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CHAPTER 1

Fourier analysis on finite abelian groups

1. Introduction

Let us start with perhaps the most important basic object in physics, the simple harmonic motion*.

A single mass in simple harmonic motion: Consider a body of unit mass connected to a spring
whose other end is fixed to a wall. When the spring is at its normal length, the location of the body is
designated 0. If it is pulled or pushed and let go, the spring exerts a force proportional to the stretch,
towards the mean position. Therefore, the position x(t) undergoes a motion according to Newton's

law that says Cj"—;x(t) = —kx(t). The general solution to this differential equation is
x(t) = acos(v/kt) + bsin(vkt).

If the initial position x(0) and initial velocity x’(0) are specified, we can solve for the coefficients as
a=x(0) and by/k = x/(0).

Finitely many masses in simple harmonic motion: Now consider N bodies of mass m each, con-
nected in a line by springs, with the first and last connected to fixed walls by springs. We assume
that all springs and masses are identical, and that when at rest position, the masses are at locations
k/(N+1), 1 < k < N. If the bodies are pulled from their rest positions and let go (may be with
certain initial velocities), they perform a complicated oscillatory motion influencing each other. To
describe the equations, let xx(t) denote the displacement of the kth body from its mean position.
We also set xo(t) = 0 and xy+1(t) = 0 (the walls are immovable). Then the force kth mass feels a
force of —k(xk(t) — xx—1(t)) from the spring to its left, and a force of K(xk+1(t) — xx(t)) from the
spring to its right. The total force is therefore k(xxr1(t) — 2xx(t) + xxk_1(t)). Hence the equations
of motion are

2
(1) m%xk(t) = K(Xkr1(t) — 2x(t) + xx—-1(t)), for 1 < k < N.

Unlike the case of one mass, these appear difficult to solve. Let us look for simple solutions of the

form x(t) = v(t)wk. Then, the equations become (we also set the spring strength kK = 1 and the

Ln a course on mathematical methods in physics that | attended in graduate school, Alberto Grunbaum quoted V |

Arnold as saying Mathematics C Physics, and extended it by adding Physics C SHM!
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mass m = 1)
wieV" (1) = v(t)(Wkg1 — 2wk + Wi—1)

which when rearranged become (what if we are dividing by zero? | leave you to worry about that case

separately)

V() Wi — 2wi + i
v(t) W '
The left side depends on t alone while the right side depends on k alone. Since the two variables can

be independently changed, this forces that both sides must be constant. Hence
VI(t) = =v(t) and Wil — 2Wk + Wx_1 = —AWk.

We have written the constant as —A anticipating that it will turn out negative. Indeed, the equations

forw = (wq,..., wy)t is the eigenvalue equation Lw = Aw, where
2 -1
-1 2 -1
-1
Lnxn =
-1 2 -1
-1 2

All entries except on the three diagonals are zero. It can be checked (can you?) that L is a positive
semi-definite matrix, hence A > 0. Its eigenvalues and eigenvectors are explicitly found in the following

exercise.

Exercise 1. Let vg = (sinf,sin26, ..., sin NO)t. Let 6, = /\/75:1 and A\, = 2 — 2cosf, = 4sin? 2,(,rjrz

for 1 < r < N. Show that Lvg, = \,vp,. Argue that these are all the eigenvectors and eigenvalues of
L.

Returning to the problem of springs, we see that the equations for w can be solved if and only if

Trk
N+1

k = N-+1 automatically gives 0, ensuring the boundary conditions xo(t) = 0 = xy1(t)). The general

A =X, forsome 1 < r <N, and then wy = sin for all k (observe that plugging in kK = 0 or

solutions for v is
v(t) = acos(v/Art) + bsin(y/Art).

With this choice of v and w, we have arrived at the solution

k
xk(t) = (acos(v/Art) + bsin(y/Art))sin A;T:_
It satisfies the boundary conditions xg(t) = 0 = xy11(t) and the initial condition x(0) = aw, and

XL(0) = by/xywy.

T 0<k<N+1.



Since the problem for x is linear, taking linear combinations such as

N
u(t) = rzzl(ar cos(v/Art) + by sin(y/Art)) sin A;r:_kl’

we get another solution to the system (1). The boundary conditions ug(t) = 0 = un41(t) are also

trivially satisfied. The initial conditions are

N
u(0)=> avy,  u(0)=> b/ A,
r=1 r=1

As vg,, 1 < r < N, form a basis for RN (being eigenvectors of a symmetric matrix), for any given u(0)

and ¢'(0), we can find a unique set of coefficients a,, by, so that the initial conditions are satisfied.

Exercise 2. Consider N masses placed on a circle (they cannot leave the circle, but they can move
on it) and each mass connected by springs to its two adjacent neighbours (there is no wall). Can you

work out the equations and the solutions to this system?

A continuum of masses in simple harmonic motion: In the previous setting, suppose that the mass

of each body is 1/N and the spring strength is N. Then the equations (1) become

d? X1 (t) = 2x5(t) + xi—1(1)
WXk(t) = 1//\/2 , for 1 < k < N.

We think of N — oo. Instead of indexing the bodies by 1,2,..., N, let us index them by x = k/N,

1 < k < N and write u(t, x) = xx(t) where x = k/N. Then the above equations become

d? u(t, x+ %) —2u(t, x) + u(t,x — 4)

g U(t.x) = e

k
,forlgngwithx:N.

As N — oo, formally we arrive at
;fzu(t,x) = CZ(Zu(t,x).
This is called the wave equation and describes a vibrating string. The boundary conditions u(t,0) =
0 = u(t, 1) describes a string with end-points fixed. The initial conditions are u(0, x) = f(x) and
%U(O,X) = g(x).
Can we solve this problem? Again it looks difficult, but taking a cue from the case of finitely many

masses, we attempt a solution of the form u(t, x) = v(t)w(x) and arrive at the equations

V() w” (x)

v(t)  w(x)

which forces that both sides must be some constant —A. Thus we get

VI(t) = =v(t), w”(x) = —Aw(x).
5



General solutions to these ODEs are, assuming A > 0,
v(t) = acos VAt + bsin VAL, w(x) = ccos VAx + dsin vV Ax.

The boundary conditions require w(0) = 0 = w(1), hence ¢ = 0 and /A = n7 for some n € Z. We
take d =1 and n > 1, because otherwise we just get a linear multiple of the solutions with d =1 and
—n. The initial conditions for the resulting solution are

d
u(0, x) = asinmnx, EU(O, x) = bwnsinmwnx,

At all stages, observe the similarity to the case of finitely many masses.
As before, the wave equation is linear in the initial conditions f, g, meaning that if u; solves the
equation with f;, g;, for i = 1,2, then au; + Bus satisfies it with afy + B8, agr + Bg». Therefore,

formally (i.e., without paying attention to what convergence means etc.)

u(t, x) = ié(a,7 cos(mnt) + bpsin(mnt)) sin(mnx)

n=1

satisfies the equation with initial conditions
u(0,x) = i apsin(mnx), iu(O, X) = i mnbp sin(mnx)
n=1 dt n=1

Therefore, to solve the problem for given f, g, the question becomes: Can we find a,, b, so that

f(x)= Z apsin(mnx), g(x) = Z mnbpsin(mnx).
n=1 n=1

Apart from the convergence issues and what kind of convergence we need, here we are in an infinite
dimensional setting. The functions x — sin(7nx) are elements in a function space, and we want to
know what their span is. In particular, is it true that any smooth function f (satisfying f(0) = 0 = (1))
is in the span? If the answer is yes, then we can presumably solve the vibrating string problem for
smooth initial conditions f, g. Smoothness may be too restrictive - for example, when a string is
plucked at the mid-point and let go, then we may model f(x) = c(3 — |5 — x|) and g(x) = 0. Hence
one may want to ask the question for continuous functions, or some other class of functions. This
was the starting point of Fourier analysis - can a function be written as a linear combination of sines

(and cosines)?

Remark 3. It is a running theme of this course that the discrete situation is as interesting and useful
as the continuous situation. Historically the continuous objects were defined first, but in recent years
the discrete objects are found to be very useful in a variety of fields. That is the reason why we
elaborated on the case of finitely many masses. Those who prefer an even more discrete setting,

where time is also discretized, may go over the next example.
6



Random walk on a discrete cycle: Consider a particle that is moving on the discrete cycle {0, 1, .. ., N—
1}. At each discrete time point t =0, 1,2, ..., a coin is tossed, and if it falls head, the particles moves
one step up (modulo N), and if the coin falls tails, it moves one step down (modulo N). If the starting
position at time 0 is 0, what is the probability distribution after t steps?

Let pt(k) be this probability, for t > 0 and k € {0,1,..., N —1}. Then,

) per1(k) = 3pelk — 1)+ 2pe(k +1).

Can we solve for this? There are different approaches, but we take a route that is close to the situation

considered earlier. Subtract p;(k) from the above equation to get

pesa(K) = pe(k) = SlpeCk + 1) = 200(K) + pe(k = 1)].

On the left side we have the first difference in t, while on the right, we have the second difference in
k. The analogous continuous equation is %pt(x) = %dd—;pt(x), which is not the wave equation, but
the heat equation. Nevertheless, the same ideas may be repeated.

First we attempt a solution of the form v(t)w(k). The equations become (everywhere k £+ 1 to be
interpreted modulo N)

vik+1)—v(k) 1w(k+1)—2w(k)+w(k—1)
v(k) T2 w(k) '

Both sides must be constant, say —A. The equations for w are —w(k + 1) + 2w(k) — w(k — 1) =

2X\w(k), which is the eigenvalue equation Lw = 2Aw, with (all entries not shown are zero)

[ 2 1 ~1 |
-1 2 -1
-1
Lyxn =
-1 2 -1
-1 -1 2
Observe the subtle difference from the earlier matrix. Let vg = (1,€?,.. ., e/(N=D8)t Then it is easy

to see that if e/N% = 1, then Lvg = 2(1 — cosf)vy. Hence the eigenvectors are vp, with eigenvalues
2(1 —cosb,), where 0 < r < N—1and§, = 2—,’\7 Therefore, choices for w arevg,, 0 <r < N —1,
and then A = 1 — cosf,. The equation for v becomes vxi11 = vx(1 — X) = v, cosB,, which means

that v¢ = vq(cos@,)t. Thus, we have arrived at the solutions
u-(t, k) = (cosf,)fe o, 0<k<N—-1, 0<r<N-1.

The initial condition is u,(0, k) = e'%% (i.e., u,(0,-) = vg,). Taking linear combinations of u,, we can

get solutions with general initial conditions.



In particular, for the original problem of p;(k), observe that po(k) = do(k), since the random walk

starts at 0. It is easy to see that §g = % ZLV:_OI vp,, hence
=
pe(k) = 2_; u(t, k)

;N1 . .
_ ot Z(e/e, + e—le,)te/ke,
r=0

1 N—-1 t +
- = ' eie,(tfszrk)

X b

0<j<t: t—2j+k=0 (mod N)

N

If it was not clear earlier, it should be clear now that this answer could also have been arrived at by

combinatorial methods, but that is not the point of our discussion here.

Exercise 4. The continuum analogue of (2) is %p(t, x) = %p(t,x}, with (t, x) € [0, 00) x T, where
T = [0,1]/ under the equivalence 0 ~ 1 (so T is the circle). Use separation of variables to find
many solutions and formulate the question on Fourier series regarding how one could find solutions

for general initial conditions.

2. The groups of interest

As we saw in the context of solving the vibrating string problem, the basic question of Fourier series
is about writing 2m-periodic functions on R (equivalently thought of as functions on the unit circle
T = {et:0 < t < 2m}) as linear combinations of sines and cosines with integer frequencies, i.e.,
as ap + EnZl apcos(nx) + by sin(nx). Fourier transform, which you may also have encountered as
characteristic functions in probability class, involves writing functions on R as superpositions of sines
and cosines with arbitrary frequencies, i.e., as [ [g(X) cos(Ax) + h(X) sin(Ax)]dx.

In analysis it is almost always better to work over complex numbers, hence, in place of sines and
cosines one may use complex exponentials ey (x) := e where X € Z for Fourier series and A € R for
Fourier transform. One can recover sin(Ax) and cos(Ax) from ey (x) and e_x(x), and vice versa. The
spaces T' and R, are groups under multiplication and addition. The sets of continuous homomorphisms
from these groups into the circle group T are precisely {e, : n € Z} and {e) : A € R}.

This suggests the generalization to other groups, and asking if continuous homomorphisms (the
group must have a topology to talk about continuity) from the group into S! give a good collection
of functions whose linear superpositions give a large class of functions from the group into C. The
matters get more subtle in non-commutative groups, but if we restrict to Abelian groups (with a

locally compact topology), then the whole story is clean and complete. We shall indicate this general
8



situation later, but for the purposes of this course, we are only concerned with the following four

examples. Henceforth we shall use the standard terms “character” for continuous homomorphisms

into C and G for the set of all characters of a group G.

(1)

(2)

(4)

The group R under addition. If x : R — T, then x(nx) = x(x)" for x € R and n € N, from
which it follows that x(x) = x(1)* for x € Q. By continuity, the same holds for all x € RY,
showing that x(x) = e™* where x(1) = e*. Thus, R = {e\ : A € R}.

The 1-dimensional torus or circle grup T = {e't : 0 < t < 27} with with multiplication and the
usual topology derived from embedding in C (we can take the metric d(e't, e’*) = |e't — e']).
Since ¢ : R — T define by ¢(x) = e is a continuous homomorphism, if x : T +— T
is a continuous homomorphism then x o ¢ is a homomorphism from R to T, showing that
X o = ey for some A € R. As ¢(x+27) = ¢(x), the same must hold for e, and that forces
ANEZ. Thus, T ={e,: meZ}.

The finite cyclic group Z, = Z, = {0,1,...n — 1} with addition modulo n. On finite
or countable groups, we always take the discrete topology (in other words, the metric is
d(k,£) = 1if k # £), hence continuity is not a restriction. A homomorphism x is determined
by x(0). Also x(0)" = 1, hence x(0) = €>™k/" for some 0 < k < n— 1. Therefore,
fn:{e2wk/n:0§k§n—1}.

The group Z5 which we represent as {0, 1}"” with coordinatewise addition modulo 2 or al-
ternately as {—1,+1}" with coordinatewise multiplication. For each S C [n], the function
Xs 1 {—1,+1}" — T defined by xs(x) = [[;cs X, is a homomorphism. By completing the
exercise below or directly, show that these are all the homomorphisms from Z5 into T. Thus,
Z5={xs:SC[n}

Exercise 1. If G is a finite group and x is a character, show that it is in fact a homomorphism into

the unit circle T (which is a group under multiplication). Going further, it is a homomorphism into

the subgroup of nth roots of unity for n = |G]|.

Exercise 2. If G1, G are groups with topology, then Gy x G» is a group with the product topology

and co-ordinatewise multiplication. Show that x : G; X Go — T is a character if and only if it is of the

form x1 ® X2, where x1 and x», are characters of G; and G, respectively. (Recall the tensor product
notation: (f ® g)(x,y) = f(x)g(y))

Exercise 3. Show that the characters of

(1)
(2)
(3)

R" are precisely ex, A € R”, where ex(x) 1= e2™\x)

T" are precisely ey, A € Z",
Z5 are precisely xs, S C [n], that were introduced above.

9



3. Fourier analysis on Z,

For any finite group G with |G| = n, we denote by LQ(G) the n-dimensional complex vector space
of functions f : G — C. We can and do identify f with the column vector (f(0), ..., f(n—1))teC".
The inner product on C" gives the inner product on L?(G):

(f.9) = f(x)g(x)
x€eG

Now let G = Z,. The characters are xx(j) = e2™k/" 0 < k,j < n—1 of Z,. Of these xo = 1

is the trivial character. The single most important point about these characters is the orthogonality

relationship
S ij n ifk=1¢
e xe) = Y e2mit=0/n =
J=0 0 ifk#¢

Indeed, as j runs over Z,, if k # £, then the summand runs over all mth roots of unity for some m > 2.
When k = £, all the summands are identically equal to 1.
Thus, {ﬁXk}ogkgn—l is orthonormal, and since there are n of them, they form an orthonormal

basis for L%(Z,). Hence, any f € L?(Z,) can be written as

|
-

n

1 & 1
=7 Of(k)xk, k) =7

Functions on Z, can be identified in a natural way with n-periodic functions (satisfying f(x+n) = f(x))

f

x
Il

1 n—1 -
f — § :f : —27ruk/n_

on Z via the composition map Z — Z, given by k — k (mod n). Thus, xk can also be thought of as

functions on Z, the formula is exactly the same xx(Jj) = e2™ik/n since this is already n-periodic. The
function £ : {0, 1, ..., n— 1} +— C is called the discrete Fourier transform of f.

From the orthogonality of characters, we get the Plancherel relation

n—1 n—1
(f.g)=>Y f(Kak). IIfI> = IF(KI>
k=0 k=0
Observe that the relationship between f and f may also be written as
1 n—1 1 n—1
No— 7 2mijk/n z - = N\ —2mijk/n
fU)=—= 2 Flkyemikin, £(k) ﬁ;o fli)e .

The two relationships are almost identical, except for the negative sign in the exponent. In other
symbols, £(j) = f(—j). This is called Fourier inversion. That is, if we define a new transformation

(pronounced “g check”)
1 n—1 -
G(k) = N\ o—2mijk/n
9(K) = 75 3 00)e

then it is the inverse of the Fourier transform.

Some examples.
10



Example 4. On Z,, let f =1 and g = 1y (two extremes in terms of support size). Then

A vn o if k=0, ~
f(k) = g(k) =
0 otherwise.

for any k.

-

n

Observe that f < g and § o f.
Example 5. Let n = k£ and let f(x) =1 _, (mod K- Then

-1 -1 L e
f(r) _ L Z e27rijkr/n _ L Z e27r/jr/£ _ Vn ifr=0 (mOd Z)
v =0 ﬁj:g 0 otherwise.
Thus the support of f has size £ and the support of  has size k. For fixed n and different choices
of (k,£), the support sizes have an inverse relationship. This is an illustration of uncertainty principle,
more of which we shall see later.
on Z in terms of the

Exercise 6. Write the functions n — 1 and n — 1

n=1 (mod 3) n=3 (mod 7)
characters of Z3 and Z7 respectively (as remarked above, we extend these functions to all of Z).

The indicator functions capturing modular properties can thus be expressed in terms of the much

nicer functions, namely the characters. This simple observation will be crucial to applications later.

The discrete Fourier matrix: Fourier analysis on Z, can be numerically executed quite efficiently
using matrices. For this, identify L2(G) with C" as before. Define the discrete Fourier matrix F, :=
#(ezmjk/”)og,kgn_l, whose columns represent the characters. The orthogonality of characters is
the same as saying F,F, = I, i.e., that F, is a unitary matrix. This also implies that F,F,; = I,,

which gives a different set of orthogonality relations (observe that the character is fixed here)

1=t 1 ifj=/
= xkli)xuli) = o
k=0 0 ifj#/.
The relationship between a function f = (f(0),..., f(n — 1))t and its Fourier transform f =

((0),..., f(n—1))tis given by
f=Fyf and  f=F,f.

For g € C", it is customary to denote § = F, ¢g. Then, f — f and g — § are inverses of each other.

But they also look very similar, a fact made more precise in the following exercise.

Exercise 7. Show that f(x) = f(—x). Conclude that F# = /,. What are the possible eigenvalues of
Fn? Find the actual eigenvalues (with multiplicities) of F, (use a computer to compute for small n

to guess the answer).



Exercise 8. Let n=2m+ 1 and let p < m. Let f(j) =1 if jA (n—J) < p and 0 otherwise. Find f.

4. Fourier analysis on Z3

Since we already understand the character theory of Z>, and most considerations easily carry over to
products of groups (see Exercise 2), we can deduce the statements below from those of the previous
section. But we give a direct presentation anyway.

Again L2(G), with G = Z3 is the vector space of C-valued functions on G. The dimension of this
space is 2". It has the natural inner product

(f.gy= D f(x)9(x).
x€{—1,+1}"
The scaled characters 2="/2xs, S C [n], are orthonormal. Indeed,

xs.xr) = > IIx II»

x€{-141}7ieS  jeT
IR

x€{—1,+1}7i€SAT
This summation factors over / € [n]. The factor corresponding to i gives 2 if i ¢ SAT and gives
—1+1=0if i€ SAT. Therefore, (xs,x7) =2"if S=T and (xs,x7) = 0 otherwise.

The number of subsets of [n] is exactly 2", hence the number of elements in the orthonormal set

matches the dimension of L?(G), showing that it is in fact an orthonormal basis. Thus, any f € L?(G)
may be written as (as the characters are real-valued, we drop the conjugates)

1 o
f) =5 > F(S)xs(x). where
scln]

(S = sslfixs) =55 3 F0]]%

xe{—1,41}" i€S

The Plancherel relations (f, g) = (f, §) take the form
Y g =Y f(5)a(S), > P =Y ISP
x€{—1,1}" SCin] x€{—1,1}" sC[n]
It may be useful to see some examples. Some of the picturesque names are motivated by thinking
of n voters voting for one of two candidates 1, and x; as the vote of the ith person. A function
f:{=1,1}" — R (particularly f : {—1,1}" — {—1,1}) is the method by which these votes are

combined to make a decision.

Example 9. Let f(x) = x; (the dictator function: whatever the first voter says goes). Then 7(S) =
2"/2if S = {1} and 0 otherwise. Observe that Plancherel relation holds with ||f||2 = ||||? = 2", but
the left side sum is “spread out”, with |f(x)|? = 1 for all x while the right side sum is “concentrated”

with only one term being non-zero. This is again an example of an uncertainty principle.
12



Another feature that generalizes from the above example: If f does not depend on a variable J,
then £(S) = 0 for any set that contains j. Taking j = n for convenience and S = T U {n},
FS =Y _f)]]x= > fI]x D, x
X i€S X1, Xp—1 €T xpe{-1,1}

and the inner sum is zero.

Example 10. Let f(x) = 1,1 = 27" [[,(1 + x;). Expanding, we see that f(S) = (—1)!5127"/2 for

all S. In this case, f is concentrated while f is spread out.

The exercise below gives an alternate argument that any function on the hypercube can be written
as a linear combination of characters. The group structure and inner product are not used, what is
used is that x,k =1 if k is even and x,k = x; if k is odd (hence any polynomial of xjs may be written

as a multilinear polynomial).

Exercise 11. For a € {—1,1}", write 1, as a linear combination of xs. Hence argue that any

f:{—1,1}" — R can be written as a linear combination of xs, S C [n].

