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CHAPTER 1

Fourier analysis on finite abelian groups

1. Introduction

Let us start with perhaps the most important basic object in physics, the simple harmonic motion1.

A single mass in simple harmonic motion: Consider a body of unit mass connected to a spring

whose other end is fixed to a wall. When the spring is at its normal length, the location of the body is

designated 0. If it is pulled or pushed and let go, the spring exerts a force proportional to the stretch,

towards the mean position. Therefore, the position x(t) undergoes a motion according to Newton’s

law that says d2

dt2 x(t) = −κx(t). The general solution to this differential equation is

x(t) = a cos(
√
κt) + b sin(

√
κt).

If the initial position x(0) and initial velocity x ′(0) are specified, we can solve for the coefficients as

a = x(0) and b
√
κ = x ′(0).

Finitely many masses in simple harmonic motion: Now consider N bodies of mass m each, con-

nected in a line by springs, with the first and last connected to fixed walls by springs. We assume

that all springs and masses are identical, and that when at rest position, the masses are at locations

k/(N + 1), 1 ≤ k ≤ N. If the bodies are pulled from their rest positions and let go (may be with

certain initial velocities), they perform a complicated oscillatory motion influencing each other. To

describe the equations, let xk(t) denote the displacement of the kth body from its mean position.

We also set x0(t) = 0 and xN+1(t) = 0 (the walls are immovable). Then the force kth mass feels a

force of −κ(xk(t)− xk−1(t)) from the spring to its left, and a force of κ(xk+1(t)− xk(t)) from the

spring to its right. The total force is therefore κ(xk+1(t) − 2xk(t) + xk−1(t)). Hence the equations

of motion are

m
d2

dt2
xk(t) = κ(xk+1(t)− 2xk(t) + xk−1(t)), for 1 ≤ k ≤ N.(1)

Unlike the case of one mass, these appear difficult to solve. Let us look for simple solutions of the

form xk(t) = v(t)wk . Then, the equations become (we also set the spring strength κ = 1 and the

1In a course on mathematical methods in physics that I attended in graduate school, Alberto Grunbaum quoted V I

Arnold as saying Mathematics ⊆ Physics, and extended it by adding Physics ⊆ SHM!
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mass m = 1)

wkv
′′(t) = v(t)(wk+1 − 2wk + wk−1)

which when rearranged become (what if we are dividing by zero? I leave you to worry about that case

separately)
v ′′(t)

v(t)
=
wk+1 − 2wk + wk−1

wk
.

The left side depends on t alone while the right side depends on k alone. Since the two variables can

be independently changed, this forces that both sides must be constant. Hence

v ′′(t) = −λv(t) and wk+1 − 2wk + wk−1 = −λwk .

We have written the constant as −λ anticipating that it will turn out negative. Indeed, the equations

for w = (w1, . . . , wN)t is the eigenvalue equation Lw = λw , where

LN×N =



2 −1

−1 2 −1

−1
. . . . . .
. . . . . . 1

−1 2 −1

−1 2


.

All entries except on the three diagonals are zero. It can be checked (can you?) that L is a positive

semi-definite matrix, hence λ ≥ 0. Its eigenvalues and eigenvectors are explicitly found in the following

exercise.

Exercise 1. Let vθ = (sin θ, sin 2θ, . . . , sinNθ)t . Let θr = πr
N+1 and λr = 2 − 2 cos θr = 4 sin2 πr

2N+2

for 1 ≤ r ≤ N. Show that Lvθr = λrvθr . Argue that these are all the eigenvectors and eigenvalues of

L.

Returning to the problem of springs, we see that the equations for w can be solved if and only if

λ = λr for some 1 ≤ r ≤ N, and then wk = sin πrk
N+1 for all k (observe that plugging in k = 0 or

k = N+1 automatically gives 0, ensuring the boundary conditions x0(t) = 0 = xN+1(t)). The general

solutions for v is

v(t) = a cos(
√
λr t) + b sin(

√
λr t).

With this choice of v and w , we have arrived at the solution

xk(t) = (a cos(
√
λr t) + b sin(

√
λr t)) sin

πrk

N + 1
, 0 ≤ k ≤ N + 1.

It satisfies the boundary conditions x0(t) = 0 = xN+1(t) and the initial condition xk(0) = awk and

x ′k(0) = b
√
λrwk .
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Since the problem for x is linear, taking linear combinations such as

uk(t) =

N∑
r=1

(ar cos(
√
λr t) + br sin(

√
λr t)) sin

πrk

N + 1
,

we get another solution to the system (1). The boundary conditions u0(t) = 0 = uN+1(t) are also

trivially satisfied. The initial conditions are

u(0) =

N∑
r=1

arvθr , u′(0) =
∑
r=1

br
√
λrvθr .

As vθr , 1 ≤ r ≤ N, form a basis for RN (being eigenvectors of a symmetric matrix), for any given u(0)

and u′(0), we can find a unique set of coefficients ar , br , so that the initial conditions are satisfied.

Exercise 2. Consider N masses placed on a circle (they cannot leave the circle, but they can move

on it) and each mass connected by springs to its two adjacent neighbours (there is no wall). Can you

work out the equations and the solutions to this system?

A continuum of masses in simple harmonic motion: In the previous setting, suppose that the mass

of each body is 1/N and the spring strength is N. Then the equations (1) become

d2

dt2
xk(t) =

xk+1(t)− 2xk(t) + xk−1(t)

1/N2
, for 1 ≤ k ≤ N.

We think of N → ∞. Instead of indexing the bodies by 1, 2, . . . , N, let us index them by x = k/N,

1 ≤ k ≤ N and write u(t, x) = xk(t) where x = k/N. Then the above equations become

d2

dt2
u(t, x) =

u(t, x + 1
N )− 2u(t, x) + u(t, x − 1

N )

1/N2
, for 1 ≤ k ≤ N with x =

k

N
.

As N →∞, formally we arrive at

d2

dt2
u(t, x) =

d2

dx2
u(t, x).

This is called the wave equation and describes a vibrating string. The boundary conditions u(t, 0) =

0 = u(t, 1) describes a string with end-points fixed. The initial conditions are u(0, x) = f (x) and
d
dt u(0, x) = g(x).

Can we solve this problem? Again it looks difficult, but taking a cue from the case of finitely many

masses, we attempt a solution of the form u(t, x) = v(t)w(x) and arrive at the equations

v ′′(t)

v(t)
=
w ′′(x)

w(x)

which forces that both sides must be some constant −λ. Thus we get

v ′′(t) = −λv(t), w ′′(x) = −λw(x).
5



General solutions to these ODEs are, assuming λ > 0,

v(t) = a cos
√
λt + b sin

√
λt, w(x) = c cos

√
λx + d sin

√
λx.

The boundary conditions require w(0) = 0 = w(1), hence c = 0 and
√
λ = nπ for some n ∈ Z. We

take d = 1 and n ≥ 1, because otherwise we just get a linear multiple of the solutions with d = 1 and

−n. The initial conditions for the resulting solution are

u(0, x) = a sinπnx,
d

dt
u(0, x) = bπn sinπnx,

At all stages, observe the similarity to the case of finitely many masses.

As before, the wave equation is linear in the initial conditions f , g, meaning that if ui solves the

equation with fi , gi , for i = 1, 2, then αu1 + βu2 satisfies it with αf1 + βf2, αg1 + βg2. Therefore,

formally (i.e., without paying attention to what convergence means etc.)

u(t, x) :=

∞∑
n=1

(an cos(πnt) + bn sin(πnt)) sin(πnx)

satisfies the equation with initial conditions

u(0, x) =

∞∑
n=1

an sin(πnx),
d

dt
u(0, x) =

∞∑
n=1

πnbn sin(πnx)

Therefore, to solve the problem for given f , g, the question becomes: Can we find an, bn so that

f (x) =

∞∑
n=1

an sin(πnx), g(x) =

∞∑
n=1

πnbn sin(πnx).

Apart from the convergence issues and what kind of convergence we need, here we are in an infinite

dimensional setting. The functions x 7→ sin(πnx) are elements in a function space, and we want to

know what their span is. In particular, is it true that any smooth function f (satisfying f (0) = 0 = f (1))

is in the span? If the answer is yes, then we can presumably solve the vibrating string problem for

smooth initial conditions f , g. Smoothness may be too restrictive - for example, when a string is

plucked at the mid-point and let go, then we may model f (x) = c( 1
2 − |

1
2 − x |) and g(x) = 0. Hence

one may want to ask the question for continuous functions, or some other class of functions. This

was the starting point of Fourier analysis - can a function be written as a linear combination of sines

(and cosines)?

Remark 3. It is a running theme of this course that the discrete situation is as interesting and useful

as the continuous situation. Historically the continuous objects were defined first, but in recent years

the discrete objects are found to be very useful in a variety of fields. That is the reason why we

elaborated on the case of finitely many masses. Those who prefer an even more discrete setting,

where time is also discretized, may go over the next example.
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Random walk on a discrete cycle: Consider a particle that is moving on the discrete cycle {0, 1, . . . , N−
1}. At each discrete time point t = 0, 1, 2, . . ., a coin is tossed, and if it falls head, the particles moves

one step up (modulo N), and if the coin falls tails, it moves one step down (modulo N). If the starting

position at time 0 is 0, what is the probability distribution after t steps?

Let pt(k) be this probability, for t ≥ 0 and k ∈ {0, 1, . . . , N − 1}. Then,

pt+1(k) =
1

2
pt(k − 1) +

1

2
pt(k + 1).(2)

Can we solve for this? There are different approaches, but we take a route that is close to the situation

considered earlier. Subtract pt(k) from the above equation to get

pt+1(k)− pt(k) =
1

2
[pt(k + 1)− 2pt(k) + pt(k − 1)].

On the left side we have the first difference in t, while on the right, we have the second difference in

k . The analogous continuous equation is d
dt pt(x) = 1

2
d2

dx2 pt(x), which is not the wave equation, but

the heat equation. Nevertheless, the same ideas may be repeated.

First we attempt a solution of the form v(t)w(k). The equations become (everywhere k ± 1 to be

interpreted modulo N)

v(k + 1)− v(k)

v(k)
=

1

2

w(k + 1)− 2w(k) + w(k − 1)

w(k)
.

Both sides must be constant, say −λ. The equations for w are −w(k + 1) + 2w(k) − w(k − 1) =

2λw(k), which is the eigenvalue equation Lw = 2λw , with (all entries not shown are zero)

LN×N =



2 −1 −1

−1 2 −1

−1
. . . . . .
. . . . . . 1

−1 2 −1

−1 −1 2


.

Observe the subtle difference from the earlier matrix. Let vθ = (1, e iθ, . . . , e i(N−1)θ)t . Then it is easy

to see that if e iNθ = 1, then Lvθ = 2(1 − cos θ)vθ. Hence the eigenvectors are vθr with eigenvalues

2(1− cos θr ), where 0 ≤ r ≤ N − 1 and θr = 2πr
N . Therefore, choices for w are vθr , 0 ≤ r ≤ N − 1,

and then λ = 1 − cos θr . The equation for v becomes vk+1 = vk(1 − λ) = vk cos θr , which means

that vt = v1(cos θr )
t . Thus, we have arrived at the solutions

ur (t, k) := (cos θr )
te ikθr , 0 ≤ k ≤ N − 1, 0 ≤ r ≤ N − 1.

The initial condition is ur (0, k) = e ikθr (i.e., ur (0, ·) = vθr ). Taking linear combinations of ur , we can

get solutions with general initial conditions.
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In particular, for the original problem of pt(k), observe that p0(k) = δ0(k), since the random walk

starts at 0. It is easy to see that δ0 = 1
N

∑N−1
r=0 vθr , hence

pt(k) =
1

N

N−1∑
r=0

ur (t, k)

=
1

N2t

N−1∑
r=0

(e iθr + e−iθr )te ikθr

=
1

N2t

N−1∑
r=0

t∑
j=0

(
t

j

)
e iθr (t−2j+k)

=
1

2t

∑
0≤j≤t: t−2j+k=0 (mod N)

(
t

j

)
.

If it was not clear earlier, it should be clear now that this answer could also have been arrived at by

combinatorial methods, but that is not the point of our discussion here.

Exercise 4. The continuum analogue of (2) is ∂
∂t p(t, x) = ∂2

∂x2 p(t, x), with (t, x) ∈ [0,∞)×T, where
T = [0, 1]/ under the equivalence 0 ∼ 1 (so T is the circle). Use separation of variables to find

many solutions and formulate the question on Fourier series regarding how one could find solutions

for general initial conditions.

2. The groups of interest

As we saw in the context of solving the vibrating string problem, the basic question of Fourier series

is about writing 2π-periodic functions on R (equivalently thought of as functions on the unit circle

T = {e it : 0 ≤ t < 2π}) as linear combinations of sines and cosines with integer frequencies, i.e.,

as a0 +
∑
n≥1 an cos(nx) + bn sin(nx). Fourier transform, which you may also have encountered as

characteristic functions in probability class, involves writing functions on R as superpositions of sines

and cosines with arbitrary frequencies, i.e., as
∫∞
−∞[g(λ) cos(λx) + h(λ) sin(λx)]dx .

In analysis it is almost always better to work over complex numbers, hence, in place of sines and

cosines one may use complex exponentials eλ(x) := e iλx where λ ∈ Z for Fourier series and λ ∈ R for

Fourier transform. One can recover sin(λx) and cos(λx) from eλ(x) and e−λ(x), and vice versa. The

spaces T1 and R, are groups under multiplication and addition. The sets of continuous homomorphisms

from these groups into the circle group T are precisely {en : n ∈ Z} and {eλ : λ ∈ R}.
This suggests the generalization to other groups, and asking if continuous homomorphisms (the

group must have a topology to talk about continuity) from the group into S1 give a good collection

of functions whose linear superpositions give a large class of functions from the group into C. The

matters get more subtle in non-commutative groups, but if we restrict to Abelian groups (with a

locally compact topology), then the whole story is clean and complete. We shall indicate this general
8



situation later, but for the purposes of this course, we are only concerned with the following four

examples. Henceforth we shall use the standard terms “character” for continuous homomorphisms

into C and Ĝ for the set of all characters of a group G.

(1) The group R under addition. If χ : R 7→ T, then χ(nx) = χ(x)n for x ∈ R and n ∈ N, from
which it follows that χ(x) = χ(1)x for x ∈ Q. By continuity, the same holds for all x ∈ Rd ,
showing that χ(x) = e iλx where χ(1) = e iλ. Thus, R̂ = {eλ : λ ∈ R}.

(2) The 1-dimensional torus or circle grup T = {e it : 0 ≤ t < 2π} with with multiplication and the

usual topology derived from embedding in C (we can take the metric d(e it , e is) = |e it − e is |).
Since ϕ : R 7→ T define by ϕ(x) = e ix is a continuous homomorphism, if χ : T 7→ T
is a continuous homomorphism then χ ◦ ϕ is a homomorphism from R to T, showing that

χ ◦ϕ = eλ for some λ ∈ R. As ϕ(x + 2π) = ϕ(x), the same must hold for eλ and that forces

λ ∈ Z. Thus, T̂ = {em : m ∈ Z}.

(3) The finite cyclic group Zn = Zn = {0, 1, . . . n − 1} with addition modulo n. On finite

or countable groups, we always take the discrete topology (in other words, the metric is

d(k, `) = 1 if k 6= `), hence continuity is not a restriction. A homomorphism χ is determined

by χ(0). Also χ(0)n = 1, hence χ(0) = e2πik/n for some 0 ≤ k ≤ n − 1. Therefore,

Ẑn = {e2πk/n : 0 ≤ k ≤ n − 1}.

(4) The group Zn2 which we represent as {0, 1}n with coordinatewise addition modulo 2 or al-

ternately as {−1,+1}n with coordinatewise multiplication. For each S ⊆ [n], the function

χS : {−1,+1}n 7→ T defined by χS(x) =
∏
i∈S xi , is a homomorphism. By completing the

exercise below or directly, show that these are all the homomorphisms from Zn2 into T. Thus,
Ẑn2 = {χS : S ⊆ [n]}.

Exercise 1. If G is a finite group and χ is a character, show that it is in fact a homomorphism into

the unit circle T (which is a group under multiplication). Going further, it is a homomorphism into

the subgroup of nth roots of unity for n = |G|.

Exercise 2. If G1, G2 are groups with topology, then G1 × G2 is a group with the product topology

and co-ordinatewise multiplication. Show that χ : G1×G2 7→ T is a character if and only if it is of the

form χ1 ⊗ χ2, where χ1 and χ2 are characters of G1 and G2 respectively. (Recall the tensor product

notation: (f ⊗ g)(x, y) := f (x)g(y))

Exercise 3. Show that the characters of

(1) Rn are precisely eλ, λ ∈ Rn, where eλ(x) := e2πi〈λ,x〉,

(2) Tn are precisely eλ, λ ∈ Zn,

(3) Zn2 are precisely χS, S ⊆ [n], that were introduced above.
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3. Fourier analysis on Zn

For any finite group G with |G| = n, we denote by L2(G) the n-dimensional complex vector space

of functions f : G 7→ C. We can and do identify f with the column vector (f (0), . . . , f (n−1))t ∈ Cn.
The inner product on Cn gives the inner product on L2(G):

〈f , g〉 =
∑
x∈G

f (x)g(x)

Now let G = Zn. The characters are χk(j) = e2πijk/n, 0 ≤ k, j ≤ n − 1 of Zn. Of these χ0 = 1

is the trivial character. The single most important point about these characters is the orthogonality

relationship

〈χk , χ`〉 =

n−1∑
j=0

e2πij(k−`)/n =

n if k = `

0 if k 6= `.

Indeed, as j runs over Zn, if k 6= `, then the summand runs over all mth roots of unity for some m ≥ 2.

When k = `, all the summands are identically equal to 1.

Thus, { 1√
n
χk}0≤k≤n−1 is orthonormal, and since there are n of them, they form an orthonormal

basis for L2(Zn). Hence, any f ∈ L2(Zn) can be written as

f =
1√
n

n−1∑
k=0

f̂ (k)χk , f̂ (k) :=
1√
n
〈f , χk〉 =

1√
n

n−1∑
j=0

f (j)e−2πijk/n.

Functions on Zn can be identified in a natural way with n-periodic functions (satisfying f (x+n) = f (x))

on Z via the composition map Z 7→ Zn given by k 7→ k (mod n). Thus, χk can also be thought of as

functions on Z, the formula is exactly the same χk(j) = e2πijk/n, since this is already n-periodic. The

function f̂ : {0, 1, . . . , n − 1} 7→ C is called the discrete Fourier transform of f .

From the orthogonality of characters, we get the Plancherel relation

〈f , g〉 =

n−1∑
k=0

f̂ (k)ĝ(k), ‖f ‖2 =

n−1∑
k=0

|f̂ (k)|2.

Observe that the relationship between f and f̂ may also be written as

f (j) =
1√
n

n−1∑
j=0

f̂ (k)e2πijk/n, f̂ (k) =
1√
n

n−1∑
j=0

f (j)e−2πijk/n.

The two relationships are almost identical, except for the negative sign in the exponent. In other

symbols, ˆ̂f (j) = f (−j). This is called Fourier inversion. That is, if we define a new transformation

(pronounced “g check”)

ǧ(k) =
1√
n

n−1∑
j=0

g(j)e−2πijk/n

then it is the inverse of the Fourier transform.

Some examples.
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Example 4. On Zn, let f = 1 and g = 10 (two extremes in terms of support size). Then

f̂ (k) =


√
n if k = 0,

0 otherwise.
ĝ(k) =

1√
n
for any k.

Observe that f̂ ∝ g and ĝ ∝ f .

Example 5. Let n = k` and let f (x) = 1x=0 (mod k). Then

f̂ (r) =
1√
n

`−1∑
j=0

e2πijkr/n =
1√
n

`−1∑
j=0

e2πijr/` =

 √̀n if r = 0 (mod `)

0 otherwise.

Thus the support of f has size ` and the support of f̂ has size k . For fixed n and different choices

of (k, `), the support sizes have an inverse relationship. This is an illustration of uncertainty principle,

more of which we shall see later.

Exercise 6. Write the functions n 7→ 1n=1 (mod 3) and n 7→ 1n=3 (mod 7) on Z in terms of the

characters of Z3 and Z7 respectively (as remarked above, we extend these functions to all of Z).

The indicator functions capturing modular properties can thus be expressed in terms of the much

nicer functions, namely the characters. This simple observation will be crucial to applications later.

The discrete Fourier matrix: Fourier analysis on Zn can be numerically executed quite efficiently

using matrices. For this, identify L2(G) with Cn as before. Define the discrete Fourier matrix Fn :=
1√
n

(e2πijk/n)0≤j,k≤n−1, whose columns represent the characters. The orthogonality of characters is

the same as saying F∗nFn = In, i.e., that Fn is a unitary matrix. This also implies that FnF∗n = In,

which gives a different set of orthogonality relations (observe that the character is fixed here)

1

n

n−1∑
k=0

χk(j)χk(j ′) =

1 if j = j ′

0 if j 6= j ′.

The relationship between a function f = (f (0), . . . , f (n − 1))t and its Fourier transform f̂ =

(f̂ (0), . . . , f̂ (n − 1))t is given by

f̂ = F∗n f and f = Fn f̂ .

For g ∈ Cn, it is customary to denote ǧ = Fn g. Then, f 7→ f̂ and g 7→ ǧ are inverses of each other.

But they also look very similar, a fact made more precise in the following exercise.

Exercise 7. Show that ˆ̂f (x) = f (−x). Conclude that F4
n = In. What are the possible eigenvalues of

Fn? Find the actual eigenvalues (with multiplicities) of Fn (use a computer to compute for small n

to guess the answer).

11



Exercise 8. Let n = 2m + 1 and let p ≤ m. Let f (j) = 1 if j ∧ (n − j) ≤ p and 0 otherwise. Find f̂ .

4. Fourier analysis on Zn2

Since we already understand the character theory of Z2, and most considerations easily carry over to

products of groups (see Exercise 2), we can deduce the statements below from those of the previous

section. But we give a direct presentation anyway.

Again L2(G), with G = Zn2 is the vector space of C-valued functions on G. The dimension of this

space is 2n. It has the natural inner product

〈f , g〉 =
∑

x∈{−1,+1}n
f (x)g(x).

The scaled characters 2−n/2χS, S ⊆ [n], are orthonormal. Indeed,

〈χS, χT 〉 =
∑

x∈{−1,+1}n

∏
i∈S

xi
∏
j∈T

xj

=
∑

x∈{−1,+1}n

∏
i∈S∆T

xi .

This summation factors over i ∈ [n]. The factor corresponding to i gives 2 if i 6∈ S∆T and gives

−1 + 1 = 0 if i ∈ S∆T . Therefore, 〈χS, χT 〉 = 2n if S = T and 〈χS, χT 〉 = 0 otherwise.

The number of subsets of [n] is exactly 2n, hence the number of elements in the orthonormal set

matches the dimension of L2(G), showing that it is in fact an orthonormal basis. Thus, any f ∈ L2(G)

may be written as (as the characters are real-valued, we drop the conjugates)

f (x) =
1

2n/2

∑
S⊆[n]

f̂ (S)χS(x), where

f̂ (S) =
1

2n/2
〈f , χS〉 =

1

2n/2

∑
x∈{−1,+1}n

f (x)
∏
i∈S

xi .

The Plancherel relations 〈f , g〉 = 〈f̂ , ĝ〉 take the form∑
x∈{−1,1}n

f (x)g(x) =
∑
S⊆[n]

f̂ (S)ĝ(S),
∑

x∈{−1,1}n
|f (x)|2 =

∑
S⊆[n]

|f̂ (S)|2

It may be useful to see some examples. Some of the picturesque names are motivated by thinking

of n voters voting for one of two candidates ±1, and xi as the vote of the ith person. A function

f : {−1, 1}n 7→ R (particularly f : {−1, 1}n 7→ {−1, 1}) is the method by which these votes are

combined to make a decision.

Example 9. Let f (x) = x1 (the dictator function: whatever the first voter says goes). Then f̂ (S) =

2n/2 if S = {1} and 0 otherwise. Observe that Plancherel relation holds with ‖f ‖2 = ‖f̂ ‖2 = 2n, but

the left side sum is “spread out”, with |f (x)|2 = 1 for all x while the right side sum is “concentrated”

with only one term being non-zero. This is again an example of an uncertainty principle.
12



Another feature that generalizes from the above example: If f does not depend on a variable j ,

then f̂ (S) = 0 for any set that contains j . Taking j = n for convenience and S = T t {n},

f̂ (S) =
∑
x

f (x)
∏
i∈S

xi =
∑

x1,...,xn−1

f (x)
∏
i∈T

xi
∑

xn∈{−1,1}

xn

and the inner sum is zero.

Example 10. Let f (x) = 1x=−1 = 2−n
∏
i(1 + xi). Expanding, we see that f̂ (S) = (−1)|S|2−n/2 for

all S. In this case, f is concentrated while f̂ is spread out.

The exercise below gives an alternate argument that any function on the hypercube can be written

as a linear combination of characters. The group structure and inner product are not used, what is

used is that xki = 1 if k is even and xki = xi if k is odd (hence any polynomial of xis may be written

as a multilinear polynomial).

Exercise 11. For a ∈ {−1, 1}n, write 1a as a linear combination of χS. Hence argue that any

f : {−1, 1}n 7→ R can be written as a linear combination of χS, S ⊆ [n].

A probabilistic interpretation: Observe that

f̂ (∅) = 2−n/2
∑
x∈Zn2

f (x),
∑
S

|f̂ (S)|2 =
∑
x

|f (x)|2.

Hence, if we endow Zn2 with uniform probability measure (P{x} = 2−n for all x) and view f as a

random variable on it, then 2−n/2f̂ (∅) is the mean value of f while 2−n
∑
S 6=∅ |f̂ (S)|2 is the variance.

5. Fourier analysis on finite abelian groups

Consider a finite abelian group G. Will the characters of G form a basis for L2(G)? Are they

orthogonal?

The answer to the second question is yes. Let χ : G 7→ T be any character. Then for any a ∈ G,

〈χ, 1〉 =
∑
x∈G

χ(x) =
∑
x∈G

χ(ax) = χ(a)
∑
x∈G

χ(x) = χ(a)〈χ, 1〉.

Thus, either χ is trivial (i.e., χ(a) = 1 for all a ∈ G) or χ ⊥ 1. Now, if χ1, χ2 are two characters,

then so is χ = χ1χ2, and χ is trivial if and only if χ1 = χ2. Hence

〈χ1, χ2〉 = 〈χ, 1〉 =

|G| if χ1 = χ2,

0 if χ1 6= χ2.

