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Chapter 1

Basics of Gaussian random variables

1.0.1 Standard Gaussian

. . . . . 1,2
A standard normal or Gaussian random variable is one with density @(x) := \/szne‘ix on the

real line. Its distribution function is ®(x) = [*_ @(¢)dr and its tail distribution function is
denoted ®(x) := 1 — ®(x). If X; are i.i.d. standard Gaussians, then X = (Xi,...,X,) is called
a standard Gaussian vector in R”. It has density [T, @(x;) = (21)"/?>exp{—|x|>/2} with
respect to Lebesgue measure on R”. The measure is denoted v,, so that for every Borel set
A in R" we have v,(A) = (2n) /2 [exp{—|x|?/2}dx.

A

The most important symmetry property of the standard Gaussian measure is this:

Exercise 1. [Orthogonal invariance] If P,., is an orthogonal matrix, then y,P~! =1, or

equivalently, PX 2 X when X ~ Y». More generally, if p <n and P,, is a matrix such that
PP' =1, and X ~ v,, then PX ~ ).

Conversely, if a random vector with independent co-ordinates has a distribution invari-
ant under orthogonal transformations, then it has the same distribution as ¢X for some
(non-random) scalar c.

To get an idea why, specialize to n = 2 and assume that X; has density y(x) on R. By
the orthogonal invariance, X, has the same density and the independence of co-ordinates
implies that the joint density is y(x;)y(x2). Using orthogonal invariance again, we see

that y(y/x3 +x3)y(0) = w(x;)y(x2). The well-known characterization of the exponential
function (if f(x+y) = f(x)f(y) for all x,y and f is measurable, then f(x) = ¢“ or f =0)
shows that y(x) = exp(—cx?) for some ¢ > 0. We leave it as an exercise to generalize the
proof to all dimensions and remove the assumption that X; has a density.
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1.0.2 Multivariate Gaussian

If Yiox1 = tmx1 + BmxnXnx1 where X, ~ v,, then we say that Y ~ N,,(u,X) with X = BB'.
Implicit in this notation is the fact that the distribution of ¥ depends only on ¥ and not on
B. This follows from Exercise 1: The matrices By, and Gy, with p < n satisfy BB' = CC"
if and only if B = CP for an p x n matrix P that satisfies PP' = I,,. It is a simple exercise that
ui = E[X;] and o, ; = Cov(X;,X;). Further, if Y ~ N, (u,X) and Z,«1 = Cpxm¥Y +6,x1, then
Z ~ N,(0+ Cu,CEC"). Thus, affine linear transformations of normal random vectors are
again normal.

Quite often, in studying ¥ ~ N, (u,X), it is useful to express it explicitly as Y = BX +u
where X ~ v,, and B, «,, satisfies BB’ = X. This is done by writing ¥ = PAP" where P, «,
is an orthogonal matrix and A is diagonal with positive! entries, and taking B = PA%Q
for any Q, . satisfying QQ" = I,. In particular, there is always the choice of m = n and
B=1X7:=PA2P , the unique symmetric matrix whose square is £. Another illuminating
way is to write the spectral decomposition £ = Ajv v} +...+A,v,v, and setting

X = Zi\/ Mevy

n
k=1
where Z; are i.i.d. standard Gaussians. Strictly speaking, some eigenvalues of ¥ could

coincide, and then there are multiple choices for an orthonormal basis of eigenvectors.

Orthogonal invariance ensures that the above representation is valid for any choice.

Exercise 2. Show that a random vector X,,; has multivariate Gaussian distribution if and
only if every linear combination of X (i.e., v'X for any v € R") has univariate Gaussian
distribution.

We say that a collection of random variables (X;);c; (some index set I) is said to have
joint Gaussian distribution if any finite sub-collection has multivariate Gaussian distribu-
tion. Equivalently, it just means that the finite linear combination a;X;, + ...+ aX;, has a
univariate Gaussian distribution for every k > 0 and iy,...,iy €/ and a; € R.

Exercise 3. Let X ~ N,(u,X) and X' ~ N,(¢/,X’) be independent Gaussian vectors on a
common probability space. Then, X + X' ~ N, (u+4/,Z+Y').