A probabilistic interpretation: Observe that
FO) =223 00, D IFSP =Y IFC)P
XEZLY S X

Hence, if we endow Z5 with uniform probability measure (P{x} = 27" for all x) and view f as a

random variable on it, then 2="/2f(()) is the mean value of f while 2=" > 540 |F(S)|? is the variance.

5. Fourier analysis on finite abelian groups

Consider a finite abelian group G. Will the characters of G form a basis for L?(G)? Are they
orthogonal?
The answer to the second question is yes. Let x : G — T be any character. Then for any a € G,
1) =) x(x)=> x(ax) =x(a) Y _ x(x) = x(a){x. 1).
X€EG xeG xeG
Thus, either x is trivial (i.e., x(a) = 1 for all a € G) or x L 1. Now, if x1, x> are two characters,
then so is x = x1X2, and x is trivial if and only if x1 = x»2. Hence

G| if x1 = X2,
0 if x1 # Xo.

(X1, x2) = (x, 1) =

Thus any two distinct characters are orthogonal. In particular there can be at most N = |G| of them
(as L?(G) has dimension N). Observe that we did not use the fact that G is abelian: orthogonality

of characters is true for any finite group.
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To return to the first question of whether they provide a basis for LQ(G), it is now clear that for
that to happen, we need exactly N distinct characters. But if x is a character, then x(xyx~!) = x(y)
for any x, y € G, implying that x is constant on each conjugacy class. But G has N conjugacy classes
if and only if it is abelian. Hence, whenever G is non-abelian, characters do not span L(G).

We do not even necessarily have as many characters as conjugacy classes, as the example of

symmetric groups shows.

Exercise 12. Show that S, has only two characters, the trivial one and the sign.

Exercise 13. If G is a finite simple group that has a non-trivial character, then it must be Z, for some

prime p.

Returning to our question of whether characters provide a basis for L?(G), it is now clear that we
must restrict ourselves to abelian groups. We have seen that for cyclic groups Zj,, there is indeed a basis
of characters. Now suppose G1, Go are two groups whose characters form a basis of the corresponding
L2 spaces. From Exercise 2, it follows that x; ® X2 is a character of G if x; is a character of G;, for
i =1,2. Since |G| = |G1| x |Go|, it seems that this gives |G| characters, and hence there is a full
basis of character of L?(G). But one must check that these character are distinct. They are distinct,
because x1 and x2 can be recovered from x by x1(x) = x(x, 1) and x2(y) = x(1,y). By a somewhat
tedious check one can also see that they are linearly independent, but it is easier to check that they

are orthogonal.

Exercise 14. Let G = G; x G» be a product of finite groups. Show that

(h®h g 92>L2(G) = (f1, 91>L2(Gl)<fz. 92>L2(Gz)'

Generalize to a product of k groups.

As a consequence, we see that all finite products of cyclic groups have the desired number of
characters, and that they form an orthogonal set in L?. What groups can be realized as products
of cyclic groups? As products of abelian groups are abelian, it is clear that we can only get abelian

groups this way. In fact we can get all of them!

Structure theorem for finite abelian groups: Let G be a finite abelian group. The G is isomorphic
to Znp, X ... X ZLp, for some n; = plm", where p; is prime and m; > 1. Of course the order of G must
be N = pi™ .. .p,’fk (but this is not necessarily the prime factorization of |G|, note that p; need not
be distinct).

In conclusion (recall the G is the set of characters of G),

Theorem 15. /G is a finite abelian group of order N, then |G| = N and the collection {ﬁx x € G}

forms an orthonormal basis for L2(G).
14



Fourier transform: Let G be a finite abelian group of order N. For f € L2(G), its Fourier transform

is defined as f : G — C given by f(x) = ﬁ(f, x). Thus, for any x € G,

F(x) = & S FO0x(x).

xeG

As G is a set of the same cardinality, we can talk of L2(G) = {f : G ~ C}, a Hilbert space with inner
product (f, 9) 2(¢) = Lyea F(X)9(X).

The Fourier transform is a mapping from L2(G) to L2(G). When the hat notation is not convenient,
we denote this mapping by F or Fg. Often it is a better to view properties of the Fourier transform
F instead of writing it elaborately in terms of f and f. Immediately from the definition, we get the

all important Plancherel relation.

Theorem 16 (Plancherel relation). F : L2%(G) ~ L2(G) is a unitary transformation. That is,

(f. 9)12(6) = (. 9),2(6)- In particular, Hf”fz((;) = ”f”i%é)'

Proof. Write f € L?(G) as ﬁ D oxet f(x)x and recall that x/+/N form an orthonormal basis to see
that Hf||f2(G) =Y el |f(x)|2. Similarly, expand g and take inner product between f and g to get
(f.9)12(6) = (f, §>L2(G)' This is the definition of unitarity. [ |

Remark 17. Observe that in case of Z,, the characters were naturally indexed by Z, too, hence we
wrote f(k) rather than f(eQWk/,,). That also made things like the inversion formula seem natural.
But to discuss inversion formula for a general group, we need to first see that G itself has a group

structure. We do this in a later section on duality.

Probabilistic interpretation: If f € L2(G), and 1 is the trivial character, then f(1) = > xeq F(x) and
by the Plancherel relationship we know that 3. 1F()I1? = X eq |F(X)[?. Hence, if we consider the

uniform probability measure on G: P{x} = % for each x € G, then the random variable f has mean
% (1) and variance & PO 1F(x)]2.

6. Characters as eigenvectors

Let G be a finite abelian group. For x € G, define T, : L?(G) — L?(G) by (Txf)(y) = f(y + x).
Then T, is a linear transformation (we call it translation by x). If x is any character of G, then for all

X, yEG
(Tex)(y) = x(x +y) = x(x)x(y).

This means that x is an eigenvector of T, with eigenvalue x(x), for each x € G. As we have a full

basis of characters for L2(G), we see that they simultaneously diagonalize all the translation operators.
15



In fact we could have take this route to proving the existence of a full basis of characters® avoiding
the use of the structure theorem for finite abelian groups. In this approach, we start with two

observations:
(1) TxT, =T, Tx = Txy, for any x,y € G. This happens because the group is abelian.

(2) (Tx)* = T_x since for any f, g € L%(G),
(Tuf.9) =D _(TH)W9) = Y fly +x)90) = Y F(2)9(z — x) = (f. T—x9).
yeG vEG z€G
Consequently, T Ty = TxT_x = To = 1. Thatis, T is unitary.
An extension of the spectral theorem says that a commuting family of normal transformations (re-
call that T is normal if T*T = TT*) can be simultaneously diagonalized. Therefore, there is an
orthonormal basis of L2(G), whose elements are eigenvectors for all Ty, x € G.

Now suppose T is a common eigenvector. Then T, 7 = AT for all x € G, for some A\, € C (in fact
[Ax| = 1 by unitarity of Ty). What this means is that 7(x +y) = A\x7(y) for all x,y € G. Since T is
not identically zero, this shows that 7(y) # 0 for all y. Normalize the eigenvector so that 7(0) = 1
(possible since 7(0) # 0 to start with) to see that Ay = 7(x). Thus, 7(x + y) = 7(x)7(y), showing

that 7 is a character of G. As eigenvectors form a basis, we get a full basis of characters.

Remark 18. As an offshoot of this discussion, observe that if T : L2(G) ~ L?(G) is any normal

operator that commutes with all the translations, then each character of G is an eigenvector of T.

Convolution: For f, g : G — C, define fxg: G — Cby (fxg)(x) =3, f(y)g(x —y). This can
also be written as Ey f(x —y)g(y), hence f xg = g f. When f and g are probability vectors on
G, we have the interpretation of f x g as the probability distribution of X + Y where X and Y are
independent random variables with distributions f and g respectively.

Fourier transform converts convolution to product. For,

(F+9)0) =D (F+)x(x) = 3.3 flx—y) 9(v) x(x —¥) x(v)

xX€EG x€G yeG
=> > f(@2)9)x(@2)x(y)
zeG yeG

_ (Z f(z)x(z)) > 9x) | = F)ax).

zeG yeaG

Exercise 19. For any f : G — R and any x € G, show that f « x is a multiple of %, and find the

multiplying factor. How is this related to the previous discussion of characters as eigenvectors?

2Thanks to Ritvik Radhakrishnan for pointing this out during the lecture.
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7. Duality

Let G be a finite abelian group and G the set of its characters. We have seen that they have the
same cardinality. So far G is just a set. We now endow it with a group structure.
Define products of characters pointwise, i.e., (x1Xx2)(x) = x1(X)x2(x). As x1,X2 € GifxieG

l=_xe G if X € G, it follows that G becomes a group. It is in fact a finite abelian group.

and x~

If G =Z,, then G = {xx = €mk/n 0 < k < n—1}. Observe that xxxe = Xk-+e(mod n): In other
words, as a group G is isomorphic to G itself with k — x being an isomorphism.

If G is isomorphic to Z,, X ... x Zp, (as any finite abelian group is), then we have seen that G
can be identified (as a set) with Z: X ... X Z; But it is also clear that if x = x1 ® ... ® xx and
X' =X} ®...®x}, then the pointwise product xx' = (x1X}) @ ... ® (xkX}). Thus, G is isomorphic
to G as a group, with (41, ..., 2k) = Xg, @ ... ® Xy, being a natural isomorphism.

Thus for any finite abelian group, G is isomorphic to G as a group. However, this isomorphism is
not canonical, hence we do not emphasize it. The issue is that while G is isomorphic to a product
of cyclic groups, this isomorphism is not canonical/natural. For example, consider the Klein-4 group
G={l,a,bc}witha?=b=c?>=1andab=c, bc=a ca=b. Then G ={1,a} x {1, b} but
also G = {1, b} x {1, c}. These in turn lead to different isomorphisms of G with G.

In contrast, we shall now see that the double dual é is naturally isomorphic to G. That they are
isomorphic is already clear, é ~ G = G, it is the naturalness that is important. One may compare

this to the analogous fact about duals and double duals of finite dimensional vector spaces.

The duality: For x € G, the evaluation mapping evy : G — T defined by ev,(x) = x(x), is clearly a
homomorphism on G. In other words, evy € G. Further, x — evy from G to G is an isomorphism. It

is a homomorphism because

eviy (X) = x(xy) = x(x)x(y) = evx(x)evy (x) = (evxevy)(X).

It is injective: if evx = 1, then x(x) = 1 for all x € G, which implies that x = 1 (otherwise
the characters would not be able to separate 1 from x). Since G and G have the same cardinality

(because both are equal to |G|), the homomorphism is an isomorphism of the two groups.

Exercise 20. Let G be a finite abelian group. Show that for any x,y € G,

S xox) =4 T
xeC 0 if x #y.

These relations are complementary to the orthogonality of characters.
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8. Fourier inversion

Let G be a finite abelian group. Let f € L?(G) and consider the fe L2(G) (by the isomorphism
between G and G), then
- Lf - F0)en () = — f =f
= Jifevdie = 75 D> F0ew(x) = 7 §Xj< X)X(=x) = F(=x).

XEG

Hy

(x)

Loosely speaking, Fourier transform is its own inverse, but that is not quite right because of the

negative sign on x. Two correct statements:

>

(1) £ = f. In other words, F* = /. To write F* is misleading (as is writing f, since the domain of
the Fourier transform is not indicated and is ambiguous if several groups are floating around),
it is actually Fg o Fg o Fg o Fg.

(2) Define f(x) = (f,x) (pronounced “f check"), then f=fas

~ A

() = (F 850) 12y = D FOevx(x) = Y (. x)x(x) = F(x).

xXE€G X

Thx

9. Poisson summation formula

Let H be a subgroup of a finite abelian group G and let g : G — G/H be the quotient map. Let
N = |G| and M = |H| so that |G/H| = N/M. Given F € L?(G), we create a function f € L?(G/H)
by summing F over the coset, i.e.,

flo)= Y FX).
x€q~t{c}

If x is a character of G/H, then x o g is a character of G and

Flxoq) = \%(F,xoqhz(g):\% S Fox(a)

ceG/H xeq=1{c}

=& Yo S R

ceG/H xeq~H{c}

1 . N/ M 1 1 .
D IRCLCIEE fg T v = o0

ceG/H

:

To be pedantic one must write F6(F)(x o q) = Fg/n(f)(x) but we don't do that unless necessary.
Now we are ready to state the

Theorem 21 (Poisson summation formula). In the above setting, for any F € L?(G),

1 1 .
— S F)=——= Y F(xoq).
MXEH VN/MXeG//\H
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Proof. Define f from F as before. Then,

1 N VM .
Y F(x)=f(c) = > Foox(c) = > F(xoa)x(c).
xeq e} VNIM . S VNIM . e
In particular, setting ¢ = 0 (the identity in G/H), we get the claimed identity. [ |

From the proof, it may seem that we could have stated the more general identity instead of setting
¢ = 0. Actually the general case can be recovered from the special case by applying to x — F(x+ xp)

for some xg € g7*(¢).

Example 22. Suppose n = rs. Let G = Z, and let H = {0,r,2r,..., (s —1)r} = Zs so that

G/H = Z,. The quotient map is of course g(k) = k (mod r). Then the Poisson summation formula

says that
1 s—1 1 r—lA
—= > FUr)=—=)>» Fl(ks
ﬁ; Ur) WZB (ks)

and more generally,
1 s—1 1 r—1
L ; _ - P 2mikd/r
ﬁZF(JF+ d) = WZF(ks)e mikd/r.
Jj=0 k=0
Above, we considered a function on G and created a function on G/H. In the exercise below, this

is done in the reverse direction (but the operation is not the reversal of the above!).

Exercise 23. Let H be a subgroup of a finite abelian group G and let f € L?(G/H). Composing with
the quotient map q : G — G/H, we get a function foqg =: F € L2(G). Show that F(xoq) = |H|f(x)
for any x € G//\H
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CHAPTER 2

Uncertainty principles and signal recovery problems

1. Introduction

Uncertainty principle is the meta-statement that a function and its Fourier transform cannot both
be localized. For Fourier transforms on R to which we come later, it is a fact that if §(t) is the Fourier
transform of g(x), then g(t/a) is the Fourier transform of ag(ax), for any a > 0. As a — oo, the
function ag(ax) gets more and more concentrated or localized around zero, but the Fourier transform
spreads out. This is an illustration of the same principle (although a feature here, one should disregard
the other direction: that is a function is spread out the Fourier transform must get localized. Both
can be spread out.). In the context of finite groups, we saw that if n = pqg and a function on Z, is
constant on multiples of p and zero elsewhere, then the Fourier transform is constant on multiples of
g and zero elsewhere. The product of support sizes is n - if one goes down, the other goes up. In this

chapter we see certain uncertainty principles based on p-norms, in the setting of finite abelian groups.

2. Some uncertainty principles based on p-norms

Let G be a finite abelian group of order N and let f € L?(G). Throughout this section, we shall
assume that f is not identically zero.

Then f € L2(G), is not identically 0, and we see that since |x(x)| =1 for x € G and x € G, we

have )
~ 1 A
OO < —= ) If ()] and ) < —= D If)I.
P P
X xXEG
Thus (we write || - ||, instead of || - [|;»(g) and || - ||,_,,(G) if it is not ambiguous)
~ 1 1 .
flloo < —||f and flloo £ —||f
and multiplying the two, we get our first uncertainty principle’:
Ifll: _ IIfls
(1) X >
1flloe  [1flloo

3We have taken much of the approach to uncertainty principles from a recent paper of A. Wigderson and Y. Wigderson
titled The uncertainty principle: variations on a theme . Their primary message, which | found quite illuminating, is this:
Take (1) as the starting point. And if you have a measure of spread of functions H(f), try to show an inequality such
as H(g) > ¢(|lgll1/]l9]l) for some increasing function ¢ : Ry — Ry (preferably unbounded). An immediate corollary is

an uncertainty principle for this measure of spread: H(f) x H(f) > @(N).
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Why do we call it an uncertainty principle? In general, an upper bound on a ratio like ||g/,/|9llq
for p < g says that g must be localized or concentrated. For example, if ||g|l1 = ||glloo. then g is
supported at one point (in other words g = dx for some x). Another example is that |lg||1 < V/N||gl|>
by Cauchy-Schwarz, with equality if and only if g is constant. If g = d, for some x, then ||g|l1 = ||g]|2-
In this case too, we see that the ratio of L1 to L2 norms is small when the function is localized*.

Thus, the inequality (1) says that in the L! to L> measurement of concentration, both f and f
cannot be too localized. Uncertainty principles are statements that say this, with different measures
of localization/concentration. Another measure of localization is the cardinality of the support of the
function.

For any g on a finite set, it is clear that ||g|l1 < |Sgl/|gllse. Where |Sg| is the cardinality of the
support Sy = {x : g(x) # 0}. Writing this inequality for f € L?(G) and for f € L?(G), we get the

Donoho-Stark uncertainty principle
(2) Sel % [S¢l = N

by applying (1). We know that equality can be achieved, for example, by f(k) =1, _, (mod p) N
Zpq, in which case f(£) = cl,_4 (mod 4 for a constant ¢ (as usual we abuse notation and write f(£)
instead of f(x¢) when working with the cyclic group). Thus |S¢| = g and |S¢| = p and their product
is the size of the group.

The rest of this section is optional. For our purposes, (2) and the idea of deriving it from (1) are

sufficient.

Further analysis of (p, ) uncertainty principles: Although there is no LP-norm for 0 < p < 1, we
may still use [|g|l, = (32, |9(x)|P)}/P as a measure of the size of g. Not relevant to us, but one can
also use it to get a metric d(f,g) = [|f — gll5. Observe that |g|l; — |Sq| as p — 0. Thus the
support size is a limiting case of the p-norms. In proving Donoho-Stark, we used the simple inequality

lgll1 < [l9llsc]Sg|.- To extend it to general p € [0, 1], observe that
lglls =D 190l < Hlglls? D 19()IP = llgliz*lgllp.
x x
Invoking (1), we get the following uncertainty principle
) <||f||p>”x(|f||p>”ZN
1 lloo 1 lloo

#In class | got into a twist by writing llgll=/1lg]l? as an increasing transformation of the coefficient of variation of g,

i.e., var(g)/mean(g)?, and saying that the latter quantity is a measure of spread. This led to a confusion that we are
looking at the ratio of a higher p-norm to a lower p-norm. But variance of g is the spread of the values of g, whereas
what we are talking about is the spread on the domain side. For example, the constant function has zero variance

whereas a delta-function has positive variance! Thanks to Chinmay S. |. for clearing up this point.
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that interpolates between Donoho-Stark inequality (2) (case p = 0) and (1) (case p = 1). We can
further extend to a (p, @) uncertainty principle with 0 < p < 1 and 1 < g < oo as follows: Write

1= %q + % and use Hélder's inequality to write ||f]lq < [IF]15/9]F1152"9 or equivalently

q
nwp><wm>”ﬂ”
17lla = \1Flloe

Multiply with the analogous inequality for f, raise to the power p, and use the (p, >0) uncertainty

principle to get the (p, g)-uncertainty principle

p ~ P
(@) <||f||p> " II{Hp > NE
114 1l

When p = 0 the left hand side should be interpreted as [S¢| x |Sz|, which is what one gets as p | 0.

Next consider p € (1,2) and let p’ € (2,00) be the conjugate exponent defined by %-’- % =1.

For a linear transformation T : U — V, where U,V are normed vector spaces, the operator norm is

defined as

Tu
ITlooy =sup AV n y7ay.
w20 Ullu veusulu=1

We say that T is a bounded operator is ||T||y—y < oo. This is always the case when U is finite
dimensional. When the underlying spaces are U = LP(X) and V = L9(Y') (where X,Y are finite sets

for now, but more generally they can be measure spaces) we write || T ||p—q for [|T | 1o(x)—1a(v)-

Riesz-Thorin interpolation theorem: Assume 1 < pg, p1,Go, g1 < o0o. For 0 < 6 < 1 define py, gg
by pyt = (1—0)py* +6p;t and gt = (1 —60)gy* + 6g; L. Then,

T oo a0 < IT 15050 IT 112

Po—do p1—q1-

The theorem is true in general measure spaces, but one must say a few words first about T being
bounded from LPo to L% etc. We wish to apply this to the Fourier transform F : L2(G) — L2(G).
We know that ||f]|e < ﬁ”f”l and ||fll = |If]lo. Thatis, || Fll1e = 1/v/N and || F|j» = 1. For
pe(1,2),letd= % so that

p 1 2 P oo 2

From the Riesz-Thorin interpolation theorem, we get the Hausdorff-Young inequality:

~ 11
1l < N2 22 [

1 1 ~
Applying the same to the inverse Fourier transform, we get ||f||,, < N2 2 ||f||,. Multiplying, we get

the (p, p’)-uncertainty principle
Il Mo o 3-3

Il WFlly
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Extend this to a (p, g) uncertainty principle for p € (1,2) and g € (2, p/] to get
7 WPl o g2t
1fllg — 11lq

(5)

Exercise 1. Prove (5) using the (p, p')-uncertainty principle.

Summary: In summary, we have proved (p, g) uncertainty principles when p € [0,1] and g € [1, x]
or p€[1,2] and g € [2, p']. The inequalities (4) and (5) subsume all others proved in this section.

It may be worth recalling the standing assumption that f # 0. A useful way of stating each of the
uncertainty principles is that if the conclusion is violated (e.g., if [S¢| x [S¢| < N), then f = 0.

3. Robust versions of the Donoho-Stark uncertainty principle

The support is a delicate thing. In the real world, no function can be said to be exactly zero at
any point. Mathematical theorems which hold under certain conditions, but break down under the
slightest perturbations, are generally not saying anything about the real world, because the hypotheses
are never satisfied! In other words, we should look for theorems that are robust, or not too sensitive to
the assumptions. For example, a robust version of the uncertainty principle would say that a function
and its Fourier transform cannot both be nearly supported on small sets.

We prove two such versions in this section. First we need a definition for approximate support.

Definition 2. If f : G — C, we say that A C G is an (p, €) support for f if ||[f1ac|l, < €||f]|,. Here
1<p<ocand 0<e<1.

The definition can be clearly made for LP functions on an arbitrary measure space. A (p, €) support
always exists, for example G itself is always one. When € = 0, the smallest (p, €) support is the usual
support. For € > 0, in general there is no unique (p, €) support. Note that we have not included any

phrase like “the smallest set with..."”, but including that would not make it unique either.

Theorem 3. Let G be a finite abelian group of order N. Assume that f : G — R is not identically
zero. Suppose that AC G are B C G are (1,€) and (1,6) supports for f and f respectively. Then
|Al x |B| > N(1 —¢)(1—9).

Proof. We observe that
VN[|lloo < 1111
VN[|flloo < [If]11

IN

(1) HIfLally < (1 =€) HIfllolAl

A

(1= f1gllh < (1-8)" IfllolBI.