Thus any two distinct characters are orthogonal. In particular there can be at most N = |G| of them
(as L2(G) has dimension N). Observe that we did not use the fact that G is abelian: orthogonality

of characters is true for any finite group.
13



To return to the first question of whether they provide a basis for L2(G), it is now clear that for

that to happen, we need exactly N distinct characters. But if χ is a character, then χ(xyx−1) = χ(y)

for any x, y ∈ G, implying that χ is constant on each conjugacy class. But G has N conjugacy classes

if and only if it is abelian. Hence, whenever G is non-abelian, characters do not span L(G).

We do not even necessarily have as many characters as conjugacy classes, as the example of

symmetric groups shows.

Exercise 12. Show that Sn has only two characters, the trivial one and the sign.

Exercise 13. If G is a finite simple group that has a non-trivial character, then it must be Zp for some

prime p.

Returning to our question of whether characters provide a basis for L2(G), it is now clear that we

must restrict ourselves to abelian groups. We have seen that for cyclic groups Zn, there is indeed a basis
of characters. Now suppose G1, G2 are two groups whose characters form a basis of the corresponding

L2 spaces. From Exercise 2, it follows that χ1 ⊗ χ2 is a character of G if χi is a character of Gi , for

i = 1, 2. Since |G| = |G1| × |G2|, it seems that this gives |G| characters, and hence there is a full

basis of character of L2(G). But one must check that these character are distinct. They are distinct,

because χ1 and χ2 can be recovered from χ by χ1(x) = χ(x, 1) and χ2(y) = χ(1, y). By a somewhat

tedious check one can also see that they are linearly independent, but it is easier to check that they

are orthogonal.

Exercise 14. Let G = G1 × G2 be a product of finite groups. Show that

〈f1 ⊗ f2, g1 ⊗ g2〉L2(G) = 〈f1, g1〉L2(G1)〈f2, g2〉L2(G2).

Generalize to a product of k groups.

As a consequence, we see that all finite products of cyclic groups have the desired number of

characters, and that they form an orthogonal set in L2. What groups can be realized as products

of cyclic groups? As products of abelian groups are abelian, it is clear that we can only get abelian

groups this way. In fact we can get all of them!

Structure theorem for finite abelian groups: Let G be a finite abelian group. The G is isomorphic

to Zn1 × . . .× Znk for some ni = pmii , where pi is prime and mi ≥ 1. Of course the order of G must

be N = pm1
1 . . . pmkk (but this is not necessarily the prime factorization of |G|, note that pi need not

be distinct).

In conclusion (recall the Ĝ is the set of characters of G),

Theorem 15. If G is a finite abelian group of order N, then |Ĝ| = N and the collection { 1√
N
χ : χ ∈ Ĝ}

forms an orthonormal basis for L2(G).
14



Fourier transform: Let G be a finite abelian group of order N. For f ∈ L2(G), its Fourier transform

is defined as f̂ : Ĝ 7→ C given by f̂ (χ) = 1√
N
〈f , χ〉. Thus, for any x ∈ G,

f (x) =
1√
N

∑
χ∈Ĝ

f̂ (χ)χ(x).

As Ĝ is a set of the same cardinality, we can talk of L2(Ĝ) = {f : Ĝ 7→ C}, a Hilbert space with inner

product 〈f , g〉L2(Ĝ) =
∑
χ∈Ĝ f (χ)g(χ).

The Fourier transform is a mapping from L2(G) to L2(Ĝ). When the hat notation is not convenient,

we denote this mapping by F or FG . Often it is a better to view properties of the Fourier transform

F instead of writing it elaborately in terms of f and f̂ . Immediately from the definition, we get the

all important Plancherel relation.

Theorem 16 (Plancherel relation). F : L2(G) 7→ L2(Ĝ) is a unitary transformation. That is,

〈f , g〉L2(G) = 〈f̂ , ĝ〉L2(Ĝ). In particular, ‖f ‖2
L2(G)

= ‖f̂ ‖2
L2(Ĝ)

.

Proof. Write f ∈ L2(G) as 1√
N

∑
χ∈Ĝ f̂ (χ)χ and recall that χ/

√
N form an orthonormal basis to see

that ‖f ‖2
L2(G)

=
∑
χ∈Ĝ |f̂ (χ)|2. Similarly, expand g and take inner product between f and g to get

〈f , g〉L2(G) = 〈f̂ , ĝ〉L2(Ĝ). This is the definition of unitarity. �

Remark 17. Observe that in case of Zn, the characters were naturally indexed by Zn too, hence we

wrote f̂ (k) rather than f̂ (e2πk/n). That also made things like the inversion formula seem natural.

But to discuss inversion formula for a general group, we need to first see that Ĝ itself has a group

structure. We do this in a later section on duality.

Probabilistic interpretation: If f ∈ L2(G), and 1 is the trivial character, then f̂ (1) =
∑
x∈G f (x) and

by the Plancherel relationship we know that
∑
χ∈Ĝ |f̂ (χ)|2 =

∑
x∈G |f (x)|2. Hence, if we consider the

uniform probability measure on G: P{x} = 1
N for each x ∈ G, then the random variable f has mean

1
N f̂ (1) and variance 1

N

∑
χ6=1 |f̂ (χ)|2.

6. Characters as eigenvectors

Let G be a finite abelian group. For x ∈ G, define Tx : L2(G) 7→ L2(G) by (Tx f )(y) = f (y + x).

Then Tx is a linear transformation (we call it translation by x). If χ is any character of G, then for all

x, y ∈ G

(Txχ)(y) = χ(x + y) = χ(x)χ(y).

This means that χ is an eigenvector of Tx with eigenvalue χ(x), for each x ∈ G. As we have a full

basis of characters for L2(G), we see that they simultaneously diagonalize all the translation operators.
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In fact we could have take this route to proving the existence of a full basis of characters2 avoiding

the use of the structure theorem for finite abelian groups. In this approach, we start with two

observations:

(1) TxTy = TyTx = Tx+y for any x, y ∈ G. This happens because the group is abelian.

(2) (Tx)∗ = T−x since for any f , g ∈ L2(G),

〈Tx f , g〉 =
∑
y∈G

(Tx f )(y)g(y) =
∑
y∈G

f (y + x)g(y) =
∑
z∈G

f (z)g(z − x) = 〈f , T−xg〉.

Consequently, TxT ∗x = TxT−x = T0 = I. That is, Tx is unitary.

An extension of the spectral theorem says that a commuting family of normal transformations (re-

call that T is normal if T ∗T = TT ∗) can be simultaneously diagonalized. Therefore, there is an

orthonormal basis of L2(G), whose elements are eigenvectors for all Tx , x ∈ G.
Now suppose τ is a common eigenvector. Then Txτ = λxτ for all x ∈ G, for some λx ∈ C (in fact

|λx | = 1 by unitarity of Tx). What this means is that τ(x + y) = λxτ(y) for all x, y ∈ G. Since τ is

not identically zero, this shows that τ(y) 6= 0 for all y . Normalize the eigenvector so that τ(0) = 1

(possible since τ(0) 6= 0 to start with) to see that λx = τ(x). Thus, τ(x + y) = τ(x)τ(y), showing

that τ is a character of G. As eigenvectors form a basis, we get a full basis of characters.

Remark 18. As an offshoot of this discussion, observe that if T : L2(G) 7→ L2(G) is any normal

operator that commutes with all the translations, then each character of G is an eigenvector of T .

Convolution: For f , g : G 7→ C, define f ? g : G 7→ C by (f ? g)(x) =
∑
y f (y)g(x − y). This can

also be written as
∑
y f (x − y)g(y), hence f ? g = g ? f . When f and g are probability vectors on

G, we have the interpretation of f ? g as the probability distribution of X + Y where X and Y are

independent random variables with distributions f and g respectively.

Fourier transform converts convolution to product. For,

(̂f ? g)(χ) =
∑
x∈G

(f ? g)(x)χ(x) =
∑
x∈G

∑
y∈G

f (x − y) g(y) χ(x − y) χ(y)

=
∑
z∈G

∑
y∈G

f (z)g(y)χ(z)χ(y)

=

(∑
z∈G

f (z)χ(z)

)∑
y∈G

g(y)χ(y)

 = f̂ (χ)ĝ(χ).

Exercise 19. For any f : G 7→ R and any χ ∈ Ĝ, show that f ? χ is a multiple of χ, and find the

multiplying factor. How is this related to the previous discussion of characters as eigenvectors?

2Thanks to Ritvik Radhakrishnan for pointing this out during the lecture.
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7. Duality

Let G be a finite abelian group and Ĝ the set of its characters. We have seen that they have the

same cardinality. So far Ĝ is just a set. We now endow it with a group structure.

Define products of characters pointwise, i.e., (χ1χ2)(x) = χ1(x)χ2(x). As χ1, χ2 ∈ Ĝ if χi ∈ Ĝ
and χ−1 = χ ∈ Ĝ if χ ∈ Ĝ, it follows that Ĝ becomes a group. It is in fact a finite abelian group.

If G = Zn, then Ĝ = {χk := e2πk/n : 0 ≤ k ≤ n− 1}. Observe that χkχ` = χk+`(mod n). In other

words, as a group Ĝ is isomorphic to G itself with k 7→ χk being an isomorphism.

If G is isomorphic to Zn1 × . . . × Znk (as any finite abelian group is), then we have seen that Ĝ

can be identified (as a set) with Ẑn1 × . . . × Ẑnk . But it is also clear that if χ = χ1 ⊗ . . . ⊗ χk and

χ′ = χ′1⊗ . . .⊗χ′k , then the pointwise product χχ′ = (χ1χ
′
1)⊗ . . .⊗ (χkχ

′
k). Thus, Ĝ is isomorphic

to G as a group, with (`1, . . . , `k) 7→ χ`1
⊗ . . .⊗ χ`k being a natural isomorphism.

Thus for any finite abelian group, Ĝ is isomorphic to G as a group. However, this isomorphism is

not canonical, hence we do not emphasize it. The issue is that while G is isomorphic to a product

of cyclic groups, this isomorphism is not canonical/natural. For example, consider the Klein-4 group

G = {1, a, b, c} with a2 = b2 = c2 = 1 and ab = c , bc = a, ca = b. Then G = {1, a} × {1, b} but
also G = {1, b} × {1, c}. These in turn lead to different isomorphisms of G with Ĝ.

In contrast, we shall now see that the double dual ˆ̂G is naturally isomorphic to G. That they are

isomorphic is already clear, ˆ̂G ∼= Ĝ ∼= G, it is the naturalness that is important. One may compare

this to the analogous fact about duals and double duals of finite dimensional vector spaces.

The duality: For x ∈ G, the evaluation mapping evx : Ĝ 7→ T defined by evx(χ) = χ(x), is clearly a

homomorphism on Ĝ. In other words, evx ∈ ˆ̂G. Further, x 7→ evx from G to ˆ̂G is an isomorphism. It

is a homomorphism because

evxy (χ) = χ(xy) = χ(x)χ(y) = evx(χ)evy (χ) = (evxevy )(χ).

It is injective: if evx = 1, then χ(x) = 1 for all χ ∈ Ĝ, which implies that x = 1 (otherwise

the characters would not be able to separate 1 from x). Since G and ˆ̂G have the same cardinality

(because both are equal to |Ĝ|), the homomorphism is an isomorphism of the two groups.

Exercise 20. Let G be a finite abelian group. Show that for any x, y ∈ G,

∑
χ∈Ĝ

χ(x)χ(y) =

|G| if x = y ,

0 if x 6= y .

These relations are complementary to the orthogonality of characters.
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8. Fourier inversion

Let G be a finite abelian group. Let f ∈ L2(G) and consider the ˆ̂f ∈ L2(G) (by the isomorphism

between ˆ̂G and G), then

ˆ̂f (x) =
1√
N
〈f̂ , evx 〉L2(Ĝ) =

1√
N

∑
χ∈Ĝ

f̂ (χ)evx(χ) =
1√
N

∑
χ

〈f , χ〉χ(−x) = f (−x).

Loosely speaking, Fourier transform is its own inverse, but that is not quite right because of the

negative sign on x . Two correct statements:

(1)
ˆ̂̂
f̂ = f . In other words, F4 = I. To write F4 is misleading (as is writing f̂ , since the domain of

the Fourier transform is not indicated and is ambiguous if several groups are floating around),

it is actually FĜ ◦ FG ◦ FĜ ◦ FG .

(2) Define f̌ (χ) = 〈f , χ〉 (pronounced “f check”), then ˇ̂f = f as

ˇ̂f (x) = 〈f̂ , evx 〉L2(Ĝ) =
∑
χ∈Ĝ

f̂ (χ)evx(χ) =
∑
χ

〈f , χ〉χ(x) = f (x).

9. Poisson summation formula

Let H be a subgroup of a finite abelian group G and let q : G 7→ G/H be the quotient map. Let

N = |G| and M = |H| so that |G/H| = N/M. Given F ∈ L2(G), we create a function f ∈ L2(G/H)

by summing F over the coset, i.e.,

f (c) =
∑

x∈q−1{c}

F (x).

If χ is a character of G/H, then χ ◦ q is a character of G and

F̂ (χ ◦ q) =
1√
N
〈F, χ ◦ q〉L2(G) =

1√
N

∑
c∈G/H

∑
x∈q−1{c}

F (x)χ(q(x))

=
1√
N

∑
c∈G/H

χ(c)
∑

x∈q−1{c}

F (x)

=
1√
N

∑
c∈G/H

f (c)χ(c) =

√
N/M√
N

1√
N/M

〈f , χ〉L2(G/H) =
1√
M
f̂ (χ).

To be pedantic one must write FG(F )(χ ◦ q) = FG/H(f )(χ) but we don’t do that unless necessary.

Now we are ready to state the

Theorem 21 (Poisson summation formula). In the above setting, for any F ∈ L2(G),

1√
M

∑
x∈H

F (x) =
1√
N/M

∑
χ∈Ĝ/H

F̂ (χ ◦ q).
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Proof. Define f from F as before. Then,∑
x∈q−1{c}

F (x) = f (c) =
1√
N/M

∑
χ∈Ĝ/H

f̂ (χ)χ(c) =

√
M√
N/M

∑
χ∈Ĝ/H

F̂ (χ ◦ q)χ(c).

In particular, setting c = 0 (the identity in G/H), we get the claimed identity. �

From the proof, it may seem that we could have stated the more general identity instead of setting

c = 0. Actually the general case can be recovered from the special case by applying to x 7→ F (x + x0)

for some x0 ∈ q−1(c).

Example 22. Suppose n = r s. Let G = Zn and let H = {0, r, 2r, . . . , (s − 1)r} ∼= Zs so that

G/H ∼= Zr . The quotient map is of course q(k) = k (mod r). Then the Poisson summation formula

says that
1√
s

s−1∑
j=0

F (j r) =
1√
r

r−1∑
k=0

F̂ (ks)

and more generally,
1√
s

s−1∑
j=0

F (j r + d) =
1√
r

r−1∑
k=0

F̂ (ks)e2πikd/r .

Above, we considered a function on G and created a function on G/H. In the exercise below, this

is done in the reverse direction (but the operation is not the reversal of the above!).

Exercise 23. Let H be a subgroup of a finite abelian group G and let f ∈ L2(G/H). Composing with

the quotient map q : G 7→ G/H, we get a function f ◦q =: F ∈ L2(G). Show that F̂ (χ◦q) = |H|f̂ (χ)

for any χ ∈ Ĝ/H.
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CHAPTER 2

Uncertainty principles and signal recovery problems

1. Introduction

Uncertainty principle is the meta-statement that a function and its Fourier transform cannot both

be localized. For Fourier transforms on R to which we come later, it is a fact that if ĝ(t) is the Fourier

transform of g(x), then ĝ(t/a) is the Fourier transform of ag(ax), for any a > 0. As a → ∞, the

function ag(ax) gets more and more concentrated or localized around zero, but the Fourier transform

spreads out. This is an illustration of the same principle (although a feature here, one should disregard

the other direction: that is a function is spread out the Fourier transform must get localized. Both

can be spread out.). In the context of finite groups, we saw that if n = pq and a function on Zn is

constant on multiples of p and zero elsewhere, then the Fourier transform is constant on multiples of

q and zero elsewhere. The product of support sizes is n - if one goes down, the other goes up. In this

chapter we see certain uncertainty principles based on p-norms, in the setting of finite abelian groups.

2. Some uncertainty principles based on p-norms

Let G be a finite abelian group of order N and let f ∈ L2(G). Throughout this section, we shall

assume that f is not identically zero.

Then f̂ ∈ L2(G), is not identically 0, and we see that since |χ(x)| = 1 for x ∈ G and χ ∈ Ĝ, we
have

|f̂ (χ)| ≤
1√
N

∑
x∈G
|f (x)| and |f (x)| ≤

1√
N

∑
χ∈Ĝ

|f̂ (χ)|.

Thus (we write ‖ · ‖p instead of ‖ · ‖Lp(G) and ‖ · ‖Lp(Ĝ) if it is not ambiguous)

‖f̂ ‖∞ ≤
1√
N
‖f ‖1 and ‖f ‖∞ ≤

1√
N
‖f̂ ‖1

and multiplying the two, we get our first uncertainty principle3:

‖f ‖1

‖f ‖∞
×
‖f̂ ‖1

‖f̂ ‖∞
≥ N.(1)

3We have taken much of the approach to uncertainty principles from a recent paper of A. Wigderson and Y. Wigderson

titled The uncertainty principle: variations on a theme . Their primary message, which I found quite illuminating, is this:

Take (1) as the starting point. And if you have a measure of spread of functions H(f ), try to show an inequality such

as H(g) ≥ ϕ(‖g‖1/‖g‖∞) for some increasing function ϕ : R+ 7→ R+ (preferably unbounded). An immediate corollary is

an uncertainty principle for this measure of spread: H(f )×H(f̂ ) ≥ ϕ(N).
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Why do we call it an uncertainty principle? In general, an upper bound on a ratio like ‖g‖p/‖g‖q
for p < q says that g must be localized or concentrated. For example, if ‖g‖1 = ‖g‖∞, then g is

supported at one point (in other words g = δx for some x). Another example is that ‖g‖1 ≤
√
N‖g‖2

by Cauchy-Schwarz, with equality if and only if g is constant. If g = δx for some x , then ‖g‖1 = ‖g‖2.

In this case too, we see that the ratio of L1 to L2 norms is small when the function is localized4.

Thus, the inequality (1) says that in the L1 to L∞ measurement of concentration, both f and f̂

cannot be too localized. Uncertainty principles are statements that say this, with different measures

of localization/concentration. Another measure of localization is the cardinality of the support of the

function.

For any g on a finite set, it is clear that ‖g‖1 ≤ |Sg|‖g‖∞, where |Sg| is the cardinality of the

support Sg = {x : g(x) 6= 0}. Writing this inequality for f ∈ L2(G) and for f̂ ∈ L2(G), we get the

Donoho-Stark uncertainty principle

|Sf | × |Sf̂ | ≥ N(2)

by applying (1). We know that equality can be achieved, for example, by f (k) = 1k=0 (mod p) on

Zpq, in which case f̂ (`) = c1`=0 (mod q) for a constant c (as usual we abuse notation and write f̂ (`)

instead of f̂ (χ`) when working with the cyclic group). Thus |Sf | = q and |Sf̂ | = p and their product

is the size of the group.

The rest of this section is optional. For our purposes, (2) and the idea of deriving it from (1) are

sufficient.

Further analysis of (p, q) uncertainty principles: Although there is no Lp-norm for 0 ≤ p ≤ 1, we

may still use ‖g‖p = (
∑
x |g(x)|p)1/p as a measure of the size of g. Not relevant to us, but one can

also use it to get a metric d(f , g) = ‖f − g‖pp. Observe that ‖g‖pp → |Sg| as p → 0. Thus the

support size is a limiting case of the p-norms. In proving Donoho-Stark, we used the simple inequality

‖g‖1 ≤ ‖g‖∞|Sg|. To extend it to general p ∈ [0, 1], observe that

‖g‖1 =
∑
x

|g(x)| ≤ ‖g‖1−p
∞

∑
x

|g(x)|p = ‖g‖1−p
∞ ‖g‖pp.

Invoking (1), we get the following uncertainty principle(
‖f ‖p
‖f ‖∞

)p
×

(
‖f̂ ‖p
‖f̂ ‖∞

)p
≥ N.(3)

4In class I got into a twist by writing ‖g‖2/‖g‖2
1 as an increasing transformation of the coefficient of variation of g,

i.e., var(g)/mean(g)2, and saying that the latter quantity is a measure of spread. This led to a confusion that we are

looking at the ratio of a higher p-norm to a lower p-norm. But variance of g is the spread of the values of g, whereas

what we are talking about is the spread on the domain side. For example, the constant function has zero variance

whereas a delta-function has positive variance! Thanks to Chinmay S. I. for clearing up this point.
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that interpolates between Donoho-Stark inequality (2) (case p = 0) and (1) (case p = 1). We can

further extend to a (p, q) uncertainty principle with 0 ≤ p ≤ 1 and 1 ≤ q ≤ ∞ as follows: Write
1
q = p/q

p + (q−p)/q
∞ and use Hölder’s inequality to write ‖f ‖q ≤ ‖f ‖p/qp ‖f ‖(q−p)/q

∞ or equivalently

‖f ‖p
‖f ‖q

≥
(
‖f ‖p
‖f ‖∞

)(q−p)/p

.

Multiply with the analogous inequality for f̂ , raise to the power p, and use the (p,∞) uncertainty

principle to get the (p, q)-uncertainty principle(
‖f ‖p
‖f ‖q

)p
×

(
‖f̂ ‖p
‖f̂ ‖q

)p
≥ N1− p

q .(4)

When p = 0 the left hand side should be interpreted as |Sf | × |Sf̂ |, which is what one gets as p ↓ 0.

Next consider p ∈ (1, 2) and let p′ ∈ (2,∞) be the conjugate exponent defined by 1
p + 1

p′ = 1.

For a linear transformation T : U 7→ V , where U, V are normed vector spaces, the operator norm is

defined as

‖T‖U→V := sup
u 6=0

‖Tu‖V
‖u‖U

= sup
u∈U:‖u‖U=1

‖Tu‖V .

We say that T is a bounded operator is ‖T‖U→V < ∞. This is always the case when U is finite

dimensional. When the underlying spaces are U = Lp(X) and V = Lq(Y ) (where X, Y are finite sets

for now, but more generally they can be measure spaces) we write ‖T‖p→q for ‖T‖Lp(X)→Lq(Y ).

Riesz-Thorin interpolation theorem: Assume 1 ≤ p0, p1, q0, q1 ≤ ∞. For 0 < θ < 1 define pθ, qθ
by p−1

θ = (1− θ)p−1
0 + θp−1

1 and q−1
θ = (1− θ)q−1

0 + θq−1
1 . Then,

‖T‖pθ→qθ ≤ ‖T‖
1−θ
p0→q0

‖T‖θp1→q1
.

The theorem is true in general measure spaces, but one must say a few words first about T being

bounded from Lp0 to Lq0 etc. We wish to apply this to the Fourier transform F : L2(G) 7→ L2(Ĝ).

We know that ‖f̂ ‖∞ ≤ 1√
N
‖f ‖1 and ‖f̂ ‖2 = ‖f ‖2. That is, ‖F‖1→∞ = 1/

√
N and ‖F‖2 = 1. For

p ∈ (1, 2), let θ = 2
p′ so that

1

p
=

1− θ
1

+
θ

2
and

1

p′
=

1− θ
∞ +

θ

2
.

From the Riesz-Thorin interpolation theorem, we get the Hausdorff-Young inequality:

‖f̂ ‖p′ ≤ N
1

2p′−
1

2p ‖f ‖p.

Applying the same to the inverse Fourier transform, we get ‖f ‖p′ ≤ N
1

2p′−
1

2p ‖f̂ ‖p. Multiplying, we get

the (p, p′)-uncertainty principle
‖f ‖p
‖f ‖p′

×
‖f̂ ‖p
‖f̂ ‖p′

≥ N
1
p
− 1
p′ .
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Extend this to a (p, q) uncertainty principle for p ∈ (1, 2) and q ∈ (2, p′] to get

‖f ‖p
‖f ‖q

×
‖f̂ ‖p
‖f̂ ‖q

≥ N
1
p
− 1
q .(5)

Exercise 1. Prove (5) using the (p, p′)-uncertainty principle.

Summary: In summary, we have proved (p, q) uncertainty principles when p ∈ [0, 1] and q ∈ [1,∞]

or p ∈ [1, 2] and q ∈ [2, p′]. The inequalities (4) and (5) subsume all others proved in this section.

It may be worth recalling the standing assumption that f 6= 0. A useful way of stating each of the

uncertainty principles is that if the conclusion is violated (e.g., if |Sf | × |Sf̂ | < N), then f = 0.

3. Robust versions of the Donoho-Stark uncertainty principle

The support is a delicate thing. In the real world, no function can be said to be exactly zero at

any point. Mathematical theorems which hold under certain conditions, but break down under the

slightest perturbations, are generally not saying anything about the real world, because the hypotheses

are never satisfied! In other words, we should look for theorems that are robust, or not too sensitive to

the assumptions. For example, a robust version of the uncertainty principle would say that a function

and its Fourier transform cannot both be nearly supported on small sets.

We prove two such versions in this section. First we need a definition for approximate support.

Definition 2. If f : G 7→ C, we say that A ⊆ G is an (p, ε) support for f if ‖f 1Ac‖p ≤ ε‖f ‖p. Here

1 ≤ p <∞ and 0 ≤ ε ≤ 1.

The definition can be clearly made for Lp functions on an arbitrary measure space. A (p, ε) support

always exists, for example G itself is always one. When ε = 0, the smallest (p, ε) support is the usual

support. For ε > 0, in general there is no unique (p, ε) support. Note that we have not included any

phrase like “the smallest set with...”, but including that would not make it unique either.

Theorem 3. Let G be a finite abelian group of order N. Assume that f : G 7→ R is not identically

zero. Suppose that A ⊆ G are B ⊆ Ĝ are (1, ε) and (1, δ) supports for f and f̂ respectively. Then

|A| × |B| ≥ N(1− ε)(1− δ).

Proof. We observe that
√
N‖f̂ ‖∞ ≤ ‖f ‖1 ≤ (1− ε)−1‖f 1A‖1 ≤ (1− ε)−1‖f ‖∞|A|,
√
N‖f ‖∞ ≤ ‖f̂ ‖1 ≤ (1− δ)−1‖f̂ 1B‖1 ≤ (1− δ)−1‖f̂ ‖∞|B|.

The first inequalities are from the definition of the Fourier transform (as ˆ̂f (x) = f (−x), the first

inequality in the second line follows from the same). The second inequalities are from the definition
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of A and B as approximate supports. The third inequality is obvious. Multiply the two inequalities to

get the theorem. �

The above theorem is due to Wigderson A., and Wigderson Y., inspired by the stronger Donoho-

Stark theorem that states such an inequality for L2 approximate supports.