IThanks to the corona virus, let me take me in-class rants to the broader world. I use the word positive to
mean non-negative. One reason is that it avoids the slight mental effort of hearing the sound negative and
negating it, but what bothers me more is that if we must always say non-negative and strictly positive, we
lose the use of the simpler and nicer word positive. I rest my case and hope that the supreme court does not
find me in contempt of non-negativity (I am positive that it is not that idiotic).
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Exercise 4. N,(u,X) has density with respect to Lebesgue measure on R if and only if ¥ is

non-singular, and in that case the density is

| . .
(2m)"/2\ /det () eXp{—Q(Y—#) z 1(Y—u)}.

If ¥ is singular, then X takes values in a lower dimensional subspace in R"” and hence does
not have density.

1.0.3 Covariance matrices

Let B, denote the set of n x n positive semi-definite matrices and ?,” denote the subset of
positive definite matrices. That is, ¥ € @, if and only if vV¥v >0 for allve R". And X € B,
if and only if strict inequality holds for v # 0.

Y € P, if and only if ¥ = BB’ (in one direction B may be allowed to be rectangular,
in the other it may be restricted to be square). Therefore, P, is precisely the set of n x n
covariance matrices. Some basic facts about such matrices are collected in this exercise.

Exercise 5. Let A be a real symmetric n x n matrix. The following are equivalent.
1. A€ P, i.e., vVAv > 0 for all ve R".
2. A = BB' for some matrix B,,y,, for some m.
3. A = C? for some real symmetric n x n matrix C.
4. A = ¢ for some n x n symmetric matrix X.

5. The eigenvalues of A are non-negative.

6. A is a covariance matrix: A; ; = E[X;X;] for some random variables Xj,...,X, on some
probability space.
7. A is a Gram matrix: A; ; = (v;,v;) for some vectors vy, ..., v, in some Hilbert space.

1.0.4 Gaussian process

Let X = (X;)er indexed by a set T, be a collection of random variables on a common
probability space (Q, ,P). Equivalently, X : Q — R’ is a random variable, where the set
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R is endowed with the cylinder sigma algebra (the smallest sigma algebra for which the
projections ® — ®(¢) from R” to R are measurable. Such an X is called a stochastic process.

A stochastic process X is said to be a Gaussian process if every finite linear combina-
tion ¢ X(#1) + ...+ ¢, X(t,), where n > 1, t; € T, ¢; € R, has a one-dimensional Gaussian
distribution (possibly degenerate). Equivalently, one may say that any finite sub-collection
has a multivariate Gaussian distribution. By what we have seen for multivariate Gaus-
sian vectors, the distribution of X (which is entirely determined by distributions of all
finite subcollections) is determined by the mean function m : T — R and covariance kernel
K:T xT+— R given by m(¢t) = E[X(¢)] and K(¢,s) = E[X ()X (s)].

Example 6. Let 7 =R and let X = (X;), where X; are i.i.d. N(0,1) random variables. Then
X is called white noise. It exists, and its distribution is the product measure @7N(0,1).
Observe that the only probability questions that can be asked about X are about events
and random variables that depend only on countably many coordinates. One cannot ask,
for example, for the probability that X is a continuous function of z.

Example 7. Let T = [0,o0) and let m(r) = 0 and K(s,r) = s At. Brownian motion W is a
stochastic process with this mean function and covariance kernel. But it is not the only
one such. Construct a process with discontinuous sample paths that has the same mean
and covariance.

There is no contradiction here. On the cylinder sigma-algebra on R, there is at most
one Gaussian measure with given mean function and covariance kernel. But when we
talk of Brownian motion with continuous sample paths, we are talking of a measure on
C(T) and not on R”. As the latter only contains events described by countably many
coordinates, it is too weak and uninteresting. One of the important questions we shall
investigate is to find conditions on the covariance kernel so that there exists a Gaussian
process taking values in C(7') (assuming 7 has a topology) and having that covariance (say
when 7 = [0,00)).

Example 8. Let T be an index set and let m: T +— R and K : T x T — R. Show that there
exists a Gaussian process with mean function m and covariance kernel K if and only if K
is p.s.d. By definition, this means that Y i cicjK(t;,tj) >0foranyn>1,€T,c;eR.