The first inequalities are from the definition of the Fourier transform (as f(x) = f(—x), the first

inequality in the second line follows from the same). The second inequalities are from the definition
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of A and B as approximate supports. The third inequality is obvious. Multiply the two inequalities to
get the theorem. [ ]

The above theorem is due to Wigderson A., and Wigderson Y., inspired by the stronger Donoho-

Stark theorem that states such an inequality for L2 approximate supports.

Theorem 4 (Donoho-Stark). Let G be a finite abelian group of order N. Assume that f : G — R
is not identically zero. Suppose that A C G are B C G are (2,€) and (2,8) supports for f and f
respectively. Then |A| x |B| > N(1 — e —§)2.

In preparation for the proof, consider a linear operator T : U — V/, where U and V are finite
dimensional normed complex vector spaces. If T*T has eigenvectors u, with eigenvalues Ax (which
are non-negative), then for any u € U,

Tul?=(T"Tu,u)y = M|{u, u)]? < A U < (T ul)?.
[Tull®={T"Tu,u) ; Kl {u, u)|” < (max k);HU u) |~ < tr(TT) | ull
Here we bounded the maximum eigenvalue of T*T by the sum of eigenvalues. Thus, ||T|y—=y <
\/tr(T*T). The right side is also known as the Hilbert-Schmidt or Frobenius norm and denoted || T|| ¢
(or IT|lns). If we regard T as a matrix by fixing bases of U, V/, then the Frobenius norm is just the

Euclidean norm of the vector got by writing the matrix as a vector of dimension dim(U)dim(V).
Proof of Theorem 4. Define the following projection operators on L2(G), for AC G and B C G:
Paf = fly, Psf = (f1g) (or equivalently Pgf = flp).

In other words, P, is restriction of f to A and :55 is restriction of the Fourier transform to B. The

approximate support conditions and Plancherel relation mean that
1(F = Pa)fll2 < el[fll2 and 10/ = Pe)fll2 < 6lf]2

and hence A A A
(I = PaPa)fll2 < |I(/ = Paf)ll2+ [|Pe(/ — Pa)fll2

< (6 +e)|fll2.
Therefore, ||PgPaflls > (1 — 6 — €)||f|lo. Therefore, (1 —8 — )2 < ||PgPal? < H,E’BPAH%. As

Pa, Pg are projections, we see that (ﬁBPA)*/SBPA = PgP,4 and hence ||/55PA||,2: = tr(ﬁBPA). To
compute the trace, we use the basis dx, k € G. If k & A, then PgPadx = 0. If k € A, then
PgPadi = Pgdix = (150). Hence the (k, k) entry of PgPp is equal to

1 ~ 1 — 1
7 > (1800 x(k) = + > x(k)x(k) = +lBl.
N ~—
x€G XEB
Summing over k € A, we get ||PgPall% = %|A| x |B|. Combining this with the lower bound for the

Frobenius norm, we get |A| x |B| > (1 —§ — &)?N. [ |
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Remark 5. Bounding the operator norm by the Frobenius norm may seem to be loose, since we bound
the maximum eigenvalue by the sum. On the other hand, even with € = § = 0, we know that equality
can be achieved in Theorem 4. It is instructive to work out PgPj4 explicitly in that example to see

how this comes about.

Here is a robust uncertainty principle mixing the L and L? norms. The proof is not hard - it is
closer to that of Theorem 3 than that of Theorem 4.

Exercise 6. Let G be a finite abelian group of order N. Let f : G — C. Suppose A; is a (1, €) support
for £ and Bs is a (2,6) support for £. Then, |A1| x |Ba| > N(1 —€)?(1 — §)2.

Observe that PgPaf = f if and only if f is supported on B and f is supported on A. Hence, any
upper bound on H:E’BPAH that is strictly less than 1 may be interpreted as an uncertainty principle.
Donoho and Stark remark in their paper that while \/[A] - |B|/N is a natural upper bound for || PgPa||,
it is the latter norm itself which is the key quantity of interest. The following exercise contains a

quantitative refinement of Theorem 4.

Exercise 7. If AC G and B C G, show that ||PgPyl| = sup{”ﬁ;%H2 g € L2(G), Sq C A}. Deduce
that if A x |B] < aN for some a € (0,1), then 3°, (g [9(X)1* < a ", 6 19(x)|* for any g € L*(G)

supported on A.

4. Applications of uncertainty principle to signal recovery problems

4.1. Recovering a bandlimited signal from periodic measurements. Consider Z, and assume that

n = rs. Recall the Poisson summation formula
1 s—1 1 r—1
il E(j d) = — E(ks)e2mikd/r
LUt = S ke

forany F € L?(Z,). Let Ity ={n—k+1,..., n—1,0,..., k — 1} be the “interval” of length 2k — 1
in Z, centered at 0. Suppose F is supported on /, where 2p —1 < r. Then on the left side of the
Poisson summation formula, only the term with j = 0 contributes, and hence we get
r—1
F(d) = \\/; kz% F(ks)e®™kd/r for d e I,.
Thus, we can recover F from F(0), F(s), ..., F((r —1)s). This is not too surprising, as the space
of functions supported on /, has dimension 2p — 1, and we have r > 2p — 1 Fourier coefficients here.

Reversing the role of F and F, we can also say that Fis supported on /4 where 2g — 1 < s, then F
can be recovered from F(0), F(r), ..., F((s—1)r).

F(d)= Y=Y F(kr)e?™kd/s fordecl,.
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By the Fourier inversion formula, this also recovers F. What we have proved is the discrete version

of the Shannon-Nyquist formula.

Theorem 8 (Shannon-Nyquist, discrete version). Suppose F : Z, — C is a signal bandlimited to

frequency q, then F can be recovered from its values sampled at points reqularly spaced r distance

apart, provided r < 5 q”_ I-

Strictly speaking, we have proved this only when n is a multiple of r. The general case is outlined

in the following exercise.

Exercise 9. Assume that F is bandlimited to frequency g. Show that the linear transformation from

(F(k))_gr1<0<q-1 toO (F(jr))ogngn;rlJ is injective if r < 55 (compute the matrix of this linear

transformation explicitly) and hence deduce Shannon-Nyquist theorem.

With the interpretation of Z, as time and Z, as frequencies, it is the convention to say that a
function supported on /, is time-limited to p and that a function whose Fourier transform is supported
on /g4 is band-limited to g. Here we are using a special feature of Z,: the characters xk() = e2mijk/n
can be ordered in increasing order of | k|, and |k| indicates the frequency (i.e., how rapidly the character
changes from one point to the next). A band-limited signal is one that used only low frequencies.
The real content of this theorem comes from the fact that band-limited assumption may actually be

an assumption satisfied in reality.

4.2. Recovering a bandlimited signal from incomplete noisy measurements. Let B = /; =
{—q...., g} and A=1{0,r,2r,..., (s — 1)r} (here no relationship is assumed a priori on @, r, s, n).
Make the assumption of bandlimitedness: That f is supported on B. Suppose we observe the signal
f only on A and those observations are also noisy. That is, we observe g(k) = (f(k) + v(k))1lkga.
The question is: Can we recover f from g? Of course, as there is noise, one does not expect exact
recovery, what one asks for is an estimated signal close to the original one. The following theorem

assures us that it can be done.

Theorem 10. Assume that |A| x |B| < N and let Q = (I — P4Pg)~1. Then ||f — Qgll2 < Casllvl2

where C; % = 1 — w|A| x |B.

Proof. We know that ||PaPg|| < &|A| x |B|, hence it follows that | — PaPg is invertible and in fact
Q=1+ PaPg+ (PaPg)*+ ...

Observe that g = (I—Pa)f+v = (I —PaPg)f+v since Psf = f. Therefore, f = Q(g—v) = Qg—Qu.

Since ||Qvl|2 < ||Q]l]|¥]|2, using the bound for the norm of Q, we get the conclusion. |

Remark 11. Donoho and Stark remark that the expansion formula for Q can be used efficiently

to numerically find Qg by starting with fo = g and setting fry1 = g + PaPsfi for k > 0. As
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PaPsfi(x) = 0 for x & A, observe that fi(x) = g(x) for all x € A and for all k. It is the unobserved
values that get updated at each iteration and finally converge to the fixed point of the equation
h = g+ PaPgh which is h = Qg.
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CHAPTER 3

Social choice and Fourier analysis on Z}

1. Fourier analysis on Z1 revisited

For the product group Z5, we introduce a few other basic notions (I do not know if these can be

generalised to other groups)5.

Discrete derivative and influence: For f : ZJ — C and index j € [n], define
1
Dif(x) = E[f(le o Xen LXi, o Xn) = F(xa, o X1 =1 X, o X))l

This measures the dependence of the value of f on the jth co-ordinate, when all other co-ordinates
are fixed. It depends on the values of the other co-ordinates (but crucially, not on x; itself). An overall

measure of the influence of the jth co-ordinate is given by
1
Inf;(£) := §||Djf||§-

Of special interest are Boolean functions f : Z5 — {—1,1} (sometimes the target space is written
as {0,1}). We may think of this as a voting rule, where there are two candidates, and each x € Z}
denotes a particular voting pattern (x; being the vote of the jth person). Each Boolean function f
gives a different way in which the votes are pooled together to arrive at a decision. If f is a Boolean
function, D;f(x) = £1 if the jth voter's vote changes the final decision (when all others fix their votes)
and D;f(x) = 0 if the decision can be made on others’ votes, disregarding the jth voter. Therefore,

the influence of voter j is the probability that his/her vote changes the decision:

X€ELS
= P{f(x) # F()))

where X{ = x; if i # j and x{ = —x; if i = j. We use the word probability to mean the uniform
probability measure on Z5. In other words, each voter votes independently with equal probability to

either candidate.

Example 1. Let S C [n]. Then Djxs = 0ifj ¢ S while Djxs = xs\(;3 if S 2. Note the formal

similarity to the way we usually differentiate a polynomial (except that in ZJ the degree of any variable

5n everything we do on Z5, we follow Ryan O’donnell’s book Analysis of Boolean functions. The book has a wealth

of material and very good exposition - we make a small subselection.
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is at most 1). In this case, D;xs(x) = %1 for all x and hence Inf;(xs) = 1 for j € S. Of course the

influence is zero for j & S.
Characters xs are Boolean functions. Here are a few others.

Example 2. If nis odd, we define the majority function M(x1, ..., Xn) = L+ 45,50 — L+, +x,<0
(here the addition is in R, not in Z). A dictator function is one of the form x — x;, for some j € [n]
(then J is called the dictator). A recursive majority function is defined as follows: Imagine a country
that is divided into states, states divided into districts, districts divided into towns. In each town the
majority vote is taken to decide which party candidate is elected. A majority vote among the town
representatives decides the state representative and the majority among state representatives gives

the overall decision.

Fourier expansion of derivatives: Let f : Z5 — R and j € [n]. We write j = 1 for simplicity of
notation. If S 3 1, then 5;‘(5) = 0 because D;f(x) does not depend on x;. If S Z 1, then

DiF(S) = 5 S 1F (Lo o) = (=L )l [
X€EZLY i€S
= Z f(xg,..., Xn)X1 Hx,
XEZLY i€S
= f(Su{1})

In general D,;f(S) = f(SU{j}) ifj ¢S, and equal to zero otherwise. Equivalently,
Dif(x) = Z F(S)xs\ (3 (%)
S:53j
One could also have arrived at this by applying D; to the expression f(x) = > ¢ f(S)xs. Going
further, this also shows that 7(S) = Dsf(f) where Dg = Dj ...Dj for S={j,..., Js}. Thisis (a

multiple of) the mean value of Dsf.
Exercise 3. Let n=2m + 1 be odd and let M be the majority function. Show that

~ 0 if |S] is even,

M) = (-1)2%@ F1S| = 2k + 1.
[Hint: Take S = {1,..., 2k + 1} and calculate D;M(x). Use the relationship between Fourier
coefficients of M and D1 M.]

The heat semi-group: For f € L2(Z3) and t > 0 (we interpret t as time), define

! Z e HSIF(S)xs.

on/2
SCln]
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In other symbols, @(5) = e tISIf(S). Thus the mean value stays constant as 51:\7((@) = f(0),
while every other Fourier coefficient decays exponentially fast. From the definition it immediately
follows that Q15 = Q¢ o Qs, in other words t — Q; is a semi-group. It may also be seen that Q; is

self-adjoint:

—

(Qif.g) = (Q:f.a) = > e PIF($)3(S) == (F.Qr9) = (£.Qu9).
S

One can think of Q+f as interpolating between f = Qo(f) and the constant function 2*”/27?((7))1 =
QRoof. If one thinks of f as giving the initial temperatures at points of Z5, what Q; does is to smooth
it (like heat flows from hotter to colder places, reducing gradient in temperature) all the way till every
vertex is at the same temperature. To make the analogy with the heat equation closer, differentiate
Q:f w.r.t t to get

d 1 _ -
Q0 =—5 > e lSIF(S)xs(x)
SClnl

1 PN
Y Z Ze PIF(S)xs(x)
SCln] jes
1 _ilel
= o2 Z Z e t‘slf(S)XS(X)
JjE[n] 5:53j

1 TP
= 5o 2% D & (S ()

j€[n]  S:S3j
= —LQtf(X)
6

where L =37, x;D;. Comparing this with the usual heat equation, we may call L the Laplacian®.

Exercise 4. (1) Find the Fourier coefficients of Lf in terms of Fourier coefficients of f. (2) Show
that Q; = e~ tL. (3) Find the spectral decomposition of L and of Q¢ for any t > 0.

Remark 5. Some prefer to write p = e~* and define T,f by 7/},\7:(5) = pISIf(S). This has the
advantage of allowing p to be negative. Usually only p € [—1,1] is considered. One quantity of
interest is

e (Tof. £ = o S IAS)P® = ElF(F ()]
S

675 see why it is called Laplacian, observe that
xf(x) =3

and hence Lf(x) = 1 > xlf(¥) = f(x)] where y ~ x means that y and x differ in exactly one co-ordinate. In particular,
Lf(x) = 0 if and only if f(x) is the mean value of f at its neighbours in the Hamming cube (the graph with vertices
{—1,1}" and edges between vertices that differ in a single co-ordinate). This is analogous to the mean value property
of harmonic functions (which are functions that satisfy Au = 0) and the formula for Lf is itself analogous to the fact

that Au(x) = cglimso [, ga1 [u(y) — u(x)]do(y).
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where x,y € Z3 are random variables that satisfy (1) (xk, yx) are independent across k, (2) E[x(] =

E[yk] =0, (3) E[xxyx] = p. In this case, expanding f in Fourier series,

E[F()f(y 2,,Zf )F(T)Exs ()xT(v)]

= S A)FmE | TT % 1w I v
ST

iES\T ieT\S iesSnT
1
= S|
=5 2_IF(S)Pp
s

because the expectation factors over i. This is how we got the second equality in (1). The quantity
E[f(x)f(y)] has the following interpretation for a Boolean function f: Start with x uniformly randomly
chosen from Z1. For each co-ordinate k, with probability %—I—%p, keep xx as it is, and with the remaining
probability negate it. Let the resulting random vector be called y. Then, if f is a Boolean function,
then 2 + LE[f(x)f(y)] is the probability that the value of f did not change. This is a measure of
how stable f is to perturbation of a few co-ordinates, and is denoted Stab,(f). In this language,

Stab,(f) = (T,f, f). For positive p, we may also write this as (Q+f, f) with e™f = p.

For those familiar with some probability, we explain how Q; and L are related to a certain Markov
chain.

The Markov chain interpretation: Let X(t), t > 0, be a Z5-valued Markov chain in continuous
time defined as follows: At each j € [n], there is a Poisson clock, meaning that there is a sequence
of random times 0 < Tj; < T;> < ... where T, 1 —T;, are i.i.d. Exponential random variables with
mean 1. At the time T;,, the jth co-ordinate of X; is refreshed, meaning that it is reset to &1 with
equal probability. If the process starts at X(0) = x € Z5, then we claim that the expected value of
f(X¢) at time t is precisely Q:f(x). If you are not familiar with Markov chains, ignore this, otherwise
take it as an exercise (basically the differential equation for Q;f is the Kolmogorov equation for a
Markov chain). In particular, if f = d,, then Q:f(x) is the probability that the Markov chain started
from x at time O is at y at time t. In other words, Q; is the transition matrix for the Markov chain.
As we saw before, —L = %Qt‘tzo. In Markov chain literature, this is called the generator of the
Markov chain. One fact that is clear from the Markov chain interpretation but not so obvious from
the Fourier definition is the positivity of the operators Q¢: If f(x) > 0 for all x, then Qf(x) > 0 for
all x.

Suppose the Markov chain starts at a uniform random point in Z1, i.e., Xo ~ uniform(Z5). What
about X:7 It is easy to see that X; is also uniform on Zf, but X; is not independent of Xg. As the
co-ordinates evolve independently, it is enough to look at what (Xo(1), X¢(1)). If there is no clock-ring
between time 0 and time t (an event of probability e™!), then Xo(1) = X;(1). Otherwise, X¢(1) is

an independent random choice of £1. Hence, E[X(1)X:(1)] = et denotes the correlation between
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Xo and Xt. As t — oo, the correlation decays rapidly. We see that
(Q+f, ) = E[f(Xo)f(X¢)] =: Stabe-:(f)

where we have introduced the notion of Stability of f at parameter p € [0, 1] as E[f(x)f(y)] where
(x;, y;) are independent across i and E[x;] = E[y;] = 0 and E[x;y;] = p. For a Boolean function, it

denotes the probability that the value of f changes if each input bit is refreshed with probability 1 — p.

By Plancherel’s theorem, we see that for any t > 0 and any f € L2(Z3),
IQefI3 =D 1F(S)Pe™ < Y IF(S)IP = IIfI3.
s S

Thus, ||Q¢]l2—2 = 1 (equal, since Q:1 = 1). In the following exercise, you are asked to show the

same for any LP.

Exercise 6. Show that ||Q¢||p—p =1 for all t and all p € [1, o¢].

2. Voting between two candidates

We think of x € Zf5 as a pattern for voting, where the jth voter votes for candidate x; = £1.
The votes can be combined together in any reasonable or unreasonable way using a Boolean function
f:Z5 — {—1,1} to arrive at a final decision. For example, the majority function (well-defined if n
is odd) maps x to +1 if more voters vote for +1 than for —1. Taking f(x) = x7 is a dictatorial vote
where the first person decides, ignoring everyone else. If f depends only of x1, ..., Xk, then the first
k individuals form a politburo that decides, ignoring everyone else.

What are desirable properties of such a function? Here are some. Say that f is
(1) wnanimousis f(1) =1 and f(—-1) = —1,
(2) monotone if f(x) < f(y) whenever x; < y; for all /,
(3) odd if f(—x) = —f(x) for all x € Z3,
(4) symmetric if f(Xg(1), .-, Xn(ny) = Flxa, ..., xp) forall me S, and all (xq, ..., Xn) € Z3.

The majority function (when n is odd) has all these properties and is the only one to do so!

Proposition 7. Let f : Z3 — {—1, 1} be monotone, symmetric, and odd. Then n is odd and f is the

majority function.

Proof. Since f is monotone and symmetric, it follows that f(x) < f(y) if >°;x; < >, y;. Indeed, given
x and y, by permuting co-ordinates bring to the form (1,..., 1,-1,..., —1), and two such vectors
are comparable co-ordinatewise. Therefore, f(x) = 144 +x,>¢ for some t. For this to be odd, we

must take t = 0 and to avoid the possibility of x; + ... 4+ x, = 0, we must also take n to be odd. W
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Observe that we did not assume that f is unanimous. Indeed, if f is monotone and odd, and not
a constant, then it must also be unanimous. Dictator functions and recursive majority functions are
not symmetric, although they are monotone and odd (and hence also unanimous).

Here is another nice thing about majority function. It is the one that maximizes the expected
number of happy voters! Here we say that a voter is happy if the final decision agrees with his/her
own vote. Of course, to talk of expected number, we bring in the assumption of independent random
voting. If H is the number of happy voters, then Y7 E[x;f(x;)] = E[2H — n], hence our claim is

captured by the following proposition.

Proposition 8. Let n be odd and let f : Z5 — {—1,1}. Then >.7_; E[x;f(x)] is maximized uniquely

when f is the majority function.

Proof. Since |f(x)| = 1, we have
D EXF()] = E[f()0a+...+x)] < Ellxa+ ...+ ]
i=1

with equality if and only if f(x)(x1 +...4+Xxy) = |x1 + ...+ Xxp|. When nis odd, the sum of x;s is not

zero, hence we must have f(x) =sgn(x; + ...+ x,). This is the majority function. |

In the following exercise, you get to show that in any monotone, symmetric voting scheme, no voter

can have a large influence on the outcome.

Exercise 9. If f : Z ~ {—1,1} is monotone, show that Inf;,(f) = f({i}) and that E[H] = 3n +
%27:1 F({i}). If in addition f is symmetric, show that Inf;(f) < \% for all /.

3. Voting between three candidates

A question of interest is how to decide if there are three candidates A, B, C? One approach is to
have three 2-way elections, between each pair of candidates. Let us assume that the same function
f:Z5 — {—1,1} is used to decide each pairwise election. If it so happens that A beats B and A
beats C, then A may be declared the winner unambiguously (the election between B and C only serves
to find the runner-up). Such a winner is called a Condorcet winner. The problematic situation is that

there may be no such candidate who beats the other two.

Example 10. If there are three voters with preferences A> B >Cand B>C > Aand C > A> B,
then A beats B while B beats C and C beats A. There is no Condorcet winner.

Is this likely? Is there a clever choice of the function f that ensures there will be Condorcet winner?
Suppose there is a single voter who prefers A to B and B to C and C to A. In this silly situation,
there is no way to have a decision. Let us assume that at least at an individual level, the voters

have clear preference: Namely they have a strict order of preference between the three candidates.
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Then irrespective of the number of voters, if f(x) = xq, i.e., 1 is a dictator, then we always have a
Condorcet winner (the first preference of 1). It turns out that dictator functions are the only ones

that have a Condorcet winner for every voting pattern!

Theorem 11 (Arrow's theorem). Assume that each voter has an unambiguous order of preference for
the three candidates. If f : Z3 — {—1,1} has a Condorcet winner for any x € Z5, then f(x) = xx or

f(x) = —xx for some k (i.e., a dictator or anti-dictator function).

The proof that we give is probabilistic: Assume that all voters choose one of six possible preferences
(permutations of A, B, C at random. Then we show that there is a positive probability that there is
no Condorcet winner, unless f is a dictator function.