Theorem 4 (Donoho-Stark). Let G be a finite abelian group of order N. Assume that f : G 7→ R
is not identically zero. Suppose that A ⊆ G are B ⊆ Ĝ are (2, ε) and (2, δ) supports for f and f̂

respectively. Then |A| × |B| ≥ N(1− ε− δ)2.

In preparation for the proof, consider a linear operator T : U 7→ V , where U and V are finite

dimensional normed complex vector spaces. If T ∗T has eigenvectors uk with eigenvalues λk (which

are non-negative), then for any u ∈ U,

‖Tu‖2 = 〈T ∗Tu, u〉 =
∑
k

λk |〈u, uk〉|2 ≤ (max
k
λk)

∑
k

|〈u, uk〉|2 ≤ tr(T ∗T )‖u‖2.

Here we bounded the maximum eigenvalue of T ∗T by the sum of eigenvalues. Thus, ‖T‖U→V ≤√
tr(T ∗T ). The right side is also known as the Hilbert-Schmidt or Frobenius norm and denoted ‖T‖F

(or ‖T‖HS). If we regard T as a matrix by fixing bases of U, V , then the Frobenius norm is just the

Euclidean norm of the vector got by writing the matrix as a vector of dimension dim(U)dim(V ).

Proof of Theorem 4. Define the following projection operators on L2(G), for A ⊆ G and B ⊆ Ĝ:

PAf = f 1A, P̂Bf = (f̂ 1B)ˇ (or equivalently ̂̂PBf = f̂ 1B).

In other words, PA is restriction of f to A and P̂B is restriction of the Fourier transform to B. The

approximate support conditions and Plancherel relation mean that

‖(I − PA)f ‖2 ≤ ε‖f ‖2 and ‖(I − P̂B)f ‖2 ≤ δ‖f ‖2

and hence
‖(I − P̂BPA)f ‖2 ≤ ‖(I − P̂Bf )‖2 + ‖P̂B(I − PA)f ‖2

≤ (δ + ε)‖f ‖2.

Therefore, ‖P̂BPAf ‖2 ≥ (1 − δ − ε)‖f ‖2. Therefore, (1 − δ − ε)2 ≤ ‖P̂BPA‖2 ≤ ‖P̂BPA‖2
F . As

PA, P̂B are projections, we see that (P̂BPA)∗P̂BPA = P̂BPA and hence ‖P̂BPA‖2
F = tr(P̂BPA). To

compute the trace, we use the basis δk , k ∈ G. If k 6∈ A, then P̂BPAδk = 0. If k ∈ A, then

P̂BPAδk = P̂Bδk = (1B δ̂k)ˇ. Hence the (k, k) entry of P̂BPA is equal to

1√
N

∑
χ∈Ĝ

(1B δ̂k)(χ) χ(k) =
1

N

∑
χ∈B

χ(k)χ(k) =
1

N
|B|.

Summing over k ∈ A, we get ‖P̂BPA‖2
F = 1

N |A| × |B|. Combining this with the lower bound for the

Frobenius norm, we get |A| × |B| ≥ (1− δ − ε)2N. �
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Remark 5. Bounding the operator norm by the Frobenius norm may seem to be loose, since we bound

the maximum eigenvalue by the sum. On the other hand, even with ε = δ = 0, we know that equality

can be achieved in Theorem 4. It is instructive to work out P̂BPA explicitly in that example to see

how this comes about.

Here is a robust uncertainty principle mixing the L1 and L2 norms. The proof is not hard - it is

closer to that of Theorem 3 than that of Theorem 4.

Exercise 6. Let G be a finite abelian group of order N. Let f : G 7→ C. Suppose A1 is a (1, ε) support

for f and B2 is a (2, δ) support for f̂ . Then, |A1| × |B2| ≥ N(1− ε)2(1− δ)2.

Observe that P̂BPAf = f if and only if f̂ is supported on B and f is supported on A. Hence, any

upper bound on ‖P̂BPA‖ that is strictly less than 1 may be interpreted as an uncertainty principle.

Donoho and Stark remark in their paper that while
√
|A| · |B|/N is a natural upper bound for ‖P̂BPA‖,

it is the latter norm itself which is the key quantity of interest. The following exercise contains a

quantitative refinement of Theorem 4.

Exercise 7. If A ⊆ G and B ⊆ Ĝ, show that ‖P̂BPA‖ = sup{‖ĝ1B‖2

‖g‖2
: g ∈ L2(G), Sg ⊆ A}. Deduce

that if |A| × |B| < αN for some α ∈ (0, 1), then
∑
χ∈B |ĝ(χ)|2 ≤ α

∑
χ∈Ĝ |ĝ(χ)|2 for any g ∈ L2(G)

supported on A.

4. Applications of uncertainty principle to signal recovery problems

4.1. Recovering a bandlimited signal from periodic measurements. Consider Zn and assume that

n = r s. Recall the Poisson summation formula

1√
s

s−1∑
j=0

F (j r + d) =
1√
r

r−1∑
k=0

F̂ (ks)e2πikd/r

for any F ∈ L2(Zn). Let Ik = {n − k + 1, . . . , n − 1, 0, . . . , k − 1} be the “interval” of length 2k − 1

in Zn centered at 0. Suppose F is supported on Ip where 2p − 1 ≤ r . Then on the left side of the

Poisson summation formula, only the term with j = 0 contributes, and hence we get

F (d) =

√
s√
r

r−1∑
k=0

F̂ (ks)e2πikd/r for d ∈ Ir .

Thus, we can recover F from F̂ (0), F̂ (s), . . . , F̂ ((r − 1)s). This is not too surprising, as the space

of functions supported on Ip has dimension 2p− 1, and we have r ≥ 2p− 1 Fourier coefficients here.

Reversing the role of F and F̂ , we can also say that F̂ is supported on Iq where 2q − 1 ≤ s, then F̂
can be recovered from F (0), F (r), . . . , F ((s − 1)r).

F̂ (d) =

√
r√
s

s−1∑
k=0

F (kr)e2πikd/s for d ∈ Iq.

25



By the Fourier inversion formula, this also recovers F . What we have proved is the discrete version

of the Shannon-Nyquist formula.

Theorem 8 (Shannon-Nyquist, discrete version). Suppose F : Zn 7→ C is a signal bandlimited to

frequency q, then F can be recovered from its values sampled at points regularly spaced r distance

apart, provided r ≤ n
2q−1 .

Strictly speaking, we have proved this only when n is a multiple of r . The general case is outlined

in the following exercise.

Exercise 9. Assume that F is bandlimited to frequency q. Show that the linear transformation from

(F̂ (k))−q+1≤0≤q−1 to (F (j r))0≤j≤b n−1
r
c is injective if r ≤ n

2q−1 (compute the matrix of this linear

transformation explicitly) and hence deduce Shannon-Nyquist theorem.

With the interpretation of Zn as time and Ẑn as frequencies, it is the convention to say that a

function supported on Ip is time-limited to p and that a function whose Fourier transform is supported

on Iq is band-limited to q. Here we are using a special feature of Ẑn: the characters χk(j) = e2πijk/n,

can be ordered in increasing order of |k |, and |k | indicates the frequency (i.e., how rapidly the character

changes from one point to the next). A band-limited signal is one that used only low frequencies.

The real content of this theorem comes from the fact that band-limited assumption may actually be

an assumption satisfied in reality.

4.2. Recovering a bandlimited signal from incomplete noisy measurements. Let B = Iq =

{−q, . . . , q} and A = {0, r, 2r, . . . , (s − 1)r} (here no relationship is assumed a priori on q, r, s, n).

Make the assumption of bandlimitedness: That f̂ is supported on B. Suppose we observe the signal

f only on Ac and those observations are also noisy. That is, we observe g(k) = (f (k) + ν(k))1k 6∈A.

The question is: Can we recover f from g? Of course, as there is noise, one does not expect exact

recovery, what one asks for is an estimated signal close to the original one. The following theorem

assures us that it can be done.

Theorem 10. Assume that |A| × |B| < N and let Q = (I − PAP̂B)−1. Then ‖f −Qg‖2 ≤ CA,B‖ν‖2

where C−2
A,B = 1− 1

N |A| × |B|.

Proof. We know that ‖PAP̂B‖ ≤ 1
N |A| × |B|, hence it follows that I − PAP̂B is invertible and in fact

Q = I + PAP̂B + (PAP̂B)2 + . . .

Observe that g = (I−PA)f +ν = (I−PAP̂B)f +ν since P̂Bf = f . Therefore, f = Q(g−ν) = Qg−Qν.
Since ‖Qν‖2 ≤ ‖Q‖‖ν‖2, using the bound for the norm of Q, we get the conclusion. �

Remark 11. Donoho and Stark remark that the expansion formula for Q can be used efficiently

to numerically find Qg by starting with f0 = g and setting fk+1 = g + PAP̂Bfk for k ≥ 0. As
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PAP̂Bfk(x) = 0 for x 6∈ A, observe that fk(x) = g(x) for all x 6∈ A and for all k . It is the unobserved

values that get updated at each iteration and finally converge to the fixed point of the equation

h = g + PAP̂Bh which is h = Qg.
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CHAPTER 3

Social choice and Fourier analysis on Zn2

1. Fourier analysis on Zn2 revisited

For the product group Zn2, we introduce a few other basic notions (I do not know if these can be

generalised to other groups)5.

Discrete derivative and influence: For f : Zn2 7→ C and index j ∈ [n], define

Dj f (x) :=
1

2
[f (x1, . . . , xj−1, 1, xj+1, . . . , xn)− f (x1, . . . , xj−1,−1, xj+1, . . . , xn)].

This measures the dependence of the value of f on the jth co-ordinate, when all other co-ordinates

are fixed. It depends on the values of the other co-ordinates (but crucially, not on xj itself). An overall

measure of the influence of the jth co-ordinate is given by

Infj(f ) :=
1

2n
‖Dj f ‖2

2.

Of special interest are Boolean functions f : Zn2 7→ {−1, 1} (sometimes the target space is written

as {0, 1}). We may think of this as a voting rule, where there are two candidates, and each x ∈ Zn2
denotes a particular voting pattern (xi being the vote of the ith person). Each Boolean function f

gives a different way in which the votes are pooled together to arrive at a decision. If f is a Boolean

function, Dj f (x) = ±1 if the jth voter’s vote changes the final decision (when all others fix their votes)

and Dj f (x) = 0 if the decision can be made on others’ votes, disregarding the jth voter. Therefore,

the influence of voter j is the probability that his/her vote changes the decision:

Infj(f ) =
1

2n

∑
x∈Zn2

1f (x1,...,xj−1,1,xj+1,...,xn) 6=f (x1,...,xj−1,−1,xj+1,...,xn)

= P{f (x) 6= f (x j)}

where x ji = xi if i 6= j and x ji = −xi if i = j . We use the word probability to mean the uniform

probability measure on Zn2. In other words, each voter votes independently with equal probability to

either candidate.

Example 1. Let S ⊆ [n]. Then DjχS = 0 if j 6∈ S while DjχS = χS\{j} if S 3 j . Note the formal

similarity to the way we usually differentiate a polynomial (except that in Zn2 the degree of any variable

5In everything we do on Zn2, we follow Ryan O’donnell’s book Analysis of Boolean functions. The book has a wealth

of material and very good exposition - we make a small subselection.
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is at most 1). In this case, DjχS(x) = ±1 for all x and hence Infj(χS) = 1 for j ∈ S. Of course the

influence is zero for j 6∈ S.

Characters χS are Boolean functions. Here are a few others.

Example 2. If n is odd, we define the majority function M(x1, . . . , xn) = 1x1+...+xn>0 − 1x1+...+xn<0

(here the addition is in R, not in Z2). A dictator function is one of the form x 7→ xj , for some j ∈ [n]

(then j is called the dictator). A recursive majority function is defined as follows: Imagine a country

that is divided into states, states divided into districts, districts divided into towns. In each town the

majority vote is taken to decide which party candidate is elected. A majority vote among the town

representatives decides the state representative and the majority among state representatives gives

the overall decision.

Fourier expansion of derivatives: Let f : Zn2 7→ R and j ∈ [n]. We write j = 1 for simplicity of

notation. If S 3 1, then D̂1f (S) = 0 because D1f (x) does not depend on x1. If S 63 1, then

D̂1f (S) =
1

2

∑
x∈Zn2

[f (1, x2, . . . , xn)− f (−1, x2, . . . , xn)]
∏
i∈S

xi

=
∑
x∈Zn2

f (x1, . . . , xn)x1

∏
i∈S

xi

= f̂ (S t {1})

In general Dj f̂ (S) = f̂ (S ∪ {j}) if j 6∈ S, and equal to zero otherwise. Equivalently,

Dj f (x) =
∑
S:S3j

f̂ (S)χS\{j}(x)

One could also have arrived at this by applying Dj to the expression f (x) =
∑
S f̂ (S)χS. Going

further, this also shows that f̂ (S) = D̂Sf (∅) where DS = Dj1 . . . Djs for S = {j1, . . . , js}. This is (a

multiple of) the mean value of DSf .

Exercise 3. Let n = 2m + 1 be odd and let M be the majority function. Show that

M̂(S) =


0 if |S| is even,

(−1)k
(mk )(2m

m )

2m−
1
2 (2m

2k )
if |S| = 2k + 1.

[Hint: Take S = {1, . . . , 2k + 1} and calculate D1M(x). Use the relationship between Fourier

coefficients of M and D1M.]

The heat semi-group: For f ∈ L2(Zn2) and t ≥ 0 (we interpret t as time), define

Qt f =
1

2n/2

∑
S⊆[n]

e−t|S|f̂ (S)χS.
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In other symbols, Q̂t f (S) = e−t|S|f̂ (S). Thus the mean value stays constant as Q̂t f (∅) = f̂ (∅),
while every other Fourier coefficient decays exponentially fast. From the definition it immediately

follows that Qt+s = Qt ◦Qs , in other words t 7→ Qt is a semi-group. It may also be seen that Qt is

self-adjoint:

〈Qt f , g〉 = 〈Q̂t f , ĝ〉 =
∑
S

e−t|S|f̂ (S)ĝ(S) = = 〈f̂ , Q̂tg〉 = 〈f , Qtg〉.

One can think of Qt f as interpolating between f = Q0(f ) and the constant function 2−n/2f̂ (∅)1 =

Q∞f . If one thinks of f as giving the initial temperatures at points of Zn2, what Qt does is to smooth

it (like heat flows from hotter to colder places, reducing gradient in temperature) all the way till every

vertex is at the same temperature. To make the analogy with the heat equation closer, differentiate

Qt f w.r.t t to get
d

dt
Qt f (x) = −

1

2n/2

∑
S⊆[n]

e−t|S||S|f̂ (S)χS(x)

= −
1

2n/2

∑
S⊆[n]

∑
j∈S

e−t|S|f̂ (S)χS(x)

= −
1

2n/2

∑
j∈[n]

∑
S:S3j

e−t|S|f̂ (S)χS(x)

= −
1

2n/2

∑
j∈[n]

xj
∑
S:S3j

e−t|S|f̂ (S)χS\{j}(x)

= −LQt f (x)

where L =
∑n
j=1 xjDj . Comparing this with the usual heat equation, we may call L the Laplacian6.

Exercise 4. (1) Find the Fourier coefficients of Lf in terms of Fourier coefficients of f . (2) Show

that Qt = e−tL. (3) Find the spectral decomposition of L and of Qt for any t > 0.

Remark 5. Some prefer to write ρ = e−t and define Tρf by T̂ρf (S) = ρ|S|f̂ (S). This has the

advantage of allowing ρ to be negative. Usually only ρ ∈ [−1, 1] is considered. One quantity of

interest is

〈Tρf , f 〉 =
1

2n

∑
S

|f̂ (S)|2ρ|S| = E[f (x)f (y)](1)

6To see why it is called Laplacian, observe that

xj f (x) =
1

2
[f (x1, . . . , xj−1, xj , xj+1, . . . , xn)− f (x1, . . . , xj−1,−xj , xj+1, . . . , xn)]

and hence Lf (x) = 1
2

∑
y∼x [f (y)− f (x)] where y ∼ x means that y and x differ in exactly one co-ordinate. In particular,

Lf (x) = 0 if and only if f (x) is the mean value of f at its neighbours in the Hamming cube (the graph with vertices

{−1, 1}n and edges between vertices that differ in a single co-ordinate). This is analogous to the mean value property

of harmonic functions (which are functions that satisfy ∆u = 0) and the formula for Lf is itself analogous to the fact

that ∆u(x) = cd limr→0

∫
x+rSd−1 [u(y)− u(x)]dσ(y).
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where x, y ∈ Zn2 are random variables that satisfy (1) (xk , yk) are independent across k , (2) E[xk ] =

E[yk ] = 0, (3) E[xkyk ] = ρ. In this case, expanding f in Fourier series,

E[f (x)f (y)] =
1

2n

∑
S,T

f̂ (S)f̂ (T )E[χS(x)χT (y)]

=
1

2n

∑
S,T

f̂ (S)f̂ (T ) E

 ∏
i∈S\T

xi
∏
i∈T\S

yi
∏

i∈S∩T
xiyi


=

1

2n

∑
S

|f̂ (S)|2ρ|S|

because the expectation factors over i . This is how we got the second equality in (1). The quantity

E[f (x)f (y)] has the following interpretation for a Boolean function f : Start with x uniformly randomly

chosen from Zn2. For each co-ordinate k , with probability
1
2 + 1

2ρ, keep xk as it is, and with the remaining

probability negate it. Let the resulting random vector be called y . Then, if f is a Boolean function,

then 1
2 + 1

2E[f (x)f (y)] is the probability that the value of f did not change. This is a measure of

how stable f is to perturbation of a few co-ordinates, and is denoted Stabρ(f ). In this language,

Stabρ(f ) = 〈Tρf , f 〉. For positive ρ, we may also write this as 〈Qt f , f 〉 with e−t = ρ.

For those familiar with some probability, we explain how Qt and L are related to a certain Markov

chain.

The Markov chain interpretation: Let X(t), t ≥ 0, be a Zn2-valued Markov chain in continuous

time defined as follows: At each j ∈ [n], there is a Poisson clock, meaning that there is a sequence

of random times 0 < Tj,1 < Tj,2 < . . . where Tj,r+1 − Tj,r are i.i.d. Exponential random variables with

mean 1. At the time Tj,r , the jth co-ordinate of Xt is refreshed, meaning that it is reset to ±1 with

equal probability. If the process starts at X(0) = x ∈ Zn2, then we claim that the expected value of

f (Xt) at time t is precisely Qt f (x). If you are not familiar with Markov chains, ignore this, otherwise

take it as an exercise (basically the differential equation for Qt f is the Kolmogorov equation for a

Markov chain). In particular, if f = δy , then Qt f (x) is the probability that the Markov chain started

from x at time 0 is at y at time t. In other words, Qt is the transition matrix for the Markov chain.

As we saw before, −L = d
dtQt

∣∣
t=0

. In Markov chain literature, this is called the generator of the

Markov chain. One fact that is clear from the Markov chain interpretation but not so obvious from

the Fourier definition is the positivity of the operators Qt : If f (x) ≥ 0 for all x , then Qt f (x) ≥ 0 for

all x .

Suppose the Markov chain starts at a uniform random point in Zn2, i.e., X0 ∼ uniform(Zn2). What

about Xt? It is easy to see that Xt is also uniform on Zn2, but Xt is not independent of X0. As the

co-ordinates evolve independently, it is enough to look at what (X0(1), Xt(1)). If there is no clock-ring

between time 0 and time t (an event of probability e−t), then X0(1) = Xt(1). Otherwise, Xt(1) is

an independent random choice of ±1. Hence, E[X0(1)Xt(1)] = e−t denotes the correlation between
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X0 and Xt . As t →∞, the correlation decays rapidly. We see that

〈Qt f , f 〉 = E[f (X0)f (Xt)] =: Stabe−t (f )

where we have introduced the notion of Stability of f at parameter ρ ∈ [0, 1] as E[f (x)f (y)] where

(xi , yi) are independent across i and E[xi ] = E[yi ] = 0 and E[xiyi ] = ρ. For a Boolean function, it

denotes the probability that the value of f changes if each input bit is refreshed with probability 1−ρ.

By Plancherel’s theorem, we see that for any t ≥ 0 and any f ∈ L2(Zn2),

‖Qt f ‖2
2 =

∑
S

|f̂ (S)|2e−t|S| ≤
∑
S

|f̂ (S)|2 = ‖f ‖2
2.

Thus, ‖Qt‖2→2 = 1 (equal, since Qt1 = 1). In the following exercise, you are asked to show the

same for any Lp.

Exercise 6. Show that ‖Qt‖p→p = 1 for all t and all p ∈ [1,∞].

2. Voting between two candidates

We think of x ∈ Zn2 as a pattern for voting, where the jth voter votes for candidate xj = ±1.

The votes can be combined together in any reasonable or unreasonable way using a Boolean function

f : Zn2 7→ {−1, 1} to arrive at a final decision. For example, the majority function (well-defined if n

is odd) maps x to +1 if more voters vote for +1 than for −1. Taking f (x) = x1 is a dictatorial vote

where the first person decides, ignoring everyone else. If f depends only of x1, . . . , xk , then the first

k individuals form a politburo that decides, ignoring everyone else.

What are desirable properties of such a function? Here are some. Say that f is

(1) unanimous is f (1) = 1 and f (−1) = −1,

(2) monotone if f (x) ≤ f (y) whenever xi ≤ yi for all i ,

(3) odd if f (−x) = −f (x) for all x ∈ Zn2,

(4) symmetric if f (xπ(1), . . . , xπ(n)) = f (x1, . . . , xn) for all π ∈ Sn and all (x1, . . . , xn) ∈ Zn2.

The majority function (when n is odd) has all these properties and is the only one to do so!

Proposition 7. Let f : Zn2 7→ {−1, 1} be monotone, symmetric, and odd. Then n is odd and f is the

majority function.

Proof. Since f is monotone and symmetric, it follows that f (x) ≤ f (y) if
∑
i xi ≤

∑
i yi . Indeed, given

x and y , by permuting co-ordinates bring to the form (1, . . . , 1,−1, . . . ,−1), and two such vectors

are comparable co-ordinatewise. Therefore, f (x) = 1x1+...+xn≥t for some t. For this to be odd, we

must take t = 0 and to avoid the possibility of x1 + . . .+ xn = 0, we must also take n to be odd. �
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Observe that we did not assume that f is unanimous. Indeed, if f is monotone and odd, and not

a constant, then it must also be unanimous. Dictator functions and recursive majority functions are

not symmetric, although they are monotone and odd (and hence also unanimous).

Here is another nice thing about majority function. It is the one that maximizes the expected

number of happy voters! Here we say that a voter is happy if the final decision agrees with his/her

own vote. Of course, to talk of expected number, we bring in the assumption of independent random

voting. If H is the number of happy voters, then
∑n
i=1 E[xi f (xi)] = E[2H − n], hence our claim is

captured by the following proposition.

Proposition 8. Let n be odd and let f : Zn2 7→ {−1, 1}. Then
∑n
i=1 E[xi f (x)] is maximized uniquely

when f is the majority function.

Proof. Since |f (x)| = 1, we have
n∑
i=1

E[xi f (x)] = E[f (x)(x1 + . . .+ xn)] ≤ E[|x1 + . . .+ xn|]

with equality if and only if f (x)(x1 + . . .+ xn) = |x1 + . . .+ xn|. When n is odd, the sum of xis is not

zero, hence we must have f (x) = sgn(x1 + . . .+ xn). This is the majority function. �

In the following exercise, you get to show that in any monotone, symmetric voting scheme, no voter

can have a large influence on the outcome.

Exercise 9. If f : Zn2 7→ {−1, 1} is monotone, show that Infi(f ) = f̂ ({i}) and that E[H] = 1
2n +

1
2

∑n
i=1 f̂ ({i}). If in addition f is symmetric, show that Infi(f ) ≤ 1√

n
for all i .

3. Voting between three candidates

A question of interest is how to decide if there are three candidates A,B, C? One approach is to

have three 2-way elections, between each pair of candidates. Let us assume that the same function

f : Zn2 7→ {−1, 1} is used to decide each pairwise election. If it so happens that A beats B and A

beats C, then A may be declared the winner unambiguously (the election between B and C only serves

to find the runner-up). Such a winner is called a Condorcet winner. The problematic situation is that

there may be no such candidate who beats the other two.

Example 10. If there are three voters with preferences A > B > C and B > C > A and C > A > B,

then A beats B while B beats C and C beats A. There is no Condorcet winner.

Is this likely? Is there a clever choice of the function f that ensures there will be Condorcet winner?

Suppose there is a single voter who prefers A to B and B to C and C to A. In this silly situation,

there is no way to have a decision. Let us assume that at least at an individual level, the voters

have clear preference: Namely they have a strict order of preference between the three candidates.
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Then irrespective of the number of voters, if f (x) = x1, i.e., 1 is a dictator, then we always have a

Condorcet winner (the first preference of 1). It turns out that dictator functions are the only ones

that have a Condorcet winner for every voting pattern!

Theorem 11 (Arrow’s theorem). Assume that each voter has an unambiguous order of preference for

the three candidates. If f : Zn2 7→ {−1, 1} has a Condorcet winner for any x ∈ Zn2, then f (x) = xk or

f (x) = −xk for some k (i.e., a dictator or anti-dictator function).

The proof that we give is probabilistic: Assume that all voters choose one of six possible preferences

(permutations of A,B, C at random. Then we show that there is a positive probability that there is

no Condorcet winner, unless f is a dictator function.

To use the language of Boolean functions, let x, y , z ∈ Zn2 denote the voting between A and B,

between B and C and between C and A, respectively. Here yi = 1 indicates that ith voter prefers B to

C and yi = −1 denotes the opposite preference. By assumption, (xi , yi , zi) 6∈ {(1, 1, 1), (−1,−1,−1)}
(check that all other 6-tuples lead to unambiguous ordering of the candidates).

Kalai’s proof of Arrow’s theorem. Choose (xi , yi , zi) uniformly at random from the set {−1, 1}3 \
{(1, 1, 1), (−1,−1,−1)}. Make the choices independently for 1 ≤ i ≤ n. Fix f ∈ Zn2. The event that

there is no Condorcet winner is the event that f (x) = f (y) = f (z). For three bits u, v , w ∈ {−1, 1},
observe that uv + vw + wu = 3 if u = v = w and −1 otherwise. Hence,

P{f (x) = f (y) = f (z)} =
1

4
E [1 + f (x)f (y) + f (y)f (z) + f (z)f (x)] =

1

4
+

3

4
E[f (x)f (y)].

Writing f (x) = 1√
2n

∑
S⊆[n] f̂ (S)χS(x), we see that

E[f (x)f (y)] =
1

2n

∑
S,T⊆Zn2

f̂ (S)f̂ (T )E[χS(x)χT (y)].

