MA219 – Linear Algebra 2025 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 12 (due by Thursday, November 20 in TA's office hours)

Question 1. Let $V = \mathbb{R}^3$ and

$$\mathbf{w}_1 = (\pi, 0, 0)^T$$
, $\mathbf{w}_2 = (e, \pi, 0)^T$, $\mathbf{w}_3 = (1, 1, 1)^T$

(or forget the transposes and work without them). Apply the Gram-Schmidt algorithm to compute an orthogonal triple $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ with the desired properties.

Question 2. Suppose $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{R}^3$. Let $W \subset V$ be the subspace

$$W := \{(x, y, z)^T \in V : x + 2y + 3z = 0\}.$$

- (1) Write down an orthogonal basis for W and one for W^{\perp} .
- (2) Using this basis, compute $P_W(v)$, the projection onto W of $v = (1, 1, 1)^T$.
- (3) Compute $P_W(v)$ differently, as $v P_{W^{\perp}}(v)$.
- (4) Suppose (w_1, w_2) form an orthonormal basis of W, and w_3 of W^{\perp} . Let $\mathcal{B} = (w_1, w_2, w_3)$. Compute $[P_W]_{\mathcal{B}}$. (In particular, this should tell you the eigenvalues of P_W and their algebraic (= geometric) multiplicities.)

Question 3. Show that if $A, B \in \mathbb{C}^{n \times n}$ are unitary matrices, then so are $AB, A^{-1}, A^T, \overline{A}$.

Question 4. By the Spectral theorem (which you are allowed to assume), we know that all real symmetric matrices are diagonalizable, with all eigenvalues real.

More generally now, suppose $z \in \mathbb{C}$ is a complex number, and suppose $A^* = zA$ for some matrix $A \in \mathbb{C}^{n \times n}$ and scalar $z \in \mathbb{C}$.

- (1) If $|z| \neq 1$, show that $A = \mathbf{0}_{n \times n}$.
- (2) Now suppose |z| = 1. Describe all diagonal matrices D with this property.
- (3) Again suppose |z| = 1. Prove that every matrix A such that $A^* = zA$ is of the form UDU^* , where $U \in \mathbb{C}^{n \times n}$ is unitary and D is as in the previous part.
- (4) Finally, show that all complex Hermitian matrices have real eigenvalues.