
MA315 – Lie Algebras and their Representations
2024 Autumn Semester

• You are expected to write (or present in class) proofs / arguments with rea-
soning, in solving these questions.
• Also, the convention “Exercise m.n” below refers to the nth Exercise at the
end of Section m, in the course textbook by Humphreys.
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Question 1. Prove that the Jacobi identity holds in any associative ring with the
commutator bracket.

Question 2. Suppose L is an F-vector space with a bilinear map [·, ·] : L × L → L
such that [x, x] = 0 for all x ∈ L. Prove that the following are equivalent:

(1) L is a Lie algebra, i.e. the Jacobi identity holds.
(2) For all x ∈ L, the map adx : L→ L given by y 7→ [x, y], is a derivation on L.
(3) The adjoint map ad : L→ EndF(L) is a Lie algebra homomorphism.

Question 3. Suppose L = sl2(F), with char(F) ̸= 2, 3. As usual, let the nilpotent
matrices

x =

(
0 1
0 0

)
, y = xT .

(1) Define g := exp(x) exp(−y) exp(x). Show that g =

(
0 1
−1 0

)
.

In particular, g2 = −Id, and so conjugation by g is an order two Lie algebra
automorphism of L.

(2) Define σ := exp(adx) exp(ad−y) exp(adx). Show that σ ≡ Adg (conjugation
by g) on L, which sends x←→ −y and sends h to −h.

Question 4. Prove that the normalizer of any Lie subalgebra of L, is itself a Lie
subalgebra.

Question 5 (Exercise 2.1). Prove that the set of inner derivations adx, x ∈ L forms
an ideal of Der L.

Question 6 (Exercise 2.2). Show that sln(F) is the derived algebra [L,L] of L =
gln(F), for any integer n ≥ 1 and field F.

Question 7 (Exercise 3.4). Prove that L is solvable (resp. nilpotent) if and only if
adL is so.



Question 8 (Exercise 3.6). Prove that the sum of two nilpotent ideals of a Lie algebra
L is again a nilpotent ideal. Therefore, L possesses a unique maximal nilpotent ideal.

Question 9 (Exercise 4.3). Here is an example of when/how Lie’s theorem fails when
F has nonzero characteristic, say p > 0. Consider the p× p matrices

x =

(
0(p−1)×1 Idp−1

1 0T

)
, y = diag(0, 1, 2, . . . , p− 1).

(1) Verify that [x, y] = x. Thus, their span L ⊆ glp(F) is solvable.
(2) However, (verify that) x, y have no common (nonzero) eigenvector.

Question 10 (Exercise 4.5). If x, y ∈ End(V ) commute, prove that (x+y)s = xs+ys
and (x+ y)n = xn + yn.

Question 11 (Exercise 4.6). Check formula (∗) at the end of (4.2).

Question 12 (Exercise 4.7). Prove the converse of Theorem 4.3 (Cartan’s crierion).

Question 13 (Exercise 5.1). Prove that if L is nilpotent, the Killing form of L is
identically zero.

Question 14 (Exercise 1.6). Let x ∈ gln(F) have n distinct eigenvalues a1, . . . , an ∈
F. Show that the eigenvalues of adx are precisely the n2 scalars ai−aj for 1 ≤ i, j ≤ n,
by identifying the eigenvectors / eigen-matrices (with respect to a suitable basis of
Fn).
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Question 15 (Exercises 5.5 and 6.1). Let L = sl2(F). Compute the basis of L dual
to the standard basis (x, h, y), with respect to the Killing form.

Now compute the Casimir element with respect to these two dual bases.

Question 16 (Exercise 5.8). Let L = L1⊕· · ·⊕Lt be the decomposition of a semisim-
ple Lie algebra L into its simple ideals. Show that the semisimple and nilpotent parts
of x ∈ L are (respectively) the sums of the semisimple and nilpotent parts in the
various Li of the components of x.

Question 17. Suppose L is a simple Lie algebra and let ϕ : L→ gl(V ) be a nonzero
representation.

(1) Prove that ϕ is faithful.



(2) Now as explained at the start of Section 6.2, the bilinear form β(x, y) :=
Tr(ϕ(x)ϕ(y)) on L×L is symmetric, associative, and nondegenerate. Now let
{x1, . . . , xn} be any basis of L, and y1, . . . , yn the corresponding dual basis.
Prove that the Casimir element cϕ(β) :=

∑n
i=1 ϕ(xi)ϕ(yi) is independent of

the choice of basis {xi}.