Now,

E[χS(x)χT (y)] = E

 ∏
i∈S\T

xi
∏
i∈T\S

yi
∏

i∈S∩T
xiyi

 =

0 if S 6= T,

(−1/3)|S| if S = T,

since the expectation factors over i , and E[xiyi ] = −1
3 while E[xi ] = E[yi ] = 0. Thus we arrive at

P{f (x) = f (y) = f (z)} =
1

4
+

3

4× 2n

∑
S⊆[n]

|f̂ (S)|2
(
−

1

3

)|S|
≥

1

4
−

1

3
×

3

4× 2n

∑
S⊆[n]

|f̂ (S)|2

=
1

4
−

1

4× 2n

∑
x∈Zn2

|f (x)|2

= 0
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since f (x) = ±1 for all x . This shows that P{f (x) = f (y) = f (z)} ≥ 0 (of course!) and that this

probability is strictly positive unless f̂ (S) = 0 except for |S| = 1 (see the inequality step above).

In that case, we must have f (x) = a1x1 + . . . + anxn for some ai ∈ C. If more than one ai 6= 0,

say a1, a2 are non-zero, then a1x1 + a2x2 can take the values −a1 − a2, a1 − a2, a2 − a1, a1 + a2

of which at least three are distinct (why?). which means that f takes at least three distinct values,

contradicting that f is a Boolean function. Hence, we must have at most one non-zero coefficient,

and if that is the k-th one, then f (x) = xk or f (x) = −xk . �

Observe that the proof shows that the probability to not have a Condorcet winner is equal to

1

4
+

3

4× 2n

∑
S⊆[n]

|f̂ (S)|2
(
−

1

3

)|S|
.(2)

which is what we earlier denoted as 1
4 (1 + 3Stab− 1

3
(f )). That is, the above quantity is equal to

1

4
+

3

4
P{f (x) = f (y)}

where x, y are uniformly random on Zn2 with E[xiyi ] = −1
3 . One way to generate them is to throw a

fair die for each i , and set

xi =

+1 if throw is 1, 2, 3,

−1 if throw is 4, 5, 6,
yi =

+1 if throw is 1, 4, 5,

−1 if throw is 2, 3, 6.

Exercise 12. For the majority function, numerically compute the probability that there is no Condorcet

winner among three candidates and check that happens as n → ∞, the probability converges to a

non-zero number.

Extra: Can you show that in fact the probability converges to 1 − 3
2π arccos

(
−1

3

)
= 0.0877 . . .?

One way is to use the interpretation in terms of Stab− 1
3

(f ) together with the central limit theorem,

preferably in a justifiable manner.

The key point of the exercise above is that the probability does not approach zero as n → ∞.

Otherwise, we would ignore the positive but small probability of the unpleasant outcome, when the

population size is large. The next section continues this discussion.

4. Robust version of Arrow’s theorem

Arrow’s theorem shows that if we demand a Condorcet winner 100% of the time, then we must

choose bad systems like a dictator function. A question relevant to real applications would be: if we

allow for a small positive probability of not getting a Condorcet winner, can we perhaps use one of

the nicer systems like the Majority function or something reasonably equitable? Turns out, no! The

following result is a robust or stability version of Arrow’s theorem.
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Theorem 13 (Kalai; Friedgut–Kalai–Naor). Suppose that for a Boolean function f : Zn2 7→ {−1, 1},
the probability of not getting a Condorcet winner in a 3-way election is at most δ. Then, there is some

set E ⊆ Zn2 with |E| ≤ Cδ2n, and k ∈ [n] such that on Zn2 \E we have either f = χ{k} or f = −χ{k}.

Here C is a constant, not depending on any parameters. The statement looks quite strong, since

it says that f is actually equal to ±xk on a set of probability close to 1. However, since f and xk
are Boolean, this is equivalent to measuring the distance in other ways. Indeed, for any two Boolean

functions f , g, we have

|{x ∈ Zn2 : f (x) 6= g(x)}| =
1

4

∑
x∈Zn2

|f (x)− g(x)|2 =
1

4
‖f − g‖2

2.

Proof. Taking inspiration from the proof of Arrow’s theorem, set g = 2−n/2
∑n
k=1 f̂ ({k})χ{k}. We

show that f and g are close, and then that g (or −g) is close to one of the characters χ{k}.

Step 1: We show that f and g are close. From (2),

P{no Condorcet winner} =
1

4
+

3

4× 2n

∑
S⊆[n]

|f̂ (S)|2
(
−

1

3

)|S|

≥
1

4
−

1

4× 2n

n∑
k=1

|f̂ (k)|2 −
1

9× 4× 2n

∑
3≤|S| odd

|f̂ (S)|2

≥
1

4
−

1

4× 2n

n∑
k=1

|f̂ (k)|2 −
1

9× 4

(
1−

1

2n

n∑
k=1

|f̂ (k)|2
)

=
2

9

(
1−

1

2n

n∑
k=1

|f̂ (k)|2
)
.

Hence if this probability is at most δ, we get 1
2n
∑n
k=1 |f̂ (k)|2 ≥ 1− 5δ. Then it also follows that

1

2n
‖f − g‖2

2 =
1

2n

∑
|S|6=1

|f̂ (S)|2 ≤ 5δ

and ‖g‖2 ≥ 1−
√

5δ.

Step 2: We show that g2 has small variance. This is because of hypercontractivity. More precisely,

we use Exercise 17 in the next section, we get

E[(g2 − 1)4] ≤ (9E[(g2 − 1)2])2.

Observe that ‖g‖2
2 ≤ ‖f ‖2

2 = 2n, hence P{|g| > M} ≤ 1
182 if M ≥ 18. Then,

E[(g2 − 1)2] = E[(g2 − 1)21|g|≤M ] + E[(g2 − 1)21|g|>M ]

≤ (M + 1)2E[|g − f |2] +
√
E[(g2 − 1)4]

√
P{|g| > M}.

In the second summand we used Cauchy-Schwarz while in the first we wrote g2 − 1 = (g − 1)(g + 1)

and used that |g + 1| ≤ M + 1 and |g − 1| ≤ |g − f | (since f is Boolean).By the choice of M and
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the Bonami lemma conclusion obtained above, the second summand is bounded by 1
2E[(g2 − 1)2].

Transfer this to the other side to get

E[(g2 − 1)2] ≤ 2(M + 1)2E[|g − f |2]

≤ 10(M + 1)2δ

by invoking Step-1.

Step 3: Now we use the Fourier expansion of g,

g2 =

(
1

2n

n∑
i=1

|f̂ ({i})|2
)

+
∑
i<j

2f̂ ({i})f̂ ({j})
2n

χ{i ,j}

to see that

Var(g2) =
1

2n

∑
i<j

4f̂ ({i})2f̂ ({j})2

22n

= 2

(
1−

1

22n

n∑
i=1

|f̂ ({i})|4
)
.

Now we observe that Var(g2) ≤ E[(g2 − 1)2] which is bounded by Cδ by Step-2, and that

n∑
i=1

|f̂ ({i})|4 ≤
(

max
i
|f̂ ({i})|2

) n∑
i=1

|f̂ ({i})|2 = 2n max
i
|f̂ ({i})|2.

This leads to

max
i

∣∣ 1

2n/2
f̂ ({i})

∣∣2 ≥ 1−
1

2
Cδ.

If k is the index that attains this maximum, then it follows that ‖f ± χ{k}‖2
2 ≤ C′δ. �

5. Hypercontractivity

An exercise we gave earlier said that ‖Qt‖p→p = 1 for 1 ≤ p ≤ ∞. It turns out that something

more is true. For each 1 ≤ p ≤ q ≤ ∞, we have ‖Qt‖p→q = 2
n
q
− n
p , for sufficiently large t (how small

depends on p and q). This property is called hypercontractivity. There are other abstract definitions

of what it means for a random variable to be hypercontractive, but we limit ourselves to this.

The inequalities can be written more cleanly if we use the p-norms with respect to the uniform

probability distribution on Zn2 instead of the counting measure. Let Jf Kp = ‖f ‖p2−n/p denote this new

norm.

Theorem 14 (The hypercontractivity theorem (Aline Bonami; Nelson, Gross)). Let 1 ≤ p ≤ q ≤ ∞.

Then for e−t ≤
√
p−1√
q−1

, we have JQtKp→q ≤ 1, i.e., JQt f Kq ≤ Jf Kp for all f : Zn2 7→ C.

Why should it hold for large t but not small? First observe that Jf Kp is increasing in p, for any f ,

and the increase is strict unless f is constant. Now consider the extreme cases:

(1) t = 0. Then Q0f = f , hence Jf Kq ≤ Jf Kp holds in general only if q ≤ p.
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(2) t = ∞. Then Q∞f = 2−n/2f̂ (∅)1 is a constant function and hence its p-norm is the same

for all p. Hence JQ∞f Kq ≤ Jf Kp holds for any p, q.

The hypercontractivity theorem gives something intermediate. In fact, turning the statement around,

we see that for any finite t and any 1 ≤ p <∞, there is some q > p (to be precise, any q ≤ 1+(p−1)et

will do) such that JQt f Kq ≤ Jf Kp for all f .

We can state this in another way: Remember that 〈Qt f , g〉 = E[f (x)g(y)] where x, y are e−t-

correlated (i.e., (xi , yi) are independent, E[xi ] = E[yi ] = 0 and E[xiyi ] = e−t). Hence, for q ≤
1 + (p − 1)et and q′ its conjugate ( 1

q + 1
q′ = 1), we have

E[f (x)g(y)] ≤ JQt f KqJgKq′ ≤ Jf KpJgKq′ .

For t = 0, we have x = y and q = p and the inequality above is just Hölder’s inequality Jf gK1 ≤
Jf KpJgKq. For t =∞, we see that x and y are independent and q =∞, and hence the inequality above

says Jf ⊗gK1 ≤ Jf K1JgK1. The inequality above gives an intermediate conclusion, when the correlation

between x and y is neither 0 nor 1. To see that it is a strengthening of Hölder’s inequality, observe

that the latter would have given Jf KpJgKp′ on the right, but q′ < p′, hence the quantity Jf KpJgKq′ is

smaller.

We prove only very special cases of this inequality.

Proof of hypercontractivity for p = 2, q = 4. Write f (x) = xng(x) + h(x) where

g(x) =
1

2n/2

∑
S⊆[n−1]

f̂ (S ∪ {n})χS(x), h(x) =
1

2n/2

∑
S⊆[n−1]

f̂ (S)χS(x)

are functions of x1, . . . , xn−1. Let ρ = e−t and observe that Qt f (x) = ρxnQtg(x) +Qth(x). We use

induction on n. Hence, assume that JQtgK4 ≤ J|gK2 and JQthK4 ≤ ρJhK2. Then,

(Qt f (x))2 = ρ2(Qtg(x))2 + (Qth(x))2 + 2ρxn(Qtg(x))(Qth(x)),

(Qt f (x))4 = ρ2(Qtg(x))4 + (Qth(x))4 + 6ρ2(Qtg(x))2(Qth(x))2

+ 4xn(Qtg(x))3(Qth(x)) + 4xn(Qth(x))3(Qtg(x)),

where we used x2
n = 1. When we sum over x ∈ Zn2, since Qtg and Qth depend only on x1, . . . , xn−1,

the sum over xn factors away and hence all terms with xn factor (the last term in the first line and

the last two terms in the second) vanish. We are left with

JQt f K2
2 = ρ2JQtgK2

2 + JQthK2
2,

JQt f K4
4 = ρ4JQtgK4

4 + JQthK4
4 + 6ρ2J(Qtg)2 · (Qth)2K1

≤ ρ4JQtgK4
4 + JQthK4

4 + 6ρ2JQtgK2
4JQthK

2
4 (Cauchy-Schwarz)

≤ ρ4JQtgK4
2 + JQthK4

2 + 6ρ2JQtgK2
2JQthK

2
2 (inductive hypothesis).
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If 6ρ2 ≤ 2, then ρ ≤ 1 and the last quantity is bounded from above by

JQtgK4
2 + JQthK4

2 + 2JQtgK2
2JQthK

2
2 = JQt f K4

2.

Thus the induction closes and we get the conclusion JQt f K4 ≤ Jf K2, for ρ ≤
1√
3
.

Of course, it remains to check the base case n = 1. In this case, we have f (x) = a + bx and

Qt f (x) = a + bρx for x ∈ Z2, and direct calculation gives

Jf K4
2 = [(a + b)2 + (a − b)2]2 = 4a4 + 4b4 + 8a2b2,

JQt f K4
4 = (a + bρ)4 + (a − bρ)4 = 2a4 + 2ρ4b4 + 12ρ2a2b2.

Therefore, if 12ρ2 ≤ 8 (certainly satisfied if ρ ≤ 1√
3
), then by comparing coefficients we see that

JQt f K4 ≤ Jf K2. �

Exercise 15. Use the fact that JQtK2→4 ≤ 1 for e−t ≤ 1√
3
to show that JQtK 4

3
→2 ≤ 1 for the same

values of t.

Here is a useful corollary.

Corollary 16. If f : Zn2 7→ C is homogenous of degree k (i.e., f̂ (S) = 0 unless |S| = k), then

Jf K4 ≤ 3
k
2 Jf K2.

Proof. Immediate from the (2, 4)-hypercontractivity, since Qt f = ρk f if e−t = ρ. �

But in fact, the same conclusion holds even without the assumption of homogeneity.

Exercise 17. [Bonami’s lemma] Show that if f has degree at most k (i.e., f̂ (S) = 0 if |S| > k), then

Jf K4 ≤ 3
k
2 Jf K2. [Hint: Imitate the proof of the (2, 4)-hypercontractivity theorem. If you can actually

deduce this exercise from that theorem, I would like to know how that can be done.]

5.1. Sahasranand’s proof of Bonami’s lemma from (2, 4)-hypercontractivity. As we have seen,

for a homogenous polynomial f , the inequality Jf K4 ≤ ρkJf K2 for ρ = 1/
√

3 follows from the (2, 4)-

hypercontractivity. For general f of degree at most k , one is tempted to decompose it as f =

f0 + . . . + fk , where fi = 1
2n/2

∑
|S|=i f̂ (S)χS are the homogenous components of f . Then with

e−t = ρ, we have JQt fiK4 ≤ JfiK2 for each i and Qt f = Qt f0 + . . .+Qt fk . But it is not clear how to

relate Jf K4 with JQt f K4 and the individual JQt fiK4 (all sorts of “cross terms” enter). Sahasranand’s7

trick is to notice that such difficulties disappear on the 2-norm side, by orthogonality.

7Sahasranand Kodinthirapully Ramanadhan, student of ECE department, IISC.
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To use this observation, let gi = ρ−i fi and g = g0 + . . .+ gk . Then Qtgi = fi and Qtg = f . By the

(2, 4)-hypercontractivity we have Jf K4 = JQtgK4 ≤ JgK2. On the other hand, gi are orthogonal, hence

Jf K2
4 ≤ JgK2

2 = Jg0K2
2 + . . .+ JgkK2

2

= Jf0K2
2 + ρ−2Jf1K2

2 + . . .+ ρ−2kJfkK2
2

≤ ρ−2k
(
Jf0K2

2 + Jf1K2
2 + . . .+ JfkK2

2

)
= ρ−2kJf K2

2

by the orthogonality of the fis. As ρ = 1/
√

3, we have proved that Jf K4 ≤ 3k/2Jf K2. �
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CHAPTER 4

Dirichlet’s theorem on primes in arithmetic progressions

This is a famous theorem of Dirichlet, often referred to as the starting point of analytic number

theory8.

1. The theorem

Theorem 1 (Dirichlet). Let a, d be co-prime natural numbers. Then the arithmetic progression

a, a + d, a + 2d, . . . contains infinitely many prime numbers.

It is clear that the condition of a, d being co-prime is necessary, otherwise, there is at most one

prime number in the sequence. For special cases, it is possible to prove this theorem along elementary

lines like that of Euclid’s proof that there are infinitely many prime numbers.

Example 2. Let a = 3 and d = 4, so the sequence is the set of number that are −1 (mod 4). If

p1, . . . , pk are all the prime numbers in this sequence, then 4p1 . . . pk − 1 is not divisible by any of

them, and must have a prime factor other than 2, p1, . . . , pk . If all its prime factors were of the form

4j + 1, their product would also be 1 (mod 4), but the number constructed is −1 (mod 4).

In general, apparently there are no such proofs9 and the proof of Dirichlet’s theorem is not analogous

to Euclid’s proof. It is much closer to Euler’s proof of divergence of
∑
p

1
p , and indeed, the proof

proceeds by showing that
∑
p≡a(mod d)

1
p =∞, or what is the same,

∑
p≡a(mod d)

1
ps →∞ as s ↓ 1.

2. Euler’s proof that
∑ 1

p =∞

We ignore convergence issues (which will be justified later in greater generality) and recall this

proof. The starting point is Euler’s product formula, valid for s > 1 (one can also take complex s with

Re(s) > 1, but we don’t need it here)

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+ . . .

)
=
∏
p

1

1− 1
ps
.

8Many books have the proof. Serre’s A course in arithmetic, Apostol’s Introduction to analytic number theory and

Stein and Shakarchi’s Fourier analysis: an introduction, all have superb expositions. Because of this, our notes will be

quite brief.
9But there are “elementary proofs” such as one by Selberg.

41



The last equality is clear, and the previous one is an expression of the fundamental theorem of

arithmetic that every natural number other than 1 can be written as a product of prime powers in a

unique way.

Now take logarithm of both sides to write log ζ(s) = −
∑
p log(1 − 1

ps ). Since log(1 − x) =

−x − 1
2x

2 − 1
3x

3 − . . . for |x | < 1, we can write

log ζ(s) =
∑
p

1

ps
+

1

2

∑
p

1

p2s
+

1

3

∑
p

1

p3s
+ . . .

For k ≥ 2 and s > 1, we see that∑
p

1

pks
≤
∑
n≥2

1

nk
≤
∫ ∞

2

1

xk
dx =

1

(k − 1)2k
.

Thus
1

2

∑
p

1

p2s
+

1

3

∑
p

1

p3s
+ . . . ≤

∑
k≥2

1

k(k − 1)2k
.

Therefore, log ζ(s) =
∑
p

1
ps + O(1) as s ↓ 1. But log ζ(s) → ∞ as s ↓ 1, since

∑
n

1
n diverges.

Consequently,

lim
s↓1

∑
p

1

ps
=∞.

As the left side is bounded from above by
∑
p

1
p , it follows that

∑
p

1
p =∞.

3. Dirichlet L-functions

Let Z∗d = {0 ≤ j ≤ d − 1 : (j, d) = 1}. This is a group under multiplication modulo d , and the

cardinality of this group is denoted ϕ(d). If χ ∈ Ẑ∗d , then we extend it to a function on N by setting

χ(n) = 0 if (n, d) 6= 1 and χ(n) = χ(n̄) if (n, d) = 1. Here n̄ is the residue of n modulo d . Of course,

|χ(n)| ≤ 1.

Exercise 3. Explicitly find all characters of Z∗d for d = 6, 8.

To such a character, we associate the Dirichlet L-function

Lχ(s) =
∑
n≥1

χ(n)

ns

which is clearly absolutely convergent for s > 1.

The trivial character: Let χ0 denote the trivial character of Z∗d . Note that when extended as a

function on N, it is not identically 1, but χ0(n) = 1(n,d)=1. Hence, if p1, . . . , pk are the distinct primes
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that divide d , then by inclusion-exclusion,

Lχ0 (s) =
∑
n≥1

1

ns
−

k∑
i=1

∑
m≥1

1

(mpi)s
+
∑
i<j≤k

∑
m≥1

1

(mpipj)s
− . . .

= ζ(s)

k∏
j=1

(1−
1

psj
).

Hence, we also see that Lχ0 (s) ↑ ∞ as s ↓ 1. We can make this more precise. Observe that

ζ(s)−
1

s − 1
=
∑
n≥1

∫ n+1

n

(
1

ns
−

1

x s

)
dx ≤

∑
n≥1

s

ns+1

as n−s − x−s = (x − n) s
ts+1 by the intermediate value theorem, for some t ∈ (n, x). The last series

converegs uniformly on (δ,∞) for any δ > 0. This shows that

(1) ζ(s) = 1
s−1 + ζ̃(s) where ζ̃ is continuous on (0,∞).

(2) ζ(s) ∼ 1
s−1 as s ↓ 1.

(3) Lχ0 (s) ∼
∏k
j=1(1−p−1

j )

s−1 as s ↓ 1.

Non-trivial characters: Now suppose χ 6= χ0. Then Lχ converges for s > 0 and is continuous there.

This follows from the following more general lemma, as χ is a d-periodic sequence and
∑d
j=1 χ(j) =

〈χ,χ0〉L2(Z∗d ) = 0 (which shows that the partial sums of χ take at most d distinct values).

Lemma 4. Let a : N 7→ C. Assume that its partial sums An = a1 + . . . + an are uniformly bounded.

Then
∑
n ann

−s is convergent for s > 0 and uniformly convergent for s > δ for any δ > 0.

Proof. Let k < ` and consider∑̀
n=k

an
ns

=
∑̀
n=k

An − An−1

ns

=

`−1∑
n=k

An

(
1

ns
−

1

(n + 1)s

)
+
A`
`s
−
Ak−1

ks
.

Hence if |An| ≤ M, then

∣∣ ∑̀
n=k

an
ns

∣∣ ≤ M `−1∑
n=k

(
1

ns
−

1

(n + 1)s

)
+
M

`s
+
M

ks

≤
3M

ks
.

Thus if k is large enough, then all partial sums of the above form are small. By Cauchy criterion, the

proof is complete. �
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Exercise 5. If (an)n is bounded, then show that s 7→
∑
n≥1 ann

−s is smooth on (1,∞). If partial

sums of an are bounded, show that s 7→
∑
n≥1 ann

−s is smooth on (0,∞).

4. Product formulas

Now let us state a more general lemma that we prove rigorously.

Lemma 6. Let a : N 7→ C be a completely multiplicative function, i.e., a(mn) = a(m)a(n) for all

m, n ∈ N. Assume that a is uniformly bounded. Then, for s > 1 we have∑
n

a(n)

ns
=
∏
p

1

1− a(p)
ps

.

Proof. Order the primes as p1 < p2 < . . .. Consider the finite product

k∏
j=1

1

1− a(pj )
psj

=

k∏
j=1

(
1 +

a(pj)

psj
+
a(pj)

2

p2s
j

+ . . .

)

= 1 +
∑

m1,...,mk≥0

a(p1)m1 . . . a(pk)mk

psm1
1 . . . psmkk

is justified. Implicitly there is a rearrangement of terms here, which is okay because of absolute

convergence. By the fundamental theorem of arithmetic, pm1
1 . . . pmkk cover all numbers up to pk .

Hence as k → ∞, the last sum converges to
∑
n
an
ns . Therefore the limit of the left side must also

exist. �

Corollary 7. For any d ≥ 1 and any χ ∈ Ẑ∗d , and for s > 1,

Lχ(s) =
∏
p

(
1−

χ(p)

ps

)−1

.

5. Logarithm

For z ∈ C with |z − 1| < 1, define

log z := −
∑
k≥1

1

k
(z − 1)k .

Exercise 8. Show that e log z = z whenever |z − 1| < 1. Show that for |w | < 1
2 , both log(1− w) and

log 1
1−w are both well-defined and negatives of each other.

If χ ∈ Ẑ∗d , then for any prime p and any s > 1, we have |χ(p)p−s | ≤ 1
2 . Hence by the above

exercise,

exp

{∑
p

log

(
1−

χ(p)

ps

)−1
}

=
∏
p

exp

{
log

(
1−

χ(p)

ps

)−1
}

=
∏
p

(
1−

χ(p)

ps

)−1

= Lχ(s).
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But the exponent on the left is∑
p

log

(
1−

χ(p)

ps

)−1

= −
∑
p

log

(
1−

χ(p)

ps

)

=
∑
p

∑
m≥1

χ(p)m

mpms

=
∑
p

χ(p)

ps
+
∑
p

∑
m≥2

χ(p)m

mpms
.

The second summand can be bounded in absolute value by∑
p

∑
m≥2

1

pms
=
∑
p

1

ps(ps − 1)
≤
∑
p

2

p2
.

Thus, ∑
p

log

(
1−

χ(p)

ps

)−1

=
∑
p

χ(p)

ps
+O(1)

as s ↓ 1. Here the O(1) is uniform over s > 1. Hence

Lχ(s) = exp

{∑
p

χ(p)

ps
+O(1)

}
as s ↓ 1.

Therefore, we see that the following are equivalent10

(1)
∑
p
χ(p)
ps stays bounded as s ↓ 1.

(2) Lχ(s) does not converge to 0 or ∞ as s ↓ 1.

For the trivial character, the second condition does not hold, in fact we have seen that Lχ0 (s) ∼
C/(s − 1) as s ↓ 1, hence ∑

p

χ0(p)

ps
=∞.

As χ0(p) = 1 for all but the finitely many primes that divide d , this implies (with all the rigour added

in) Euler’s theorem that
∑
p

1
p diverges.

For non-trivial characters, we know that Lχ(s) → Lχ(1), a finite number as s ↓ 1. Hence there is

no divergence to infinity. The following Lemma is crucial.

Lemma 9. If χ 6= χ0, then Lχ(1) 6= 0.

Assuming the lemma, we see that
∑
p
χ(p)
ps stays bounded as s ↓ 1, for any χ 6= χ0.

10At this point, we have simplified the presentation of Stein and Shakarchi a bit (which makes one suspicious if we

are making a mistake!). In their book, they further define the logarithm of the Lχ(s), show that that definition agrees

with the sum of logarithms of 1− χ(p)p−s , and then take logarithm on both sides of the product formula. We seem to

be able to avoid some of these steps.
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Remark 10. That the number theoretic question of divergence of
∑
p̄=a

1
p is reduced to the vanishing

or non-vanishing of certain continuous (even analytic) functions at certain points is marvellous! Now

such connections have become routine, but Dirichlet was the first. Later, the prime number theorem,

that says that the number of primes less than x is asymptotic to log x/x , was derived by showing that

ζ(s) does not vanish anywhere on the line Im s = 1.

6. Proof of Dirichlet’s theorem

Now we can put together all the ingredients to get a proof of Dirichlet’s theorem. Fix d, a such

that (a, d) = 1 and consider the Fourier expansion of 1{a} in Z∗d (and then extend to all integers):

1n=a (mod d) =
1

ϕ(d)

∑
χ∈Ẑ∗d

χ(a)χ(n).

Hence, ∑
p:n=a (mod d)

1

ps
=

1

ϕ(d)

∑
χ∈Ẑ∗d

χ(a)
∑

p:n=a (mod d)

χ(p)

ps
.