To use the language of Boolean functions, let x, y, z € Z5 denote the voting between A and B,
between B and C and between C and A, respectively. Here y; = 1 indicates that ith voter prefers B to
C and y; = —1 denotes the opposite preference. By assumption, (x;, y;, zj) € {(1,1,1),(=1,-1,-1)}

(check that all other 6-tuples lead to unambiguous ordering of the candidates).

Kalai's proof of Arrow’s theorem. Choose (x;, y;, z;) uniformly at random from the set {—1,1}3\
{(1,1,1), (1,1, —1)}. Make the choices independently for 1 < < n. Fix f € Z5. The event that
there is no Condorcet winner is the event that f(x) = f(y) = f(z). For three bits u,v,w € {—1,1},

observe that uv +vw + wu =3 if u = v = w and —1 otherwise. Hence,

PLF() = F(y) = F(2)} = SE[L+FIF(Y) + FF() + AP = 3+ SE[FGIF)]
Writing f(x) = \/% Y scrn F(S)xs(x), we see that
EFCIF] = 55 > FSFTEXsCOxr ()]
sTCzs
Now,
0 fS#T,
Elxs()xr(y)] =E Xi Yi Xiyi| =

ST iel_:{T /el;{s iels_£T (-1/3)151 ifS=T,

since the expectation factors over i, and E[x;y;] = —% while E[x;] = E[y;] = 0. Thus we arrive at

4 x 2n 3
SCln

S|
]

1 1 3 oo
> -5 % > If(S)

4 x 2n
SC[n]
1 1
=7 T 2 P
XEZLY
=0
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since f(x) = £1 for all x. This shows that P{f(x) = f(y) = f(z)} > 0 (of course!) and that this
probability is strictly positive unless £(S) = 0 except for |S| = 1 (see the inequality step above).

In that case, we must have f(x) = a;xy + ...+ anx, for some a; € C. If more than one a; # 0,
say ai, ap are non-zero, then ajx; + a>xo can take the values —a; — ap, a1 — as, a» — a1, a1 + a
of which at least three are distinct (why?). which means that f takes at least three distinct values,
contradicting that f is a Boolean function. Hence, we must have at most one non-zero coefficient,
and if that is the k-th one, then f(x) = x, or f(x) = —xk. [ |

Observe that the proof shows that the probability to not have a Condorcet winner is equal to

S|
o ()

SCn]

which is what we earlier denoted as %(1 + 35tab7%(f)). That is, the above quantity is equal to
1 3
7 TP =1}

where x, y are uniformly random on Z5 with E[x;y;] = —%. One way to generate them is to throw a
fair die for each /, and set
+1 if throwis 1,2, 3, +1 if throwis 1,4,5,

Xi = Yi
—1 if throw is 4,5, 6, —1 if throwis 2,3, 6.

Exercise 12. For the majority function, numerically compute the probability that there is no Condorcet
winner among three candidates and check that happens as n — oo, the probability converges to a
non-zero number.
) : o 3 1\ _
Extra: Can you show that in fact the probability converges to 1 — 5 arccos (—g) = 0.0877...7
One way is to use the interpretation in terms of Stab_1(f) together with the central limit theorem,
3

preferably in a justifiable manner.

The key point of the exercise above is that the probability does not approach zero as n — oc.
Otherwise, we would ignore the positive but small probability of the unpleasant outcome, when the

population size is large. The next section continues this discussion.

4. Robust version of Arrow’s theorem

Arrow's theorem shows that if we demand a Condorcet winner 100% of the time, then we must
choose bad systems like a dictator function. A question relevant to real applications would be: if we
allow for a small positive probability of not getting a Condorcet winner, can we perhaps use one of
the nicer systems like the Majority function or something reasonably equitable? Turns out, no! The

following result is a robust or stability version of Arrow’s theorem.
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Theorem 13 (Kalai; Friedgut—Kalai—Naor). Suppose that for a Boolean function f : 3 — {—1,1},
the probability of not getting a Condorcet winner in a 3-way election is at most 6. Then, there is some
set E C 73 with |E| < C82", and k € [n] such that on Z5 \ E we have either f = X4y or f = =Xk}

Here C is a constant, not depending on any parameters. The statement looks quite strong, since
it says that f is actually equal to +x, on a set of probability close to 1. However, since f and x
are Boolean, this is equivalent to measuring the distance in other ways. Indeed, for any two Boolean
functions f, g, we have

1 1
[{x € Zz: f(x) # 90} = D) =g = 2If - gl5.
X€EZy

Proof. Taking inspiration from the proof of Arrow’s theorem, set g = 2="/237_, f({k})x{k}. We
show that f and g are close, and then that g (or —g) is close to one of the characters X{k}-

Step 1. We show that f and g are close. From (2),

S|

1 3 ~ 1

P{no Condorcet winner} = 2t oo Z 17(S))? <_3)
SCln]

1 1 <o 1 AU
i LI g 2 )
k=1 3<|s| odd

A\

v

N
|

~

X | =
N

3

—~
N—r
o
|

(o)

X |
N
/N
=
|

3|
=
—~~
-
N—r
o
~_—

Hence if this probability is at most 8, we get 5= > F_; |f(k)|? > 1 —56. Then it also follows that
1 1 ~
Sallf =gl =27 > 17(S)? <58
|SI#1
and ||g]l> > 1 — V/56.

Step 2: We show that g2 has small variance. This is because of hypercontractivity. More precisely,

we use Exercise 17 in the next section, we get
E[(¢° — 1)*] < (9E[(9* — 1)*]).
Observe that [|g]|3 < [|f[|3 = 2", hence P{|g| > M} < 1 if M > 18. Then,
E[(9° — 1)%] = El(¢” — 1)*1jg<pm] + E[(¢° — 1)*L g5 ]
< (M +1)’E[lg — f’] + VEl(¢? — 1)*1\/P{lg| > M}.

In the second summand we used Cauchy-Schwarz while in the first we wrote g> — 1= (g — 1)(g + 1)

and used that [g+ 1| < M+ 1 and |g — 1] < |g — f| (since f is Boolean).By the choice of M and
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the Bonami lemma conclusion obtained above, the second summand is bounded by 2E[(g 1)?].

Transfer this to the other side to get
E[(9* — 1)°] <2(M + 1)°E[|g — f[]
< 10(M +1)%6

by invoking Step-1.

Step 3: Now we use the Fourier expansion of g,

F{iNF
. —<2nZIf{} ) 22({}) W,

i<j

to see that

2 2
Var(g?) = L 3~ 4DV

i<Jj
1 S~ s v
—2(1- o SR
i=1
Now we observe that Var(g?) < E[(g? — 1)?] which is bounded by C§ by Step-2, and that

>IN < (max FUNR) S FUNE = 27 maxl D
i=1 i=1

This leads to
1
rn/ax’2 7 F{i })’ >1- §C6.

If k is the index that attains this maximum, then it follows that ||f £+ x{k}||§ <. |

5. Hypercontractivity

An exercise we gave earlier said that [|Q¢|lp—p = 1 for 1 < p < co. It turns out that something
more is true. For each 1 < p < g < oo, we have [|Q¢||p—q = 247 p, for sufficiently large t (how small
depends on p and q). This property is called hypercontractivity. There are other abstract definitions
of what it means for a random variable to be hypercontractive, but we limit ourselves to this.

The inequalities can be written more cleanly if we use the p-norms with respect to the uniform
probability distribution on Z7 instead of the counting measure. Let [f], = || £]|,2="/P denote this new

norm.

Theorem 14 (The hypercontractivity theorem (Aline Bonami; Nelson, Gross)). Let 1 < p < g < co.

Then for e7t < \/jvgj, we have [Q¢] <1 e, [Qef], <[], forall f: 73— C.

p—q =
Why should it hold for large t but not small? First observe that [[f]]p is increasing in p, for any f,
and the increase is strict unless f is constant. Now consider the extreme cases:

(1) t=0. Then Qof = f, hence [f], < [f], holds in general only if g < p.
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(2) t = 00. Then Quoof = 2-"2f(()1 is a constant function and hence its p-norm is the same

for all p. Hence [[Qoof]]q < [[f]]p holds for any p, q.

The hypercontractivity theorem gives something intermediate. In fact, turning the statement around,
we see that for any finite t and any 1 < p < oo, there is some g > p (to be precise, any g < 1+(p—1)et
will do) such that [Q:f], < [f], for all f.

We can state this in another way: Remember that (Q:f, g) = E[f(x)g(y)] where x,y are e t-
correlated (i.e., (x;,y;) are independent, E[x;] = E[y;] = 0 and E[x;y;] = e~ !). Hence, for g <

14+ (p—1)et and ¢ its conjugate (% + % =1), we have

E[f(x)9()] < [Q:f] l9ly < (1,191

For t = 0, we have x = y and g = p and the inequality above is just Holder's inequality [fg],; <
[[f]]p[[g]]q. For t = oo, we see that x and y are independent and g = oo, and hence the inequality above
says [f ®g]; < [fl;[9];. The inequality above gives an intermediate conclusion, when the correlation
between x and y is neither 0 nor 1. To see that it is a strengthening of Holder's inequality, observe

. . , , . .
that the latter would have given [f],[g], on the right, but ¢" < p’, hence the quantity [f],[g], is
smaller.

We prove only very special cases of this inequality.

Proof of hypercontractivity for p =2, g = 4. Write f(x) = x,9(x) + h(x) where

1
on/2

S ASUIMXs). h) = O FSxs()

SC[n—-1] SC[n—1]

9(x) =

are functions of x, ..., xp—1. Let p= et and observe that Q;:f(x) = px,Q:+g(x) + Q+h(x). We use
induction on n. Hence, assume that [Q:9], < [|g], and [Q+h], < p[h],. Then,
(Qef(x))? = P*(Qeg(x))? + (Qeh(x))* + 20xa(Qg(x))(Qeh(x)),
(Qef (x)* = P(Qeg(x))* + (Qeh(x))* + 60*(Q:g(x))*(Qeh(x))*
+4x0(Qeg(x))* (Qeh(x)) + 4xa(Qeh(x))*(Qeg(x)),
where we used x,% = 1. When we sum over x € Zj, since Qg and Q+h depend only on xq, ..., Xn—1,

the sum over x, factors away and hence all terms with x, factor (the last term in the first line and

the last two terms in the second) vanish. We are left with

[[Qtfﬂg = PZ[[th]]g + [[ch]]ﬁ,
[Q:f]s = p*[Q:als + [Qeh]s + 60°[(Q:9)? - (Qeh)?],
< 0*[Qrg]s + [Q:h]; + 60°[Q:9]3[Q:h]; (Cauchy-Schwarz)

< p*[Qeq]5 + [Q¢h]5 + 60°[Q:g]5[Q:h]5 (inductive hypothesis).
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If 6p° < 2, then p < 1 and the last quantity is bounded from above by
[Qegl3 + [Qehl} + 2[Qegl3[Qe A3 = [Q: 5.

Thus the induction closes and we get the conclusion [Q:f], < [f],, for p < %
Of course, it remains to check the base case n = 1. In this case, we have f(x) = a + bx and

Q:f(x) = a+ bpx for x € Zy, and direct calculation gives

[fI5 = [(a+b)*+ (a = b)*)* = 4a* +4b* +84°p°,
[[Qtf]]i = (a + bp)4 + (a - bp)4 = 224 _|_ 2p4b4 + 12’0232[92.

Therefore, if 12p% < 8 (certainly satisfied if p < %), then by comparing coefficients we see that
[Qefls <[] u

Exercise 15. Use the fact that [Q¢], ., <1 for e™t < % to show that [[Q,g]]%ﬁ2 < 1 for the same

values of t.
Here is a useful corollary.

Corollary 16. If f : 73 +— C is homogenous of degree k (i.e., f(S) = 0 unless |S| = k), then
[1. < 32[f.

Proof. Immediate from the (2, 4)-hypercontractivity, since Q;f = okf if emt = p. |
But in fact, the same conclusion holds even without the assumption of homogeneity.

Exercise 17. [Bonami's lemma] Show that if f has degree at most k (i.e., f(S) = 0 if |S| > k), then
[fls < 35[[f]]2. [Hint: Imitate the proof of the (2, 4)-hypercontractivity theorem. If you can actually

deduce this exercise from that theorem, | would like to know how that can be done.]

5.1. Sahasranand’s proof of Bonami’s lemma from (2, 4)-hypercontractivity. As we have seen,
for a homogenous polynomial f, the inequality [f], < ,ok[[f]]2 for p = 1/4/3 follows from the (2, 4)-
hypercontractivity. For general f of degree at most k, one is tempted to decompose it as f =
fo+ ...+ fx, where f; = ﬁz\ﬂ:/ f(S)xs are the homogenous components of f. Then with
e t = p, we have [Q:f;], < [fi], for each i and Q:f = Q¢fo + ... + Q¢fx. But it is not clear how to
relate [f], with [@Q;f], and the individual [Q:f], (all sorts of “cross terms” enter). Sahasranand’s’

trick is to notice that such difficulties disappear on the 2-norm side, by orthogonality.

’Sahasranand Kodinthirapully Ramanadhan, student of ECE department, [ISC.
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To use this observation, let g; = p~'f; and g = go+ ...+ g«k. Then Q:g; = f and Q;g = f. By the
(2, 4)-hypercontractivity we have [f], = [Q:9], < [g],. On the other hand, g; are orthogonal, hence

[fI7 < 915 =[5+ - - + [9]3
= [fol5 + o 2[Rl + .- + o> [Ad5
<o ([RI3 + AR + .. + [A13)
= o 2¥[f]5

by the orthogonality of the fis. As p = 1/4/3, we have proved that [f], < 3%/2[f].,. [ |
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CHAPTER 4

Dirichlet’s theorem on primes in arithmetic progressions

This is a famous theorem of Dirichlet, often referred to as the starting point of analytic number

theory8.

1. The theorem

Theorem 1 (Dirichlet). Let a, d be co-prime natural numbers. Then the arithmetic progression

a,a+d,a+ 2d,... contains infinitely many prime numbers.

It is clear that the condition of a, d being co-prime is necessary, otherwise, there is at most one
prime number in the sequence. For special cases, it is possible to prove this theorem along elementary

lines like that of Euclid’s proof that there are infinitely many prime numbers.

Example 2. Let a = 3 and d = 4, so the sequence is the set of number that are —1 (mod 4). If
p1, ..., Pk are all the prime numbers in this sequence, then 4p;...px — 1 is not divisible by any of
them, and must have a prime factor other than 2, p;1, ..., pi. If all its prime factors were of the form

4j + 1, their product would also be 1 (mod 4), but the number constructed is —1 (mod 4).

In general, apparently there are no such proofs® and the proof of Dirichlet’s theorem is not analogous

to Euclid's proof. It is much closer to Euler’'s proof of divergence of Zp%, and indeed, the proof

1

proceeds by showing that > p=a(mod d) p°

= 00, or what is the same, »_ —ooassil

1
p=a(mod d) p

2. Euler's proof that Z% =00

We ignore convergence issues (which will be justified later in greater generality) and recall this
proof. The starting point is Euler's product formula, valid for s > 1 (one can also take complex s with
Re(s) > 1, but we don’t need it here)

1 1 1 1
p ps

p

8Many books have the proof. Serre’'s A course in arithmetic, Apostol's Introduction to analytic number theory and
Stein and Shakarchi's Fourier analysis: an introduction, all have superb expositions. Because of this, our notes will be
quite brief.

9But there are “elementary proofs" such as one by Selberg.
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The last equality is clear, and the previous one is an expression of the fundamental theorem of

arithmetic that every natural number other than 1 can be written as a product of prime powers in a

unique way.
Now take logarithm of both sides to write log((s) = —>_ log(1 — %) Since log(1l — x) =
—x — 3x2 = 1x3— . for [x| < 1, we can write

1 1
log ¢(s Z* *Z@JFgZﬁ*--
P
For k > 2 and s > 1, we see that
1
Soe sl s ) @ g
n>2

Thus

1 1 1
22,3%*32,)% <Y T

k>2

Therefore, log((s) = >_

Consequently,

PF +O(1) as s | 1. But log((s) — oo as s | 1, since >, diverges.

lim — = 0.
si1 > p°

As the left side is bounded from above by >, %, it follows that Zp% = 00.

3. Dirichlet L-functions

Let Z, = {0 < j < d—-1:(,d) =1} Thisis a group under multiplication modulo d, and the
cardinality of this group is denoted ¢(d). If x € ii, then we extend it to a function on N by setting
x(n) =0if (n,d) # 1 and x(n) = x(7) if (n, d) = 1. Here a is the residue of n modulo d. Of course,
Ix(n)| < 1.

Exercise 3. Explicitly find all characters of Z7; for d = 6, 8.

To such a character, we associate the Dirichlet L-function

Ly(s) = Z Xr(:)

n>1

which is clearly absolutely convergent for s > 1.

The trivial character: Let xo denote the trivial character of Z7. Note that when extended as a

function on N, it is not identically 1, but xo(n) = 1(n,d)=1- Hence, if p1, ..., pk are the distinct primes
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that divide d, then by inclusion-exclusion,

bxols) = Z*—ZZ mp,)sjL 2 Z mpip;)°

n>1 m>1 i<j<k m>1

=((s)

I:1>
—~
—

J=1
Hence, we also see that Ly,(s) 1T oo as s | 1. We can make this more precise. Observe that

Y CEEA PO

n>1 n>1

)

as n~° — x7° = (x — n) =37 by the intermediate value theorem, for some t € (n, x). The last series

converegs uniformly on (4, c0) for any > 0. This shows that
(1) ¢(s) = ¢5 + {(s) where { is continuous on (0, 00).

(2) ¢(s) ~ sy ass il

(3) Lyo(s) ~ % as s 1.

Non-trivial characters: Now suppose x # Xo. Then L, converges for s > 0 and is continuous there.
This follows from the following more general lemma, as x is a d-periodic sequence and Z 1 x0) =

(X, X0>L2(Z§) = 0 (which shows that the partial sums of x take at most d distinct values).

Lemma 4. Let a: N+— C. Assume that its partial sums A, = a1 + ...+ a, are uniformly bounded.

Then ), ann~* is convergent for s > 0 and uniformly convergent for s > § for any § > 0.

Proof. Let k < ¢ and consider

Hence if |A,| < M, then

Thus if k is large enough, then all partial sums of the above form are small. By Cauchy criterion, the

proof is complete. [ |
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Exercise 5. If (ap), is bounded, then show that s +— >~ - a,n* is smooth on (1,00). If partial

sums of a, are bounded, show that s anl ann~* is smooth on (0, c0).

4. Product formulas

Now let us state a more general lemma that we prove rigorously.

Lemma 6. Let a : N — C be a completely multiplicative function, i.e., a(mn) = a(m)a(n) for all

m, n € N. Assume that a is uniformly bounded. Then, for s > 1 we have

a(n) 1
> ~li—w

n pl_ps

Proof. Order the primes as p; < p» < .... Consider the finite product

k k
1 a(p;) . a(p;)?
Jj=1 1- pf Jj=1 J J

a(p1)™ ... a(pk)™
= 1 + Z Smy SMy

Py - Py

is justified. Implicitly there is a rearrangement of terms here, which is okay because of absolute

my

convergence. By the fundamental theorem of arithmetic, p™ .. . P, cover all numbers up to py.

an
nns-

exist. [ ]

Hence as k — oo, the last sum converges to ) Therefore the limit of the left side must also

Corollary 7. Forany d > 1 and any x € ZE,, and fors > 1,

Le(s) =] <1 - Xéf))_l .

p

5. Logarithm

For z € C with |z — 1| < 1, define

logz = —Z%(Z— 1)k

k>1

Exercise 8. Show that €'°97 = z whenever |z — 1| < 1. Show that for |w| < % both log(1 — w) and

log 11 are both well-defined and negatives of each other.

If x € ZS, then for any prime p and any s > 1, we have |x(p)p~°| < % Hence by the above

>_1}—1;[exp{log (1— >_1}_H<1—Xéf)>_l_Lx(S)-

P
a4

exercise,

exp {; log (1 —

x(p) x(p)
pS pS



But the exponent on the left is

Z'°< x(p)> —‘Z'Og(l‘xéf»
-y Xen

p m>1
x(p) x(p)"
g Z pms :

P m>2

The second summand can be bounded in absolute value by
1 2
E E = E - < E i
_1) = 2
P m>2 pms p ps(ps 1) p p

Thus,

+0(1)

Zp:log (1 B x[gsp)>_ zp: x(p

as s | 1. Here the O(1) is uniform over s > 1. Hence

LX(S):exp{ZXlgf)—i-O(l)} ass| 1.

Therefore, we see that the following are equivalent'®

(1) >, X(p) stays bounded as s | 1.
(2) Ly(s) does not converge to 0 or co as s | 1.

For the trivial character, the second condition does not hold, in fact we have seen that L, (s) ~
C/(s—1)ass |1, hence

Z xo(p) _
p P
As xo(p) = 1 for all but the finitely many primes that divide d, this implies (with all the rigour added
in) Euler's theorem that Ep% diverges.
For non-trivial characters, we know that L (s) — L,(1), a finite number as s | 1. Hence there is

no divergence to infinity. The following Lemma is crucial.

Lemma 9. /f x # Xo, then L, (1) # 0.

(p)
p ps

Assuming the lemma, we see that >_ X2 stays bounded as s | 1, for any x # Xo.

10A¢t this point, we have simplified the presentation of Stein and Shakarchi a bit (which makes one suspicious if we
are making a mistake!). In their book, they further define the logarithm of the L,(s), show that that definition agrees
with the sum of logarithms of 1 — x(p)p~°, and then take logarithm on both sides of the product formula. We seem to

be able to avoid some of these steps.
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_ 1
p=ap

or non-vanishing of certain continuous (even analytic) functions at certain points is marvellous! Now

Remark 10. That the number theoretic question of divergence of > is reduced to the vanishing

such connections have become routine, but Dirichlet was the first. Later, the prime number theorem,
that says that the number of primes less than x is asymptotic to log x/x, was derived by showing that

¢(s) does not vanish anywhere on the line Ims = 1.