Question 18 (Exercise 6.2). Let L be a Lie algebra and V be an L-module. Show
that V is a direct sum of irreducible submodules if and only if each L-submodule of
V possesses a complement.

Question 19 (Exercise 6.6). Let L be a simple Lie algebra. Let β(x, y) and γ(x, y)
be two symmetric associative bilinear forms on L. If β, γ are nondegenerate, prove
that β and γ are proportional. [Use Schur’s Lemma.]

Question 20 (Exercise 6.7). It will be seen later on that sln(F) is actually simple.
Assuming this and using the preceding exercise, prove that the Killing form κ on
sln(F) is related to the ordinary trace form by κ(x, y) = 2nTr(xy).

Question 21 (Exercise 7.2). M = sl3(F) contains a copy of L = sl2(F) in its upper
left-hand 2 × 2 position. Write M as a direct sum of irreducible L-submodules (M
viewed as L-module via the adjoint representation): V (0)⊕ V (1)⊕ V (1)⊕ V (2).

Question 22 (Exercise 7.4, essentially). A concrete example of the irreducible finite-
dimensional sl2-module V (n) is provided by the space Pn of homogeneous polynomials
in X, Y of total degree n ≥ 0. That is, define

Pn := ker

(
−n+X

∂

∂X
+ Y

∂

∂Y

)
⊂ F[X, Y ].

Now define ρn : sl2(F)→ EndF(Pn) via:

ρn(x) := X
∂

∂Y
, ρn(y) := Y

∂

∂X
, ρn(h) := X

∂

∂X
− Y

∂

∂Y
.

Show that Pn
∼= V (n) as sl2(F)-modules.

Question 23 (Exercise 7.7, essentially). We now construct infinite-dimensional ex-
amples of modules similar to V (n): the Verma modules. For this, fix a scalar λ
and consider the polynomial algebra M(λ) ∼= F[y]. Here, sl2(F) acts by differential
operators on M(λ) – e.g., y maps to multiplying by y:

y 7→ y , h 7→ λ− 2y∂y, x 7→ λ∂y − y∂2
y .

Verify that the sl2-relations hold among these differential operators.

Question 24. Suppose V is a finite-dimensional sl2-module. If the h-weights of V
are of the form {k, k−2, . . . ,−k} for some non-negative integer k, and if every weight
space (= h-eigenspace) has dimension 1, then show that V is irreducible.
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Question 25 (Exercise 8.5). If L is semisimple and H is a maximal toral subalgebra
of L, prove that H is self-normalizing: H = NL(H).

Question 26 (Exercise 9.2). Prove that Φ∨ is a root system in E if Φ is, and then
their two Weyl groups are isomorphic. Also check moreover that ⟨α∨, β∨⟩ = ⟨β, α⟩
for all α, β ∈ Φ.

Question 27 (Exercise 9.6). Prove that W is a normal subgroup of Aut(Φ).

Question 28 (Exercise 10.1). Prove that in the dual root system Φ∨ to Φ, for any
base ∆ ⊆ Φ the dual subset ∆∨ := {α∨ : α ∈ ∆} is a base of Φ∨. [Hint: Compare
the Weyl chambers of Φ and Φ∨.]

Question 29 (Exercise 10.5). If σ ∈ W can be written as a product of t simple
reflections, prove that t has the same parity as ℓ(σ).

Question 30 (Exercise 10.13). Show that the only reflections in W are of the form
σα for α ∈ Φ. [Hint: A vector in the reflecting hyperplane would, if orthogonal to no
root, be fixed only by the identity in W .]

Question 31 (Exercise 11.4). Prove that the Weyl group of a root system is isomor-
phic to the direct product of the respective Weyl groups of its irreducible components.

Question 32 (Exercise 13.7). If ε1, . . . , εl is an obtuse basis of the Euclidean space
E (i.e., all inner products (εi, εj) ≤ 0 for i ̸= j, then prove that the dual basis is acute
– i.e., all of their inner products are non-negative. [Reduce to the case l = 2.]

Question 33 (Exercise 13.9). Let λ ∈ Λ+. Prove that σ(λ + δ) − δ is dominant if
and only if σ = 1.

Question 34. Prove that the Cartan matrix M of a semisimple Lie algebra is sym-
metrizable, i.e. there exists a diagonal matrix D and a real symmetric matrix B such
that A = DB.