On the right, only the summand with χ = χ0 has a series that blows up as s ↓ 1. For all other χ, the

series stays bounded as s ↓ 1. Therefore, ∑
p:n=a (mod d)

1

ps
→∞

as s ↓ 1. This shows that there must be infinitely many primes that are congruent to a modulo d . In

fact, we get more information: Letting p̄ denote the image of p in Z∗d ,∑
p:p̄=a

1

ps
∼

1

ϕ(d)

∑
p

χ0(p)

ps
∼

1

ϕ(d)
log

1

s − 1
.

The last asymptotic follows from Euler’s proof, the behaviour of ζ(s) near s = 1, and the fact that

χ0(p) = 1 for all but finitely many primes.

Exercise 11. Show that
∑

p̄=a, p≤x

log p
p ∼

1
ϕ(d)

∑
p≤x

log p
p , as x →∞.

What one would like is to show that asymptotically there are an equal number of primes in each of

the congruence classes modulo d (of course only those congruence classes a (mod d) for a co-prime

to d . That would mean showing that ∑
p≤x, p̄=a

1 ∼
1

ϕ(d)

∑
p≤x

1,

as x →∞. The above exercise shows a statement in the same spirit, with the weight log n/n in place

of the counting function 1. This exercise shows that in terms of the weight log n/n, the
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7. Towards non-vanishing of Dirichlet-L functions at 1

The only remaining step is to prove that Lχ(1) 6= 0 for any non-trivial χ ∈ Ẑ∗d (i.e., Lemma 9).

The following lemma is a key step towards this.

Fix d ≥ 2 and for any prime p that does not divide d , let f (p) denote its order in Z∗d . This is the
smallest integer k such that pk ≡ 1 ( mod d). Let g(p) = ϕ(d)/f (p).

Lemma 12. Fix d ≥ 2. Then for s > 1,

∏
χ∈Ẑ∗d

Lχ(s) =
∏

p:p=(p,d)=1

(
1−

1

psf (p)

)g(p)

.

In particular, ∏
χ∈Ẑ∗d

Lχ(s) ≥ 1.

Proof. If w,w2, . . . , w f (p) = 1 are the f (p)-th roots of unity, and if χ(p) = w , then χ2(p) =

w2,. . .χf (p)(p) = wp. From this, we see that the number of χ that map p to a particular f (p)th root

of unity is the same for all these roots (and of course χ(p) has to be one of these, since pf (p) ≡ 1

(mod d)). Hence p is mapped to each of them by g(p) distinct character. This shows that

∏
χ

(1− χ(p)z) =

f (p)∏
j=1

(1− w jz)

g(p)

= (1− z f (p))g(p).

Set z = p−s and take product over all primes co-prime to d to get the lemma. �

We can use the stronger conclusion with a bit of complex analysis or the weaker conclusion with

a longer analysis (but avoiding any holomorphic functions) to prove Lemma 12. The former route is

taken in Serre’s book and the latter in the books of Stein and Shakarchi and of Apostol. First we

present the real-variables approach.

Proof of Lemma 9. Recall that

Lχ0 (s) =
∏
p:p|d

(1− p−s)
(

1

s − 1
+ ζ̃(s)

)

where ζ̃ is continuous on (0,∞). For χ 6= χ0, we know that Lχ is continuous on (0,∞). By Exercise 5

it is differentiable at 1, and hence, if Lχ(1) = 0, then Lχ(s) = (s − 1)L′χ(1)(1 + o(1)) as s → 1.

Combining with the above fact for Lχ0 , we see that as s → 1,

∏
χ∈Ẑ∗d

Lχ(s) =

O(1) if Lχ(1) = 0 for some χ,

o(1) if Lχ(1) = 0 for at least two distinct χ.
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By Lemma 12, the product on the left is bounded below by 1, hence the second possibility is ruled

out. If χ is a character, so is χ̄ and Lχ̄ = Lχ, hence if Lχ(1) = 0, then Lχ̄(1) = 0. Therefore, unless

χ = χ̄, we cannot have Lχ(1) = 0.

This leaves the one case when Lχ(1) = 0 for one single real character (i.e., χ = χ̄). We prove this

in the next section as it is slightly longer. �

8. Non-vanishing of the L-functions of real characters

In this case, χ : N 7→ {−1, 0, 1}. We consider the sum

∑
(k,`):k`≤N

χ(k)√
k`

=

N∑
r=1

1√
r

∑
k:k|r

χ(k).

If r = pa1
1 . . . pamm , then the inner sum is∑

0≤bi≤ai

χ(pb1
1 . . . pbmm ) =

∑
0≤bi≤ai

χ(p1)b1 . . . χ(pm)am

=

m∏
`=1

(1 + χ(p`) + . . .+ χ(p`)
a`).

Consider 1 +χ(p`) + . . .+χ(p`)
a` . Each term is 0 or ±1, and always starts with a 1. Therefore, the

sum is non-negative, and in fact strictly positive unless χ(p`) = −1 and a` is odd. In particular, if all

a` are even (same as saying r is a perfect square), then the sum is at least 1, and so is the product.

Thus, writing r = t2 (other terms are non-negative and dropped)

∑
(k,`):k`≤N

χ(k)√
k`
≥
∑
t≤
√
N

1

t
= log

√
N +O(1).(1)

On the other hand, we can write the sum on the left as

∑
`≤N

∑
k≤
√
N

χ(k)√
k`

+
∑
`≤
√
N

∑
√
N<k≤N

`

χ(k)√
k`
.(2)

Referring back to the proof of Lemma 4, we recall that if partial sums of (an)n are bounded, then

|
∑n
j=m aj j

−s | ≤ Cm−s . Therefore, we can bound the second summand in (2) by

∑
`≤
√
N

1√
`

∣∣∣ ∑
√
N<k≤N

`

χ(k)√
k

∣∣∣ ≤ ∑
`≤
√
N

1
√
`N

1
4

= O(1)

by bounding the sum of 1/
√
` by the integral of 1/

√
x over the appropriate range.
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The first summand in (2) can be rewritten as (for some c , use Exercise 13)∑
k≤
√
N

χ(k)√
k

∑
`≤N

k

1√
`

=
∑
k≤
√
N

χ(k)√
k

(
2

√
N

k
+ c +O

(√
k

N

))

= 2
√
N

√
N∑

k=1

χ(k)

k
+ c

N∑
k=1

χ(k)√
k

+O

(√
k

N

N∑
k=1

1√
k

)

= 2
√
N(Lχ(1)−O(

1√
N

)) +O(1) +O(1)

where we have repeatedly used the above quoted fact from the proof of Lemma 4, and of course that

Lχ(1) =
∑∞
k=1

χ(k)
k . Plugging all this back into (2), we see that∑

(k,`):k`≤N

χ(k)√
k`

= 2
√
NLχ(1) +O(1).

If Lχ(1) = 1, this contradicts (1). Hence Lχ(1) 6= 0. �

Exercise 13. If 0 < s < 1, show that
∑n
k=1

1
ks = n1−s

1−s −
1+s

2(1−s) +O(n−s).

The proof of non-vanishing of L-functions for real characters was achieved by summing the function

χ(k)/
√
k` on lattice points (k, l) ∈ N2 that lie under the hyperbola xy = N, in two different ways.

This idea can be used for other functions to obtain useful number theoretical information. For example,

a well-known arithmetic function is d(n), the number of distinct divisors of n (e.g., d(6) = 4). This

function does not have a regular behaviour as n →∞, since d(p) = 2 for all primes, but d(2n) = n+1

can be made arbitrarily large. However, on average, it does have a regular behaviour as the following

exercise shows. One can summarize it as saying that a typical large number n has about log n divisors,

on average.

Exercise 14. Show that 1
N

∑N
k=1 d(k) ∼ logN (meaning that the ratio of the two sides goes to 1 as

N → ∞). [Hint: Sum an appropriate function on the lattice N2 under the hyperbola xy = N in two

different ways.]
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CHAPTER 5

Fourier analysis on the circle group

1. Introduction

T = {e it : 0 ≤ t < 2π} is an abelian group under multiplication. It is sometimes also written as

[0, 2π]/0 ∼ 2π or as R/Z. Functions on T will be written as f (e it) or as f (t) with t ∈ [0, 2π) - there

should be no confusion. It also has a topology (the standard one, inherited from the complex plane)

and the group operations are compatible with the topology in that (x, y) 7→ xy from T × T 7→ T

and x 7→ x−1 from T 7→ T are continuous. Any group with a topology w.r.t which these maps are

continuous, is called a topological group.

By definition, a character is a continuous homomorphism from a topological group into T . When

our group is T , we have the characters em(t) := e2πimt , m ∈ Z. We leave it as an exercise to show

that there are no other characters. If we use the inner product 〈f , g〉 = 1
2π

∫ 2π
0 f (e it)g(e it)dt, then

the characters form an orthonormal set as

〈en, em〉 =
1

2π

∫ 2π

0

e it(n−m)dt = δn−m.

The first main question is whether {en : n ∈ Z} an orthonormal basis for L2(T ). The answer is yes,

but unlike with finite abelian groups, dimension considerations are of no help here in showing this.

What we need to show is that the span of the characters is dense in L2(T ).

2. Fejér’s theorem

Fix f ∈ L2(T ). To show that it can be approximated by finite linear combinations of characters

(these are called trigonometric polynomials), it is natural to consider its projection in L2(T ) to the

span of ek , |k | ≤ n. If we denote this projection operator by Sn, then

Snf (t) =

n∑
k=−n

〈f , ek〉ek(t)

=
1

2π

∫
T

f (s)

n∑
k=−n

ek(t)ek(s) dt

=
1

2π

∫
T

f (s)Dn(t − s) ds = (f ? Dn)(t)
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where the convolution (f1 ? f2)(t) :=
∫
T f1(s)f2(t − s) ds2π (whenever f1(s)f2(t − s) is integrable) and

the Dirichlet kernel

Dn(u) =

n∑
k=−n

ek(u) = e−inu
e i(2n+1)u − 1

e iu − 1
(sum the geometric series)

=
e i(n+ 1

2
)u − e−i(n+ 1

2
)u

e i
1
2
u − e−i

1
2
u

=
sin[(n + 1

2 )u]

sin[ 1
2u]

.

{en}n∈Z is an orthonormal basis if and only if Snf → f in L2(T ) for all f ∈ L2(T ). How to show

this? As usual in analysis, one good way is to show it for a convenient dense subset of L2(T ). For

example, C(T ) or C∞(T ). For such functions, perhaps one can try to show that Snf → f uniformly

on T , which is stronger than L2 convergence. It is not true that Snf → f uniformly for f ∈ C(T ).

Although it is true for f ∈ C1(T ), I do not know how to show that without first showing that {en} is
an orthonormal basis for L2(T ).

Fejér was the one who solved the problem, by showing that σnf = 1
n+1 (S0f + . . .+Snf ) converges

uniformly to f , for any f ∈ C(T ). Since σnf is also a trigonometric polynomial, this shows that

span{en : n ∈ Z} is dense in C(T ) in sup-norm, and consequently also dense in L2(T ).

Observe that σnf = f ? Kn, where

Kn(u) =
1

n + 1
(D0(u) + . . .+Dn(u)) =

1

(n + 1) sin u
2

n∑
k=0

sin

(
(k +

1

2
)u

)
.

The series can be written as

Im

{
n∑
k=0

e i(k+ 1
2

)u

}
= Im

{
e i

u
2
e i(n+1)u − 1

e iu − 1

}
= Im

{
e i(n+1)u − 1

e i
u
2 − e−i

u
2

}
.

As the denominator is 2i sin(u/2), this becomes

1

2 sin(u/2)
Re{1− e i(n+1)u} =

1− cos((n + 1)u)

sin(u/2)
=

sin2( 1
2 (n + 1)u)

sin2( 1
2u)

.

Plugging this back into the expression for Kn, we arrive at

Kn(u) =
sin2( 1

2 (n + 1)u)

(n + 1) sin2( 1
2u)

This is known as Fejér’s kernel. Another useful expression for the Fejér kernel is

Kn(u) =
1

n + 1

n∑
k=0

Dk(u) = =

n∑
j=−n

n + 1− |j |
n + 1

ej(u)(1)

by writing Dk = e−k + . . .+ ek and interchanging the sums.

The contrast between the Dirichlet and Fejér kernels can be seen in Figure 2. The key observations
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about the Fejér kernel are as follows:

(1) Kn(u) ≥ 0 for all u, (2)
∫
T

Kn(u)du2π = 1, (3)
∫

T\[−δ,δ]

Kn(u)du2π ≤
1
n+1

1
sin2(δ/2)

.

In probability language, Kn(·) is a probability density on T which puts most of its mass near 0 (for

large n). In analysis, a sequence of functions satisfying these three conditions is called an approximate

identity. They approximate the “Dirac delta-function”, which does not exist as a function but is the

putative identity for the convolution product: f ? δ0 = f for all f . Hence we expect that f ? Kn → f

and that is the gist of the proof of Fejér’s theorem.

Theorem 1 (Fejér). If f ∈ C(S1), then σnf → f uniformly on T . As a consequence, span{en : n ∈ Z}
is dense in L2(T ).

Proof. Fix ε > 0 and find δ > 0 so that |f (t) − f (s)| ≤ ε whenever |e it − e is | ≤ 2δ. As seen above

σnf (t) = 1
2π

∫
T f (s)Kn(t − s)ds. Hence, with Jδ = {s : |e it − e is | ≤ δ}, we have

|σnf (t)− f (t)| ≤
∫
Jδ

|f (t)− f (s)|Kn(t − s)
ds

2π
+

∫
T\Jδ
|f (t)− f (s)|Kn(t − s)

ds

2π

≤ ε
∫
Jδ

Kn(t − s)
ds

2π
+ 2‖f ‖sup

1

n + 1

1

sin2 (δ/2)

≤ ε + 2‖f ‖sup
1

n + 1

1

sin2 (δ/2)
.

Choose n > 4‖f ‖sup

ε sin2(δ/2)
, then ‖σnf − f ‖sup < 2ε. This proves the first statement.

Given g ∈ L2(T ), find f ∈ C(T ) such that ‖g − f ‖L2(T ) < ε and n such that ‖σnf − f ‖L2(T ) ≤
‖σnf − f ‖sup < ε. Then ‖g − σnf ‖L2(T ) ≤ ε. This proves the second statement. �

In the following exercise, derive Weierstrass’ approximation and theorem from Fejér’s theorem.

Exercise 2. Let f ∈ CR[0, 1].

(1) Construct a function g : [−π, π]→ R such that (a) g is even, (b) g = f on [0, 1] and (c) g

vanishes outside [−2, 2].

(2) Invoke Fejér’s theorem to get a trigonometric polynomial T such that ‖T − g‖sup < ε.

(3) Use the series ez =
∑∞
k=0

1
k!z

k to replace the exponentials that appear in T by polynomials.

Be clear about the uniform convergence issues.
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(4) Conclude that there exists a polynomial P with real coefficients such that ‖f − P‖sup < 2ε..

The following exercise abstracts the main features of an approximate identity.

Exercise 3. Let gn ∈ L1(T ) be a sequence of functions such that

(1) supn
∫
T

|gn(u)| du <∞, (2)
∫
T

gn(u)du2π = 1, (3)
∫

T\[−δ,δ]

gn(u) du → 0 as n →∞.

Show that f ? gn → f uniformly as n →∞ for any f ∈ C(T ).

2.1. The problem with the Dirichlet kernel. What is the shortcoming of the Dirichlet kernel that

we cannot show that f ?Dn → f uniformly for f ∈ C(T )? One difference with the Fejér kernel is that

Dn takes negative values too. But that is in itself not the main issue as shown by Exercise 3 which

does not require positivity of gn. In fact, the problem is that
∫
T |Dn| is not bounded.

Write λ = n+ 1
2 and observe that sin(λu) vanishes in [−π, π] at uk = πk/λ for |k | ≤ λ. The function

sin(λu) has constant sign on [uk , uk+1] and further, in the middle-half of this interval | sin(λu)| ≥
sin(π/4) > 1

2 . Therefore,∫ uk+1

uk

Dn(u) du ≥
1

sin(uk/2)

∫ uk+1

uk

| sin(λu)| du ≥
π

4λ sin(πk/λ)
.

As sin x ≤ x , the last quantity is at least 1
4k . Summing over 1 ≤ k ≤ n − 1 (recall that λ = n + 1

2),

we see that ∫
T

|Dn(u)| du ≥
1

4

n−1∑
k=1

1

k
≥

1

4

n−1∑
k=1

∫ k+1

k

1

x
dx =

1

4
log n.

Thus the L1-norms of Dn are unbounded.

Exercise 4. Show that there is a function f ∈ C(T ) such that (f ? Dn)(0) is unbounded. Conclude

that f ? Dn need not converge to f even in point-wise sense.

3. Fourier coefficients, Plancherel and inversion

For f ∈ L2(T ), define its Fourier transform11 as f̂ : Z 7→ C, defined by

f̂ (n) = 〈f , en〉 =

∫
T

f (t)e−int
dt

2π
.

However, L2(T ) is not the natural domain of functions on which to define Fourier transform. If

f ∈ L1(T ) then the integral is well-defined (since en is bounded) and hence f̂ : Z 7→ C is well-defined.

As L1(T ) ⊇ L2(T ), this extends the domain of the Fourier transform. Going further, for any measure

µ on T , we can define its Fourier transform µ̂ : Z 7→ C by µ̂(n) =
∫
T endµ. For us measures are

positive measures, but as any complex measure µ can be written uniquely as µ1 − µ2 + iµ3 − iµ4

where µi are positive measures, this also extends the definition of the Fourier transform to complex

11On the circle group, it is customary to use the term “Fourier series”, but we just use the common term “Fourier

transform” for any group.
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Borel measures on T . At that level, it becomes a further extension of the Fourier transform, since

each f ∈ L1(T ) may be identified with the complex measure dµf (t) = f (t) dt2π on T , and µ̂f = f̂ .

There are even more general objects (distributions) to which one can extend the Fourier transform,

but we do not go into that here.

3.1. The L2 theory. As {en} form an orthonormal basis for L2(T ), we can recover f from f̂ by the

“inversion formula”

f (t) =
∑
n∈Z

f̂ (n)en(t)

where the convergence of the series on the right is only in the sense of L2(T ). It need not be pointwise

in general. From general Hilbert space theory, we also have the Parseval-Plancherel relations:

〈f , g〉L2(T ) =
∑
n∈Z

f̂ (n)ĝ(n) = 〈f̂ , ĝ〉L2(Z)

where L2(Z) is w.r.t the counting measure on Z. In particular,

‖f ‖2
L2(T ) = ‖f̂ ‖2

L2(Z).

One may worry that this does not look like the inversion formula in the finite abelian case: the

forward formula is an integral and the inverse formula is a sum. The two sides of the Plancherel

relationship also look different superficially. The root of all this is that one feature of the finite abelian

case breaks down in general. It is no longer true that Ĝ is isomorphic to G. Instead T̂ = Z and Ẑ = T ,

as we shall see. To make this precise, first we investigate Fourier analysis on Z.

4. Fourier transform on Z

If χ : Z 7→ T is a character, then χ(1) = e it for some t ∈ [0, 2π). As Z is cyclic, that fixes χ, since

χ(n) = en(t). This are indeed characters, since en+m(t) = en(t)em(t). Denote this character as evt
or eve i t (as it is the evaluation of the characters {en} of T at the point e it). Thus we may identify

the Ẑ with T .

A point to note is that the characters of Z are not in L2(Z), hence there is no sense in which they

are orthonormal. Nevertheless, the purely formal statement of orthogonality

〈evt , evs〉 =
∑
n∈Z

e in(t−s) ?
=

1 if t = s,

0 if t 6= s.

is of value in developing intuition, but will have to be approached indirectly.

Exercise 5. Consider Hn = L2({−n, . . . , n}) with respect to normalised counting measure. Show that

〈evt , evs〉Hn → δt,s as n →∞.
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This also leads to subtleties in definition of Fourier transform. We cannot simply define

f̂ (e it) = 〈f , eve it 〉L2(Z) =
∑
n∈Z

f (n)e−int

for f ∈ L2(Z). However, the final sum does converge absolutely if we assume f ∈ L1(Z). Hence we

define the Fourier transform for L1 functions. Observe that finite complex measures on Z are the

same as
∑
n f (n)δn with f ∈ L1(Z) (also f ≥ 0 if we want positive measures), hence the Fourier

transform is also well-defined for them. But what about L2(Z)?

Let f ∈ L1(Z) ∩ L2(Z). Then,∫
T

|f̂ (e it)|2
dt

2π
=

∫
T

∑
m,n∈Z

f (n)f (m)e i(n−m)t dt

2π

?
=
∑
m,n∈Z

f (n)f (m)

∫
T

e i(n−m)t dt

2π

=
∑
n∈Z
|f (n)|2.

The interchange of integral and sum marked with ‘?’ is justified by Fubini’s theorem, since the function

(n,m, t) 7→ f (n)f (m)e i(n−m)t is absolutely integrable on Z × Z × T , as
∫
T

∑
m,n |f (n)||f (m)| dt2π =

‖f ‖2
L1(Z)

. Thus, f̂ ∈ L2(T ) and ‖f̂ ‖L2(T ) = ‖f ‖L2(Z). As L1(Z) ∩ L2(Z) is dense in L2(Z) (even

functions on Z that vanish outside a finite set form a dense set in L2(Z)). Therefore, the Fourier

transform extends to an isometry from L2(Z) into L2(T ) (surjectivity is not claimed yet, but is true

and will follow shortly).

For those who have not seen this kind of argument,

Exercise 6. Let X, Y be metric spaces. Assume that Y is complete. If D is a dense subset of X and

f : D 7→ Y is uniformly continuous, then show that there is a unique g : X 7→ Y that is continuous

and extends f (i.e., g(x) = f (x) for x ∈ D).
Use this to deduce the above statement about the extension of Fourier transform to L2(Z).

Since Lp(Z) ⊇ L2(Z), this also shows that Fourier transform is well-defined on Lp(Z). In fact, the

image of Lp(Z) under the Fourier transform is in Lp
′
(T ), where p′ is the conjugate exponent. To

see this, observe that for f ∈ L1(Z), we have ‖f̂ ‖L∞(T ) ≤ ‖f ‖L1(Z). Since we also have ‖f̂ ‖L2(T ) =

‖f ‖L2(Z), by the Riesz-Thorin interpolation theorem, the Fourier transform extends in a unique way

to map Lp(Z) into Lp
′
(T ) where 1

p + 1
p′ = 1. An alternate way is outlined below.

Exercise 7. Fix p ∈ (1, 2). If f ∈ Lp(Z), show that there exist g ∈ L1(Z) and h ∈ L2(Z) such that

f = g+h. Set f̂ = ĝ+ ĥ. Show that this is a valid definition, and maps Lp(Z) into Lp
′
(T ) and agrees

with the original definition for f ∈ L1(Z).
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5. T and Z are dual to each other

We have seen that T̂ = Z and Ẑ = T , first as sets. The group structures are also consistent: If we

define multiplication of characters as point-wise multiplication, then T̂ is the same as the group (Z,+),

since en(t)em(t) = en+m(t). Similarly Ẑ is the same as the circle group, since eve it (n)eve is (n) =

eve i(t+s) (n). For the moment we ignore the question of topologies12. Then,

T̂ = Z and Ẑ = T.

To keep distinctions clear, momentarily denote the Fourier transform on G by FG .

Theorem 8 (Fourier inversion formula). FZFT f (e it) = f (e−it) for f ∈ L2(T ) and FTFZg(n) =

g(−n) for g ∈ L2(Z). In particular, FZ is an isometry from L2(Z) onto L2(T ) and FT is an isometry

from L2(T ) onto L2(Z).

We have already seen this, starting from T and expanding in the orthonormal basis of characters.

Any unclear details are left as exercise.

Thus FT : L2(T ) 7→ L2(Z) and FZ : L2(Z) 7→ L2(T ) are almost inverses of each other. What is

precisely true is that F−1
T = FZFTFZ and F−1

Z = FTFZFT . The Plancherel theorem is the statement

that FZ and FT are unitary.

6. Fourier transforms of measures on T

The L2-version of Fourier inversion formula does not hold for measures. LetM(T ) denote the set

of finite Borel measures on T . First we summarize the key results about Fourier transform onM(T ).

Theorem 9. Let µ, ν ∈M(T ). If µ̂ = ν̂, then µ = ν.

This shows that the Fourier transform is injective onM(T ). Since positive L1 functions are densities

of measures, this also shows the injectivity on L1(T ). Further, the proof will give inversion formulas

to recover µ from µ̂. As a corollary, we shall also deduce the following.

Corollary 10. Suppose µ ∈M(T ) and µ̂ ∈ L1(Z). Then µ is absolutely continuous and has bounded

density ˇ̂µ(−t) =
∑
n µ̂(n)e int w.r.t. the normalized Lebesgue measure on T .

This is the first of a general feature of Fourier transform that relates decay of the Fourier transform

to the smoothness of µ. For example, if we assume that faster decay of µ̂, then we can deduce that

the density of µ must be correspondingly smooth. The converse, interpreted qualitatively, is also true:

smoothness of µ implies decay of µ̂. We later cover some of these aspects in exercises, but for now

here is one useful lemma.
12The question is: why should we take discrete topology on Z and the standard topology on T? More precisely, if

we start with a group G (say Z), what topology does one impose on Ĝ (in this case T )? The answer is that it is the

smallest topology on Ĝ that makes all the evaluations evx : Ĝ 7→ C, for x ∈ G, continuous.
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Lemma 11. If f ∈ L1(T ), then f̂ (n) → 0 as |n| → ∞. In particular, if µ ∈ M(T ) is absolutely

continuous, then µ̂(n)→ 0 as |n| → ∞.

One question remains unanswered above. We know that Fourier transform maps L2(T ) onto L2(Z).

What is the range of the Fourier transforms on L1(T ) andM(T )? There is no explicit answer to the

first question, but there is one for the second! To state it, we make a definition:

Definition 12. A function ϕ : Z 7→ C is said to be positive definite if
n∑

j,k=1

cj c̄kϕ(mj −mk) ≥ 0

for any n ≥ 1, any m1, . . . , mn ∈ Z and any c1, . . . , cn ∈ C. Equivalently, finite principal sub-matrices

of (ϕ(j − k))j,k∈Z are positive semi-definite.

Theorem 13 (Herglotz). A function ϕ : Z 7→ C is equal to µ̂ for some µ ∈ M(T ) if and only if ϕ is

positive definite.

As already mentioned, the range of L1(T ) under the Fourier transform has no such explicit charac-

terization, although there are necessary and sufficient conditions one can give (for example, Lemma 11

gives a necessary condition).

Before we proceed to the proofs, we recall and generalize the important notion of convolution.

Definition 14. If µ, ν ∈M(T ), define µ?ν ∈M(T ) by (µ?ν)(A) =
∫
T µ(A−s)dν(s) for A ∈ B(T ).

