MA219 – Linear Algebra 2025 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 4 (*due by Friday, September 12* in the TA's office hours, or previously in class)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose V, W are \mathbb{F} -vector spaces, and $T : V \to W$ is an \mathbb{F} -linear transformation. If T is a bijection (i.e. an isomorphism), show that the inverse map T^{-1} is also a linear transformation.

Question 2. Suppose V, W are \mathbb{F} -vector spaces. Show that $Lin_{\mathbb{F}}(V, W)$, the space of \mathbb{F} -linear maps : $V \to W$, is a vector subspace of Fun(V, W). (You can assume that the latter is an \mathbb{F} -vector space.)

Question 3. Suppose $A, B \in \mathbb{F}^{m \times n}$ for some integers $m, n \geq 1$. Prove that the following are equivalent:

- (1) A = B.
- (2) Av = Bv for all vectors $v \in \mathbb{F}^n$.
- (3) $A\mathbf{e}_j = B\mathbf{e}_j$ for all $1 \le j \le n$.

Question 4. Let $\mathbb{F} = \mathbb{Q}$.

- (1) Show that \mathbb{R} is not a finite-dimensional \mathbb{Q} -vector space.
- (2) Suppose V is a countable-dimensional \mathbb{Q} -vector space, i.e. a vector space with a countably infinite basis $v_1, v_2, \ldots, v_n, \ldots$ Show that V is the union of its finite-dimensional subspaces V_n spanned by v_1, \ldots, v_n .
- (3) Show that \mathbb{R} is not a countable-dimensional \mathbb{Q} -vector space.

Question 5.

- (1) Suppose S_1, S_2 are subsets of an \mathbb{F} -vector space. Prove that S_1, S_2 have the same spans if and only if each set is contained in the span of the other.
- (2) The row space of a matrix is the span of its rows. If $A, B \in \mathbb{F}^{m \times n}$ are row-equivalent, prove that their row spaces are equal.

Question 6. Suppose S is a linearly independent subset of a vector space W (over a field \mathbb{F}). Consider a chain of linearly independent subsets in W:

$$S = S_0 \subset S_1 \subset S_2 \subset \cdots$$

Prove that $\bigcup_{i\geq 0} S_i$ is also a linearly independent subset. (In a special case, this is the 'upper bound' of a 'chain' that is used in proving that every vector space has a basis, via Zorn's Lemma.)