MA341 – Matrix Analysis and Positivity 2025 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 1 (*due by Thursday, September 11* in class, or previously in office hours)

Question 1 (*The correlation trick*). Recall that a positive semidefinite matrix is a correlation matrix if all its diagonal entries are 1.

- (1) Prove that for every positive definite matrix A, there exists a unique positive definite diagonal matrix D and correlation matrix C such that A = DCD.
- (2) Fix a dimension $n \ge 1$. Does the procedure in the previous part recover all $n \times n$ correlation matrices? Prove or find a counterexample.
- (3) Prove that A and C have the same pattern of zeros and the same rank. By the former, we mean that if $a_{jk} = 0$ for some j, k then $c_{jk} = 0$ as well.

Question 2. Suppose $n \ge 1$ is an integer and $C_{n \times n}$ is a correlation matrix, i.e. C is positive semidefinite with all diagonal entries 1.

- (1) Show that $n \operatorname{Id} C$ is positive semidefinite.
- (2) Show with an example that the coefficient n in the preceding question is sharp (i.e., cannot be reduced).
- (3) More generally, show that if $A \in \mathbb{P}_n$ and D is the diagonal matrix with (j, k)-entry $\delta_{j,k}a_{jj}$, then nD A is positive semidefinite.

Question 3. If the columns of an $m \times n$ real matrix A are linearly independent, verify that its Moore–Penrose inverse is $A^{\dagger} = (A^T A)^{-1} A^T$ (including showing that $A^T A$ is invertible).

Question 4. We now discuss a different partition of LPM-matrices: via their *negative inertia*, which is the number of negative eigenvalues. (Recall that the matrices are nonsingular, so all other eigenvalues are positive.)

(1) Fix an integer $n \geq 1$ and a sign pattern $\vec{\epsilon} \in \{\pm 1\}^n$. Show that every matrix in $LPM_n(\vec{\epsilon})$ has the same negative inertia, and compute this integer in terms of $\vec{\epsilon}$.

(2) "Dually", given an integer $0 \le k \le n$, count – with reasoning – the number of $\vec{\epsilon}$ such that $\mathbb{D}_{\vec{\epsilon}}$ (and hence $LPM_n(\vec{\epsilon})$, by the previous part) has negative inertia k. (Hint: a corollary is the "first" special case of the binomial theorem!)

Question 5. Fix an integer $n \geq 1$, sign patterns $\overset{\rightarrow}{\epsilon}, \overset{\rightarrow}{\delta} \in \{\pm 1\}^n$, and a matrix $B_{\overset{\rightarrow}{\epsilon}} \in LPM_n(\overset{\rightarrow}{\epsilon})$. Write $B_{\overset{\rightarrow}{\epsilon}} = L_{\circ}\mathbb{D}_{\overset{\rightarrow}{\epsilon}}L_{\circ}^T$ using the generalized Cholesky factorization, and define the diagonal entries $k_{jj} := (L_{\circ})_{jj}$.

- (1) Perform the change-of-variables $L' := LL_{\circ}$. Show that the Jacobian of this square matrix of size $\binom{n+1}{2}$ is upper triangular! Compute its determinant in terms of the k_{jj} .
- (2) Verify for every $L \in \mathbf{L}_n$ (the Cholesky space of lower triangular real matrices with positive diagonals) that $LB_{\stackrel{\rightarrow}{\epsilon}}L^T = L'\mathbb{D}_{\stackrel{\rightarrow}{\epsilon}}(L')^T$.
- (3) Now show that there exists a "natural" matrix $B_{\overrightarrow{\delta}} \in LPM_n(\overrightarrow{\delta})$ such that $\Phi_{B_{\overrightarrow{\delta}}} \circ \Phi_{B_{\overrightarrow{\delta}}}^{-1} \equiv \Phi_{\mathbb{D}_{\overrightarrow{\delta}}} \circ \Phi_{\mathbb{D}_{\overrightarrow{\delta}}}^{-1}$ on all of $LPM_n(\overrightarrow{\epsilon})$. (In particular, the triangularity of the Jacobian and the unimodularity of its determinant follow.)

Question 6. Let $P_n \in \mathbb{R}^{n \times n}$ to be the anti-diagonal permutation matrix with (u, v) entry 1 if u + v = n + 1, and 0 otherwise. Now let A be a real symmetric matrix.

- (1) Show that A is positive (semi)definite if and only if P_nAP_n is so.
- (2) Show yet another characterization of positive definite matrices: A (as above) is positive definite if and only if its trailing principal minors are positive.