1.0.5 Characteristic function

The characteristic function of X ~ N;(0,X) is E[¢!*X)] := e 2MEM for ) € RY. We leave this as
an exercise. This extends to all of A € C¢ analytically and the moment generating function

11



: I : - : :
is E[eX)] = ¢2VZ is the characteristic function evaluated at i\.

Exercise 9. If X ~ N,;(0,X), show that E[e/*¥)] = ¢=2¥E* for ) € RY. In particular, if X ~
N(0,62), then its characteristic function is E[e™X] = e 29°% for Le R.

Closely related is the moment generating function, E[¢*X)] = eI for L e RY. If
we extend the characteristic function to A € C¢ (in this case it does extend naturally),
then evaluating it at a point where all co-ordinates are imaginary gives us the moment
generating function. As a special case, when X ~ N(0,6?), we have

B[ 2V = 1

This is a combination that occurs often. For example, when W is a standard Brownian

C 192 . . ,
motion, it is well-known that M, (1) = ¢~ 2% is a martingale, for any fixed A € R.

1.0.6 Moments and Wick formula

Differentiating the characteristic function at A = 0, one can get all the joint moments of the
X;s. In the univariate case, E[X?’] = 6?’(2p—1) x (2p —3) x ... x 3 x 1. Of course the odd
moments are zero. To see this, let 6> = 1 without loss of generality and write E[X?”] as
L e M2 As e M=y o 7hA%P, it follows that E[X?] = $20, which is the same as the
claimed formula. The 2p-th moment has the combinatorial interpretation of the number
of ways to divide up [2p] :={1,2,...,2p—1,2p} into p disjoint pairs. This generalizes as
follows.

Exercise 10. Prove the Wick formula (also called Feynman diagram formula): Let X ~
Nu(0,X). Then, E[X; ... X, = Yyear [T j1em Oij where M, is the collection of all matchings
of the set [n] (thus 9, is empty if n is odd) and the product is over all matched pairs.

Observe that a matching is an unordered collection of n/2 pairwise disjoint subsets of
[n] of size 2 each. Because of the symmetry of the covariance matrix, it does not matter
how we order each pair or the collection of pairs. For example, E[X|X,X3X4] = 612034 +

G13024 +G14023.

Cumulants: Let X be a real-valued random variable with E[¢/X] < o for ¢ in a neighbour-
hood of 0. Then, we can write the power series expansions

Iwmzimmg,lwwmbimmf
k=0 n.
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Here m,[X] = E[X"] are the moments while x,[X] is a linear combination of the first n
moments (K; = mj, Ky = my — m%, etc). Then x,, is called the nth cumulant of X. If X and Y
are independent, then it is clear that «,[X + Y] = «,[X] + x,[Y].

Exercise 11. (optional). Prove the following relationship between moments and cumu-
lants. The sums below are over partitions IT of the set [#] and Iy, ... ,II;, denote the blocks
of I1.

mX) =R Tem X, X = LD [T, X

Thus k1 = my, Ko =my —m3,

If X ~ N(u,02), it has charcteristic function e*~*"/26° which shows that k[X] = ,
k2[X] = 62 and «,[X] = 0 for p > 3. The converse of this result is also true and often useful
in proving that a random variable is normal. For instance, the theorem below implies that
to show that a sequence of random variables converges to normal, it suffices to show that
cumulants x,,[X,,] — 0 for all m > mg for some my.

Result 12 (Marcinkiewicz). If X is a random variable with finite moments of all orders
and x,[X] = 0 for all n > ng for some np, then X is Gaussian.

These considerations extend to the multivariate random vectors X;, by writing

' 3 A ke
E[el(X,X>] = Z mx[kl,...,kd]ﬁ7
(kl7-~~-,kd)tkl>0 1:..-Kq:
' - Al ke
iAX) M
logEle ] = Z Kx[kl,...,kd]kl!'“kd!

(k1 ska)70:ki>0

but we omit the details here.

1.0.7 Conditional distributions

We saw that Gaussianity is preserved by affine linear transformations and also under con-
volutions. Now we recall that marginals and conditional distributions of Gaussians are

Gaussians.
Exercise 13. If Uy and V|, are such that Y’ = (U’, V'), and we write ¢’ = (u;,u2) and

X1 X
Y= 712 are partitioned accordingly, then
Ly Ix
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1. U NNk(‘ul,le).
2. U v Ni(uy — 21222_21/2V, Y11 — 21222_21 Y1) (assume that X, is invertible).