If dµ(t) = f (t) dt2π , then d(µ?ν)(t) = (f ?ν)t) dt2π where (f ?ν)(t) :=
∫
T f (t−s)dν(s). If in addition,

dν(t) = g(t) dt2π , then (f ? ν)(t) :=
∫
T f (t − s)g(s) ds2π , agreeing with the definition of convolutions

of functions that we gave earlier.

If µ, ν are probability distributions, then µ ? ν is the probability distribution of e i(x+Y ) where e iX

and e iY are independent random variables having distributions µ and ν respectively.

Exercise 15. Show that µ̂ ? ν(n) = µ̂(n)ν̂(n) for n ∈ Z.

Proof. Let Kn be the Fejér kernel and let fn(t) = (µ ? Kn)(t) =
∫
T Kn(t − s)dµ(s). From the

expression (1) for the Fejér kernel,

fn(t) =

n∑
k=−n

(
1−

|k |
n + 1

)
µ̂(k)ek(t)

and with I = [α, β] ⊆ [0, 2π]∫
I

fn(t)
dt

2π
=

n∑
k=−n

(
1−

|k |
n + 1

)
µ̂(k)

∫ β

α

ek(t)
dt

2π

= µ̂(0)(β − α) +
∑

k∈[−n,n]\{0}

(
1−
|k |
n

)
µ̂(k)

e ikβ − e ikα

ik
.
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We now claim that
∫
I fn(t) dt2π → µ(α, β) + 1

2µ{α, β}. Since the right hand side of the above equality

is expressed entirely in terms of µ̂, this shows that from µ̂, we can recover µ(α, β) + 1
2µ{α, β} for all

0 ≤ α < β < 2π. In particular, for any arc I whose end-points are not atoms of µ, we recover µ(I).

From this it is clear that we can recover µ. In particular, if µ̂ = ν̂, then µ = ν.

To prove the claim, we write∫
I

fn(t)
dt

2π
=

∫
I

∫
T

Kn(t − s)
ds

2π

dt

2π

=

∫
T

[∫
I

Kn(t − s)
dt

2π

]
ds

2π
.

Because of the approximate identity property of Kn, we see that

∫
I

Kn(t − s)
dt

2π
→


1 if s ∈ (α, β),

0 if s 6∈ [α, β],

1
2 if s ∈ {α, β}.

In the last case, we use the symmetry Kn(t) = Kn(−t). Further, the integral here is bounded by 1.

Hence by the dominated convergence theorem,∫
I

fn(t)
dt

2π
→
∫
T

(1(α,β)(s) +
1

2
1{α,β}(s))dµ(s) = µ(α, β) +

1

2
µ{α, β}.

This proves the claim. �

One can extract more from the proof. One is the generalized inversion formula

µ(α, β) +
1

2
µ{α, β} = lim

n→∞

µ̂(0)(β − α) +
∑

k∈Z\{0}
(1−

|k |
n

)+ µ̂(k)
e ikβ − e ikα

ik

 .(2)

Proof of Corollary 10. Consider (2) and observe that e ikβ − e ikα = ik(β − α)e ikγk for some γk ∈
(αk , βk), because of which the summand µ̂(k) e

ikβ−e ikα
2πik is dominated by |µ̂(k)|(β − α)/2π. By DCT,

µ(α, β) +
1

2
µ{α, β} = µ̂(0)(β − α) +

∑
k∈Z\{0}

µ̂(k)
e ikβ − e ikα

2πik
.

The right side can be written as (again the interchange of sum and integral is justified by the summa-

bility of µ̂) ∫ β

α

∑
k∈Z

µ̂(k)e ikt
dt

2π

which shows that µ has density given by the integrand. �

Next we prove the “converse” statement, that smoothness of µ implies decay of the Fourier trans-

form.
58



Proof of Lemma 11. Let f ∈ L1(T ). First assume that f ∈ C1(T ). Then f ′ ∈ C(T ) and integrate

by parts to get

f̂ ′(n) =

∫
T

f ′(t)e−int
dt

2π
= f (t)e−int

∣∣2π
0

+ in

∫ 2π

0

f (t)e−int dt

= inf̂ (n).

As f ′ ∈ C(T ), we know that ‖f̂ ′‖L∞(Z) ≤ ‖f ′‖L1(T ). Therefore, f̂ (n) = O(1/|n|), which is more than

saying that f̂ (n)→ 0 as |n| → ∞.

Now take any f ∈ L1(T ) and choose g ∈ C1(T ) such that ‖f − g‖L1(T ) < ε. This is possible, for

example by taking g = f ? Kn for a large n. Then

|f̂ (n)| ≤ |̂(f − g)(n)|+ |ĝ(n)|

≤ ‖f − g‖L1(T ) +
‖g′‖L∞(T )

|n| .

Letting n → ±∞, we see that lim supn→∞ |f̂ (n)| ≤ ε, for any ε > 0. �

As for Herglotz’s theorem, we only prove the easy part.

Proof of the easy half of Herglotz’s theorem. For any p ≥ 1 and any c1, . . . , cp ∈ C, and anym1, . . . , mp ∈
Z

p∑
j,k=1

c̄jck µ̂(mj −mk) =

∫
T

p∑
j,k=1

c̄jcke
i(mj−mk)θ dµ(θ)

=

∫
T

∣∣ p∑
k=1

cke
−imkθ

∣∣2dµ(θ)

≥ 0.

Thus, the positive semi-definiteness of (ϕ(j − k))j,k∈Z is necessary for ϕ to be the Fourier transform

of a measure. �

The following exercises further amplify the statement that the smoothness of a measure or a

function is equivalent to the decay of its Fourier transform.

Exercise 16. Suppose f ∈ Cp(T ). Show that f̂ (n) = o(n−p) as n → ±∞.

Exercise 17. Suppose npµ̂(n) is (absolutely) summable, where p ≥ 0 is an integer. Show that µ has

a density f ∈ Cp(T ) and that the derivatives up to order p are bounded. Express the derivatives of f

in terms of µ̂.
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7. Locally compact abelian groups

We just outline the general theory13.

I A topological group is a group G with a Hausdorff topology w.r.t. which the group operations

(g, h) 7→ gh and g 7→ g−1 are continuous. Here the first map is from G × G to G, and the topology

on G × G is the product topogy.

I If the group is abelian, and the topology is locally compact (every point has an open neighbour-

hood whose closure is compact), then we say that G is an LCA group.

I Zd , T d , Rd , finite abelian groups are all LCA groups, as are their direct products such as

Z× T × R2. However Q is not an LCA, as it is not locally compact.

I A character is a continuous homomorphism from G into T . The set of all characters is denoted

Ĝ. It is not empty, as there is at least the trivial character.

We already know that T̂ = Z, Ẑ = T , R̂ = R̂. Hence Zm × T p × Rq has dual Tm × Zp × Rq.
I Pointwise multiplication, χ1χ2(x) = χ1(x)χ2(x) makes Ĝ an abelian group.

I For compact K ⊆ G, r > 0, χ ∈ Ĝ, let VK,r (χ) := {χ′ ∈ Ĝ : ‖χ′ − χ‖L∞(K)) < r}. We endow

Ĝ with the smallest topology with respect to which VK,r (χ) are all open.

It may be easier to understand the special case when G is σ-compact, i.e., there exist compact sets

Kn that increase to G. Then, the topology above is the same as the one given by the metric on Ĝ

defined by d(χ,χ′) =
∑
n ‖χ− χ′‖Kn2−n. In fact this can be used to define a metric on Cb(G), the

space of bounded continuous functions from G to C. In this metric, fn → f if and only if fn converges

uniformly to f on every compact set.

Note that all our examples, Zd ,Rd , T d and finite products of these, are σ-compact.

I With the above multiplication and topology, Ĝ becomes an LCA group.

I For each x ∈ G, the evaluation evx(χ) = χ(x) defines a character on Ĝ. These are all the

characters, and hence ˆ̂G = G. This is the Pontryagin duality.

I G is compact if and only if Ĝ is discrete (and vice versa). For example T̂ = Z and Ẑ = T .

I To go further and define Fourier transform, we need a measure to integrate against. To respect

the group structure, what we need is a measure µ on the Borel sigma-algebra of G that is regular

(µ(K) <∞ for compact K; µ(A) = sup{µ(K) : A ⊇ K compact }; µ(A) = inf{µ(G) : A ⊆ G open})
and invariant (µ(A + x) = µ(A) where A + x = {a + x : a ∈ A}). On any LCA group G, such a

measure exists and is unique up to multiplication by positive constants. It is called the Haar measure

and we denote it as mG (an arbitrary choice of the scalar multiple is made). Everywhere below Lp(G)

will mean Lp(G,mG).

I For f ∈ L1(G,µ), its Fourier transform is f̂ : Ĝ 7→ C defined by f̂ (χ) =
∫
G f (x)χ(x)dµG(x).

For µ ∈M(G), the space of finite Borel measures on G, define µ̂(χ) =
∫
G χdµ.

13The first chapter of Rudin’s Fourier analysis on groups is an excellent self-contained introduction with all the proofs.
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I For f ∈ L1(G)∩L2(G) (if G is compact then L1∩L2 = L2), one can show that f̂ ∈ L2(Ĝ) and

‖f̂ ‖L2(Ĝ) = κG‖f ‖L2(G). Here κG is a constant, which is not necessarily 1 because we arbitrarily fixed

the Haar measures mG , mĜ . One can of course change the Haar measure on Ĝ to κGmĜ , in which

case the constant changes to 1.

Hence, the Fourier transform can be extended to an isometry of L2(G) into L2(Ĝ) (Plancherel

relation). This isomorphism is also surjective, as seen next.

I For µ ∈M(G) and ν ∈M(Ĝ), we have the Parseval relation:
∫
Ĝ µ̂(χ)dν(χ) =

∫
G ν̂(x)dµ(x).

To see this integrate (x, χ) 7→ χ(x) w.r.t. µ⊗ ν in two ways.

I Injectivity of the Fourier transform onM(G) and on L1(G) are true. Further, when µ̂.
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CHAPTER 6

Fourier analysis on R

1. Self-duality

The characters of (R,+) are precisely {et : t ∈ R}, where et(x) = e itx . Since et(x)es(x) =

et+s(x), this shows that the dual R̂ is also (R,+). This makes the theory a bit more symmetrical

compared to that on the circle group, but when one keeps in mind the more general situation of locally

compact abelian groups, it is better to have in mind two separate copies of R, one for the original,

one for the dual.

In many ways Fourier analysis on R will look similar to that of T , with various sums replaced by

integrals, but in other ways the similarities with Z is even closer. Both R and Z are non-compact

groups, and their characters are not L2 functions, in particular there is no orthogonality. But as in the

case of Z, the approximate orthonormality

1

2L

∫ L

−L
et(x)es(x)dx → δt,s as L→∞,

provides valuable intuition and also route to various proofs.

2. Fourier transform

For f ∈ L1(R), define its Fourier transform f̂ : R 7→ C by f̂ (t) =
∫
R f (x)et(x)dx . For µ ∈ M(R)

(finite Borel measures on R), similarly define µ̂(t) =
∫
R et(x)dµ(x). The two definitions are consistent

in that if µ has density f then µ̂ = f̂ .

Example 1. If µ = δ0, then µ̂(t) = 1. If µ is uniform on [−1, 1], then µ̂(t) = 1
2

∫ 1
−1 e

−itxdx = sin t
t .

If dµ(x) = 1√
2π
e−

1
2
x2
dx is the Gaussian measure, then µ̂(t) = e−

1
2
t2
.

Like in Z, here too L2 is not contained in L1 (nor is there a containment in the reverse direction).

The way to define Fourier transform for L2 functions is similar to the way we did in Z. We elaborate

on this after we see basic properties of the Fourier transform on L1.

3. Properties of the Fourier transform

Let us list various properties of the Fourier transform14.

14We have given many references already. In addition, volume 2 of Feller’s An introduction to probability theory and

its applications is highly recommended for Fourier transforms of measures.
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I For µ ∈ M(R), µ̂ is a bounded, uniformly continuous function. Indeed, |µ̂(t) − µ̂(s)| ≤∫
R |e

i(t−s)x − 1|dµ(x). As t − s → 0, apply DCT (the integrand is bounded by 2) to get uniform

continuity. It is also obvious that |µ̂(t)| ≤ µ(R).

I For f ∈ L1(R), f̂ is a bounded continuous function that vanishes at infinity. The boundedness

and continuity can be argued as above. To see vanishing at infinity, first assume that f ∈ C1
c .

Integrating by parts, we see that f̂ ′(t) = i t f̂ (t). Since f̂ ′ is bounded, it must be the case that

f̂ (t) = O(1/|t|). For general f ∈ L1, find g ∈ C1
c such that ‖f − g‖1 < ε. Then |f̂ (t)− ĝ(t)| < ε for

all t. Let t → ±∞ to see that lim sup |f̂ (t)| ≤ ε as t → ±∞.

As a particular case, if µ ∈M(R) has a density, then µ̂(t)→ 0 as t → ±∞.

I Inversion formula: If µ ∈M(R), then

µ(a, b) +
1

2
µ{a, b} = lim

L→∞

1

2π

∫ L

−L
µ̂(t)

e ibt − e iat

i t

(
1−
|t|
L

)
+

dt.

The proof is similar to the one we gave on the circle group, and can be found in many books. We

omit it.

I In particular, if µ̂ = ν̂, then µ = ν. In addition, if µ̂ ∈ L1, then we can apply DCT above to get

µ(a, b) +
1

2
µ{a, b} =

1

2π

∫ L

−L
µ̂(t)

e ibt − e iat

i t
dt

from which it follows that µ must have density given by 1
2π

ˆ̂µ(−x).

I For f ∈ L1, if f̂ ∈ L1 then f (x) = 1
2π

∫
R f̂ (t)e itxdx for a.e. x . In particular, f can be

modified to be a continuous function vanishing at infinity. This inversion formula can also be written

as ˆ̂f (x) = 2πf (−x).

I One component in the omitted proofs and of great importance in general, is convolution. For

µ, ν ∈ M(R), the convolution µ ? ν(A) :=
∫
A µ(A − x)dν(x) for A ∈ BR, defines another element

of M(R). For f , g ∈ L1, (f ? g)(x) =
∫
f (x − t)g(t)dt is defined for a.e. t and f ? g ∈ L1.

The definitions are consistent in the sense that of dµ(x) = f (x)dx and dν(x) = g(x)dx then

d(µ ? ν)(x) = (f ? g)(x)dx . In fact, µ ? ν has a density if just one of µ or ν does (why?).

One important point: (̂µ ? ν)(t) = µ̂(t)ν̂(t) and (̂f ? g)(t) = f̂ (t)ĝ(t). This is at the heart of

why Fourier transforms are useful in probability theory, when studying sums of independent random

variables. If µ, ν are probability measures, then µ ? ν is the distribution of a sum of independent

random variables drawn from these two distributions.

I Suppose f ∈ L1 ∩ C1 and f ′ ∈ L1. Then we can integrate by parts to see that f̂ ′(t) = i t f̂ (t).

Since f̂ ′ vanishes at infinity, it follows that f̂ (t) = o(1/|t|). Continuing, show that if f ∈ L1∩Ck , and
that f (j) ∈ L1 for all j ≤ k , then f̂ (k)(t) = (i t)k f̂ (t) and in particular, f̂ (t) = o(|t|−k). All this can

be summarized by the slogan “Smoothness of a function implies the decay of the Fourier transform”.

I Next we state the slogan “Decay of the function implies the smoothness of the Fourier trans-

form”. Indeed, start from f̂ (t) =
∫
f (x)e−itxdx and formally differentiate under the integral to get
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f̂ (k)(t) = (−i)k
∫
xk f (x)dx . Can this be justified. It suffices to consider the case k = 1 and proceed

inductively. Start with
f̂ (t + h)− f̂ (t)

h
=

∫
f (x)e−itx

e−ihx − 1

h
dx.

When h ↓ 0, the integrand on the right converges to −ixf (x)e−itx . Further, as e−ihx −1 = −ihe−ihy

for some y between 0 and x , and hence the integrand is bounded by |xf (x)|. Therefore, if we assume

that xf (x) ∈ L1, then the formal calculationis justified and we get (f̂ )′(t) = −i ̂(xf (x))(t). For the

kth derivative formula, it suffices to assume that xk f (x) ∈ L1.

I Because of the inversion formulas, we get for free two additional slogans: “Smoothness of the

Fourier transform implies the decay of the function” and “Decay of the Fourier transform implies the

smoothness of the function”. We leave as exercise to write down the precise statements. It may also

be observed that the statements are not exact converses: Assuming f ∈ Ck gives f̂ (t) = o(t−k) but

to get f ∈ Ck we need to assume tk f̂ (t) ∈ L1. This was also seen above: If µ has density, then µ̂

decays at infinity. To prove that µ has density we had to assume that µ̂ ∈ L1.

I A function ϕ : R 7→ C is said to be positive definite if ϕ(−t) = ϕ(t) and
n∑

j,k=1

cjckϕ(tj−tk) ≥ 0

for any n ≥ 1 and c1, . . . , cn ∈ C and t1, . . . , tn ∈ R. The relevance of this definition is as follows:

Bochner’s theorem: Let ϕ : R 7→ C. Then ϕ = µ̂ for some µ ∈ M(R) if and only if ϕ is

continuous and positive definite.

I The proof of the easy side of Bochner’s theorem is similar to that in the circle group. If

µ ∈M(R), then we have seen that µ̂ is continuous. Further,
n∑

j,k=1

cjck µ̂(tj − tk) =

∫
R

∣∣ n∑
j=1

cje
−i jx ∣∣2dµ(x) ≥ 0.

I There is no analogous theorem characterizing the range of the Fourier transform on L1. We

only have necessary and sufficient conditions (in terms of smoothness, as we have seen).

Exercise 2. Show that the Fourier transform of 1
π(1+x2)

is e−|t|.

4. Fourier transform on L2(R)

First approach.

(1) Show the Plancherel relation ‖f̂ ‖2
2 = 2π‖f ‖2

2 for f ∈ L1 ∩ L2. This is indicated in the next

section.

(2) Using the density of L1∩L2 in L2, extend the Fourier transform to L2. The Plancherel relation

continues to hold.

From the fact that ‖f̂ ‖∞ ≤ ‖f ‖1 for f ∈ L1 and ‖f̂ ‖2 =
√

2π‖f ‖2, using Riesz-Thorin interpolation

we can extend the Fourier transform to Lp for 1 < p < 2 and see that it maps into Lq, where q is the

conjugate of p and satisfies ‖f̂ ‖q ≤ (2π)θ/2‖f ‖p if 1
p = 1−θ

1 + θ
2 .
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Second approach. We describe another way to define Fourier transform for L2 functions15. We start

with the Gaussian ϕ(x) = 1√
2π
e−x

2/2 whose Fourier transform is ϕ̂(t) =
√

2πϕ(t). We shall see in

the next section that

f̂ ′(t) = i t f̂ (t) and (f̂ )′(t) = −i ̂(xf (x))(t)

and therefore, defining A = − d
dx + x , we have Âf = −iAf̂ . In particular, if we define hk = Akϕ,

then we get ĥk = (−i)k
√

2πhk . Thus, formally we may say that hk are eigenfunctions of the Fourier

transform with eigenvalue (−i)k
√

2π. By direct computation, we see that

h1(x) = 2xϕ(x), h2(x) = (4x2 − 2)ϕ(x), h3(x) = (8x3 − 12x)ϕ(x), . . .

In general, it is easy to see that hk = Hkϕ, where Hk is a polynomial of degree equal to k . It has real

coefficients, leading coefficient equal to 2n, and in fact all its coefficients can be computed explicitly.

They are known as Hermite polynomials, and hk are called Hermite functions. From this structure,

we see that span{hk : k ≥ 0} = {p(x)ϕ(x) : p is a polynomial}. The latter is dense in L2(R) (why?).

We now claim that hk are orthogonal in L2(R). To see this, let k > ` ≥ 0 and integrate by parts to

get ∫
hk(x)h`(x)dx =

∫
ϕ(x)A∗kh` dx

where A∗ = d
dx + x .

Exercise 3. Show that A∗hk = ckhk−1 (where h−1 = 0) for an explicit constant ck

Observe that A raises the index of Hermite functions by 1 and A∗ decreases it by 1. From the

exercise, we see that A∗kh` = 0 if ` < k . Further, if k = `, then Akhk = ckck−1 . . . c1 (constant

function) and hence ‖hk‖2
2 = ckck−1 . . . c1. In short, {hk : k ≥ 0} is an orthogonal basis for L2(R).

Therefore, for f ∈ L2(R), we have the L2 expansion f =
∑
k≥0

1
‖hk‖2

2
〈f , hk〉hk . This makes it

natural to define the Fourier transform as

f̂ :=
√

2π
∑
k≥0

1

‖hk‖2
2

〈f , hk〉(−i)khk .

Immediately we get the Plancherel relation

‖f̂ ‖2
2 = 2π‖f ‖2

2.

Of course, things are not satisfactory till one proves that for f ∈ L1∩L2 this definition of Fourier trans-

form agrees with the original one. To see this, observe that if f ∈ span{h0, h1, . . .} = {p(x)ϕ(x) : p is a polynomial}
the two definitions

(1) f̂ (t) =
∫
f (x)e−itxdx and

(2) f̂ =
√

2π
∑
k≥0

1
‖hk‖2

2
〈f , hk〉(−i)khk .

15Taken from chapter 1 of Thangavelu’s book An introduction to the uncertainty principle.
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obviously agree. The first definition is a uniformly continuous map from L1 to L∞ and the second is

uniformly continuous from L2 to L2.

Exercise 4. Show that

(1) Hn(x) = e
1
2
x2 dn

dxn e
− 1

2
x2
.

(2) Find the constants ck above and show that ‖hn‖2
2 = n!.

(3) Show that
∑∞
k=0 hk(x) t

k

k! = 1√
2π
ext−

1
2
t2
.

5. Poisson summation formula

Let f ∈ L1(R) and define g : T 7→ C (in this section we shall write T as [0, 2π)) by g(x) =∑
n∈Z f (x − 2πn). Observe that∑

n∈Z

∫
T

|f (x − 2πn)|dx =
∑
n∈Z

∫ 2π(n+1)

2πn

|f (x)|dx =

∫
R
|f (x)|dx = ‖f ‖L1(R).

Therefore, the series defining g is absolutely convergent for a.e. x and g ∈ L1(T ). Hence the above

integration can be done without absolute values and shows that
∫
T g =

∫
R f . Actually more is true.∫

T

g(x)e−ikxdx =

∫
T

∑
n∈Z

f (x − 2πn)e−ikx dx

=
∑
n∈Z

∫ 2π

0

f (x − 2πn)e−ikxdx

where the application of Fubini’s theorem is justified by the earlier proof that g ∈ L1. Now change vari-

ables y = x−2πn in the inner integral and observe that e2πikn = 1 to see that it is
∫ 2π(n+1)

2πn f (x)e−kxdx .

Summing up, we arrive at

2πĝ(k) = f̂ (k) for k ∈ Z.

As customary, we have used the hat to denote Fourier transform, but on the right side it is Fourier

transform on R and on the left side it is Fourier transform on the circle group (where we define it with

a factor of 1/2π in the integral).

To proceed further, assume that f ∈ C1(R) and that f (x) and f ′(x) are both bounded by C/x2.

Then the series
∑
n f
′(x−2πn) and

∑
n f (x−2πn) both converge uniformly on [0, 2π). By a standard

lemma one learns in basic analysis, this shows that g ∈ C1(T ) and g′(x) =
∑
n f
′(x−2πn). For C1(T )

functions, the Fourier series converges uniformly to the function. Hence, we have

g(x) =
∑
n∈Z

ĝ(k)e ikx .

Now apply the definition of g and the relationship between ĝ and f̂ to get

2π
∑
n∈Z

f (x − 2πn) =
∑
n∈Z

f̂ (k)e ikx for all x ∈ [0, 2π).
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In particular, setting x = 0 we get

2π
∑
n∈Z

f (x − 2πn) =
∑
k∈Z

f̂ (k).

This is known as the Poisson summation formula
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CHAPTER 7

Bernoulli convolution problem

Let 0 < λ < 1 and define the Bernoulli convolution

νλ = (
1

2
δ−λ +

1

2
δλ) ? (

1

2
δ−λ2 +

1

2
δλ2 ) ? (

1

2
δ−λ3 +

1

2
δλ3 ) . . .

An equivalent description of νλ is that it is the distribution of the random variable Xλ =
∑∞
n=1 εnλ

n,

where εn are independent random variables taking the values ±1 with equal probability. Yet another

way to characterise it is via the Fourier transform:

ν̂λ(t) = E[e itXλ ] =

∞∏
n=1

cos(λnt).

The product on the right converges uniformly over t in compact sets, as 1−cos(λnt) = 2 sin2(λnt/2) ≤
λ2nt2/2 is summable, uniformly over t in compact sets. This also shows that ν̂λ(t) 6= 0 unless

t = π(m + 1
2 )λ−n for some m ∈ Z and n ≥ 1 (in general, if

∑
n |an| < ∞ and an 6= 1 for all n, then∏

n(1− an) 6= 0).

Example 1. If λ = 1
2 , then νλ is the normalized Lebesgue measure on [−1, 1]. If λ = 1

3 , then νλ
is the Cantor measure, supported on the standard 1

3 -Cantor set (except that we do the middle-third

deletion starting from [−1, 1] instead of [0, 1]).

Like the Lebesgue measure and Cantor measure, the measures νλ has an important self-similarity

property.

Self-similarity: If Xλ has distribution νλ and ε is an independent symmetric Bernoulli random variable,

then ε+ λXλ has the same distribution as Xλ. This is clear from the series expansion of Xλ.

We now claim that νλ is the only probability measure for which this distributional equality holds.

That is, if X ∼ ν and symmetric Bernoulli ε are independent, and ε+λX also has distribution ν, then

ν = νλ. To see this first take expectation over ε to get

E
[
e it(ε+λX)

]
=

1

2
E[e it(1+λX)] +

1

2
E[e it(−1+λX)]

= (cos t)E[e itλX ]

which means that that ν̂(t) = (cos t)ν̂(tλ). Continuing, we see that ν̂(t) = ν̂(tλN)
∏N−1
n=1 cos(tλn).

As N → ∞, the product converges to ν̂λ(t), while ν̂(tλN) → ν̂(0) = 1, showing that ν̂ = ν̂λ.

Therefore ν = νλ.
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The main question of Bernoulli convolution is whether νλ is absolutely continuous to Lebesgue

measure on [−1, 1] or whether it is singular. A priori, it could be neither, having a non-zero absolutely

continuous part and a non-zero singular part, but that does not happen.

Lemma 2 (Jessen’s law of pure types). For any λ ∈ (0, 1), the measure νλ is either absolutely

continuous or singular.