6. Proof of Dirichlet’s theorem

Now we can put together all the ingredients to get a proof of Dirichlet's theorem. Fix d, a such

that (a, d) = 1 and consider the Fourier expansion of 1, in ZY (and then extend to all integers):

1 -
]'n:a (mod d) — (p(d) Z X(a)x(n)-
x€Z;,

Hence,

1 1 —— x(p)
D - DL D i
p:n=a (Mod d) XEZ, p:n=a (mod d)
On the right, only the summand with x = xo has a series that blows up as s | 1. For all other x, the

series stays bounded as s | 1. Therefore,
1
— =
>
p:n=a (Mod d)

as s | 1. This shows that there must be infinitely many primes that are congruent to a modulo d. In

fact, we get more information: Letting p denote the image of p in Z7%,

1 1 xo(P) 1 1
PRV g 1 P
oo P wld) S pe p(d) “s—1

The last asymptotic follows from Euler's proof, the behaviour of {(s) near s = 1, and the fact that

Xo(p) = 1 for all but finitely many primes.

p p

. logp , _1 log p
Exercise 11. Show that _72 2@ > , @S X — 00.
p=a, p<x p<x

What one would like is to show that asymptotically there are an equal number of primes in each of
the congruence classes modulo d (of course only those congruence classes a (mod d) for a co-prime
to d. That would mean showing that

1
2 gt

p<x, p=a p<x

as x — oo. The above exercise shows a statement in the same spirit, with the weight log n/n in place

of the counting function 1. This exercise shows that in terms of the weight log n/n, the
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7. Towards non-vanishing of Dirichlet-L functions at 1

The only remaining step is to prove that L, (1) # O for any non-trivial x € ZE (i.e., Lemma 9).
The following lemma is a key step towards this.

Fix d > 2 and for any prime p that does not divide d, let f(p) denote its order in Z}. This is the
smallest integer k such that p“ =1 ( mod d). Let g(p) = ©(d)/f(p).

Lemma 12. Fixd > 2. Then fors > 1,

IT txe) = I (1—1;@>g(p)_

X€Z}, p:p=(p,d)=1
In particular,
II tx(s) > 1.
X€EZ,
Proof. If w, w?, ..., wf(P) = 1 are the f(p)-th roots of unity, and if x(p) = w, then x2(p) =

w2,.. .xf(p)(p) = wP. From this, we see that the number of x that map p to a particular f(p)th root

of unity is the same for all these roots (and of course x(p) has to be one of these, since pP) =1

(mod d)). Hence p is mapped to each of them by g(p) distinct character. This shows that

f(p) a(p)
H(l - x(p)z) = H(l —w>z) = (1—zP))9lp),
X j=1
Set z = p~° and take product over all primes co-prime to d to get the lemma. [

We can use the stronger conclusion with a bit of complex analysis or the weaker conclusion with
a longer analysis (but avoiding any holomorphic functions) to prove Lemma 12. The former route is
taken in Serre's book and the latter in the books of Stein and Shakarchi and of Apostol. First we

present the real-variables approach.

Proof of Lemma 9. Recall that

_ 1 x
Lyo(s) = H (1-p7) <5—1 + C(5)>
p:pld
where ¢ is continuous on (0, c0). For x # Xgo, we know that L is continuous on (0, co). By Exercise 5
it is differentiable at 1, and hence, if Ly(1) = 0, then Ly(s) = (s — 1)L5(1)(1 + o(1)) as s — 1.

Combining with the above fact for L,,, we see that as s — 1,

O(1) if Ly(1) =0 for some X,
11 tx(s) = | -
XeT o(1) if Ly (1) =0 for at least two distinct x.
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By Lemma 12, the product on the left is bounded below by 1, hence the second possibility is ruled
out. If x is a character, so is X and Lg = Ly, hence if Ly (1) = 0, then Lg(1) = 0. Therefore, unless
X = X, we cannot have L, (1) =0.

This leaves the one case when L, (1) = 0 for one single real character (i.e., x = X). We prove this

in the next section as it is slightly longer. |

8. Non-vanishing of the L-functions of real characters

In this case, x : N— {—1,0,1}. We consider the sum

> =Y YN

(k£):ke<N r=1 kik|r

S

If r =p7*...p2m, then the inner sum is

dooxter e =) x(p)™ o x(pm)™T

0<bi<a; 0<bi<a;

=[] +x(po) + ...+ x(pe)™).
=1

Consider 1+ x(pg) + ...+ x(pg)?. Each term is 0 or £1, and always starts with a 1. Therefore, the
sum is non-negative, and in fact strictly positive unless x(pz) = —1 and a; is odd. In particular, if all
ap are even (same as saying r is a perfect square), then the sum is at least 1, and so is the product.

Thus, writing r = t2 (other terms are non-negative and dropped)

(k) 1
(1) X5 ™ 2 2 jogVN+0(1),
(k,ll)%;islv \//72 tSZW ‘

On the other hand, we can write the sum on the left as
X (k) X (k)
@) Sy MLy oy 2
<N k</N L<VNV/N<k<

Referring back to the proof of Lemma 4, we recall that if partial sums of (a,), are bounded, then

|Z;’:m ajj—°| < Cm™. Therefore, we can bound the second summand in (2) by

1 x (k) 1
YAl 2 TS 5 =00
e<W\/Z‘m<kg’y vk ’ e<V/N VN

by bounding the sum of 1/v/2 by the integral of 1//x over the appropriate range.
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The first summand in (2) can be rewritten as (for some ¢, use Exercise 13)

B B 0ol

k<v'N k<v'N

VN ) N
~ovy My 3 (,/ ZH
=2VN(Ly(1) — O(—=)) +O(1) + O(1
(Lx(1) (m)) (1)+0(1)
where we have repeatedly used the above quoted fact from the proof of Lemma 4, and of course that
Ly(1) =372, X(k) Plugging all this back into (2), we see that

> ’\‘/(k%) = 2V/NL, (1) + O(1).
(k.8):ke<N

If L, (1) =1, this contradicts (1). Hence L,(1) # 0. |

Exercise 13. If 0 < s < 1, show that >7_, & = 1 — oy T O™,

The proof of non-vanishing of L-functions for real characters was achieved by summing the function
x(k)/v'k€ on lattice points (k, /) € N? that lie under the hyperbola xy = N, in two different ways.
This idea can be used for other functions to obtain useful number theoretical information. For example,
a well-known arithmetic function is d(n), the number of distinct divisors of n (e.g., d(6) = 4). This
function does not have a regular behaviour as n — oo, since d(p) = 2 for all primes, but d(2") = n+1
can be made arbitrarily large. However, on average, it does have a regular behaviour as the following
exercise shows. One can summarize it as saying that a typical large number n has about log n divisors,

on average.

Exercise 14. Show that % ZLV::L d(k) ~ log N (meaning that the ratio of the two sides goes to 1 as
N — o0). [Hint: Sum an appropriate function on the lattice N2 under the hyperbola xy = N in two

different ways.]
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CHAPTER 5

Fourier analysis on the circle group

1. Introduction

T ={e't:0 <t < 2} is an abelian group under multiplication. It is sometimes also written as
[0, 27]/0 ~ 27 or as R/Z. Functions on T will be written as f(e'?) or as f(t) with t € [0, 27) - there
should be no confusion. It also has a topology (the standard one, inherited from the complex plane)
and the group operations are compatible with the topology in that (x,y) — xy from T X T — T
and x — x~ ! from T — T are continuous. Any group with a topology w.r.t which these maps are
continuous, is called a topological group.

By definition, a character is a continuous homomorphism from a topological group into 7. When
our group is T, we have the characters e, (t) := ™™ m c Z. We leave it as an exercise to show
that there are no other characters. If we use the inner product (f, g) = % 027r f(e't)g(e't)dt, then
the characters form an orthonormal set as

1 2T
(en, em) = 27r/ etn=mge — 5. .
0

The first main question is whether {e, : n € Z} an orthonormal basis for L(T). The answer is yes,
but unlike with finite abelian groups, dimension considerations are of no help here in showing this.

What we need to show is that the span of the characters is dense in L2(T).

2. Fejér's theorem

Fix f € L?(T). To show that it can be approximated by finite linear combinations of characters
(these are called trigonometric polynomials), it is natural to consider its projection in L?(T) to the

span of ek, |k| < n. If we denote this projection operator by S, then

n

S,f(t) = Z (f, ex)ex(t)

k=—n

:217T/Tf(5)k§_:nek(t)ek(5) dt

1
:%/Tf(s)Dn(t—S) ds = (f = Dy)(t)
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where the convolution (fi x )(t) := [+ fi(s)fH(t — s)g—s (whenever fi(s)f(t — s) is integrable) and

™
the Dirichlet kernel
n _ ei@n+l)u _

Dp(u) = Z ex(u) = e"”“w (sum the geometric series)
k=-—n

ei(nJr%)u _ efi(nJr%)u

ei%u _ e—i%u
_ sin[(n+ )u]
sin[4u]

{e,}nez is an orthonormal basis if and only if S,f — f in L(T) for all f € L?(T). How to show
this? As usual in analysis, one good way is to show it for a convenient dense subset of L?(T). For
example, C(T) or C*°(T). For such functions, perhaps one can try to show that S,f — f uniformly
on T, which is stronger than L? convergence. It is not true that S,f — f uniformly for f € C(T).
Although it is true for f € C1(T), | do not know how to show that without first showing that {e,} is
an orthonormal basis for L2(T).

Fejér was the one who solved the problem, by showing that o,f = ﬁ(Sof—i- ...+ S,f) converges
uniformly to f, for any f € C(T). Since o,f is also a trigonometric polynomial, this shows that
span{e, : n € Z} is dense in C(T) in sup-norm, and consequently also dense in L2(T).

Observe that o,f = f x K, where

Ko () = %H(DO(U) b4 Dy(w) = (nﬂl)% ;)sin <(k+ ;)u> |

The series can be written as

n i(n+1)u _ i(n+1)u _
: ue 1 e 1
| itk+3)u R GRS .
m{kz::oe ™° e —1 " ez —e /2

As the denominator is 2isin(u/2), this becomes

1

. 1—cos((n+1)u) _ sin’(3(n+1)u)
Dsin(u/2)

sin(u/2) B sin?(3u)

Plugging this back into the expression for K,, we arrive at

{1 _ ei(n+1)U} —

B sin?(3(n+1)u)
Kin(u) = (n+ i) sinz(%u)

This is known as Fejér's kernel. Another useful expression for the Fejér kernel is

1 = n+1-]
(1) Kn<u>—n+1k§_joDk(u> ——J__Z_nmel(“)

by writing Dy = e_x + ... + e¢ and interchanging the sums.

The contrast between the Dirichlet and Fejér kernels can be seen in Figure 2. The key observations
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/ 4r \ — Dirichlet

\ Fejer

about the Fejér kernel are as follows:

(1) Kn(u)ZOfOI’ all u, fKn U)dU: (3) \[f ]Kn( )7_ n+1m.
T\[-d,0
In probability language, K,,(-) is a probability density on T which puts most of its mass near 0 (for

large n). In analysis, a sequence of functions satisfying these three conditions is called an approximate
identity. They approximate the “Dirac delta-function”, which does not exist as a function but is the
putative identity for the convolution product: f xdg = f for all f. Hence we expect that f x K, — f

and that is the gist of the proof of Fejér's theorem.

Theorem 1 (Fejér). Iff € C(SY), then on,f — f uniformly on T. As a consequence, span{e, : n € 7}
is dense in L?(T).

Proof. Fix € > 0 and find § > 0 so that |f(t) — f(s)| < € whenever |e't — /| < 25. As seen above
onf(t) = 2 [+ F(s)Kn(t — s)ds. Hence, with Js = {s : |e't — e/*| < &}, we have
ds ds
onf(t) = F(1)] < If(f) — FS)IKn(t = s)5 -+ [F(t) = F(s)IKn(t —5) 5
T\Js 2

1 1
n+ 1sin%(§/2)

/ Kalt = )9+ 2]l
s

1 1

<€+ 2flsw 2700 (6/2)

Choose n > ;ilﬁi'(';“/;), then ||opf — fllsup < 2€. This proves the first statement.
Given g € L*(T), find f € C(T) such that ||g — f|l,2(ry < € and n such that |lo,f — ]| 2(1) <
|onf — fllsup < €. Then ||g — opfl| 2y < €. This proves the second statement. [ |

In the following exercise, derive Weierstrass' approximation and theorem from Fejér's theorem.

Exercise 2. Let f € Cg[0, 1].
(1) Construct a function g : [—m, ] — R such that (a) g iseven, (b) g=1fon[0,1] and (c)g
vanishes outside [—2, 2].
(2) Invoke Fejér's theorem to get a trigonometric polynomial T such that ||T — gllsup < €.

(3) Use the series e = 22, %zk to replace the exponentials that appear in T by polynomials.

Be clear about the uniform convergence issues.
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(4) Conclude that there exists a polynomial P with real coefficients such that ||f — P|lsup < 2¢..
The following exercise abstracts the main features of an approximate identity.

Exercise 3. Let g, € L*(T) be a sequence of functions such that

(1) sup, [ |gn(u)| du < o, fgn (W =1,3) [ gn(u) du—0asn— co.
T T\[-4.,0]

Show that f x g, — f uniformly as n — oo for any f € C(T).

2.1. The problem with the Dirichlet kernel. \What is the shortcoming of the Dirichlet kernel that
we cannot show that f x D, — f uniformly for f € C(T)? One difference with the Fejér kernel is that
D, takes negative values too. But that is in itself not the main issue as shown by Exercise 3 which
does not require positivity of g,. In fact, the problem is that fT |Dp| is not bounded.

Write A = n+3 and observe that sin(Au) vanishes in [—, 7] at ux = mk /X for |k| < X. The function
sin(Au) has constant sign on [uk, ux+1] and further, in the middle-half of this interval |sin(Au)| >
sin(m/4) > % Therefore,

U1 1 Uk+1 ™
/Uk Dp(u) du > S|n(uk/2)/uk |sin(Au)| du > Insin(nk /N’
As sinx < x, the last quantity is at least Z. Summing over 1 < k < n— 1 (recall that A = n+ 3),

we see that
n—

1

1 k+1 1
/|D(u)|du> k_42/ de: Iogn

Thus the L-norms of D,, are unbounded.

Exercise 4. Show that there is a function f € C(T) such that (f x D,)(0) is unbounded. Conclude

that f x D, need not converge to f even in point-wise sense.

3. Fourier coefficients, Plancherel and inversion

For f € L2(T), define its Fourier transform'! as f : Z — C, defined by
N e dt
f(n)=(f,e)) = /Tf(t)e ’”tg.
However, L?(T) is not the natural domain of functions on which to define Fourier transform. If
f € L1(T) then the integral is well-defined (since e, is bounded) and hence f : Z s C is well-defined.
As L*(T) D L?(T), this extends the domain of the Fourier transform. Going further, for any measure
w on T, we can define its Fourier transform i : Z +— C by i(n) = fT endu. For us measures are
positive measures, but as any complex measure p can be written uniquely as @1 — Uo + iz — ifi4
where i, are positive measures, this also extends the definition of the Fourier transform to complex

110n the circle group, it is customary to use the term “Fourier series”, but we just use the common term “Fourier

transform” for any group.
53



Borel measures on T. At that level, it becomes a further extension of the Fourier transform, since
each f € L*(T) may be identified with the complex measure dus(t) = f(t)g—; on T, and (if = f.
There are even more general objects (distributions) to which one can extend the Fourier transform,

but we do not go into that here.

3.1. The L2 theory. As {e,} form an orthonormal basis for L?(T), we can recover f from f by the
“inversion formula”
= F(men(t)
neZ
where the convergence of the series on the right is only in the sense of L2(T). It need not be pointwise

in general. From general Hilbert space theory, we also have the Parseval-Plancherel relations:

f g L2(T) = Z f

nez

= (,9)12(z)
where L?(Z) is w.r.t the counting measure on Z. In particular,

17122y = 1122z,

One may worry that this does not look like the inversion formula in the finite abelian case: the
forward formula is an integral and the inverse formula is a sum. The two sides of the Plancherel
relationship also look different superficially. The root of all this is that one feature of the finite abelian
case breaks down in general. It is no longer true that G is isomorphic to G. Instead T =Z and Z =T,

as we shall see. To make this precise, first we investigate Fourier analysis on Z.

4. Fourier transform on Z

If x : Z — T is a character, then x(1) = e’ for some t € [0,27). As Z is cyclic, that fixes X, since
x(n) = en(t). This are indeed characters, since e,+m(t) = en(t)em(t). Denote this character as ev;
or ev,i, (as it is the evaluation of the characters {e,} of T at the point e't). Thus we may identify
the Z with T.

A point to note is that the characters of Z are not in L2(Z), hence there is no sense in which they

are orthonormal. Nevertheless, the purely formal statement of orthogonality

1 ift=s,
(eve, evs) Z eint=s) L
ne7Z 0 ift#s.

is of value in developing intuition, but will have to be approached indirectly.

Exercise 5. Consider H, = L?>({—n, ..., n}) with respect to normalised counting measure. Show that

(eve, evs)p, — Ors as N — 0.
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This also leads to subtleties in definition of Fourier transform. We cannot simply define

F(e') = (fevei) 2z = ) _ F(n)e™"™
nez
for f € L?(Z). However, the final sum does converge absolutely if we assume f € L1(Z). Hence we
define the Fourier transform for L1 functions. Observe that finite complex measures on Z are the
same as >, f(n)d, with f € LY(Z) (also f > 0 if we want positive measures), hence the Fourier
transform is also well-defined for them. But what about L2(Z)?
Let f € LY(Z) N L%(Z). Then,

/t Zdt _ /(’7 m)t ﬂ
| = Z f(n
2m

m \NEZ

LY fmFm / (n-mye 2

m,n€Z

= If(m)P.

nez

The interchange of integral and sum marked with ‘7" is justified by Fubini's theorem, since the function
(n,m, t) = f(n)f(m)e' ("=t is absolutely integrable on Z x Z x T, as [+ >, |F(n)|[f(m)| & =
||f||L1(Z) Thus, f € L2(T) and [|fll,2(ry = IIflli2(z)- As LYX(Z) N L%(Z) is dense in L%(Z) (even
functions on Z that vanish outside a finite set form a dense set in L2(Z)). Therefore, the Fourier
transform extends to an isometry from L?(Z) into L?(T) (surjectivity is not claimed yet, but is true
and will follow shortly).

For those who have not seen this kind of argument,

Exercise 6. Let X,Y be metric spaces. Assume that Y is complete. If D is a dense subset of X and
f : D — Y is uniformly continuous, then show that there is a unique g : X — Y that is continuous
and extends f (i.e., g(x) = f(x) for x € D).

Use this to deduce the above statement about the extension of Fourier transform to L?(Z).

Since LP(Z) 2 L?(Z), this also shows that Fourier transform is well-defined on LP(Z). In fact, the
image of LP(Z) under the Fourier transform is in LP(T), where p’ is the conjugate exponent. To
see this, observe that for f € L(Z), we have Hf||Loo(T) < IfllL1(z). Since we also have ||f\|L2(T) =
I f1l12(z), by the Riesz-Thorin interpolation theorem, the Fourier transform extends in a unique way

to map LP(Z) into LP(T) where % + % = 1. An alternate way is outlined below.

Exercise 7. Fix p € (1,2). If f € LP(Z), show that there exist g € L*(Z) and h € L?(Z) such that
f=g+h. Set f = g+ h. Show that this is a valid definition, and maps LP(Z) into L (T) and agrees
with the original definition for f € L1(Z).
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5. T and Z are dual to each other

We have seen that T = Z and Z = T, first as sets. The group structures are also consistent: If we
define multiplication of characters as point-wise multiplication, then T is the same as the group (Z,+),
since ey(t)em(t) = enpm(t). Similarly Z is the same as the circle group, since evi(n)evyis(n) =

eVit+s) (). For the moment we ignore the question of topologiesu. Then,
T=27 and 7=T.
To keep distinctions clear, momentarily denote the Fourier transform on G by Fg.

Theorem 8 (Fourier inversion formula). FzFrf(e't) = f(e™'t) for f € L*(T) and FrFzg(n) =
g(—n) for g € L?(Z). In particular, Fz is an isometry from L?(Z) onto L?(T) and Fr is an isometry
from L2(T) onto L?(Z).

We have already seen this, starting from T and expanding in the orthonormal basis of characters.
Any unclear details are left as exercise.

Thus Fr : L2(T) — L?(Z) and Fz : L%(Z) — L?(T) are almost inverses of each other. What is
precisely true is that }";1 = FyFrFz and .7-"2_1 = FrFzF1. The Plancherel theorem is the statement
that F and F+ are unitary.

6. Fourier transforms of measures on T

The L2-version of Fourier inversion formula does not hold for measures. Let M(T) denote the set

of finite Borel measures on T. First we summarize the key results about Fourier transform on M(T).
Theorem 9. Let pu,v e M(T). If i =D, then p = v.

This shows that the Fourier transform is injective on M(T). Since positive L functions are densities
of measures, this also shows the injectivity on L(T). Further, the proof will give inversion formulas

to recover u from . As a corollary, we shall also deduce the following.

Corollary 10. Suppose u € M(T) and i € L1(Z). Then w is absolutely continuous and has bounded

density i(—t) =Y., A(n)e'" w.r.t. the normalized Lebesgue measure on T .

This is the first of a general feature of Fourier transform that relates decay of the Fourier transform
to the smoothness of u. For example, if we assume that faster decay of [, then we can deduce that
the density of u must be correspondingly smooth. The converse, interpreted qualitatively, is also true:
smoothness of u implies decay of fi. We later cover some of these aspects in exercises, but for now
here is one useful lemma.

129he question is: why should we take discrete topology on Z and the standard topology on T? More precisely, if

we start with a group G (say Z), what topology does one impose on G (in this case T)? The answer is that it is the

smallest topology on G that makes all the evaluations evy : G — C, for x € G, continuous.
56



Lemma 11. /f f € LY(T), then f(n) — 0 as |n| — oo. In particular, if u € M(T) is absolutely

continuous, then fi(n) — 0 as |n| — oc.

One question remains unanswered above. We know that Fourier transform maps L?(T) onto L?(Z).
What is the range of the Fourier transforms on L*(T) and M(T)? There is no explicit answer to the

first question, but there is one for the second! To state it, we make a definition:

Definition 12. A function ¢ : Z — C is said to be positive definite if
n
> cép(m; —my) >0
Jk=1
forany n>1, any my, ..., m, € Z and any ¢, ..., cn € C. Equivalently, finite principal sub-matrices

of (¢(j — k)), kez are positive semi-definite.

Theorem 13 (Herglotz). A function ¢ : Z — C is equal to fi for some u € M(T) if and only if ¢ is

positive definite.

As already mentioned, the range of L*(T) under the Fourier transform has no such explicit charac-
terization, although there are necessary and sufficient conditions one can give (for example, Lemma 11
gives a necessary condition).

Before we proceed to the proofs, we recall and generalize the important notion of convolution.
Definition 14. If u, v € M(T), define uxv € M(T) by (u*v)(A) = [ u(A—s)dv(s) for A e B(T).
If du(t) = f(t)%, then d(u*v)(t) = (f*u)t)% where (fxv)(t) ;== [+ f(t—s)dv(s). If in addition,
dv(t) = g(t)g—fr, then (f x v)(t) == [ f(t — s)g(s)g—;, agreeing with the definition of convolutions
of functions that we gave earlier.