It is an important observation that the conditional expectation is linear in the conditioning
variable and the conditional variance does not depend on it at all.

It is worth noting the particular case k = 1. Let X ~ N,(u,X). Then the conditional
dis- tribution of X; given Y = (X3,...,X,) is Gaussian with mean u; — u’B~'Y and variance
61,1 —u'B~'u, where u' = (612,...,061,) and B = (6, })2<i j<n-

Recall the interpretation of conditional expectation as projection in L2. Thus, if we want
to find the function f that minimizes E[|X; — f(Y)|?], then the solution is f(Y) = u; —u'B~'Y
and the minimum value of the error is 6, —u'B~ 4. Thus, the conditional mean is the best
predictor of X; in terms of Y and the conditional variance measures how good this predictor
is.

One of the topics we shall study is the problem of prediction when we have an infi-
nite collection of random variables X = (X,,),cz (with additional property of stationarity).
When predicting Xj in terms of the “past observations” Y = (X,),<0, it may happen that
the conditional variance is zero, which means that Xj is determined by the past (and then
each X; is determined by the preceding X;s, hence all the randomness in the process is at
the infinitely distant past!). There is a nice condition that tells us when this happens.

Exercise 14. Let (X;);cr be a Gaussian process. Fix A C T and ¢y € T. Show that the con-
ditional distribution of X (7y) given G = 6{X; : t € A} is Gaussian. What are its parameters?
(Give the answer in terms of conditional expectations given G)

1.0.8 Weak convergence

It is very easy to see that if y, — y and X, — £, then Ny(u,,%,) 4N (u,X). The converse is

also true.

Exercise 15. The family of distributions N;(u,X), where u € R? and X, is a positive semi-
definite matrix, is closed under convergence in distribution (for this statement to be valid

we include N(u,0) which is taken to mean §,).

14



1.0.9 Characterizations of Gaussians

Gaussian distributions have many special properties. Some properties are not shared with
any other distributions. Such properties characterize Gaussian distributions. We just men-

tion a few of these here.

1. If X = (Xy,...,X,) is a random vector such that X;s are independent and PX 2 X for
all orthogonal matrices P, then X ~ N,(0,6°I,) for some 62 > 0.

2. If X; are i.i.d. (real-valued) and X; +X, < v/2X, then X; ~ N(0,062).

3. If E[Xf(X)] =E[f'(X)] for all f: R~ R with bounded continuous derivative, then
X ~ N(0,1). This is Stein’s characterization and we talk about it later.

4. If the cumulants of X eventually vanish, i.e., if logE[¢’X] is a polynomial of A, then
X ~ N(u,c?) for some u,c>.
One can extend this list endlessly, and each property sheds some light on the importance
and ubiquity of Gaussian distribution. For example, the second property explains why it
arises as the limiting distribution in central limit theorem.

1.0.10 Entropy

Here we explain another “reason” for the appearance of the Gaussian.

Definition 16. Let X be a R"-valued random variable. Its entropy is defined as —o is X
does not have density with respect to Lebesgue measure, and if X does have density f with
respect to Lebesgue measure, then the entropy is defined as
1
E(X):= log —— f(x)dx.
() = [ Tog 75 )

As with expectation, variance etc., entropy depends only on the distribution of X.
Example 17. If X ~ Unif{a,b], then E(X) = log(b —a).
Example 18. If X ~ N(u,c?)), then

2

x—pu)? 1w
E(X) :/]R {%—l—log(c 2%)] G\}ﬁe 158 dx
= 5o BI(X —4)’] +1og(0V2m)

1
=logo+ 5 log(2me).
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From these examples, we see that the entropy is low (possibly negative) when the
distribution is concentrated (approaching a discrete distribution) and increases to infinity
as the distribution spreads out. For instance, if X =Y, then £(X) = E(X) +logz. In the
first example, by considering the equality case in Jensen’s inequality, it is easy to see that
Uniform|a, b] uniquely has the largest entropy among all distributions supported on [a,b|.