Proof. To see this, we observe that both the singular and absolutely continuous parts of νλ must

satisfy the same self-similarity as νλ (why?). Therefore, if one of them is non-zero, then it must be a

multiple of νλ. This shows that exactly one of them can be non-zero. �

We have already seen that ν 1
2
is the normalized Lebesgue measure on [−1, 1]. We also said that

ν 1
3
is the Cantor measure and hence singular. In fact, the same holds for any λ < 1

2 .

Claim 3. νλ is singular for λ < 1
2 .

Proof. To see this, observe that the series beyond the nth term is∣∣ ∞∑
k=n

εkλ
k
∣∣ ≤∑

k≥n
λk =

λn

1− λ.

Further, there are only 2n−1 different possible values of ε1λ+ . . .+ εn−1λ
n−1. Hence, the support of

νλ is covered by 2n−1 intervals each of length at most 2 λn

1−λ . The total Lebesgue measure of these

intervals is (2λ)n/(1− λ) which can be made arbitrarily small by choosing n large. Hence νλ must be

singular. �

Exercise 4. Show that if 1
2 ≤ λ < 1, then the support of νλ is the interval [−(1− λ)−1, (1− λ)−1].

Recall that the support of a measure is the smallest closed set whose complement has zero measure.

Hence, the above exercise does not imply by any means that νλ is absolutely continuous for λ > 1
2 . For

example, if rational numbers are enumerated as r1, r2, . . . and ν =
∑
j 2−jδrj , then ν has support equal

to R. Of course, νλ is not this bad - it has no atoms (why?), but it could be a singular continuous

measure. However, the above exercise, the case λ = 1
2 and a wish to see a natural progression in λ

may lead one to guess that νλ ought to be absolutely continuous for λ ≥ 1
2 .

We shall use the Riemann-Lebesgue lemma to see that there are λ ∈ ( 1
2 , 1) for which νλ is singular!

To state this amazing discovery of Paul Erdös, we recall some notions.

We say that θ ∈ C is called an algebraic integer if it is the root of a monic polynomial with integer

coefficients. In that case, there is a unique such polynomial of minimal degree, called the minimal

polynomial of θ. The minimal polynomial is irreducible, and its other roots are called the (Galois)

conjugates of θ. A Pisot-Vijayaraghavan number or PV number is a real algebraic integer greater than

1, all of whose conjugates are of absolute value less than 1.
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Example 5. The minimal polynomial of (1 +
√

5)/2 is x2 − x − 1 and the other root of the minimal

polynomial is (1−
√

5)/2 = −0.618 . . . and hence (1 +
√

5)/2 is a PV number.

Theorem 6 (Erdös (1939)). Suppose λ = 1
θ where 1 < θ < 2 is a PV number. Then νλ is singular.

Proof. We claim that ν̂λ(2πθk) 6→ 0. Recall that λ = 1/θ to write

ν̂λ(2πθk) =

k−1∏
j=1

cos(2πθj)

∞∏
j=k+1

cos(2πλj−k)

= ν̂λ(2π)

k−1∏
j=1

cos(2πθj).

Observe that 1 − cos(2πx) = 2 sin2(πx) ≤ 2π2x2. By the evenness and periodicity of cosine, we

can write this as 1 − cos(2πx) < 20JxK2, where JxK is the distance from x to the closest integer.

If the conjugates of θ are τ1, . . . , τm, then θj + τ j1 + . . . + τ jm ∈ Z, as it can be written as sums

of products of coefficients of the minimal polynomial16. If u = maxi |τi | < 1, then this shows that

JθjK ≤ muj . Therefore, 1 − cos(2πθj) is summable, and hence
∏
j≥1 cos(2πθj) converges. As θ is

irrational, cos(2πθj) 6= 0 for all j , showing that ν̂λ(θk) converges to a non-zero constant as k → ∞
(recall that ν̂λ(2π) 6= 0). Thus, ν̂λ does not vanish at infinity and hence by the Riemann-Lebesgue

lemma, νλ is not absolutely continuous. By the law of pure types, it must be singular. �

One may now swing to the other direction and wonder if νλ is singular for all λ > 1
2 . It is not, by

the following result of Wintner.

Theorem 7 (Wintner (1935)). If λ = 2−
1
k , then νλ is absolutely continuous and has a Ck−2 density.

Proof. Fix a k and write integers modulo k to see that

ν̂λ(t) =

k−1∏
r=0

∞∏
m=1

cos(2−mt2−
r
k ) =

k−1∏
r=0

ν̂ 1
2

(t2−
r
k ).

But ν 1
2
is the normalized Lebesgue measure on [−1, 1] and t 7→ ν̂(t2−r/k) is the Fourier transform of

the normalized Lebesgue measure on [−2−r/k , 2−r/k ]. From the above formula, νλ is a convolution

of k of these measures, and therefore has density that is Ck−2. �

If the last line of the proof is not clear, take as an exercise to prove that if µ has a Ck density and

ν has a C` density, then µ ? ν has Ck+` density. In Wintner’s paper he observes that ν̂(t) = sin t/t

to write

|ν̂λ(t)| =

k−1∏
r=0

∣∣sin(t2−
r
k )

t2−
r
k

∣∣ = O(|t|−k)

16If P (x) = xm+1 + a1x
m + . . .+ am is the minimal polynomial, then pj := θj + τ j1 + . . .+ τ jm is equal to −a1 for j = 1,

equal to a2
1− 2a2 for j = 2, and so on. More precisely, inductively one can show that pj is an integer, based on Newton’s

identities:
∑k

i=1 ak−ipi = −kak where a0 = 1.
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and asserts that this implies that νλ has a Ck−1 density. I don’t see how (consider k = 1). Perhaps

he means piecewise Ck−1, but to be on the safe side I have proved a slightly weaker statement.

Now we have a countable set of λ ∈ ( 1
2 , 1) (reciprocals of PV numbers) for which νλ is singular

and a countable set of λ (reciprocals of roots of 2) for which it is absolutely continuous (in fact with

a certain amount of smoothness). What about all the other λ? The problem is still open, but results

like the following are known.

Fact 8 (Solomyak). νλ is absolutely continuous for a.e. λ ∈ ( 1
2 , 1) and the density is in L2.

This was conjectured by Garsia, after a weaker result of Erdös that stated that νλ is absolutely

continuous for a.e. λ ∈ (1− δ, 1) for some δ > 0.

Exercise 9. Use Solomyak’s result and deduce that the density of νλ is Ck for a.e. λ ∈ (1 − δk , 1)

for some δk > 0. The result was stated this way in Erdös’ paper.

In the proof of Erdös’ theorem, we showed that JθjK decays exponentially, but what was needed

subsequently was only that it is square summable. One may wonder if that gives room to find more

examples of λ for which νλ is singular. Actually no!

Result: (Pisot). If θ > 1 and
∑
j Jtθ

jK2 <∞ for some t, then θ is a PV number.

In fact, using this Salem showed that ν̂λ vanishes at infinity except when λ is the reciprocal of a

PV number (observe that this is also true for λ < 1
2). This is a somewhat harder exercise (optional).

Exercise 10. Show that ν̂λ(t)→ 0 as t → ±∞ if 1
λ is not a PV number.
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CHAPTER 8

Equidistribution

1. Equidistribution on an interval

In this chapter, we shall write the circle as T = [0, 1) with the identification x ↔ e2πix . A sequence

x = (xn)n≥1 taking values in T is said to be equidistributed17 if 1
N

∑n
k=1 1xk∈I → b−a for any interval

I = [a, b] ⊆ [0, 1].

Lemma 1. Let x = (xn)n≥1 take values in T . The following are equivalent.

(1) x is equistributed.

(2) 1
N

∑N
k=1 f (xk)→

∫ 1
0 f (x) for all f ∈ C(T ).

(3) 1
N

∑N
k=1 em(xk)→ 0 for all m ∈ Z \ {0} (as always, em(x) = e2πimx).

If one is familiar with the notion of convergence in distribution (weak convergence of probability

measures), then all these are easily seen to be equivalent to the weak convergence of 1
N

∑N
k=1 δxk to

the Lebesgue measure on [0, 1]. But as a direct argument is easy to give, we do that.

Proof. Two observations that will allow us to carry out the required approximations.

(a) If ‖f − g‖sup < ε, then
∣∣ 1
N

∑N
k=1 f (xk)− 1

N

∑N
k=1 g(xk)

∣∣ < ε and
∣∣ ∫ 1

0 f (x)dx −
∫ 1

0 g(x)dx
∣∣ < ε.

(b) If g ≤ f ≤ h, then 1
N

∑N
k=1 g(xk) ≤ 1

N

∑N
k=1 f (xk) ≤ 1

N

∑N
k=1 h(xk) and

∫ 1
0 g(x)dx ≤

∫ 1
0 f (x)dx ≤∫ 1

0 h(x)dx .

Note that the definition of equidistribution is equivalent to the statement that 1
N

∑N
k=1 f (xk) →∫ 1

0 f (x) for all step functions f .

Assume (1). Given any f ∈ C(T ), there exists a step function g such that ‖f − g‖ < ε. By the

first observation, letting N → ∞ we see that the limit point of 1
N

∑N
k=1 f (xk) are within 2ε of

∫ 1
0 f .

Hence (2) follows.

Assume (3). Then 1
N

∑N
k=1 f (xk) →

∫ 1
0 f (x) for all trigonometric polynomials f . By Fejér’s

theorem, they are dense in C(T ), hence again by the first observation we conclude (2).

Assume (2). Then (3) is obvious as em ∈ C(T ). To conclude (1), we use the second observation

above. If f = 1[a,b], we may find g, h ∈ C(T ) such that g ≤ f ≤ h and
∫

(h − g) ≤ ε. By the second

observation, letting N →∞, we see that the limit points of 1
N

∑N
k=1 g(xk) are within 2ε of

∫ 1
0 f . Thus

(1) follows. �

17Equidistribution, however interpreted, is a large subject. What we cover in the first few sections (and much more)

can be found in the book Uniform distribution of sequences by Kuipers and Niederreiter (John Wiley & Sons (1974)).
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From the point of view of proving that a sequence is equidistributed, the third condition (called

Weyl’s criterion) is the most convenient, as it involves the least checking, and that too with particularly

nice functions. This idea is at the heart of many things, including the use of characteristic functions

to prove weak convergence (CLT for example) in probability theory.

As we shall be using this criterion to show that various sequences are equidistributed, let us start

with an example that is not. Let us write x for x (mod 1).

Example 2. If θ is a PV number, we saw that JθnK → 0 as n → ∞. Therefore, θn is far from

equidistributed. In contrast tn is equidistributed for a.e. t > 1.

Exercise 3. A sequence x = (xn)n in T d = [0, 1)d is said to be equidistributed if 1
n

∑n
k=1 f (xk) →∫

T d f (x)dx for all f ∈ C(T d). Show that this is equivalent to either of the following statements:

(1) The convergence in the definition holds for f = em, m ∈ Zd\{0} where em(x) = e2πi(m1x1+...+mdxd ).

(2) 1
n

∑n
k=1 1xk∈I →

∏d
j=1(bj − aj) for any rectangle I = [a1, b1]× . . .× [ad , bd ] ⊆ [0, 1]d .

2. Linear sequences

Theorem 4. (nα)n≥1 is equidistributed if and only if α 6∈ Q.

Proof. If α = p
q ∈ Q, then nα = mα whenever n−m is divisible by q. Therefore, the sequence takes

only finitely many values periodically. Not equidistributed.

If α 6∈ Q, then fix m ∈ Z \ {0} and consider

1

N

N∑
k=1

em(αn) =
1

N

N∑
k=1

e2πimkα

=
1

N

N∑
k=1

e2πimkα

=
1

N

e2πim(N+1)α − e2πimα

1− e2πimα

where we used the fact that e2πimα 6= 1 as α is irrational. Clearly the last quantity is bounded by
2

N|1−e2πimα| which goes to zero. By Weyl’s criterion, equidistribution holds. �

3. Polynomial sequences

Let P (x) = αdx
d + . . . + α1x + α0 be a polynomial with real coefficients. Is (P (n))n≥1 equidis-

tributed in [0, 1]? We did not include the constant coefficient because it makes no difference to the

equidistibution (just shifts by α0 mod 1).

Theorem 5 (Weyl). The sequence (P (n))n≥1 equidistributed in [0, 1] if and only at least one of

α1, . . . , αd is irrational.
73



Observe that α0 being irrational is of no help, as it only induces a shift in the sequence (modulo

1). In other words, if (P (n))n≥1 is equidistributed if and only if (P (n)− α0)n≥1 is equidistributed.

Further, one side of the theorem is easy. If α1, . . . , αd are rational, if Nαj ∈ Z for all j for some

N, and hence

P (kN + r) = αd(kN + r)d + . . .+ α1(kN + r)

≡ αd rd + . . .+ α1r mod 1.

Thus the sequence (P (n))n≥1 is N-periodic and cannot be equidistributed. It is the converse direction

that is non-trivial and interesting. The key step is the following lemma that allows to reduce the

degree.

Lemma 6 (van der Korput). Let x = (xn)n≥1 and for h ≥ 1, let xh = (xn+h − xn)n≥1. If xh is

equidistributed in [0, 1] for all h, then x is equidistributed.

Proof of Weyl’s theorem assuming van der Korput’s lemma. Let xn = P (n) so that x(n+h)−x(n) =

Q(n), where Qh(·) = P (· + h) − P (·) is a polynomial of degree at most d − 1. Write P (x) =

αdx
2 + . . . + α1x + α0 and Qh(x) = βd−1x

d−1 + . . . + β1x + β0. Choose 1 ≤ ` ≤ d such that α`
is irrational, but αj is rational for ` < j ≤ d . Then it is easy to see that β`−1 is also irrational. We

must divide into two cases.

Case 1: If ` ≥ 2, then `− 1 ≥ 1, hence Qh also satisfies the conditions of the theorem. Inductively

(the base case d = 1 of linear polynomials was taken care of earlier), we know that (Qh(n))n≥1 is

equidistributed. As this applies for all h, by van der Korput’s lemma we conclude that (P (n))n≥1 is

equidistributed.

Case 2: If ` = 1, we can only conclude that the constant coefficient of Qh is irrational, and it is of

no use. Instead, we write xn = yn + zn where yn = P (n) − α1n and zn = α1n. Observe that y is a

periodic sequence (application of a polynomial with rational coefficients to natural numbers) and that

z is equidistributed (as α1 is irrational). From Exercise 7 below, it follows that x is equidistributed. �

Exercise 7. Let xn = yn + zn where y is periodic and z is equidistributed. Then show that x

is equidistributed. [Hint: You may use Weyl’s criterion, or argue directly from the definition of

equidistribution.]

Proof of van der Korput’s lemma. We use Weyl’s criterion again. Fix m ∈ Z \ {0} and let vk =

em(xk) = em(xk). For fixed h,

∣∣ n∑
k=1

vk+h −
n∑
k=1

vk
∣∣ =

∣∣ n+h∑
k=n+1

vk −
h∑
k=1

vk
∣∣

≤ 2h.
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Average over 1 ≤ h ≤ H to get

∣∣ 1

H

H∑
h=1

n∑
k=1

vk+h −
n∑
k=1

vk
∣∣ ≤ H + 1.

Hence,

∣∣ 1

N

n∑
k=1

vk
∣∣ ≤ ∣∣ 1

HN

H∑
h=1

n∑
k=1

vk+h

∣∣+
H + 1

N

=
∣∣ 1

N

n∑
k=1

1

H

H∑
h=1

vk+h

∣∣+
H + 1

N

≤

(
1

N

N∑
k=1

∣∣ 1

H

H∑
h=1

vk+h

∣∣2) 1
2

+
H + 1

N
(1)

by Cauchy-Schwarz inequality. The quantity in the first summand under the square-root is

1

NH2

N∑
k=1

H∑
h1,h2=1

vk+h1
v k+h2

=
1

NH2

H∑
h1,h2=1

N∑
k=1

vk+h1
v k+h2

.

For the H pairs (h1, h2) with h1 = h2, the inner summand is N. For h1 < h2, denoting h = h2 − h1,

we see that
N∑
k=1

vk+h1
v k+h2

=

N∑
k=1

vkv k+h +

N+h1∑
k=N+1

vkv k+h −
h1∑
k=1

vkv k+h

=

N∑
k=1

vkv k+h + Rh

where |Rh| ≤ 2H. For h2 < h1, we get the same, except that it is conjugated. Therefore

1

NH2

H∑
h1,h2=1

N∑
k=1

vk+h1
v k+h2

=
1

NH2

{
HN + 2

H−1∑
h=1

(H − h)

(
Re

[
N∑
k=1

vkv k+h

]
+ Rh

)}

≤
1

H
+

4H

N
+

2

NH

H∑
h=1

∣∣∣ N∑
k=1

vkv k+h

∣∣∣.
We simply bounded H − h by H and the second term comes by summing up all the inequalities

|Rh| ≤ 2H. We plug this back into (1) while observing that
√
a + b ≤

√
a +
√
b and that H+1

N ≤ 2H
N

and H
N ≤

√
H
N .Therefore,

∣∣ 1

N

H∑
h=1

vk
∣∣ ≤

√√√√ 2

NH

H∑
h=1

∣∣∣ N∑
k=1

vkv k+h

∣∣∣+
1√
H

+
2
√
H√
N

+
H + 1

N

≤

√√√√ 2

NH

H∑
h=1

∣∣∣ N∑
k=1

vkv k+h

∣∣∣+
1√
H

+
4
√
H√
N

(2)

75



This is known as van der Korput inequality and is the key technical tool. It is valid for any sequence

vk with |vk | = 1.

Now substitute vk = em(xk) = em(xk) for some m ∈ Z \ {0}. We get

∣∣ 1

N

N∑
k=1

em(xk)
∣∣ ≤

√√√√ 2

H

H∑
h=1

∣∣∣ 1

N

N∑
k=1

em(xk − xk+h)
∣∣∣+

1√
H

+
4
√
H√
N
.

Fix H and let N →∞. All the inner sums in the first summand converge to 0, by the assumption that

xh is equidistributed. Hence

lim sup
N→∞

∣∣ 1

N

N∑
k=1

em(xk)
∣∣ ≤ 1√

H
.

Now let H →∞ to conclude that equidistribution holds for x . �

4. Equidistribution of a few other elementary sequences

What are the eqidistribution properties of (nq)n≥1 (for 0 < q < 1 say) and (log n)n≥1 and (θn)n≥1.

I We have already seen that there are θ > 1 for which (θn)n≥1 is not equidistributed (even if we

assume that θn is never an integer). It is apparently known that for almost every θ > 1, this sequence

is equidistributed, but we shall not go into that here.

I The sequence (log n)n≥1 is not equidistributed. This is not hard to see and is a given in the

problem set with a hint (one can use Weyl’s criterion, or just the direct definition of equidistribution).

I Let 0 < q < 1. Then (nq)n≥1 is equidistributed. This follows from the following more general

theorem. It has the flavour of the differencing trick, but is in fact more elementary. The assumption

on differences is not of equidistribution but of monotonicity and growth.

Proposition 8. Let (xn)n≥1 be a sequence of real numbers. Let yn = xn+1 − xn. Assume that yn is

decreasing and satisfies yn → 0 and nyn →∞. Then (xn)n is equidistributed.

Proof. �

5. A quantitative equidistribution theorem

If a probability measure µ on T = [0, 2π) has µ̂(m) = 0 for allm 6= 0, then µmust be the normalized

Lebesgue measure m on T . If the first hundred Fourier coefficients are zero, can we say that µ is close

to the Lebesgue measure? One must decide what is the sense of closeness one wants, and we take

the Kolmogorov-Smirnov distance defined as d(µ, ν) := sup{|µ(I) − ν(I)| : I is an arc in T}. When

we say arc of the circle T , we mean an interval [a, b] ⊆ T for some a < b or [a, 2π) ∪ [0, b] for some

b < a. Then we have the following theorem of Erdös and Turan18.

18Our presentation is taken from some unpublished notes of Mikhail Sodin and the paper Equidistribution of zeros

of polynomials by Kannan Soundararajan. Both are exceedingly well-written and we have added almost nothing to the

presentation. Sodin gives multiple proofs of the main step in the equidistribution result.
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Lemma 9 (Erdös-Turan). For any probability measure µ on T and any n ≥ 1, we have

d(µ,m) ≤ C

[
n∑
k=1

|µ̂(k)|
k

+
1

n

]
for some constant C.

This is a quantitative version of Weyl’s criterion. Indeed, if µn is a sequence of measures such that

µ̂m(k) → 0 for all k 6= 0, then the above lemma implies that lim sup d(µm, m) ≤ Cn−1, for any n,

which of course shows that µn converges to m weakly.

Proof. Let Fµ(t) = µ[0, t], 0 ≤ t < 2π denote the distribution function of µ. For example, Fm(t) =

t/2π. Let V (t) = Fm(t) − Fµ(t) − a where a is chosen so that
∫
T V (t)dt = 0. Then, for any arc

I ⊆ T , we have |µ(I) −m(I)| ≤ 2‖V ‖sup (if I = (a, b] then µ(I) −m(I) = V (b) − V (a), and similar

expression if the arc is (a, 1) ∪ [0, b)).

To bound the sup-norm of V , we smooth it by convolving with the Fejér kernel Kn to get σnV (t) =

(V ? Kn)(t) =
∫
T V (t − s)Kn(s)ds. Recall that Kn(u) ≤ 1

n sin2(u/2)
≤ π2

nu2 , from which we get∫
[−δ,δ]c Kn(u)du2π ≤

10
nδ . We divide into two cases, either ‖V ‖sup = sup V or ‖V ‖sup = − inf V

First assume that ‖V ‖sup = sup V . Fix δ = 40/n and find t ∈ T such that V (t + δ) ≥ ‖V ‖sup −
ωV (2δ). We have

σnV (t) =

∫
[−δ,δ]

V (t − s)Kn(s)
ds

2π
+

∫
[−δ,δ]

V (t − s)Kn(s)
ds

2π

≥ (V (t + δ)− ωV (2δ))(1−
10

nδ
)− ‖V ‖sup

10

nδ

≥
1

2
‖V ‖sup − 2ωV (80/n).

Hence ‖σnV ‖sup ≥ 1
2‖V ‖sup − 2ωV (80/n).

In the other case, ‖V ‖sup = sup(−V ). Pick δ = 40/n and t such that V (t−δ) < −‖V ‖sup +ωV (2δ).

Then

σnV (t) =

∫
[−δ,δ]

V (t − s)Kn(s)
ds

2π
+

∫
[−δ,δ]

V (t − s)Kn(s)
ds

2π

≤ (V (t − δ) + ωV (2δ))(1−
10

nδ
) + ‖V ‖sup

10

nδ

≤ −
1

2
‖V ‖sup + 2ωV (80/n).

Thus again ‖σnV ‖sup ≥ 1
2‖V ‖sup − 2ωV (80/n).

Observe that ‖σnV ‖sup ≤ |V̂ (0)|+ 2
∑n−1
k=1 |V̂ (k)|, and hence

‖V ‖sup ≤ 2‖σnV ‖sup + 4ωV (80/n)

≤ 4

n−1∑
k=0

|V̂ (k)|+ 4ωV (10/n).
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This conclusion holds for any V ∈ L1(T ). For the particular V that we defined above, V̂ (0) = 0 and

V̂ (k) = ±ikµ̂(k) for k 6= 0. Further, ωV (δ) ≤ 2δ, hence the inequality |µ(I)−m(I)| ≤ 2‖V ‖sup leads

to

d(µ,m) ≤ C

[
n−1∑
k=1

|µ̂(k)|
k

+
1

n

]
This completes the proof. �

Remark 10. One may care about the constants. As written, the proof gives C = 80, but that is

because of the second summand. One can do better by writing the inequality in the form

d(µ,m) ≤ 4

[
n−1∑
k=1

|µ̂(k)|
k

+
20

n

]
Even these are not optimal, but we do not bother to do better.

Exercise 11. For simplicity, assume that ‖V ‖sup is attained, and choose t such that t ± δ is such a

point (depending on whether ‖V ‖ is equal to sup V or − inf V ). Then choose δ = c/n for a c as small

as you can and get a better bound with explicit constants.

Remove the assumption that ‖V ‖sup is attained by introducing ε > 0 and choosing t such that

either V (t + δ) ≥ ‖V ‖ − ε or V (t − δ) ≤ −‖V ‖+ ε, and finally letting ε→ 0.

6. Distribution of roots of polynomials

A polynomial of degree n can have any n complex numbers as its roots. But if one picks coefficients

at random, often it turns out that the zeros are very close to the unit circle, and uniformly distributed

around it. See Figure 6. Can one prove a theorem to this effect? What we see in the pictures can be

Figure 1. Roots of polynomials of degree 80. The coefficients are independent random

variables with different distributions: Left: Random ±1. Middle: Gaussian. Right:

Cauchy. There is no qualitative difference in the pictures!

captured in two statements:

(1) The absolute values of the roots are close to 1.
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(2) The projections of the roots to the unit circle are approximately uniformly distributed on the

circle.

It turns out that the first statement is relatively easy, and we give it at the end. The second one, on

angular equidistribution, is covered by an amazing result of Erdös and Turan. Observe that there is

no randomness in the statements!

Before stating the results, some notation. Both the radial and angular distributions will be controlled

by the size of the polynomial on the unit circle. We can measure this in several ways. For a polynomial

P (z) = anz
n + . . .+ a1z + a0 with a0an 6= 0, define

(1) h(P ) :=
∫ 2π

0 log+
|P (e is)|√
|a0an|

ds
2π ,

(2) h∗(P ) := log ‖P‖√
|a0an|

, where ‖P‖ = ‖P‖sup(T ),

(3) h#(P ) := log |a0|+...+|an|√
|a0an|

.

It is easy to see that

h(P ) ≤ h∗(P ) ≤ h#(P ).(3)

In many cases, it is easier to control h# than h∗ which in turn is easier to control than h. Hence,

although the best inequalities are stated in terms of h, in using them we often replace h by h#.

6.1. Angular distribution of roots.

Theorem 12 (Erdös-Turan). Let P (z) = anz
n + . . . + a1z + a0 where ak ∈ C and a0an 6= 0. Let

the roots of P be ζk = rke
iθk , 1 ≤ k ≤ n (repeated according to multiplicity). Let µ = 1

n

∑n
k=1 δe iθk .

Then, for any arc I ⊆ T , we have19

|µ(I)−m(I)| ≤
C√
n

√
h(P ).

For the right hand side to be a good bound, h(P ) must be small, or equivalently log+ |P | must be

small on the unit circle, on average. Using the inequality h(P ) ≤ h#(P )

Corollary 13. Suppose Pn is a sequence of polynomials of degree n with coefficients having absolute

values between Bn and 1
Bn
. Assume that 1 ≤ Bn = eo(n). Let µn be the probability measure on T

that puts mass 1
n at ζ/|ζ| for each root ζ of P (counted with multiplicity). Then, as n →∞,

sup{|µn(I)−m(I)| : I is an arc in T} → 0.

