r(A) too (see Lemma 4.9).
Now, Theorem 4.8 says that if w(A) = ∥A∥ = r(A), then A has “partial diagonalizability”: each

Jordan block for each maximum-modulus eigenvalue is 1×1. Here the reader will recall the Spectral
Theorem, which says that if A is normal (a strictly stronger condition than w(A) = ∥A∥) then A
is diagonalizable – and conversely. This leads to a natural question:

Question 7.1. Suppose A ∈ Mn(C). What condition on the “diagonalizability” side is equivalent
to w(A) = ∥A∥ = r(A)? Dually, what relations between r(A), w(A), and ∥A∥ (or more) is equivalent
to each Jordan block of each maximum-modulus eigenvalue being 1× 1?

The second question has essentially been answered by Goldberg–Tadmor–Zwas [23]:

Theorem 7.2 ([23, Theorem 1]). Let A ∈ Mn(C) and let its eigenvalues a1, . . . , an be as in
Theorem 4.8. Then w(A) = r(A) if and only if A is unitarily similar to diag(a1, . . . , ak)⊕A′, with
A′ lower triangular and w(A′) ≤ r(A).

As noted in the discussion preceding Lemma 4.9, the first question above was answered in [21,
Proposition 2.2]: this happens if and only if A = U∗([a]⊕B)U , with unitary U and ∥A∥ = r(A) =
|a| ≥ ∥B∥. The only case where we can answer this question more concretely is for n = 2:

Proposition 7.3. For any matrix A ∈ Mn(C), if A is normal then w(A) = ∥A∥. The converse
holds if n = 2.

Proof. For the first statement, as both sides are weakly unitarily invariant, the claim reduces to
that for A diagonal, where it is easily verified. The converse is also [24, Corollary 2], and its proof
is immediate (and the same in loc. cit. as here, given Theorem 4.8(1)): if n = 2 then applying
Theorem 4.8(1), A is unitarily equivalent to a diagonal matrix. Hence A is normal. □

We end with another question that is more directly related to Theorem 4.8.

Question 7.4. Fix an integer n ≥ 2. Can one characterize all matrices A ∈ Mn(C) such that
w(A) = ∥A∥ and w(A◦m) = wm(A) for all m ≥ 1?
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Here is a partial answer to the question.

Theorem 7.5. Let S comprise all complex square matrices (of all sizes) which affirmatively answer
Question 7.4.

(1) Then S is closed under:
(a) taking block direct sums,
(b) rescaling by any z ∈ C,
(c) conjugating by permutation matrices, and
(d) taking Kronecker products.

(2) S includes all matrices of the form DP ⊕ T , where D is a unitary diagonal matrix (with
diagonal entries in S1), P is a permutation matrix, and T is any contraction, i.e. a matrix
with ∥T∥ ≤ 1.

(3) If A ∈ S has rank one, then the converse is true: A is a diagonal matrix with one nonzero
complex entry.

It is natural to wonder if Theorem 7.5 provides all solutions to Question 7.4.

Proof.

(1) The first part follows by using that w(X ⊕ Y ) = max(w(X), w(Y )). The second and third
parts are easily shown. For the fourth, if A,B ∈ S, then using Theorem 1.4, we get

w(A⊗B) = w(A)w(B) = ∥A∥ ∥B∥ = ∥A⊗B∥.

Moreover, since (A⊗B)◦m = A◦m ⊗B◦m for all m,A,B, we compute:

w((A⊗B)◦m) = w(A◦m ⊗B◦m) = w(A◦m)w(B◦m) = wm(A)wm(B) = wm(A⊗B),

where the second equality uses Proposition 4.7(3) and Theorem 1.4.
(2) Note that DP is unitary, so r(DP ) = ∥DP∥ = 1 and hence w(DP ) = 1 ≥ ∥T∥ ≥ w(T ).

Hence w(DP ⊕ T ) = 1 = ∥DP ⊕ T∥. Moreover, DmP is also of the same form as DP , so

w((DP )◦m) = w(DmP ) = 1.

Next, by “padding test vectors by zeros”, and since T⊗m is also a contraction,

w(T ◦m) ≤ w(T⊗m) ≤ ∥T⊗m∥ ≤ 1.

Combining these bounds, we get:

w((DP ⊕ T )◦m) = max(w(DP )◦m, w(T ◦m)) = 1 = wm(DP ⊕ T ).

(3) This assertion is the converse of the preceding part, in the sense that if one considers the
closure of matrices DP ⊕ T under the operations in (1a), (1b), (1c), then the matrices of
rank one in this closure are precisely the diagonal matrices with one nonzero entry. For
instance, if DP ⊕ T has rank one, then T must be zero and DP is invertible, hence 1× 1.

We now prove the assertion. Suppose An×n ∈ S has rank one. Write A = uv∗ = u⊗ v∗,
with 0 ̸= u, v ∈ Cn. Thus, ∥A∥ = ∥u∥ ∥v∥, and [17, Theorem 1] gives that

w(A) =
∥u∥ ∥v∥+ |⟨u, v⟩|

2
.

By the Cauchy–Schwarz equality, w(A) = ∥A∥ means that u, v are proportional. Thus,
write A = λvv∗, with λ and v nonzero. Then for all m ≥ 1,

|λ|m∥v◦m∥2 = w(A◦m) = wm(A) = ∥A∥m = |λ|m∥v∥2m.
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Now we will use this equality not for all m ≥ 1, but for any single m ≥ 2. Canceling |λ|m
and letting v = (v1, . . . , vn)

T , we have

n∑
j=1

|vj |2m =

 n∑
j=1

|vj |2
m

.

Letting aj := |vj |2 ≥ 0, we have
∑

j a
m
j = (

∑
j aj)

m. This holds if and only if at most
one aj is nonzero. Thus v = vjej for a unique 1 ≤ j ≤ n and vj ̸= 0, and the proof is
complete. □

Remark 7.6. For completeness, we mention that matrices of the form DP occur in multiple
other settings. They were used by Hershkowitz–Neumann–Schneider [29] to classify all positive
semidefinite matrices with entries of modulus 0, 1. But even before that, a folklore fact asserts that
such n×n matrices DP are precisely the linear isometries of Cn equipped with the ∥ · ∥p norm, for
every 2 ̸= p ∈ [1,∞]. This is a special case of the Banach–Lamperti theorem [4, 35].
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