Here is a similar problem to which Gaussian distribution is the answer.

Lemma 19. Among all distributions with given mean and variance, the Gaussian distribution
uniquely has the highest entropy.

The same is true in higher dimensions if we fix the mean vector and the covariance

matrix. We leave that as an exercise and present the proof for the one-dimensional case.

Proof. If X is any random variable with finite variance 62, and @ is the Gaussian density

with the same variance, then

5= [ [1og ({(()) T log <p0<x>] f(x)dx

~ (10 L[
—/Rlogff 2/Rxf(x)dx.

The second integral is equal to [ x*@s(x)dx. The first integral is bounded above by log ( Jr ‘p—;’

which is zero. Further the bound is an equality when f = @s. Thus, E(f) < E(¢s). [

Note that we did not use the equality of means. Indeed, E(X +a) = E(X), hence the
shift does not change entropy.

More generally, if (Q, F,v) is a measure space, then for a probability measure y on 7,
we define its entropy (w.r.t. v) as [, flog %dv if f= Z—C and as —oo if u is not absolutely

continuous to u. The entropy maximizing measures below are called Gibbs measures.

Exercise 20. (Optional) Let H : Q — R be a function such that y(B) := [ePdv(x) < oo
(which could be ). Consider the problem of maximizing the entropy of a probability
measure on Q subject to the constraint [, Hdu = Ey. If there exists a By such that y(Bo) =
Ey, then show that the entropy maximizing measure has density proportional to ¢P with
respect to v.

Apply this to the function H(x) =xon Q =R, to H(x) = 1 on Q = [a,b] and to H (x) = x*
on Q = R to recover familiar examples of probability distributions.
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1.0.11 Gaussian from uniform measures on high dimensional spheres

Let u, denote the uniform measure on S" = {x € R"!': ||x||> = 1}. By definition, this is
the unique probability measure on S” that is invariant under orthogonal transformations.
One way to see that it exists is to consider the standard Gaussian measure ¥y,,; on R**!
and push it forward under the mapping x — x/||x|| from R**!\ {0} to S". The orthogonal
invariance of vy, | carries over to uj,.

Exercise 21. Show that [V\"|2 has Beta(n— 1, 1) distribution. More generally, (|V;[,...,|Vi[?)
has Dirichlet(k;1,1,...,1,n — k) distribution. (Recall that Dirichlet(k;ay,...,ar,ary1) dis-

tribution is the one with density Cxi”_1 ...xzk_l(l —x1 — ... —x)%1 7 on {(xq,...,x) €
k. ot _ Do+ +ag)
RY :x1+...+x; < 1}. The normalization constant C = Tan) T )

Thus, the Gaussian measure is a convenient tool to do calculations on the uniform
measure on spheres. Sometimes, the usefulness may be in the reverse direction, using the
following way of getting to Gaussian from uniform.

Claim: Let V(") = (Vl("),..., ")) ~ . Fix k> 1. Then \/r_z(Vl(”),...,Vn(k)) converges in
distribution to a vector of i.i.d. standard Gaussians, as n — .

The easiest proof is from the construction used above for V(). Indeed, let X; be i.i.d.

standard Gaussians. Then

v _ (X1,...,Xn)
XA+ X
. . 1 X4 4X? as. (n) (n)
is uniform on §"~". By the law of large numbers =——= = 1. Therefore, \/n(V;",..., V™)
converges to (Xi,...,X;) almost surely, and hence in distribution. [

Remark 22. Apparently, Maxwell arrived at the above fact in his study of the velocity
distribution of molecules in a gas. The idea is that a box of (monatomic) gas in a box
maintained at a fixed temperature has about N = 10>* atoms, and the temperature is (a
multiple of) the sum of squares of the velocity components of the atoms. Basic principles
of statistical mechanics assert that the individual velocity components are random and
uniformly distributed on the set of all allowed values, in this case, a sphere in 3N dimen-
sions. Maxwell then deduced that the three velocity components of any single atom (say
randomly chosen atom) are i.i.d. Gaussian.
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1.0.12 Gaussian Hilbert space

If (Q, 7 ,P) is a probability space, then L?(P) is a Hilbert space with inner product (X,Y) :=
E[XY] (of course X,Y are to be interpreted as equivalence classes). Any closed subspace
# C L*(P) is also a Hilber space. If every X € # has a univariate Gaussian distribution,
then we say that # is a Gaussian Hilbert space.