Not all polynomials have equidistribution of the angular parts of the roots. What fails then?

19In Soundararajan’s paper he gives the inequality with the explicit constant C = 8
π
.
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Example 14. Let P (z) = (z − 1)n. All roots are at 1. What about h(P )? Observe that |e it − 1| > 1

if and only if π3 < t < 5π
3 . Hence

h(P ) = n

∫ 5π/3

π/3

log |e it − 1|
dt

2π
= cn

for some c > 0. Thus the bound on |µ(I)−m(I)| does not go to zero as n →∞.

Exercise 15. Let P (z) = zn − 1. Compute h(P ) explicitly, and compare d(µ,m) with the bound

given by the Erdos-Turan theorem.

Proof of Erdös-Turan theorem. By the Erdös-Turan lemma on equidistribution, we know that for any

N ≥ 1,

|µ(I)−m(I)| ≤ C

[
N−1∑
k=1

|µ̂(k)|
k

+
1

N

]
.

Hence the issue is to get a control on µ̂(k).

Case when roots are on T : Assume that P (z) = an
∏n
j=1(z − e itj ). Then µ = 1

n

∑n
j=1 δe itj and

µ̂(k) = 1
n

∑n
j=1 e

−iktj . Being a symmetric polynomial of the roots, these are expressible as polynomials

of the coefficients of P (these are called Newton’s identities), but the way we do it is as follows:

Claim:
∫ 2π

0 e iks log |e it − e is | ds2π = e ikt

2|k| .

To see this, observe that if r < 1, then by the power series expansion of logarithm,

log |e it − re is | = Re log(1− re i(s−t)) = −Re

∞∑
k=1

1

k
r ke ik(s−t) = −

∑
k 6=0

.
1

2|k | r
|k|e ik(s−t).

Consequently,
∫ 2π

0 e iks log |e it − re is | ds2π = r |k|e ikt

2|k| . Now let r ↑ 1 and argue that the integral on the

left converges to
∫ 2π

0 e iks log |e it − e is | ds2π . This completes the proof of the claim.

Setting t = tj in the claim and summing over j gives us

1

2|k | µ̂(k) =
1

n

∫ 2π

0

e−iks log
|P (e is)|
|an|

ds

2π

which implies that

|µ̂(k)|
|k | ≤

2

n
log
‖P‖
|an|

.(4)

Hence the Erdös-Turan bound gives

|µ(I)−m(I)| ≤ C
[

2m

n
log
‖P‖
|an|

+
1

m

]
.

If we set m =
√
n/
√

2 log ‖P‖|an| (more precisely an integer close to this number), the two summands

have about the same contribution and

|µ(I)−m(I)| ≤
C√
n

√
log
‖P‖
|an|

.
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Observe that our assumption that roots are on the unit circle forces |a0| = |an|, hence the above

expression can also be written as

|µ(I)−m(I)| ≤
C√
2n

√
log

‖P‖√
|a0an|

.

On the right is the middle quantity in (3). How to get h(P ) is indicated later (it is simple, but we

postpone it to avoid distractions from the main point).

General case when roots are anywhere in the plane: If P (z) = an(z − ζ1) . . . (z − ζn), set ξk =

ζk/|ζk | and Q(z) = an(z − ξ1) . . . (z − ξn). The angular distribution measures µP and µQ are equal

by construction. Hence (to get the weaker bound as before) it suffices to show that

‖Q‖
|an|

≤
‖P‖√
|a0an|

because we already know the theorem for Q. This trick of replacing P by Q is attributed to Schur.

Writing ζj = rje
iθj (then ξj = e iθj ) and taking any z = e iα ∈ T , the desired inequality can be written

as
n∏
j=1

|e iα − e iθj | ≤
1√
|a0/an|

n∏
j=1

|e iα − rje iθj | =

n∏
j=1

|e iα − rje iθj |√
rj

since a0/an is the products of the roots, up to a sign. We show that the jth factor on the left is

bounded by the jth factor on the right. This is easy, because for any α, θ,

r |e iα − e iθ|2 − |e iα − re iθ|2 = r(2− 2 cos(α− θ))− (1 + r2 − 2r cos(α− θ))

= −(r − 1)2

which is negative. �

Remark 16. How to improve the bound to
√
h(P )? We gave up too much in (4) by moving from

the integral to the supremum. Instead, as |x | = 2x+ − x , we can write

1

2|k | |µ̂(k)| ≤
2

n

∫ 2π

0

∣∣ log
|P (e is)|
|an|

∣∣ds
2π

=
2

n

∫ 2π

0

log+

|P (e is)|
|an|

ds

2π
−

1

n

∫ 2π

0

log
|P (e is)|
|an|

ds

2π

=
2

n
h(P )

because the second integral vanishes. This is because the integral is the average of
∑n
j=1 log |z − e itj |

which is harmonic inside the disk and 0 at z = 0. If this is not clear, show directly that
∫ 2π

0 log |e is −
re itj |ds = 0 if r < 1 (use Taylor expansion as we did earlier) and let r ↑ 1. Once we get the h(P )

bound for polynomials with roots on the unit circle, for the general case it follows from the inequality

h(Q) ≤ h(P ). That in turn is true because we showed that |Q(z)| ≤ |P (z)| for z ∈ T .
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6.2. Radial distribution of roots.

Theorem 17. Let P (z) = anz
n + . . .+ a1z + a0 with a0an 6= 0. Let ζj = rje

itj for 1 ≤ j ≤ n, be the

roots, counted with multiplicity. Then
n∑
j=1

log(rj ∨
1

rj
) ≤ 2h(P ).

In particular, if ν = 1
n

∑n
j=1 δrj , then for any r < 1,

νP
(

[0, r ] ∪ [r−1,∞)
)
≤

2h(P )

n log 1
r

.

Corollary 18. Suppose Pn is a sequence of polynomials of degree n with coefficients having absolute

values between Bn and 1
Bn
. Assume that 1 ≤ Bn = eo(n). Then νPn(1− δ, 1 + δ)→ 0 for any δ > 0.

Proof of Theorem 17. We claim that∫ 2π

0

log |e iθ − re it |
dθ

2π
=

0 if r ≤ 1,

log r if r ≥ 1.

For r < 1, this is the 0th Fourier coefficient of θ 7→ log |e iθ − re it | that we saw earlier. For r > 1,

rewrite the integrand as log r + log |1r e
−it − e−iθ| to reduce it to the previous case. The case r = 1

can be taken as a limitingg case from either direction.

Apply this with r = rj , t = tj and sum up over j ≤ n to get∫ 2π

0

log
|P (e iθ)|
|an|

=

n∑
j=1

log+ rj .

Observe that |a0|
|an| =

∏
j rj to rewrite this as∫ 2π

0

log
|P (e iθ)|√
|a0an|

= −
1

2
log
|a0|
|an|

+

n∑
j=1

log+ rj

=
1

2

n∑
j=1

| log rj |.

Now | log r | is the same as log(r ∨ 1
r ) and the proof of the first statement is complete.

The second one follows from the first by observing that all the terms log rj ∨ 1
rj
are positive, and

each zero with absolute value in (0, r ] ∪ [ 1
r ,∞) contributes at least log 1

r to the sum. Hence their

number is at most
2

log 1
r

∫ 2π

0

log
|P (e iθ)|√
|a0an|

Dividing by n gives the second statement. �
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CHAPTER 9

Expander graphs

1. Expansion in graphs

Let G = (V, E) be a finite graph. This means that V (vertex set) is a finite set and E (edge set)

is a subset of {{i , j} : i , j ∈ V }. Such graphs are called simple. A more general notion is to allow E

to be a multiset, and also allow it to contain elements of the form {x, x} for x ∈ V . An edge of the

form {x, x} is called a loop and if {x, y} occurs k times, we say there are k edges connecting x to

y . We shall use the notation as if our graphs are simple, although much of it extends to graphs with

multi-edges and loops. Even more generally, one can consider weighted graphs, where wi ,j = wj,i is

the weight of an edge between i and j (zero weight means no edge)20.

The adjacency matrix AG = (ai ,j)i ,j∈V where ai ,j = 1 if i ∼ j (i.e., {i , j} is an edge) and 0 otherwise.

For multiple edges, ai ,j is the multiplicity of the edge. For weighted graphs ai ,j is the weight. In any

case, AG is a symmetric matrix. The Laplacian matrix LG = D − AG where D = diag(di)i∈V is the

diagonal matrix of degrees of the vertices (di is the number of edges connected to i , or more generally

the row sum of the ith row of AG). Then for f ∈ RV ,

〈Lf , f 〉 =
∑
i∈V

di f (i)2 −
∑
{i ,j}∈E

2ai ,j f (i)f (j) =
∑
{i ,j}∈E

ai ,j(f (i)− f (j))2

showing that L is positive semi-definite. It always has a zero eigenvalue, as L1 = 0. The normalized

Laplacian is defined as L = D−
1
2LD−

1
2 .

For S, T ⊆ V , let E(S, T ) denote the set of edges with one end in S and the other in T . Then

define the expansion coefficient of G as

hG = min
S:|S|≤ 1

2
n

|E(S, Sc)|
|S| .

Example 1. If G = Kn, the complete graph on n vertices, then |E(S, Sc)| = |S|× (n−|S|) and hence

hG = d1
2ne. If G is the discrete cycle on n vertices (edges are {1, 2}, . . . , {n − 1, n}, {n, 1}), then

hG � 1
n .

Definition 2. A sequence of graphs Gn = (Vn, En) is called an expander family if |Vn| → ∞ and

maxi∈Vn deg(i) ≤ d for some d <∞, and hGn ≥ h0 for some h0 > 0.

20There are many good references for what we cover in this chapter. The survey article Expander graphs and their

applications by Hoory, Linial and Wigderson; the book Expander graphs by E. Kowalski; the book/lecture notes on

expanders by Luca Trevisan; the book Spectral graph theory by Fan Chung. These are some exceptionally well-written

ones.
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To understand the notion of expansion, consider a graph in which the degrees are bounded above

by d . For x ∈ V and r ≥ 1, let B(x, r) denote the set of vertices within graph distance r of x . If

|B(x, r)| ≤ 1
2n, then |B(x, r + 1)| − |B(x, r)| ≥ hG

d |B(x, r)|, since there are at least hG |B(x, r)| that
connect B(x, r) to its complement, and at most d of them can have a common end-point on the other

side (all these end-points are in B(x, r+1)\B(x, r)). Hence, |B(x, r+1)| ≥ (1+ h
d )|B(x, r)|, showing

that |B(x, r)| ≥ (1 + h
d )r for r ≤ r(x) := min{r : |B(x, r)| ≥ n/2}. The balls increase exponentially

in size till half of the graph is covered. This shows that

r(x) ≤
log n

log(1 + h
r )

and diameter(G) ≤
2 log n

log(1 + h
r )

since B(x, r(x)) ∩ B(y , r(y)) 6= ∅ for any x, y . Since we also have the trivial bound |B(x, r)| ≤
1 +d+ . . .+d r � d r , no connected graph can have diameter more than cd log r . Thus in an expander

sequence, the graphs Gn have diameters growing at the order of log |Vn|.

2. Connection between expansion and spectrum

Henceforth, we assume that the graph G = (V, E) is d-regular. Let the eigenvalues of the Laplacian

LG be denoted 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. Then the eigenvalues of AG are d = λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n ≥
−d (the last inequality is because the row sums of AG are at most d).Of these, two are important

enough that we give separate notations: λG := λ2 and λ̃∗G = max{λ̃2, |λ̃n|}. Two easy observations:

(1) λG = 0 if and only if G is disconnected. In fact, since 〈Lv, v〉 =
∑
i∼j(vi − vj)2, we see

that Lv = 0 if and only if v is constant on each connected component of G. Therefore, the

dimension of the null space of LG is equal to the number of connected components of G.

(2) λ̃n = −d if and only if G is bipartite. If G is bipartite, then V = V1 t V2 and all edges of G

connect a vertex in V1 to a vertex in V2. If vi = 1 for i ∈ V1 and vi = −1 for i ∈ V2, check

that Lv = −dv . We leave the converse as an exercise.

Now we go on to more quantitative way in which λG measures how well-connected G is. This is a

fundamental result in spectral graph theory.

Theorem 3 (Cheeger’s inequality+Buser’s inequality). Let G be a finite d-regular graph. Then

h2
G

2d
≤ λG ≤ 2hG .

The key point for us is that expansion can be captured in terms of λG . In particular, {Gn} is an
expander sequence if and only if λGn is bounded below. Incidentally, the inequality holds as stated for

general finite graphs, if d is interpreted as the maximum degree among all vertices - this follows from

the proof given below.
84



Before going to the proof, recall the Rayleigh-Ritz formulas (variational principles for eigenvalues

of Hermitian martices) which imply that

λG = min
f ∈RV ,f⊥1

〈LGf , f 〉
〈f , f 〉 .

Any f that attains the minimum is an eigenvector with eigenvalue λG .

Proof. The second inequality (Buser’s) is the easier one. Given any S ⊆ V with cardinality s ≤ 1
2n,

define fi = 1 − s
n for i ∈ S and fi = − sn for i ∈ Sc . This is just the indicator of S, shifted to have

zero mean. Then

〈f , f 〉 = (1−
s

n
)2s +

( s
n

)2
(n − s) =

s(n − s)

n
≥

s

2
,

〈Lf , f 〉 =
∑
i∼j

(f (i)− f (j))2 =
∑

i∼j :i∈S,j∈Sc
1 = |E(S, Sc)|.

By the variational formula,

2|E(S, Sc)|
|S| ≥

〈Lf , f 〉
〈f , f 〉 ≥ λG .

To prove the first inequality (Cheeger’s), we let f be an eigenvector of LG with eigenvalue λG . Label

the vertices so that f (1) ≥ . . . ≥ f (n) and fix k = bn2c (the reason for this choice becomes clear

later), and define two other vectors

g(i) =

f (i)− f (k) if i < k,

0 if i ≥ k,
and h(i) =

0 if i ≤ k,

f (k)− f (i) if i > k.

Then we claim that

‖g‖2 + ‖h‖2 ≥ ‖f ‖2 and 〈Lg, g〉+ 〈Lh, h〉 ≤ 〈Lf , f 〉.(1)

The first inequality is easy as the left side is
∑
i(f (i) − f (k))2 which is equal to

∑
i f (i)2 + nf (k)2,

as f (1) + . . . + f (n) = 0. To prove the second, consider any edge i ∼ j . If i < j < k , then

|g(i) − g(j)| = |f (i) − f (j)| and |h(i) − h(j)| = 0 while if k ≤ i < j then |g(i) − g(j)| = 0 and

|h(i)− h(j)| = |f (i)− f (j)|. If i < k ≤ j , then

(g(i)− g(j))2 + (h(i)− h(j))2 = (f (i)− f (k))2 + (f (k)− f (j))2 ≤ (f (i)− f (j))2.

The ordering of vertices was used in the second inequality because then (f (i)−f (k))(f (k)−f (j)) ≥ 0.

Summing over all edges justifies the second inequality in (1). Consequently,

λG ≥
〈Lf , f 〉
〈f , f 〉 ≥

〈Lg, g〉+ 〈Lh, h〉
‖g‖2 + ‖h‖2

≥
〈Lg, g〉
‖g‖2

∧
〈Lh, h〉
‖h‖2

.
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Without loss of generality assume that the first one is the smaller of the two. To analyse it, observe

that
∑
i∼j(g(i) + g(j))2 ≤ 2

∑
i∼j(g(i)2 + g(j)2) = 2d

∑
i g(i)2. Hence

〈Lg, g〉
‖g‖2

≥
∑
i∼j(g(i)− g(j))2

‖g‖2
×
∑
i∼j(g(i) + g(j))2

2d‖g‖2

≥

(∑
i∼j(g(i)2 − g(j)2)

)2

2d‖g‖4

by Cauchy-Schwarz inequality. Now,

∑
i∼j

(g(i)2 − g(j)2) =
∑

i∼j, i<j

j−1∑
`=i

(g(`)2 − g(`+ 1))2

=
∑
`

(g(`)2 − g(`+ 1))2|{i ∼ j : i ≤ ` < j}|.

The second factor in the summand is |E([`], [`]c)| which is at least hG` if ` ≤ 1
2n. Of course,

g(`)− g(`+ 1) = 0 if ` ≥ k , hence we see that

∑
i∼j

(g(i)2 − g(j)2) = hG

k−1∑
`=1

(g(`)2 − g(`+ 1)2)`

= hG

n∑
`=1

g(`)2.

Thus, we have arrived at

λG ≥
〈Lg, g〉
‖g‖2

≥
(hG‖g‖2)2

2d‖g‖4
=
h2
G

2d

which is Cheeger’s inequality. �

Later we shall need an inequality like Cheeger’s for infinite graphs. While one can try to define the

Laplacian and make sense of it as a self-adoint operator, study its spectrum, etc., for our purposes we

can cut short all that and directly prove an inequality between quadratic forms and expansion. Follow

the above proof to complete the following exercise.

Exercise 4. Let G = (V, E) be a d-regular graph with a countable vertex set V . Then for any

g ∈ L2(V ), show that ∑
i∼j(g(i)− g(j))2∑

i∈V g(i)2
≥

1

2d

(
inf

S⊆V, |S|<∞

|E(S, Sc)|
|S|

)2

Observe that the condition that g ⊥ 1 and the condition that |S| ≥ 1
2 |V | are neither needed nor

meaningful.

Returning to finite graphs, as discussed earlier, these inequalities allow us to define expanders

algebraically in terms of the second eigenvalue. If we take this definition, the following result places a

limitation on how good the expansion can be.
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Theorem 5 (Alon–Boppana). Let G be a d-regular random graph. Then λG ≤ d − 2
√
d − 1 + δn,d

where δn,d → 0 as n →∞ for fixed d .

The usual way to state this is that λ̃2 ≥ 2
√
d − 1−o(1). This inequality explains why the following

definition is meaningful.

Definition 6. A sequence of d-regular graphs Gn = (Vn, En) with |Vn| → ∞ is said to be Ramanujan

if λGn ≥ d − 2
√
d − 1 for all n.

Thus, Ramanujan graphs are the most extreme possible expanders. Constructing them is much

harder than constructing general expanders. It was done first by Lubotsky–Phillip–Sarnak using some

number theory results related to Ramanujan conjectures, and hence they gave the name. Their con-

struction was for specific d (of the form 1+prime). Marcus–Spielman–Srivastava recently constructed

Ramanujan graphs of all degrees. In this chapter we shall only talk about general expanders.

While the proof of the Alon-Boppana bound requires some work, it is not hard to get some bounds

of this nature. For example, writing the trace of A2 in terms of eigenvalues we see that tr(A2
G) ≤

d2 + (n−1)λ̃2
∗. On the other hand, the trace is also the sum of squares of all the entries of AG , hence

tr(A2
G) = nd . Thus, we see that λ̃∗ ≥

√
d . The loss of the factor of 2 on the right (at least if d is

large enough for us to ignore the difference between d and d − 1) can be fixed by considering higher

powers tr(A2p
G ). On one side we can bound it using eigenvalues and on the other side one can relate

it to the number of closed paths of length 2p on the graph. Some analysis (mainly the idea that for

a given starting point on the graph G, there are at least as many closed paths of a given length 2p

as there are for a given starting point on a d-regular tree) leads to a weaker form of Alon-Boppana

bound that says that

λ̃∗ ≥ 2
√
d − 1− o(1).

The weakness is because λ̃2 ≤ λ̃∗.

3. Construction of expanders

The original Margulis construction with important improvements and simplications by Gabber and

Galil, and then many others is presented in many places. We just give an outline and refer the reader

to these sources21.

The graph Gn is defined as follows: Let Vn = Zn × Zn = {0, 1 . . . , n − 1}2. The edges adjacent

to u = (k, `) ∈ Vn connect it to u ± e1 = (k ± 1, `), u ± e2 = (k, ` ± 1), S(u) = (k + `, `),

S−1(u) = (k − `, `), T (u) = (k, k + `), T−1(u) = (k, ` − k) (all addition is modulo n).This allows

multiple edges and loops, but is a d-regular graph.

Theorem 7. Gn is an expander family. In fact λGn ≥??.

21The presentation in Luca Trevisan’s notes is superb and we follow it here closely.
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If f is the second eigenvector of LGn , then we know that f ⊥ 1 and

λGn =

∑
u∈Vn(f (u)− f (Su))2 + (f (u)− f (Tu))2 + (f (u)− f (u + e1))2 + (f (u)− f (u + e2))2∑

u∈Vn f (u)2
.

Correspnding to f , we define a function F : [0, n)2 7→ R by F (x) = f (u) if x ∈ u+ [0, 1)2, u ∈ Vn. To
convert it to our standard convention for the torus, also define G : [0, 2π)2 7→ R by G(x) = F (nx/2π).

Then

(1)
∫
T 2 G(x)dx = 1

n

∫
[0,n)2 F (x)dx = 1

n

∑
u∈Gn f (u) = 0.

(2)
∫
T 2 G(x)2dx = 1

n2

∫
[0,n)2 F (x)2 = 1

n2

∑
u∈Vn f (u)2.

(3) Further, if we define S, T : [0, n)2 7→ [0, n)2 by S(x1, x2) = (x1 + x2, x2) and T (x1, x2) =

(x1, x1 + x2), then if x ∈ u+ [0, 1)2, then S(x) ∈ S(u) + [0, 1)2 or S(x) ∈ S(u) + e1 + [0, 1)2.

Hence, if we define S̄ : T 2 7→ T 2 by S̄(x) = 2π
n S(nx/2π) = (x1 + x2, x2) (the addition is in

T 2, i.e., modulo 2π), then we can work out that

∫
T 2

(G(x)− G(S̄x))2 =
1

n2

∫
[0,n)2

(F (x)− F (S(x)))2

=
1

n2

∑
u∈Vn

(f (u)− f (S(u))2 + (f (u)− f (Su + e1))2

≤
1

n2

∑
u∈Vn

(f (u)− f (S(u))2 + 2[(f (u)− f (Su))2 + (f (Su)− f (Su + e1))2]

≤
3

n2

∑
u∈Vn

(f (u)− f (S(u))2 + (f (u)− f (u + e1))2.

Adding it to the analogous identity for T in place of S, we find that∫
T 2

(G(x)− G(S̄x))2 + (G(x)− G(T̄ x))2

=
∑
u∈Vn

(f (u)− f (Su))2 + (f (u)− f (Tu))2 + (f (u)− f (u + e1))2 + (f (u)− f (u + e2))2.

Consequently,

3λGn ≥
∫
T 2 (G(x)− G(S̄x))2 + (G(x)− G(T̄ x))2∫

T 2 G(x)2
.

To estimate the right hand side, we use Fourier analysis on T 2. Write

G(x)
L2(T 2)

=
∑
p∈Z2

Ĝ(p)e i(p1x1+p2x2)
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Note that Ĝ(0, 0) =
∫
T 2 G = 0. We now compute the Fourier expansions of G ◦ S and G ◦ T .

G(Sx) = G(x1 + x2, x2) =
∑
p∈Z2

Ĝ(p)e i(p1(x1+x2)+p2x2)

=
∑
p∈Z2

Ĝ(p1, p2)e i(p1x1+(p1+p2)x2)

=
∑
p∈Z2

Ĝ(q1, q2 − q1)e i(q1x1+q2x2).

This means that ̂(G ◦ S)(p1, p2) = Ĝ(p1, p2 − p1). Similary, check that ̂(G ◦ T )(p1, p2) = Ĝ(p1 −
p2, p2). To state this clearly, let us introduce S̃, T̃ : Z2 7→ Z2 by S̃(p1, p2) = (p1 + p2, p2) and

T̃ (p1, p2) = (p1, p2 + p1) where the addition is in Z2 (in retrospect, it would have been simpler to

have just defined S, T on any group and understand from the context which one is being used). Then,

Ĝ ◦ S = Ĝ ◦ T̃−1, Ĝ ◦ T = Ĝ ◦ S̃−1.

This is the key observation which explains the choice of the two maps S, T in defining Gn. Using the

Fourier expansions of G,G ◦ S,G ◦ T and Plancherel’s theorem, we see that∫
T 2

G(x)2 = (2π)2
∑
p∈Z2

|Ĝ(p)|2

∫
T 2

|G(x)− G(Sx)|2 = (2π)2
∑
p∈Z2

|Ĝ(T̃ p)− Ĝ(p)|2

∫
T 2

|G(x)− G(Tx)|2 = (2π)2
∑
p∈Z2

|Ĝ(S̃p)− Ĝ(p)|2

and hence

2λGn ≥
∑
p∈Z2 |Ĝ(p)− Ĝ(T̃ p)|2 +

∑
p∈Z2 |Ĝ(p)− Ĝ(S̃p)|2∑

p∈Z2 |Ĝ(p)|2
.

Observe that all the sums are over Z2 \ {(0, 0)} (and S̃, T̃ map Z2 \ {(0, 0)} into itself). If we define

an graph G with vertex set Z2\{(0, 0)} and edges p ∼ T̃ p and p ∼ S̃p, then the right hand side above

is precisely the Rayleigh-Ritz quotient for the Laplacian on this graph. From Cheeger’s inequality for

infinite graphs as given in Exercise 4, we deduce that

3λGn ≥
1

8

(
inf

S⊆Z2, |S|<∞

|E(S, Sc)|
|S|

)2

.

It looks like we are back to where we started. Instead of the graph Gn, we now have the infinite graph

and we must show that the expansion coefficient is strictly positive. Turns out, this can be done

directly by an elementary argument! It is tempting to think that may be a variant of this argument

can be directly carried out for the original graph Gn, but I have not seen such a proof anywhere and I

am even unable to visualize the graph Gn well.
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Take any finite S ⊆ Z2 \ {(0, 0)}. In Trevisan’s notes, he partitions it into S0, S1, . . . , S4, where

S1, . . . , S4 are those points of S that lie in the (strict) first to fourth quadrants and S0 consists of all

the other vertices (those that have at least one zero co-ordinate). We quote (and leave it to you to

work it out or refer to Trevisan’s notes)

(1) S1 has at least S1 edges that go out of S and connect it to vertices in the first quadrant.

Hence deduce that |E(S1 ∪ S2 ∪ S3 ∪ S4, S
c)| ≥ |S1 ∪ S2 ∪ S3 ∪ S4|.

(2) The 4|S0 edges with one vertex in S0 have the other in Sc0 , but only 3/4 of these can land in

S (from the first step). Hence deduce that |E(S0, S
c)| ≥ 7|S0| − 3|S|.

Use the two inequalities to deduce that |E(S, Sc)| ≥ 1
7 |S|.

Putting everything together, we have

λGn ≥
1

3
×

1

8
×

1

49
=

1

1176
.

This completes the proof. �
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