If u, v are probability distributions, then w * v is the probability distribution of e/tY) where e'X

and e are independent random variables having distributions & and v respectively.

Exercise 15. Show that @« v(n) = fi(n)o(n) for n € Z.

Proof. Let K, be the Fejér kernel and let f,(t) = (u * Kp)(t) = [7 Kn(t — s)du(s). From the

expression (1) for the Fejér kernel,

(0= 3 (1557 AW

and with | = [e, 6] C [0, 2]

[0 - Z (1- 1) i [ et o

k=

o |k| ~ eikﬁ _ eika
—ao@-a+ Y (18 a0
ke[—n,n)\{0}
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We now claim that [, f,(t)Z — u(e, B) + su{a, B}. Since the right hand side of the above equality
is expressed entirely in terms of fi, this shows that from [i, we can recover u(o, 8) + %u{a,ﬁ} for all
0 < a < B <2m. In particular, for any arc / whose end-points are not atoms of u, we recover u(/).
From this it is clear that we can recover w. In particular, if i = D, then u = v.

To prove the claim, we write
ds dt
/ // Kn t—S % g
d
e
T 27T

Because of the approximate identity property of K,, we see that

1 ifse(ap),
/IKn(t—s);tr% 0 ifségla,pg]
% if se{a,B}.

In the last case, we use the symmetry K,(t) = K,(—t). Further, the integral here is bounded by 1.

Hence by the dominated convergence theorem,

[ 605~ [ Aap(®) + 5Laan(sNdu(s) = ua.) + sul8).
This proves the claim. |

One can extract more from the proof. One is the generalized inversion formula

Ikﬁ iko
@ B+ iulef) = im OB -+ Y (1K, pen ST

kezZ\{0}

Proof of Corollary 10. Consider (2) and observe that e'k® — e/** = k(B — a)e’k for some v, €

eikﬁ elka

(ak, Bk), because of which the summand fi(k)=-5— is dominated by |i(k)|(8 — «)/2m. By DCT,

1 oikB _ gika
u(e ) + Su{o By =BO0)B—a) + D Ak)——
keZ\{0}

The right side can be written as (again the interchange of sum and integral is justified by the summa-
bility of 1)

& e dt

/ Zﬂ(k)elkt &
a 2m
ke

which shows that p has density given by the integrand. |

Next we prove the “converse” statement, that smoothness of u implies decay of the Fourier trans-

form.
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Proof of Lemma 11. Let f € L*(T). First assume that f € CY(T). Then f' € C(T) and integrate
by parts to get

A~ 7'tdt ,'t2ﬂ' . 2m —int
f’(n)—/ f'(t)e™ " == = f(t)e ™|, —|—/n/ f(t)e '™ dt
T 2m 0
= inf(n).

As " € C(T), we know that ||f’||Loo(Z) < |If'll.1(ry- Therefore, f(n) = O(1/|n|), which is more than
saying that f(n) — 0 as |n| — oc.

Now take any f € L*(T) and choose g € C!(T) such that ||f — g||;17) < €. This is possible, for
example by taking g = f x K, for a large n. Then

F(m)] < |(F= g)(m)| + |g(n)|

Hg/HLO"(T)
<|f=glom+—5—
||
Letting n — =00, we see that limsup,_,. |f(n)| < ¢, for any € > 0. [ |

As for Herglotz's theorem, we only prove the easy part.

Proof of the easy half of Herglotz's theorem. Forany p > 1andanycy, ..., cp€C,andany my, ..., mp €

Z

p p
> God(m; — my) Z/ > Goe ™M du(e)
T

Jik=1 j k=1
p
- /T [ > cee™ ™| due)
k=1
> 0.

Thus, the positive semi-definiteness of (¢(j — k)); kez is necessary for ¢ to be the Fourier transform

of a measure. [ |

The following exercises further amplify the statement that the smoothness of a measure or a

function is equivalent to the decay of its Fourier transform.

Exercise 16. Suppose f € CP(T). Show that f(n) = o(n™P) as n — =+oo.

Exercise 17. Suppose nP{i(n) is (absolutely) summable, where p > 0 is an integer. Show that u has
a density f € CP(T) and that the derivatives up to order p are bounded. Express the derivatives of f

in terms of [i.
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7. Locally compact abelian groups

We just outline the general theory®>.
» A topological group is a group G with a Hausdorff topology w.r.t. which the group operations

1 are continuous. Here the first map is from G x G to G, and the topology

(9,h) — ghand g— g~
on G x G is the product topogy.

» If the group is abelian, and the topology is locally compact (every point has an open neighbour-
hood whose closure is compact), then we say that G is an LCA group.

» 79, T9 RY finite abelian groups are all LCA groups, as are their direct products such as
7Z x T x R?. However Q is not an LCA, as it is not locally compact.

» A character is a continuous homomorphism from G into 7. The set of all characters is denoted
G. It is not empty, as there is at least the trivial character.

We already know that T =7, Z =T, R =R. Hence Z™ x TP x RY has dual T™ x ZP x RY.

» Pointwise multiplication, x1x2(x) = x1(x)x2(x) makes G an abelian group.

» For compact KC G, r>0,x€G,let Vi, (x) ={x' €G:lx — Xl (ky) < r}. We endow
G with the smallest topology with respect to which Vi () are all open.

It may be easier to understand the special case when G is o-compact, i.e., there exist compact sets
K, that increase to G. Then, the topology above is the same as the one given by the metric on G
defined by d(x, x') = >, IIx — X/lIx,27". In fact this can be used to define a metric on Cp(G), the
space of bounded continuous functions from G to C. In this metric, f, — f if and only if f, converges
uniformly to f on every compact set.

Note that all our examples, Z9, R? T and finite products of these, are o-compact.

» With the above multiplication and topology, G becomes an LCA group.

» For each x € G, the evaluation ev,(x) = x(x) defines a character on G. These are all the
characters, and hence é = G. This is the Pontryagin duality.

» G is compact if and only if G is discrete (and vice versa). For example T =Z and Z = T.

» To go further and define Fourier transform, we need a measure to integrate against. To respect
the group structure, what we need is a measure p on the Borel sigma-algebra of G that is regular
(u(K) < oo for compact K; u(A) = sup{u(K) : AD K compact }; u(A) = inf{u(G) : A C G open})
and invariant (W(A + x) = u(A) where A+ x = {a+ x:a € A}). On any LCA group G, such a
measure exists and is unique up to multiplication by positive constants. It is called the Haar measure
and we denote it as mg (an arbitrary choice of the scalar multiple is made). Everywhere below LP(G)
will mean LP(G, mg).

» For f € LY(G, ), its Fourier transform is f : G +— C defined by f(x) = Jo FOOX(x)dug(x).
For u € M(G), the space of finite Borel measures on G, define i(x) = fG xd L.

L3The first chapter of Rudin’s Fourier analysis on groups is an excellent self-contained introduction with all the proofs.
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» For f € LY(G)NL%(G) (if G is compact then LN L2 = L?), one can show that £ € L%(G) and
Hf”LZ(G) = kG llfll2(6)- Here kg is a constant, which is not necessarily 1 because we arbitrarily fixed
the Haar measures mg, mg. One can of course change the Haar measure on G to Kgmg, in which
case the constant changes to 1.

Hence, the Fourier transform can be extended to an isometry of L2(G) into L2(G) (Plancherel
relation). This isomorphism is also surjective, as seen next.

» For p € M(G) and v € M(G), we have the Parseval relation: [z i(x)dv(x) = [ D(x)du(x).
To see this integrate (x,x) — x(x) w.r.t. u ® v in two ways.

» Injectivity of the Fourier transform on M(G) and on L1(G) are true. Further, when f.
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CHAPTER 6

Fourier analysis on R

1. Self-duality

The characters of (R, +) are precisely {e; : t € R}, where e;(x) = e'™. Since e/(x)es(x) =
er+s(x), this shows that the dual R is also (R, +). This makes the theory a bit more symmetrical
compared to that on the circle group, but when one keeps in mind the more general situation of locally
compact abelian groups, it is better to have in mind two separate copies of R, one for the original,
one for the dual.

In many ways Fourier analysis on R will look similar to that of T, with various sums replaced by
integrals, but in other ways the similarities with Z is even closer. Both R and Z are non-compact
groups, and their characters are not L2 functions, in particular there is no orthogonality. But as in the

case of Z, the approximate orthonormality

1t S
/ er(x)es(x)dx — d¢.s as L — oo,
2L ),

provides valuable intuition and also route to various proofs.

2. Fourier transform

For f € LY(R), define its Fourier transform f : R +— C by f(t) = Jp F(x)er(x)dx. For u € M(R)
(finite Borel measures on R), similarly define i(t) = fR er(x . The two definitions are consistent

in that if 4 has density f then i = f.

Example 1. If u = §p, then a(t) = 1. If w is uniform on [—1, 1], then a(t) = %ffl e~itxXdx = st

If du(x) = ﬁeféxzdx is the Gaussian measure, then f(t) = e=3t

Like in Z, here too L? is not contained in L1 (nor is there a containment in the reverse direction).
The way to define Fourier transform for L2 functions is similar to the way we did in Z. We elaborate

on this after we see basic properties of the Fourier transform on L1.
3. Properties of the Fourier transform

Let us list various properties of the Fourier transform**

4\\e have given many references already. In addition, volume 2 of Feller's An introduction to probability theory and

its applications is highly recommended for Fourier transforms of measures.
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» For u € M(R), @ is a bounded, uniformly continuous function. Indeed, |a(t) — i(s)] <
Jr le/(t=)x — 1|du(x). As t —s — 0, apply DCT (the integrand is bounded by 2) to get uniform
continuity. It is also obvious that |a(t)| < w(R).

» For f € L1(R), f is a bounded continuous function that vanishes at infinity. The boundedness
and continuity can be argued as above. To see vanishing at infinity, first assume that £ € Ci.
Integrating by parts, we see that f/(t) = itf(t). Since f’ is bounded, it must be the case that
f(t) = O(1/|t]). For general f € L, find g € C! such that ||f —g||1 < &. Then |f(t) — §(t)| < € for
all t. Let t — =00 to see that limsup|f(t)] < & as t — =oo.

As a particular case, if u € M(R) has a density, then f(t) — 0 as t — *+oo.

» Inversion formula: If u € M(R), then

1 1 L eibt _ eiat |t’
a,b)+ =zufa b} = lim — Q(t)—— (1 —— ] dt.
. 6)+ gt by = jim - [ === (1= 1)
The proof is similar to the one we gave on the circle group, and can be found in many books. We
omit it.
» In particular, if 4 = 2, then u = v. In addition, if & € L', then we can apply DCT above to get

e/bl“ _ e/at

L
uab)+ uta. b} = 5 [ a0 de
from which it follows that 4 must have density given by ﬁﬁ(—x).

> For f e Ll if f € L! then f(x) = & [, f(t)e'™dx for a.e. x. In particular, f can be
modified to be a continuous function vanishing at infinity. This inversion formula can also be written
as ig(x) = 2mf(—x).

» One component in the omitted proofs and of great importance in general, is convolution. For
p, v e M(R), the convolution p  v(A) == [, u(A — x)dv(x) for A € Bg, defines another element
of M(R). For f,g € L, (f*g)(x) = [f(x — t)g(t)dt is defined for a.e. t and fxg € L1
The definitions are consistent in the sense that of du(x) = f(x)dx and dv(x) = g(x)dx then
d(uw*v)(x) = (f *g)(x)dx. In fact, u* v has a density if just one of u or v does (why?).

One important point: (ﬁ)(t) = A(t)o(t) and (f/*\g)(t) = f(t)g(t). This is at the heart of
why Fourier transforms are useful in probability theory, when studying sums of independent random
variables. If w, v are probability measures, then u x v is the distribution of a sum of independent
random variables drawn from these two distributions.

» Suppose f € L1 N CY and f/ € L1. Then we can integrate by parts to see that f/(t) = itf(t).
Since f/ vanishes at infinity, it follows that f(t) = o(1/|t|). Continuing, show that if f € L'NCk, and
that fU) € L1 for all j < k, then f/(?)(t) = (it)kf(t) and in particular, f(t) = o(|t|=¥). All this can
be summarized by the slogan “Smoothness of a function implies the decay of the Fourier transform™.

» Next we state the slogan “Decay of the function implies the smoothness of the Fourier trans-

form”. Indeed, start from f(t) = [ f(x)e~"™dx and formally differentiate under the integral to get
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FU(t) = (—i)* [ x¥f(x)dx. Can this be justified. It suffices to consider the case k = 1 and proceed
inductively. Start with

f(t+h)—f(t) et
) = / f(x)e de.
When h | 0, the integrand on the right converges to —ixf(x)e™ . Further, as e~/ —1 = —jhe™'"v

for some y between 0 and x, and hence the integrand is bounded by |xf(x)|. Therefore, if we assume
that xf(x) € L', then the formal calculationis justified and we get (f)'(t) = —i(m)(t). For the
kth derivative formula, it suffices to assume that x*f(x) € L.

» Because of the inversion formulas, we get for free two additional slogans: “Smoothness of the
Fourier transform implies the decay of the function” and “Decay of the Fourier transform implies the
smoothness of the function”. We leave as exercise to write down the precise statements. It may also
be observed that the statements are not exact converses: Assuming f € CK gives f(t) = o(t~¥) but
to get f € CK we need to assume tKf(t) € L. This was also seen above: If p has density, then [
decays at infinity. To prove that u has density we had to assume that i € L.

» A function ¢ : R+ C is said to be positive definite if o(—t) = ¢(t) and Xn: cicko(ti—tk) >0
forany n>1and ¢, ..., cpeCandty,..., t, € R. The relevance of this de%if]i_t:iLon is as follows:

Bochner’s theorem: Let ¢ : R — C. Then ¢ = [ for some u € M(R) if and only if ¢ is
continuous and positive definite.

» The proof of the easy side of Bochner's theorem is similar to that in the circle group. If

w e M(R), then we have seen that [i is continuous. Further,
n n o
> @ty — ) = [ |3 ge P Pdut) =0
k=1 R j=1
» There is no analogous theorem characterizing the range of the Fourier transform on L1. We

only have necessary and sufficient conditions (in terms of smoothness, as we have seen).

. . 1 . It
Exercise 2. Show that the Fourier transform of 57y is e Il

4. Fourier transform on L?(R)

First approach.

1) Show the Plancherel relation ||f]|3 = 27||f||2 for f € L1 N L2. This is indicated in the next
( 2 2

section.

(2) Using the density of L1NL? in L2, extend the Fourier transform to L2. The Plancherel relation

continues to hold.
From the fact that ||f|ls < ||f]|1 for £ € L and ||f||2 = v/27||f]|2., using Riesz-Thorin interpolation

we can extend the Fourier transform to LP for 1 < p < 2 and see that it maps into L9, where g is the

conjugate of p and satisfies ||7]lq < (27)%/2||f]|, if § = 1648
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Second approach. We describe another way to define Fourier transform for L2 functions'®. We start

with the Gaussian @(x) = e=**/2 whose Fourier transform is ¢(t) = v2mp(t). We shall see in

1
Nezs
the next section that

fi(e) =itf(t)  and  (F)(t) = —i(xF(x))(t)

and therefore, defining A = —% + x, we have Af = —iAf. In particular, if we define hy = AXp,
then we get hx = (—i)kv/2mh,. Thus, formally we may say that hy are eigenfunctions of the Fourier

transform with eigenvalue (—/)%v/2m. By direct computation, we see that
h(x) =2xp(x),  ha(x) = (4x* = 2)p(x),  h3(x) = (8x*> = 12x)p(x), ...

In general, it is easy to see that hy = Hyyp, where Hy is a polynomial of degree equal to k. It has real
coefficients, leading coefficient equal to 2”7, and in fact all its coefficients can be computed explicitly.
They are known as Hermite polynomials, and hi are called Hermite functions. From this structure,
we see that span{hy : k > 0} = {p(x)p(x) : pis a polynomial}. The latter is dense in L?(R) (why?).
We now claim that hy are orthogonal in L?(R). To see this, let k > £ > 0 and integrate by parts to
get

/hk(X)h@(X)dX: /(p(X)A*khe dx

where A* = d% + x.
Exercise 3. Show that A*hy = cxhx_1 (where h_; = 0) for an explicit constant cx

Observe that A raises the index of Hermite functions by 1 and A* decreases it by 1. From the
exercise, we see that A**h, = 0 if £ < k. Further, if k = £, then AXhy = cxcx_1...c1 (constant
function) and hence ||h||3 = ckck—1...c1. Inshort, {hx : k > 0} is an orthogonal basis for L2(R).

Therefore, for f € L?(R), we have the L? expansion f = Zkzom“ hgYhgx. This makes it
natural to define the Fourier transform as

F=vary.

k>0

1

W<f' i) (—i)" .

Immediately we get the Plancherel relation
2112 2
1712 = 2| ]l3.

Of course, things are not satisfactory till one proves that for f € LN L? this definition of Fourier trans-
form agrees with the original one. To see this, observe that if f € span{hg, h1,...} = {p(x)@(x) : p is a polynomial}
the two definitions

(1) f(t) = [ f(x)e~"®dx and
(2) F=V2r ¥ izo apatf (=) he.

5Taken from chapter 1 of Thangavelu's book An introduction to the uncertainty principle.
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obviously agree. The first definition is a uniformly continuous map from L! to L> and the second is

uniformly continuous from L2 to L2.

Exercise 4. Show that

1X2 an 1.2

(1) Ha(x) = e o3

(2) Find the constants ¢ above and show that ||h,||3 = n!.

(3) Show that 332 ¢ hi(x) 5 = A=ext73t".

5. Poisson summation formula

Let f € L1(R) and define g : T + C (in this section we shall write T as [0,27)) by g(x) =
> ez f(x —2mn). Observe that

z:/T|f(x—27rn)|dx—Z:/2

nez nez <™

2mw(n+1)
1£(x)]dx —/R|f(x>|dx = 1 llxge.

Therefore, the series defining g is absolutely convergent for a.e. x and g € L!(T). Hence the above

integration can be done without absolute values and shows that [+ g = [; f. Actually more is true.

/ g(x)e "> dx :/ Z f(x —2mn)e™ " dx
T T

nez
2m )
= Z/ f(x —2mn)e "*dx
nez 0
where the application of Fubini's theorem is justified by the earlier proof that g € L. Now change vari-
ables y = x—2mn in the inner integral and observe that e>™*" = 1 to see that it is f;frgnﬂ) f(x)e "™dx.

Summing up, we arrive at
2mg(k) = f(k) for k € Z.

As customary, we have used the hat to denote Fourier transform, but on the right side it is Fourier
transform on R and on the left side it is Fourier transform on the circle group (where we define it with
a factor of 1/27 in the integral).

To proceed further, assume that £ € C1(R) and that f(x) and f/(x) are both bounded by C/x?.
Then the series ), f'(x—2mn) and ), f(x—2mn) both converge uniformly on [0, 2). By a standard
lemma one learns in basic analysis, this shows that g € C*(T) and ¢'(x) = Y, f'(x—2mn). For C}(T)
functions, the Fourier series converges uniformly to the function. Hence, we have

g(x) = a(k)e™.
nezZ
Now apply the definition of g and the relationship between § and f to get

2%2 f(x —2mn) = Z f(k)e'™ for all x € [0, 27).

nez nez
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In particular, setting x = 0 we get

2wy f(x—2mn) =Y F(k).

nezZ keZ
This is known as the Poisson summation formula
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CHAPTER 7

Bernoulli convolution problem

Let 0 < X\ < 1 and define the Bernoulli convolution
1 1 1 1 1 1
Ux = (Eé—k + §5>\) x (557>\2 + 56)\2) * (56,>\3 + 56}@) ce

An equivalent description of vy is that it is the distribution of the random variable Xy = > 72, ,\",
where €, are independent random variables taking the values +1 with equal probability. Yet another

way to characterise it is via the Fourier transform:

Da(t) = E[e'T] = ﬁ cos(A"t).

n=1
The product on the right converges uniformly over t in compact sets, as 1—cos(\"t) = 2sin®(\"t/2) <
A\2"t2 /2 is summable, uniformly over t in compact sets. This also shows that Dy(t) # 0 unless
t =m(m+ 3)A"" for some m € Z and n > 1 (in general, if 3, |an| < oo and a, # 1 for all n, then

Hn(l - an) 7é 0)

Example 1. If X\ = % then vy is the normalized Lebesgue measure on [—1,1]. If A = % then vy,
is the Cantor measure, supported on the standard %—Cantor set (except that we do the middle-third

deletion starting from [—1, 1] instead of [0, 1]).

Like the Lebesgue measure and Cantor measure, the measures v, has an important self-similarity

property.

Self-similarity: If X, has distribution v, and € is an independent symmetric Bernoulli random variable,
then € + AX, has the same distribution as X,. This is clear from the series expansion of Xj.

We now claim that vy is the only probability measure for which this distributional equality holds.
That is, if X ~ v and symmetric Bernoulli € are independent, and € + A X also has distribution v, then

v = vy. To see this first take expectation over € to get

) 1 ) 1 )
E [e/t(E-H\X)} _ EE[e/t(l-l-)\X)] + EE[e,r(—lJrAX)]
= (cos t)E[e™*X]

which means that that o(t) = (cos t)o(t\). Continuing, we see that D(t) = D(tA\"V) H,’Y;ll cos(tA").
As N — oo, the product converges to Dy(t), while D(tAN) — D(0) = 1, showing that 0 = Dy.

Therefore v = vy.
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The main question of Bernoulli convolution is whether vy is absolutely continuous to Lebesgue
measure on [—1, 1] or whether it is singular. A priori, it could be neither, having a non-zero absolutely

continuous part and a non-zero singular part, but that does not happen.

Lemma 2 (Jessen's law of pure types). For any A € (0,1), the measure vy is either absolutely

continuous or singular.

Proof. To see this, we observe that both the singular and absolutely continuous parts of vy must
satisfy the same self-similarity as vy (why?). Therefore, if one of them is non-zero, then it must be a

multiple of vy. This shows that exactly one of them can be non-zero. |

We have already seen that v is the normalized Lebesgue measure on [—1, 1]. We also said that
2

v1 is the Cantor measure and hence singular. In fact, the same holds for any A < %
3
Claim 3. vy is singular for A < %

Proof. To see this, observe that the series beyond the nth term is

{igkxk{ <Z>\k:L

k=n ion 1-x
Further, there are only 271 different possible values of g1\ + ... +€,_1\""1. Hence, the support of
vy is covered by 271 intervals each of length at most 2%. The total Lebesgue measure of these
intervals is (2X)"/(1 — X\) which can be made arbitrarily small by choosing n large. Hence v, must be

singular. |

Exercise 4. Show that if % < X\ < 1, then the support of vy is the interval [—(1 —X)71, (1 —X)71].