If (X;)ies is any collection of jointly Gaussian random variables, then W =span{X; : i € I}
is a GHS. The closure is in L?(P). The reason is that linear combinations are Gaussian and
L?-limits of Gaussians are also Gaussian (as L?-convergence implies convergence in distri-
bution). In this sense, when studying a jointly Gaussian collection, there is no reason to
not enlarge the collection to a closed subspace of L?(P). That is called the GHS associated
to the original collection.

For example, suppose X ~ N,,(0,X) be a random vector in some probability space
(Q,F,P). Then, W = {Xy :=Vv' X :veR"}. By vi— Xy}, this is isomorphic to the Hilbert
space R” with the inner product (v,w) = v'Ew. Of course, if ¥ is singular, then this is a
pseudo inner product (not all linear combinations are distinct).

Conversely, given a Hilbert space H with orthonormal basis {e;:i € I} (no big loss to
assume that / is countable), then we can form a collection of Gaussians whose GHS is
(isomorphic to) H. For this, consider a probability space (Q,7,P) on which there are
i.i.d. standard Gaussians Z;. For any v € H, define Xy = Y ;(v,e;)Z;. The series converges
by Khinchine’s theorem since ¥;|(v,e;)|* = ||v||? is finite. As E[XyX,] = (v,u), the GHS
{Xy:ve€ H} CL*(P) is isomorphic to H under the bijection v <+ Xy, proving the claim?.

1.0.13 The Gaussian density and the heat equation

Recall the standard Gaussian density ¢@(x). The corresponding cumulative distribution
function is denoted by ® and the tail is denoted by ®(x) := [ ¢(¢)dt. The following esti-
mate will be used very often.

. 12 ) : -
Exercise 23. For all x > 0, we have ﬁﬁe ¥ < P(x) < ﬁ%e >¥ In particular?®, ®(x) ~

2This may seem fairly pointless, but here is one thought-provoking question. Given a vector space of
Gaussian random variables, we can multiply any two of them and thus get a larger vector space spanned by
the given Gaussian random variables and all pair-wise products of them. What does this new vector space
correspond to in terms of H?

3The notation f(x) ~ g(x) means that lim £& = 1.
x=300 8(¥)
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x~1@(x) as x — . Most often the following simpler bound, valid for x > 1, suffices.

1 _
ﬁe_%xz <P(x) < e_%xz.

For r > 0, let p,(x) := % (x/+/t) be the N(0,t) density. We interpret po(x)dx as the

degenerate measure at 0. These densities have the following interesting properties.

Exercise 24. Show that p, x p; = p; 15, i.e., [ p(x —y)ps(y)dy = prys(x).
R

Exercise 25. Show that p;(x) satisfies the heat equation: % pi(x) = 532p:(x) forall >0
and x € R.

Remark 26. Put together, these facts say that p,(x) is the fundamental solution to the
heat equation. This just means that the heat equation a%u(t,x) = %%u(t,x) with the initial
condition u(0,x) = f(x) can be solved simply as u(t,x) = (fx p/)(x) := Jp f(¥)p:(x — y)dy.
This works for reasonable f (say f € L'(R)).

All this generalized to higher dimensions. Write p,,(x)dx for the measure N;(0,t1;)
where ¢ = 0 corresponds to 8. Then p;; x pas = pas+s- Further, the heat equation

0 1

gpz(x) = EAPz(X)

where A =Y | % is the Laplacian on RY. Then u(x,t) := [pa f(y)pa,s(x —y) satisfies the
heat equation Witi’l the initial condition u(-,0) = f (for reasonable f, where we omit the
discussion of what is reasonable).

