MA219 – Linear Algebra 2025 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 7 (due by Friday, October 17 in TA's office hours)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose an \mathbb{F} -vector space V has an ordered basis (v_1, \ldots, v_n) . For $1 \leq i_0 \leq n$, define the dual functionals $\varphi_{i_0} : V \to \mathbb{F}$ via:

$$\varphi_{i_0}\left(\sum_{i=1}^n c_i v_i\right) := c_{i_0}.$$

Assuming that $\varphi_{i_0} \in V^*$, show that these vectors form a basis of V^* . (This is called the *dual basis*.)

Question 2. Suppose $V = \mathbb{F}^n$ is the space of column vectors, so that (as we saw in class) $V^* \cong (\mathbb{F}^n)^T$ is its dual space of row vectors.

- (1) Now suppose $v_1, \ldots, v_n \in \mathbb{F}^n$ are an *n*-tuple of *n*-vectors that constitute an ordered basis. Set $A := [v_1|v_2|\cdots|v_n]$. Compute the dual basis vectors (which are row vectors, or *n*-tuples) in terms of A.
- (2) As a special case, suppose n = 2, $v_1 = (a, c)^T$, and $v_2 = (b, d)^T$. Compute the dual basis.

Question 3. Recall the direct product and direct sum (or coproduct) of a set $\{V_i : i \in I\}$ of \mathbb{F} -vector spaces, constructed in class (and studied in the preceding homework set). The goal of this exercise is to show that

$$\left(\bigoplus_{i\in I} V_i\right)^* \cong \prod_{i\in I} V_i^*,$$

by going the 'reverse' way:

- (1) Given $\Phi = (\varphi_i)_{i \in I}$, with each $\varphi_i \in V_i^*$, first show that $(\varphi_i)_{i \in I}$ yields a linear map from $\bigoplus_{i \in I} V_i$ to \mathbb{F} . Let us call this map $T(\Phi)$.
- (2) Show that the assignment $T: \Phi \mapsto T(\Phi)$ is a linear map, from $\prod_{i \in I} V_i^*$ to $(\bigoplus_{i \in I} V_i)^*$.

(3) Show that T is one-to-one and onto.

Question 4. Fix a field \mathbb{F} , an integer $n \geq 1$, and nonzero \mathbb{F} -vector spaces V_1, \ldots, V_n, W . Verify that the set of multilinear maps : $V_1 \times \cdots \times V_n \to W$ is a vector space.