Recall that the support of a measure is the smallest closed set whose complement has zero measure.
Hence, the above exercise does not imply by any means that vy is absolutely continuous for A > % For
example, if rational numbers are enumerated as r1, r», ... and v = ZJ- 2_1'60, then v has support equal
to R. Of course, vy is not this bad - it has no atoms (why?), but it could be a singular continuous
measure. However, the above exercise, the case A = % and a wish to see a natural progression in A
may lead one to guess that v, ought to be absolutely continuous for A > %

We shall use the Riemann-Lebesgue lemma to see that there are X € (3, 1) for which vy is singular!
To state this amazing discovery of Paul Erdos, we recall some notions.

We say that 8 € C is called an algebraic integer if it is the root of a monic polynomial with integer
coefficients. In that case, there is a unique such polynomial of minimal degree, called the minimal
polynomial of 6. The minimal polynomial is irreducible, and its other roots are called the (Galois)
conjugates of 8. A Pisot-Vijayaraghavan number or PV number is a real algebraic integer greater than

1, all of whose conjugates are of absolute value less than 1.
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Example 5. The minimal polynomial of (1 ++/5)/2 is x2 — x — 1 and the other root of the minimal
polynomial is (1 —+/5)/2 = —0.618 ... and hence (1 + +/5)/2 is a PV number.

Theorem 6 (Erdos (1939)). Suppose A = % where 1 < 0 < 2 is a PV number. Then vy is singular.

Proof. We claim that Dy (2m6%) 4 0. Recall that A = 1/6 to write
k—1

Dx(2m0¥) = [ cos(2né’) H cos(2mN k)
j=1 J=k+1
k—1

= Dy(2m) H cos(2m®’).
j=1
Observe that 1 — cos(2mx) = 2sin?(mx) < 2w2x2. By the evenness and periodicity of cosine, we
can write this as 1 — cos(2mx) < 20[x]?, where [x] is the distance from x to the closest integer.
If the conjugates of 6 are 14, ..., Tm, then &/ + 7‘{ + ...+ TJ,}, € 7, as it can be written as sums

I, If u = max;|7i| < 1, then this shows that

of products of coefficients of the minimal polynomia
[¢] < mw/. Therefore, 1 — cos(2m#) is summable, and hence [[>1 cos(2m@) converges. As 6 is
irrational, cos(2m@/) # 0 for all j, showing that 0y (8%) converges to a non-zero constant as k — oo
(recall that 0y (27) # 0). Thus, 7 does not vanish at infinity and hence by the Riemann-Lebesgue

lemma, vy is not absolutely continuous. By the law of pure types, it must be singular. |

One may now swing to the other direction and wonder if vy is singular for all A > % It is not, by

the following result of Wintner.
Theorem 7 (Wintner (1935)). If X = D=k, then vy is absolutely continuous and has a Ck=2 density.

Proof. Fix a k and write integers modulo k to see that

k—1 oo k—1
oa(t) =[] [] cos@mt27%) = ] Dy (t27%).
r=0 m=1 r=0

But v1 is the normalized Lebesgue measure on [—1, 1] and t — p(t2~"/¥) is the Fourier transform of
2

r/k 2—

the normalized Lebesgue measure on [—2~ r/K]. From the above formula, vy is a convolution

of k of these measures, and therefore has density that is CK=2. |

If the last line of the proof is not clear, take as an exercise to prove that if 4 has a C¥ density and
v has a C* density, then u v has CK*¢ density. In Wintner's paper he observes that o(t) = sint/t

to write

oA(1)] = H\S'” (275 _ oersy

16y¢ P(x) = x™ + a1x™ + ...+ ap, is the minimal polynomial, then p; := ¢ +T{ +...+7) isequal to —a; for j =1,
equal to a2 — 2a, for j = 2, and so on. More precisely, inductively one can show that pj is an integer, based on Newton's
identities: Zﬁ;l ak—ipi = —kax where ap = 1.
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and asserts that this implies that vy has a Ck~1 density. | don't see how (consider k = 1). Perhaps
he means piecewise CK~1, but to be on the safe side | have proved a slightly weaker statement.

Now we have a countable set of A € (% 1) (reciprocals of PV numbers) for which vy is singular
and a countable set of A (reciprocals of roots of 2) for which it is absolutely continuous (in fact with
a certain amount of smoothness). What about all the other A? The problem is still open, but results

like the following are known.
Fact 8 (Solomyak). vy is absolutely continuous for a.e. X € (% 1) and the density is in L2.

This was conjectured by Garsia, after a weaker result of Erdos that stated that vy is absolutely

continuous for a.e. A € (1 —4,1) for some § > 0.

Exercise 9. Use Solomyak's result and deduce that the density of vy is C¥ for a.e. A € (1 — &4, 1)

for some dx > 0. The result was stated this way in Erdos’ paper.

In the proof of Erdés' theorem, we showed that [¢/] decays exponentially, but what was needed
subsequently was only that it is square summable. One may wonder if that gives room to find more
examples of X for which vy is singular. Actually no!

Result: (Pisot). If  >1and >_; [t6/]? < oo for some t, then 6 is a PV number.

In fact, using this Salem showed that 0, vanishes at infinity except when A is the reciprocal of a

PV number (observe that this is also true for A < %) This is a somewhat harder exercise (optional).

Exercise 10. Show that U5(t) — 0 as t — £oo if % is not a PV number.
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CHAPTER 8
Equidistribution

1. Equidistribution on an interval

In this chapter, we shall write the circle as T = [0, 1) with the identification x <+ ™. A sequence
x = (Xp)n>1 taking values in T is said to be equidistributed'’ if % > k1 lyer — b—afor any interval
I =[a, b] C [0, 1].

Lemma 1. Let x = (x,)n>1 take values in T. The following are equivalent.
(1) x is equistributed.
2) & S F(xk) — fol f(x) for all f € C(T).
3) W Z’kvzl em(xx) — 0 for all m € Z\ {0} (as always, en(x) = e2™'m).

If one is familiar with the notion of convergence in distribution (weak convergence of probability
measures), then all these are easily seen to be equivalent to the weak convergence of ZLV::L Ox, to

the Lebesgue measure on [0, 1]. But as a direct argument is easy to give, we do that.

Proof. Two observations that will allow us to carry out the required approximations.

(a) If ||f = gllsup < &, then |5 N F(x) — + SV g(xk)| < € and | fol f(x)dx — fol g(x)dx| < e.

(b) If g < f < h, then & ZLVZI g(x) < & 221:1 fxk) < 4 221:1 h(xx) and fol g(x)dx < fol f(x)dx <
fol h(x)dx.

Note that the definition of equidistribution is equivalent to the statement that %ZLV::L f(x¢) —

fol f(x) for all step functions f.

Assume (1). Given any f € C(T), there exists a step function g such that ||f — g|]| < €. By the
first observation, letting N — oo we see that the limit point of & 22’:1 f(xk) are within 2¢ of fol f.
Hence (2) follows.

Assume (3). Then %Zﬁlzl f(xx) — fol f(x) for all trigonometric polynomials f. By Fejér's
theorem, they are dense in C(T), hence again by the first observation we conclude (2).

Assume (2). Then (3) is obvious as e, € C(T). To conclude (1), we use the second observation
above. If f =1, ), we may find g, h € C(T) such that g < f < hand [(h— g) <e. By the second
observation, letting N — oo, we see that the limit points of % ZQIZI g(xx) are within 2¢ of fol f. Thus
(1) follows. |

17Equidistribution, however interpreted, is a large subject. What we cover in the first few sections (and much more)

can be found in the book Uniform distribution of sequences by Kuipers and Niederreiter (John Wiley & Sons (1974)).
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From the point of view of proving that a sequence is equidistributed, the third condition (called
Weyl's criterion) is the most convenient, as it involves the least checking, and that too with particularly
nice functions. This idea is at the heart of many things, including the use of characteristic functions
to prove weak convergence (CLT for example) in probability theory.

As we shall be using this criterion to show that various sequences are equidistributed, let us start

with an example that is not. Let us write X for x (mod 1).

Example 2. If 6 is a PV number, we saw that [0"] — 0 as n — oo. Therefore, " is far from

equidistributed. In contrast t” is equidistributed for a.e. t > 1.

Exercise 3. A sequence x = (x,), in T9 = [0,1)? is said to be equidistributed if %22:1 f(x¢) —
Ja F(x)dx for all f € C(T9). Show that this is equivalent to either of the following statements:

(1) The convergence in the definition holds for f = e,,, m € Z9\{0} where e,,(x) = e>™/(mx+...+maxa)

(2) 150 116 — ]_[Jc-’zl(bj — a;) for any rectangle | = [a1, b1] X ... X [aq, bg] C [0, 1]9.

2. Linear sequences

Theorem 4. (n&),>1 is equidistributed if and only if a & Q.

Proof. If o = % € Q, then na = ma whenever n — m is divisible by g. Therefore, the sequence takes
only finitely many values periodically. Not equidistributed.
If o & Q, then fix m € Z \ {0} and consider

1Y 1Y =
N Z em(m) _ N Z eQm'mka
k=1 k=1
1 & 2mimko
=% Z e

k=1
1 e27r/m(N—|—1)oc _ e27rima

N 1— e27rimoc

where we used the fact that e?™™® £ 1 as « is irrational. Clearly the last quantity is bounded by

m which goes to zero. By Weyl's criterion, equidistribution holds. |

3. Polynomial sequences

Let P(x) = agx? + ... + a1x + ap be a polynomial with real coefficients. Is (P(n))y>1 equidis-
tributed in [0, 1]7 We did not include the constant coefficient because it makes no difference to the

equidistibution (just shifts by ag mod 1).

Theorem 5 (Weyl). The sequence (P(n))n>1 equidistributed in [0, 1] if and only at least one of

Ay, ..., Qa4 IS Irrational.
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Observe that ag being irrational is of no help, as it only induces a shift in the sequence (modulo
1). In other words, if (P(n)),>1 is equidistributed if and only if (P(n) — ap)n>1 is equidistributed.
Further, one side of the theorem is easy. If ay,...,ay are rational, if Naj € Z for all j for some

N, and hence
P(kN +r) = ag(kN+r)9+ ... +ai(kN +r)

=oagr?+...+oyr mod 1.

Thus the sequence (P(n))n>1 is N-periodic and cannot be equidistributed. It is the converse direction
that is non-trivial and interesting. The key step is the following lemma that allows to reduce the

degree.

Lemma 6 (van der Korput). Let x = (Xp)n>1 and for h > 1, let xp = (Xp+h — Xn)n>1- If Xp IS

equidistributed in [0, 1] for all h, then x is equidistributed.

Proof of Weyl's theorem assuming van der Korput's lemma. Let x, = P(n) so that x(n+h)—x(n) =
Q(n), where Qup(:) = P(- 4+ h) — P(-) is a polynomial of degree at most d — 1. Write P(x) =
agx®+ ...+ aix +ag and Qp(x) = By—1x9 1+ ...+ Bix + Bo. Choose 1 < £ < d such that ay
Is irrational, but o is rational for £ < j < d. Then it is easy to see that §,_; Is also irrational. We
must divide into two cases.

Case 1: If £ > 2, then £ —1 > 1, hence Qp, also satisfies the conditions of the theorem. Inductively
(the base case d = 1 of linear polynomials was taken care of earlier), we know that (Qx(n))n>1 is
equidistributed. As this applies for all h, by van der Korput's lemma we conclude that (P(n)),>1 is
equidistributed.

Case 2: If £ =1, we can only conclude that the constant coefficient of Qp, is irrational, and it is of
no use. Instead, we write x, = y, + z, where y, = P(n) — ain and z, = ain. Observe that y is a
periodic sequence (application of a polynomial with rational coefficients to natural numbers) and that

z is equidistributed (as o is irrational). From Exercise 7 below, it follows that x is equidistributed. B

Exercise 7. Let x, = y, + z, where y is periodic and z is equidistributed. Then show that x
is equidistributed. [Hint: You may use Weyl's criterion, or argue directly from the definition of

equidistribution.]

Proof of van der Korput's lemma. We use Weyl's criterion again. Fix m € Z \ {0} and let vx =

em(xk) = em(Xx). For fixed h,

n n n+h h
‘ka-&-h_zvk‘ :‘ Z Vk_ZVk‘
k=1 k=1 k=n+1 k=1
< 2h.
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Average over 1 < h < H to get

Hence,

N H
1 1 2 H+1
(1) §<NZ\HZVk+h\> + =
by Cauchy-Schwarz inequality. The quantity in the first summand under the square-root is

E E thth— § ngthh
NH2 +hy +ho +h +ho-

k=1 hy1,hp=1 h1h2 1 k=1

For the H pairs (h1, ha) with hy = hy, the inner summand is N. For h; < hy, denoting h = hy — hy,
we see that

N N+hy
§ Vithy Vk+h, = E VikVith + § Vka+h_§ VkVk+h
k=1 k=1 k=N-+1

N
= ViVien+ Ry
k=1

where |Rp| < 2H. For h, < h1, we get the same, except that it is conjugated. Therefore

H-1 N
1 1
ViR Z ka+h1vk+h2 = N2 {H/V+2 > (H=h) (Re [Z VikVk+h| + Rh)}

hy ho=1 k=1 h=1 k=1

We simply bounded H — h by H and the second term comes by summing up all the inequalities
IRy < 2H. We plug this back into (1) while observing that v/a + b < v/a + v/b and that % < %
and % < \/%.Therefore,

N
1  4H _
SHIW NHZ_;‘;V’(V”""

H H N
1 2 1 2VH H+1
=) vl < —E‘Evv ‘+—+—+—
I _ d NH &=ty N TN
H N
2 1 4/H
(2) <[5 D ‘E vkvk+h‘+—ﬁ+—ﬁ
NHh:l k=1 H
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This is known as van der Korput inequality and is the key technical tool. It is valid for any sequence
vk with |vg| = 1.

Now substitute vx = en(xx) = em(Xk) for some m e Z \ {0}. We get

N H N
1 2 1 1 4/ H
— E )| < .= E - E X — X —
}Nk:1 em(Xk)‘ = Hh:1’Nk:1em(Xk Xk+h)‘+ \/ﬁ—i_ \/N
Fix H and let N — oco. All the inner sums in the first summand converge to 0, by the assumption that

Xp is equidistributed. Hence
1 & 1
limsup |— em(X)| < —.
Now let H — oo to conclude that equidistribution holds for x. [ |

4. Equidistribution of a few other elementary sequences

What are the eqidistribution properties of (n?),>1 (for 0 < g < 1 say) and (log n),>1 and (6")p>1.

» \We have already seen that there are 6 > 1 for which (6”),>1 is not equidistributed (even if we
assume that 6" is never an integer). It is apparently known that for almost every 6 > 1, this sequence
is equidistributed, but we shall not go into that here.

» The sequence (log n),>1 is not equidistributed. This is not hard to see and is a given in the
problem set with a hint (one can use Weyl's criterion, or just the direct definition of equidistribution).

» Let 0 < g<1. Then (n?),>1 is equidistributed. This follows from the following more general
theorem. It has the flavour of the differencing trick, but is in fact more elementary. The assumption

on differences is not of equidistribution but of monotonicity and growth.

Proposition 8. Let (x,),>1 be a sequence of real numbers. Let y, = Xpt1 — Xn. Assume that y, is

decreasing and satisfies y, — 0 and ny, — co. Then (xp)n is equidistributed.

Proof. [ |

5. A quantitative equidistribution theorem

If a probability measure won T = [0, 27) has i(m) = 0 for all m # 0, then u must be the normalized
Lebesgue measure mon T. If the first hundred Fourier coefficients are zero, can we say that p is close
to the Lebesgue measure? One must decide what is the sense of closeness one wants, and we take
the Kolmogorov-Smirnov distance defined as d(w, v) := sup{|u(/) — v(I)| : I is an arcin T}. When
we say arc of the circle T, we mean an interval [a, b] C T for some a < b or [a,27) U [0, b] for some

b < a. Then we have the following theorem of Erdos and Turan®®.

8oyr presentation is taken from some unpublished notes of Mikhail Sodin and the paper Equidistribution of zeros
of polynomials by Kannan Soundararajan. Both are exceedingly well-written and we have added almost nothing to the

presentation. Sodin gives multiple proofs of the main step in the equidistribution result.
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Lemma 9 (Erdos-Turan). For any probability measure u on T and any n > 1, we have

d(uw,m <C [Zm(kk)' + 1]
k=1

n

for some constant C.

This is a quantitative version of Weyl's criterion. Indeed, if u, is a sequence of measures such that
fm(k) — 0 for all k # 0, then the above lemma implies that limsup d(um, m) < Cn~*, for any n,

which of course shows that ., converges to m weakly.

Proof. Let F,(t) = u[0, t], 0 < t < 2w denote the distribution function of u. For example, Fp(t) =
t/2m. Let V(t) = Fy(t) — Fu(t) — a where a is chosen so that [ V/(t)dt = 0. Then, for any arc
I €T, we have |u(l) — m(I)| < 2[|V||sup (if I = (a, b] then u(/) — m(l) = V(b) — V/(a), and similar
expression if the arc is (a,1) U [0, b)).

To bound the sup-norm of V, we smooth it by convolving with the Fejér kernel K, to get 0,V (t) =
(V x Kp)(t) = J7V(t — s)Ka(s)ds. Recall that K,(u) < m < HL; from which we get
f[—é,é]c Kn(u)g—j; < %. We divide into two cases, either ||V||syp = supV or ||V||syp = —infV

First assume that ||V/|lsup = supV. Fix § = 40/n and find t € T such that V(t +9) > ||[V||sup —
wy(20). We have

ds
oV (1) —/[_M] V(t—s)Kn(s)27r+/

ds
V(t—s5)K —

> (V(t+6) ~ wn(28))(1 = 1) = IV lsu

10
né
1
> S|V |sup — 2wy (80/n).
Hence ||opV/||sup > %||V||Sup — 2wy(80/n).

In the other case, ||V/||sup = sup(—V/). Pick § = 40/n and t such that V(t—0) < —|[|V/||sup+wyv (29).
Then
ds

o,V (t) :/ V(t—s)Kn(s)+/ V(t —s)Kn(s)=—

[~5.3] 2T Ji-54)
10 10
< _ _ = -
< (V(t = 8) + @y (26)(1 = 2) + IVl 5

1
< — 5 IV loup + 26 (80/).

Thus again ||Unv||sup > %HV”SUD - 2WV(SO/H)-
Observe that [0,V ||sup < [V(0)] + 222;% IV (k)|, and hence

H\/Hsup < 2||0nv||sup + 4wy (80/n)

n—1
< 4> V(K| + 4wy (10/n).
k=0
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This conclusion holds for any V € L1(T). For the particular V that we defined above, V(0) = 0 and
V(k) = +ikfi(k) for k # 0. Further, wy(8) < 25, hence the inequality [u(/) — m(/)| < 2||V||sup leads

to
n—1

— |a(k)] | 1
d < =24z
(u,m) < C [Z P + -
k=1
This completes the proof. |

Remark 10. One may care about the constants. As written, the proof gives C = 80, but that is

because of the second summand. One can do better by writing the inequality in the form

1.
d(w, m) <4 [Z“( ]
k=1

Even these are not optimal, but we do not bother to do better.

Exercise 11. For simplicity, assume that ||V/||s,p is attained, and choose t such that t £ is such a
point (depending on whether ||V/|] is equal to supV or —inf V). Then choose § = c¢/n for a ¢ as small
as you can and get a better bound with explicit constants.

Remove the assumption that [|V/||sup is attained by introducing € > 0 and choosing t such that
either V(t +0) > ||V| — e or V(t —d) < —||V| + €, and finally letting € — 0.

6. Distribution of roots of polynomials

A polynomial of degree n can have any n complex numbers as its roots. But if one picks coefficients
at random, often it turns out that the zeros are very close to the unit circle, and uniformly distributed

around it. See Figure 6. Can one prove a theorem to this effect? What we see in the pictures can be

o)., .taf - Lo ..
05 L 0.5 - 0.5
. . . T i . . o W . . N
10 -05 05 10 -0 -05 05 1p 10 -05 05 L0
-05 -05 -05
T IEST Rl ST

Figure 1. Roots of polynomials of degree 80. The coefficients are independent random
variables with different distributions: Left: Random 4+1. Middle: Gaussian. Right:

Cauchy. There is no qualitative difference in the pictures!

captured in two statements:

(1) The absolute values of the roots are close to 1.
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(2) The projections of the roots to the unit circle are approximately uniformly distributed on the

circle.

It turns out that the first statement is relatively easy, and we give it at the end. The second one, on
angular equidistribution, is covered by an amazing result of Erdos and Turan. Observe that there is
no randomness in the statements!

Before stating the results, some notation. Both the radial and angular distributions will be controlled
by the size of the polynomial on the unit circle. We can measure this in several ways. For a polynomial
P(z) = anz"+ ...+ a1z + ag with aga, # 0, define

(1) h(P) == [*"log, 1EEL ds

Vlaoan| 27"
(2) ho(P) = log —ZLs where ||Pl| = [|Pllauo(r).
hy(P) = log 2elttlan],
(3) #( ) 0g m

It is easy to see that
(3) h(P) < h.(P) < hu(P).

In many cases, it is easier to control hy than h, which in turn is easier to control than h. Hence,

although the best inequalities are stated in terms of h, in using them we often replace h by hy.

6.1. Angular distribution of roots.

Theorem 12 (Erdos-Turan). Let P(z) = anz" + ... 4+ a1z + ag where ax € C and apa, # 0. Let
the roots of P be {x = rxe'®, 1 < k < n (repeated according to multiplicity). Let p = 3"} _1 8,
Then, for any arc | C T, we have®®

(1) — m(1)] < jﬁx/h(m.

For the right hand side to be a good bound, h(P) must be small, or equivalently log, |P| must be
small on the unit circle, on average. Using the inequality h(P) < hx(P)

Corollary 13. Suppose P, is a sequence of polynomials of degree n with coefficients having absolute
values between B, and B%- Assume that 1 < B, = e°("_ Let W, be the probability measure on T

that puts mass % at /|C| for each root ¢ of P (counted with multiplicity). Then, as n — oo,
sup{|un(l) = m(l)| : 1 isanarcin T} — 0.

Not all polynomials have equidistribution of the angular parts of the roots. What fails then?

