MA219 – Linear Algebra 2024 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 1 (*due by Wednesday, August 14* in my office hours, or previously in class)

Question 1. The goal here is to show that the set of complex numbers

$$\mathbb{C} := \{a + bi = a + b\sqrt{-1} : a, b \in \mathbb{R}\}$$

under the operations

$$\begin{aligned} (a+bi) + (c+di) &:= (a+c) + (b+d)i, \quad (a+bi) \cdot (c+di) := (ac-bd) + (ad+bc)i, \\ 0 &:= 0 + 0i, \quad 1 := 1 + 0i, \end{aligned}$$

$$-(a+bi) := (-a) + (-b)i, \quad (a+bi)^{-1} := \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$$

is a field. (You are allowed to use that \mathbb{R} is a field.)

I felt you should do some of these verifications at least once in your life – and it is not likely you will get to do this in any other course – so here, **prove that**:

- (1) Multiplication is associative.
- (2) $z \cdot z^{-1} = 1$ for all nonzero complex z.
- (3) The distributive law holds.

Question 2. Suppose \mathbb{F} is a field, with $a, b \in \mathbb{F}$. Prove the following statements.

- (1) The elements a^{-1} (for $a \neq 0$) and -a are unique in \mathbb{F} .
- (2) $-a = (-1) \cdot a$.
- (3) $(-1)^2 = 1.$
- (4) ab = 0 in \mathbb{F} , if and only if a = 0 or b = 0.

Question 3. Prove that a nonempty subset W of an \mathbb{F} -vector space V is a subspace if and only if $cw + w' \in W$ for all $w, w' \in W$ and $c \in \mathbb{F}$.

Question 4. Suppose V is a vector space over a field \mathbb{F} , and $c \in \mathbb{F}, v \in V$. Prove that $c \cdot \mathbf{0} = \mathbf{0} = 0 \cdot v$, where 0 is the zero in \mathbb{F} and **0** is the zero in V.

Question 5. In class, we saw that the set of functions from any set to a field is a vector space. Now let us see why **every** vector space is a subspace of such a space of functions.

Let B be a nonempty set, and \mathbb{F} a field. Define $Fun_0(B, \mathbb{F})$ to be the set of all functions $f : B \to \mathbb{F}$ such that f(b) = 0 for all but finitely many $b \in B$. Show that $Fun_0(B, \mathbb{F})$ is an \mathbb{F} -vector space.

Note: You are allowed to use the fact mentioned in class, that the set of *all* functions $Fun(B, \mathbb{F})$ is an \mathbb{F} -vector space, which might help bypass a lot of the routine verifications for the subset Fun_0 .

(Later, we will say that every \mathbb{F} -vector space V has a "basis" B, and then the space V can in fact be identified precisely with our space here: $Fun_0(B, \mathbb{F})$.)