One can rewrite the heat equation in the following way. Let d = 1 for simplicity. Let
Z, ~ N(0,t) have density p,. Then Z,/+/t is a standard Gaussian for each ¢, and hence
for any reasonable test function, E[f(Z;/+/t)] is constant. If f is smooth enough, we can
differentiate under the integral to get

0= %/Rf(z/\/f)Pt(Z)dZ
- [ [ e Lrenino)
R [ 2¢2
- [[ e gren] e
R | 2t2 !

by integration by parts in the second integral. Sett =1 to get E[Zf'(Z)] = E[f”(Z)]. This is
true for all smooth enough f for which the expectations exist.
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Remark 27. One choice of Z is to let Z be a standard Brownian motion in one dimension,
with a minor change of variables, X; = ¢ */2Z,: is an Ornstein-Uhlenbeck process which is
stationary in time. Then the equation obtained here has is just the Komogorov forward
equation for this process.

1.0.14 Stein’s equation

If Z~ N(0,1), we obtained the equation E[Zf'(Z)] = E[f"(Z)]. Writing g = f’, this becomes
E[Zg(Z)] = E[¢/(Z)], which involves only first order derivatives. This is called Stein’s equa-
tion. Suppose a random variable W satisfies

E[Wg(W)] = 6’E[g'(W)]

for a large class of g (say all g € C! for which both expectations exist), then taking the
special functions g(w) = ¢, we see that W has the characteristic function y satisfying
V(L) = —c?y(L), which implies that W ~ N(0,6?). Thus the Stein-equation characterizes
the Gaussian distribution.

Stein made this the starting point of what is now famous as Stein’s method, show-
ing that if W satisfies the Stein’s equation approximately, then the distribution of W is
approximately Gaussian. This allowed him to prove central limit theorems in many sit-
uations that were out of reach of the method of characteristic functions (for example, if
W = (X;+...+X,)//n where X; are weakly dependent variables with zero mean and unit
variance).

In higher dimensions, we have the following “integration by parts” formula that we

shall have occasion to use.

Exercise 28. Let X ~ N,(0,X) and let F : R" — R. Under suitable conditions on F (state
sufficient conditions), show that E[X;F (X)] = Y_, 6;;E[d;F (X)]. As a corollary, deduce the
Wick formula of Exercise 10.

1.0.15 Semigroups

Recall the Ornstein-Uhlenbeck process that is defined as X (r) = e //2W (¢), for —oo < t < oo,
where W is a standard Brownian motion in d-dimensions. Then X = (Xi,...,X;) where X;
are i.i.d. O-U processes in one dimensions. Let us take d = 1 for now.
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The O-U process X is clearly a Gaussian process and E[X(¢)] = 0 and E[X(¢),X(s)] =

e~=sl. This shows that X is stationary, that is X (- —1) < x (-) for any T € R. There are
alternate descriptions of X, for example by the stochastic differential equation

dX(t) = —%X(t)dt +dB(r)

where B is standard Brownian motion. The meaning of this is that

X (1) —X(0) = —%/(:X(s)ds+B(t).

In more intuitive terms, for small # > 0, the displacement X (7 + &) — X () is independent of
{X(s) : s <t} and has (approximately) Gaussian distribution with mean equal to —31X (¢)h
and variance equal to h. If the mean was zero, this would just be the description of
standard Brownian motion. However, the mean is —%X (1), which means that it tends to
move towards the origin.

Another way to think of it is to drop the Brownian motion term (if you don’t like
revolutionary changes, consider dX () = —4X (t) + adB(t) and drive the parameter o to 0).
We get the ODE x/(¢) = —%x(t), which means that x is the velocity of a particle performing
simple harmonic motion (a mass tied to a spring that pulls it towards the origin). In that
sense, O-U process is a particle performing simple harmonic motion, except that there is
some randomness (“thermal noise”) in its motion given by the Brownian motion.

The O-U process is a Markov process. To see its transition density, observe that for
fixed r > 0, the random variable X () has the same distribution as ¢~ 2X(0) + /1 —e¢Z,
where Z ~ N(0,1) is independent of X(0) (independent of the entire past up to time 0,
in fact). In other words, the conditional distribution of X(z) given %y = o{X(s):s <0} is
N(e~'/?X(0),1—e"). For a reasonable function f: R — R, let (P, f)(x) = E[f(X;) | X(0) =x].
The precise class of f for which this makes sense will be left open now, but ignoring that
point, it is easy to see that P, o Py = P, and of course Py = 1. Thus, (P;);>0 form a semigroup
(meaning that P, o Py = P;,). This is called the O-U semigroup.
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1.0.16 Hermite polynomials