9, Soundararajan’s paper he gives the inequality with the explicit constant C = %
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Example 14. Let P(z) = (z—1)". All roots are at 1. What about h(P)? Observe that et — 1| > 1
if and only if T < t < 2Z. Hence

h(P) = n/ logle't —1| —— = c¢n
/3 2T

for some ¢ > 0. Thus the bound on |u(/) — m(/)| does not go to zero as n — co.

Exercise 15. Let P(z) = z" — 1. Compute h(P) explicitly, and compare d(u, m) with the bound

given by the Erdos-Turan theorem.

Proof of Erdos-Turan theorem. By the Erdos-Turan lemma on equidistribution, we know that for any
N>1,

(1) — m(1)| < C [i ekl 1
k=1

Hence the issue is to get a control on (k).

Case when roots are on T: Assume that P(z) = a,[]/_;(z - e'). Then u = i1 0 e, and

a(k) = J 1 e~ 'kt Being a symmetric polynomial of the roots, these are expre55|ble as polynomials
of the coefﬂoents of P (these are called Newton's identities), but the way we do it is as follows:
. 2 i P ; ikt
Claim: fow e*slog|e’t — e’5|§’—fT = SW'
To see this, observe that if r < 1, then by the power series expansion of logarithm,

o0
. . . 1, . 1 .
t S| - (s—t)y — =k aik(s—t) _ |k| oik(s—t)
log|e'* — re’*| = Relog(1 —re’*™") = —Re ,;_1 il e = gﬁo ——rlkle! .

Consequently, f027r e*slog|e’t — re"5|g—75r = % Now let r 1 1 and argue that the integral on the
iS‘éLS

left converges to f027r ek log|e't — e —. This completes the proof of the claim.

Setting t = t; in the claim and summing over j gives us

1 1 [ |P(e’%)| ds
oY k — —Iksl -
Sk UK n/ © 9T o
which implies that
a2, Pl
4 — < -lo .
“ =0,

Hence the Erdos-Turan bound gives

() — m(n] < C ﬁ” l0g '|'Z'|' ; ;] |

If we set m = /n/4/2log % (more precisely an integer close to this number), the two summands

have about the same contribution and

1Pl

Y Janl

(1) — m(1)] < ; l0g



Observe that our assumption that roots are on the unit circle forces |ag| = |an|, hence the above

expression can also be written as

() - UL_/f Wvgl(

On the right is the middle quantity in (3). How to get h(P) is indicated later (it is simple, but we
postpone it to avoid distractions from the main point).

General case when roots are anywhere in the plane: If P(z) = a,(z — (1) ...(z — (p), set & =
Ck/I¢k] and Q(z) = ap(z — &1) ... (z — €,). The angular distribution measures pwp and ug are equal
by construction. Hence (to get the weaker bound as before) it suffices to show that

1ol _ Pl
lanl ~ \/]agan|

because we already know the theorem for Q. This trick of replacing P by Q is attributed to Schur.

Writing ¢; = rJ-e’QJ (then & = e'%) and taking any z = €’® € T, the desired inequality can be written

as
/9J|

. ia i0; iot i e — re
l}w — e < Eggllw nf|—II
since ap/ap is the products of the roots, up to a sign. We show that the jth factor on the left is
bounded by the jth factor on the right. This is easy, because for any «, 6,
rle’® — e2 — | — re'®? = r(2 — 2cos(a — 0)) — (1 + r?> — 2r cos(a — 6))
= —(r—1)?

which is negative. n

Remark 16. How to improve the bound to y/h(P)? We gave up too much in (4) by moving from

the integral to the supremum. Instead, as |x| = 2x; — x, we can write

2 [2T |P(e'®)|, ds
o latk) < 2 ! =
2|k||u<>|_n/0 Jlog 21122
2 27 p is d 1 27 p is d
L2 [ g, PN 1 P
n Jo lan| 2w  nJ lan| 27
2
= Zn(P
h(P)

because the second integral vanishes. This is because the integral is the average of 27:1 log |z — e't]
which is harmonic inside the disk and 0 at z = 0. If this is not clear, show directly that f027r log |e’s —
re'ilds = 0 if r < 1 (use Taylor expansion as we did earlier) and let r + 1. Once we get the h(P)
bound for polynomials with roots on the unit circle, for the general case it follows from the inequality

h(Q) < h(P). That in turn is true because we showed that |Q(2)| < |P(z)| for z € T.
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6.2. Radial distribution of roots.

Theorem 17. Let P(z) = apz" + ...+ a1z + ap with aga, # 0. Let (; = rje"ff for 1 <j < n, be the

roots, counted with multiplicity. Then
Z log(r; v =) < 2h(P).

In particular, if v =% > i1 0y, then forany r <1,

2h(P)
nlogl’

p ([0, r]U [rt, 00)) <

Corollary 18. Suppose P, is a sequence of polynomials of degree n with coefficients having absolute
values between B, and B%- Assume that 1 < B, = e°(" Then vp,(1—0,1+9) — 0 forany § > 0.

Proof of Theorem 17. We claim that
2m de 0 if r <1,
/ log |e”® — re't|— =
0 om logr ifr>1.

For r < 1, this is the Oth Fourier coefficient of 6 — log |e”® — re’t| that we saw earlier. For r > 1,

rewrite the integrand as logr + log |%e_’t — e to reduce it to the previous case. The case r = 1

can be taken as a limitingg case from either direction.

Apply this with r = r;, t = t; and sum up over j < n to get

27
log log. r;.
/0 Ianl Z T
Observe that % = [, rj to rewrite this as

’P( )! 1 Og|aof
0 \/Iaoan 2 7 |an|

1 n
=52 _llogrl.
=1

Now |log r| is the same as log(r Vv %) and the proof of the first statement is complete.

fj

The second one follows from the first by observing that all the terms logr; V % are positive, and
J
each zero with absolute value in (0, r] U [%, 00) contributes at least log  to the sum. Hence their

number is at most )
2 [ 1P

o ——
log L Jo V/]aoan|

Dividing by n gives the second statement. |
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CHAPTER 9

Expander graphs

1. Expansion in graphs

Let G = (V, E) be a finite graph. This means that V' (vertex set) is a finite set and E (edge set)
is a subset of {{/,j} :i,j € V}. Such graphs are called simple. A more general notion is to allow E
to be a multiset, and also allow it to contain elements of the form {x, x} for x € V. An edge of the
form {x, x} is called a loop and if {x, y} occurs k times, we say there are k edges connecting x to
v. We shall use the notation as if our graphs are simple, although much of it extends to graphs with
multi-edges and loops. Even more generally, one can consider weighted graphs, where w;; = w;; is
the weight of an edge between i and j (zero weight means no edge)?°.

The adjacency matrix Ag = (a;j)ijev Where a;; = 1if i ~ j (i.e., {/,j} is an edge) and 0 otherwise.
For multiple edges, a;; is the multiplicity of the edge. For weighted graphs a; ; is the weight. In any
case, Ag is a symmetric matrix. The Laplacian matrix L = D — Ag where D = diag(d;);ev is the
diagonal matrix of degrees of the vertices (d; is the number of edges connected to /, or more generally
the row sum of the ith row of Ag). Then for f € RY,

(LF6) =2 df ()= X 2a,f(DFU) = > ay(F() = ()
iev {ij}eE {ij}eE
showing that L is positive semi-definite. It always has a zero eigenvalue, as L1 = 0. The normalized
Laplacian is defined as £ = D=3LD73.

For S, T C V, let E(S, T) denote the set of edges with one end in S and the other in T. Then

define the expansion coefficient of G as

e - E(S, 5]
sisi<in  |S|
Example 1. If G = K,,, the complete graph on n vertices, then |E(S, S¢)| = |S| x (n—1S|) and hence
hc = [3n]. If G is the discrete cycle on n vertices (edges are {1,2}, ..., {n—1,n},{n,1}), then
he =< %
Definition 2. A sequence of graphs G, = (V,, E,) is called an expander family if |V,,| — oo and
max;ey, deg(i) < d for some d < oo, and hg, > hg for some hg > 0.
m many good references for what we cover in this chapter. The survey article Expander graphs and their
applications by Hoory, Linial and Wigderson; the book Expander graphs by E. Kowalski; the book/lecture notes on
expanders by Luca Trevisan; the book Spectral graph theory by Fan Chung. These are some exceptionally well-written

ones.
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To understand the notion of expansion, consider a graph in which the degrees are bounded above
by d. For x € V and r > 1, let B(x, r) denote the set of vertices within graph distance r of x. If
|B(x,r)| < &n, then |B(x,r +1)| — |B(x, r)| > %G|B(x, r)|, since there are at least hg|B(x, r)| that
connect B(x, r) to its complement, and at most d of them can have a common end-point on the other
side (all these end-points are in B(x, r+1)\ B(x, r)). Hence, |B(x,r+1)| > (1+g)|B(X, r)|, showing
that |B(x,r)| > (1 + g)r for r < r(x) :=min{r:|B(x,r)] > n/2}. The balls increase exponentially

in size till half of the graph is covered. This shows that

21
and diameter(G) < 09 n

logn
r(x) < S
() log(1+ 1)

~ log(1+ )

?
since B(x, r(x)) N B(y,r(y)) # 0 for any x,y. Since we also have the trivial bound |B(x,r)| <

1+d+...+d" =< d", no connected graph can have diameter more than c4log r. Thus in an expander

sequence, the graphs G, have diameters growing at the order of log |V;]|.

2. Connection between expansion and spectrum

Henceforth, we assume that the graph G = (V, E) is d-regular. Let the eigenvalues of the Laplacian
Lg be denoted 0 = A1 < o < ... < X\,. Then the eigenvalues of Ag are d = 5\1 > >\~2 > ... > 5\,7 >
—d (the last inequality is because the row sums of Ag are at most d).Of these, two are important

enough that we give separate notations: Ag := A2 and 5\’& = max{ X2, |An|}. Two easy observations:

(1) A = 0 if and only if G is disconnected. In fact, since (Lv,v) = >, (vi — vj)?, we see
that Lv = 0 if and only if v is constant on each connected component of G. Therefore, the

dimension of the null space of Ls is equal to the number of connected components of G.

(2) Xn = —d if and only if G is bipartite. If G is bipartite, then V = \4 U V4 and all edges of G
connect a vertex in Vj to avertexin \b. If vy =1 fori € Vj and v; = —1 for i € V5, check

that Lv = —dv. We leave the converse as an exercise.

Now we go on to more quantitative way in which Ag measures how well-connected G is. This is a

fundamental result in spectral graph theory.

Theorem 3 (Cheeger's inequality+Buser's inequality). Let G be a finite d-regular graph. Then
"6 _5g <o
2d = "¢ = e

The key point for us is that expansion can be captured in terms of Ag. In particular, {G,} is an
expander sequence if and only if Ag, is bounded below. Incidentally, the inequality holds as stated for
general finite graphs, if d is interpreted as the maximum degree among all vertices - this follows from

the proof given below.
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Before going to the proof, recall the Rayleigh-Ritz formulas (variational principles for eigenvalues

of Hermitian martices) which imply that

(LGf )
Ae = \eel 1)
G ey (F )

Any f that attains the minimum is an eigenvector with eigenvalue Ag.
Proof. The second inequality (Buser's) is the easier one. Given any S C V with cardinality s < %n,

define f; =1 — % fori € Sand f;, = —% for i € S¢. This is just the indicator of S, shifted to have

zero mean. Then

2 _
(A =0-22s+(2) (n-5) = s(”ns) > 2,
(LEF) =Y (F)—fG)* = > 1=IESS)
i~ i~jii€S,JESC
By the variational formula,
20ES. S (LA

sl = (f.f)
To prove the first inequality (Cheeger’s), we let f be an eigenvector of Lg with eigenvalue Ag. Label

the vertices so that (1) > ... > f(n) and fix k = [5] (the reason for this choice becomes clear

later), and define two other vectors

) f(i)y—f(k) ifi<k, _ 0 if 1 <k,
g(i) = and h(i) =
0 if i > k, f(k)y—1f(@i) ifi>k.
Then we claim that
(1) Igll” + 1 AlI> > (I£]? and (Lg, g) + (Lh, h) < (Lf,f).

The first inequality is easy as the left side is >_,(F(i) — f(k))? which is equal to >, f(i)? + nf(k)?,
as f(1) + ...+ f(n) = 0. To prove the second, consider any edge i ~ j. If i < j < k, then
l9(1) = gU)I = [f(i) = fU)] and |h(i) — h(j)| = O while if k < i < Jj then [g(/) — g(j)| = 0 and
\h(i) — h(j)| = |F(I) — F()|. If i < k <, then

(9(i) = g())? + (h(i) — h(7))* = (F(i) = £(K))* + (F(k) = £(;))* < (F() = F())*.

The ordering of vertices was used in the second inequality because then (f(i)—f(k))(f(k)—f(j)) > 0.

Summing over all edges justifies the second inequality in (1). Consequently,

(Lf.f) _ (Lg.g)+(Lh h) _(Lg.g) (Lhh)

AG 2 > > :
lgll? + [[hlI? 911 1h[I?
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Without loss of generality assume that the first one is the smaller of the two. To analyse it, observe
that 3, ;(9(1) + 9())* <232,.;(9(i)? + 9(j)?) = 2d 3=, 9(i)?. Hence
(Lg.9) - >ini(9() = a())? X (g9(i) +9()))?

EEE Ek T 2d]glP
(Sinsleli = 9012
| (Zinile g
= 2d]g[*

by Cauchy-Schwarz inequality. Now,

j—1
> =g(i)®) = D D (9(0)? - g(t+1))?

in~j i~j, 1<) £=i

= (90 =g+ 1) {i~j i <L<j}H.
£l

The second factor in the summand is |E([€], [€]°)| which is at least hgl if £ < Jn. Of course,
g(£) — g(£+1) =0if £ > k, hence we see that

k—1
D (9107 = 90)?) = he > (9(&)* — g(€+1)*)
(=1

i~
n
=he Y _g(0)>.
=1
Thus, we have arrived at
(Lg.g) _ (hsllgl?)* _ hg
lgllz = 2dlgll*  2d
which is Cheeger’s inequality. |

A >

Later we shall need an inequality like Cheeger’s for infinite graphs. While one can try to define the
Laplacian and make sense of it as a self-adoint operator, study its spectrum, etc., for our purposes we
can cut short all that and directly prove an inequality between quadratic forms and expansion. Follow

the above proof to complete the following exercise.

Exercise 4. Let G = (V, E) be a d-regular graph with a countable vertex set VV. Then for any
g € L%(V), show that

Sing(9() = 90G)* 1 < o EG 5°>|>2
Diev9(i)? T 2d \scv[Sl<e0 |9
Observe that the condition that g L 1 and the condition that |S| > %|V| are neither needed nor
meaningful.
Returning to finite graphs, as discussed earlier, these inequalities allow us to define expanders
algebraically in terms of the second eigenvalue. If we take this definition, the following result places a

limitation on how good the expansion can be.
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Theorem 5 (Alon—Boppana). Let G be a d-regular random graph. Then A\¢ < d —2v/d — 1+ 04

where 6, 4 — 0 as n — oo for fixed d.

The usual way to state this is that Ao > 2v/d — 1 — o(1). This inequality explains why the following

definition is meaningful.

Definition 6. A sequence of d-reqular graphs G, = (V,,, E;,) with |V,;| — oo is said to be Ramanujan
if Ag, > d —2vd —1 for all n.

Thus, Ramanujan graphs are the most extreme possible expanders. Constructing them is much
harder than constructing general expanders. It was done first by Lubotsky—Phillip—Sarnak using some
number theory results related to Ramanujan conjectures, and hence they gave the name. Their con-
struction was for specific d (of the form 1+prime). Marcus—Spielman—Srivastava recently constructed
Ramanujan graphs of all degrees. In this chapter we shall only talk about general expanders.

While the proof of the Alon-Boppana bound requires some work, it is not hard to get some bounds
of this nature. For example, writing the trace of A? in terms of eigenvalues we see that tr(AQG) <
d?+ (n—1)X2. On the other hand, the trace is also the sum of squares of all the entries of Ag, hence
tr(AZ) = nd. Thus, we see that A, > v/d. The loss of the factor of 2 on the right (at least if d is
large enough for us to ignore the difference between d and d — 1) can be fixed by considering higher
powers tr(Asz). On one side we can bound it using eigenvalues and on the other side one can relate
it to the number of closed paths of length 2p on the graph. Some analysis (mainly the idea that for
a given starting point on the graph G, there are at least as many closed paths of a given length 2p
as there are for a given starting point on a d-regular tree) leads to a weaker form of Alon-Boppana
bound that says that

e >2vVd—1—o(1).

The weakness is because 5\2 < 5\*.

3. Construction of expanders

The original Margulis construction with important improvements and simplications by Gabber and
Galil, and then many others is presented in many places. We just give an outline and refer the reader
to these sources”!.

The graph G, is defined as follows: Let Vj, = Z, x Z, = {0,1...,n— 1}2. The edges adjacent
tou = (k) € V connectittout+e = (k+1,8), ute = (k£+1), S(u) = (k+£14),
S™Hu) = (k—2£,2), T(u) = (k,k +4£), T-Y(u) = (k,£ — k) (all addition is modulo n).This allows

multiple edges and loops, but is a d-regular graph.

Theorem 7. G, is an expander family. In fact X\g, >77.

2l7he presentation in Luca Trevisan's notes is superb and we follow it here closely.
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If £ is the second eigenvector of Lg,, then we know that f L 1 and

D uev, (F(u) = F(Su))? + (f(u) — F(Tu))® + (F(u) — F(u+e1))® + (F(u) — f(u+ e))?
AG, = .
’ D uey, F(u)?

Correspnding to f, we define a function F : [0, n)? = R by F(x) = f(u) if x € u+1[0,1)%, u € V,. To
convert it to our standard convention for the torus, also define G : [0, 27)? — R by G(x) = F(nx/2m).
Then

(1) 72 G(x)dx = %f[o,n)2 F(x)dx =23 e, f(u) =0.

(2) [ G(x2dx = 2 fig e FO0? = s Yuey, ()

(3) Further, if we define S, T : [0,n)? + [0,n)? by S(x1,x) = (x1 + x2,x) and T(x1, x0) =
(x1,x1 +x2), then if x € u+0,1)?, then S(x) € S(u) +[0,1)? or S(x) € S(u)+e1 +[0,1)2.
Hence, if we define S : T2 — T2 by 5(x) = 22S(nx/2m) = (x1 + X2, x2) (the addition is in

T2, i.e., modulo 27), then we can work out that

/ (G(x) — G(3x))? = & / (F(x) — F(S()))?
T2 n [O,n)2

= ,712 D (F(u) = F(S()? + (F(u) — F(Su+ e1))?

ueV,

< 5 S (F(0) = F(S()P +20(7(0) — F(Sw)? + (F(Su) = F(Su+ &)
ueV,

= % > (F(u) = F(S()? + (F(u) — F(u+ e1))?.
ueVy

Adding it to the analogous identity for T in place of S, we find that

/ (G(x) — G(3x))* + (G(x) — G(Tx))?
T2

= Y (F(u) = F(Su))> + (F(u) = F(Tu)* + (F(u) = F(u+e1))” + (F(u) = F(u+ e))*.
ueV,

Consequently,

Jr2(G(x) = G(SX))* + (G(x) = 6(Tx))*.

3xg, >
Gn - fTZ G(X)2

To estimate the right hand side, we use Fourier analysis on T2. Write

2072 N .
G(x) L (:T ) Z G(p)el(perpsz)

pEZ?
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Note that G(0,0) = [;» G = 0. We now compute the Fourier expansions of Go S and GoT.

G(Sx) = G(x1 + x0, x0) = Z G(p)ei(pl(X1+X2)+P2X2)

pEZ?
= 3 G(pr, po)el et ore)
PEZ?
=Y G(qu, g2 — qr)elmatee),
pPEZ2

This means that (G o S)(p1, p2) = G(p1, p2 — p1). Similary, check that (G o T)(p1, p2) = G(p1 —

p2, p2). To state this clearly, let us introduce S, T :72% — 72 by §(p1,p2) = (p1 + p2,p2) and

7~_(Plv p2) = (p1, p2 + p1) where the addition is in Z? (in retrospect, it would have been simpler to

have just defined S, T on any group and understand from the context which one is being used). Then,
Gogzéoi—*l, GoT =GoS 1

This is the key observation which explains the choice of the two maps S, T in defining G,,. Using the

Fourier expansions of G,GoS,G o T and Plancherel's theorem, we see that

|66 = 2m? 3 166

pEZ?

|16 =G6(50F = 22 3 16(T0) ~ 6(0)F

pEZ?
|1660=6(Tx)1 = 2 3 16(50) - 6(0)F
pEZ?

and hence
>opez2 1G(P) = G(TP) + 3 peze |G(P) — G(Sp)I?
2hg, > = _
> pez 1G(P)]
Observe that all the sums are over Z2\ {(0,0)} (and 5, 7 map Z2\ {(0,0)} into itself). If we define
an graph G with vertex set Z2\ {(0,0)} and edges p ~ T p and p ~ Sp, then the right hand side above

is precisely the Rayleigh-Ritz quotient for the Laplacian on this graph. From Cheeger's inequality for
infinite graphs as given in Exercise 4, we deduce that

1 E(S, SC>|>2
3. > — —_— ] .
Gn =g (scz2l,ns<oo |S|

It looks like we are back to where we started. Instead of the graph G,, we now have the infinite graph
and we must show that the expansion coefficient is strictly positive. Turns out, this can be done
directly by an elementary argument! It is tempting to think that may be a variant of this argument
can be directly carried out for the original graph G,, but | have not seen such a proof anywhere and |

am even unable to visualize the graph G, well.
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Take any finite S C Z? \ {(0,0)}. In Trevisan's notes, he partitions it into Sg, S1, .. ., S4, where
S1,..., S, are those points of S that lie in the (strict) first to fourth quadrants and Sg consists of all
the other vertices (those that have at least one zero co-ordinate). We quote (and leave it to you to
work it out or refer to Trevisan's notes)

(1) S; has at least S; edges that go out of S and connect it to vertices in the first quadrant.
Hence deduce that |E(S1U S, U S3U Sy, S)| > |S1 US> U S3U Sy

(2) The 4|Sq edges with one vertex in So have the other in S§, but only 3/4 of these can land in
S (from the first step). Hence deduce that |E(Sg, S€)| > 7|So| — 3|S|.

Use the two inequalities to deduce that |E(S, S€)| > 1|S|.
Putting everything together, we have
1 1
49 ~ 1176
This completes the proof. [ |

AG, =

1
X = X
38

W]
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