MA219 – Linear Algebra 2025 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 5 (*due by Friday, September 19* in TA's office hours, or previously in class)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose \mathbb{F} is a finite field of size $q \geq 2$, and V is an \mathbb{F} -vector space.

- (1) If V is an \mathbb{F} -vector space, show that V is not the union of q-many proper subspaces. Hence V is not the union of n proper subspaces, for any $0 \le n \le q$. (The proof also shows that e.g. \mathbb{R}^k is not the union of finitely many proper subspaces, for any $k \ge 1$.)
 - (Hint, for one possible approach: Suppose V is the union of q proper subspaces let $2 \le m \le q$ be the smallest number of subspaces needed to cover V, say $W_1, \ldots, W_m \subset V$. Then there exist $w_i \in W_i$ such that $w_i \notin W_j$ for all $j \ne i$. Now consider certain (q+1)-many linear combinations of w_1, w_2 .)
- (2) In this part and the next, we will show that if we instead had $n \ge q + 1$ (in fact n = q + 1), then V can be a union of n proper subspaces. To see why, first show here that \mathbb{F}^2 is a union of q + 1 proper subspaces.
- (3) Now suppose $V \neq 0$ is an arbitrary \mathbb{F} -vector space of dimension at least 2 (and possibly infinite), and B is a basis of V. (You may assume B exists.) Show that V is a union of q+1 proper subspaces.
- **Question 2.** Suppose V is an \mathbb{F} -vector space, with ordered basis $\mathcal{B} = (v_1, \dots, v_n)$. Prove that the map $\eta: V \to \mathbb{F}^n$, sending a vector $v = c_1v_1 + \dots + c_nv_n$ to the column vector $[v]_{\mathcal{B}} = (c_1, \dots, c_n)^T$, is a vector space isomorphism.
- **Question 3.** Suppose $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^2$, and $\theta \in \mathbb{R}$. Suppose $T : V \to V$ is the linear transformation that rotates a vector counterclockwise by θ (radians). Compute the matrix of T with respect to the standard basis of V.
- **Question 4.** Suppose \mathbb{F} is a field, and $T : \mathbb{F}^2 \to \mathbb{F}^2$ is the linear operator $T(x_1, x_2) := (x_2, -x_1)$, where $(x_1, x_2)^T = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ is with respect to the standard ordered basis $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$.

- (1) What is the matrix of T given by [T]_{B,B}?
 (2) What is the matrix of T given by [T]_{B,B'}, where B' = (e₁ + e₂, -e₁)?
 (3) What is the transition matrix of B' into B? Meaning, find the matrix P such that $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$ for all $v \in \mathbb{F}^2$.
- (4) Suppose \mathbb{F} has characteristic not 2 (so 2 = 1 + 1 in \mathbb{F}). What is the coordinate vector of $(-1,2)^T$ in the standard basis, when written out in the basis \mathcal{B}' ?