Hermite polynomials are useful, in fact indispensable, tools to study the Gaussian measure.
For n > 0, thenth Hermite polynomial is defined as*

dx" €

It is clear from this that H, is a monic polynomial of degree n. For example, Hy(x) =1,
H;(x) = x, Hy(x) = x> — 1, H3(x) = x> — 3x. It is possible to write the explicit formula for H,,,
but that is not the best way to understand its properties. To this end, observe that

e " ZH = ez, €y

This can be seen by writing the power series expansion of the right hand side as a function
of w, with x held fixed (donOt expand the exponential, just recall that the nth coefficient
is got by differentiating the function n times at the origin...). Multiply two of these expres-
sions with w and z, multiply by ﬁe%ﬁ, integrate and interchange integral with summation

to get
w7

w2 —Li—7)2
o 1 [t g

wPzP

p=0 P!

Equating the coefficients, we see that (H,,H;)y = 6,,,n!. Thus \IFHn, n >0, form an or-

thonormal basis for L?(y) (since polynomials are dense in L?(y)). As such, applying Gram-
Schmidt procedure to 1,x,x%,... in L?(y) would have led to the same polynomials. Hermite
polynomials satisfy difference relations and differential equations.

Exercise 29. Show that check constants here

1. Hyi1(x) = xH,(x) —nH,—1(x).

4There are different conventions. Wikipedia denotes our H, as He,, and calls it the “probabilistOs Hermite
polynomials”. The notation H, is used for the “physicistOs Hermite polynomials” that are defined without
the  in the exponent of the Gaussian density.

22



2. %Hn(x) =H,_1(x) and (—% +x)H, (x) = Hpy1(x).
3. L(—4L 4 x)H,(x) = Hy(x).

As{\/LaHn :n > 0} form an orthonormal basis for L*(y), for any f : R +— R such that

E[f(Z)?] < o, we can write the Hermite expansion of f,

) v 1
f(Z) = Z E<faHn>Y Hn(Z)
n=0"""
For specific functions f, the convergence can be in better senses of course (if the coeffi-
cients (f,H,) decay fast). This can be useful in many ways, for example to compute mo-
ments of f(Z). For example, if X; are jointly Gaussian (centered) and have unit variances,
then if f; are nice enough, then

Kk (f;
Efix)...fix)l= Y I —<f]7él,nj>y E[H,, (X1)...Hy (Xi)].
oy >0 =1 Tj*

Thus, in principle, all we need are expectations of products of Hermite polynomials. While
the Wick formulas can in principle be used to compute expectations of products of any
polynomials of Gaussians, the formulas get way too complicated. For Hermite polynomials,
everything is magically simpler. Let X ~ Ny (0,X) where 6;; =1 for all i. Then each X; is a
standard Gaussian, hence (1) is applicable and we can write,

Y E[H,(X))...Hy (X )]erll"' i / Lo xjwj— g Loy w3 1 ~Ixr x4
n 1)...Hy (Xg)|——————— = [ e~= J=1"] e X
A peees >0 1 ‘ npl..om! 2 (2m)k/2/det(X)
— e—%(w%—i-...—i-wi)e%w’Zw
:e%w’():flk)w.

From this, one can get the formula for E[H,, (X1)...H,, (Xi)] as follows.

Exercise 30. Consider the complete k-partite graph with vertex set V; LIV, LI... UV, where
V; is a set of cardinality n;. This means that there is an edge between any two vertices not
belonging to the same V;. Endow any edge connecting a vertex in V; to a vertex in V;, with
i # j, with weight o; ;. Then, with the setting above,

n!...ng!

E[H,, (X1)...H, (X)] = Y w(m)

(nl—l—...—i—nk)! 0

23



where the sum is over all complete matchings of the graph, and the weight of a matching
is the product of the weights of its edges.

In particular, if X; =X, = ... = X; = Z then, %E[Hn (Z)...Hy (Z)] is equal to the
number of complete matchings of the graph.

1.0.17 Tail of the Gaussian distribution

. . . . . 1.2 .
The cumulative distribution function ®(¢) = [ ﬁe—zx dx has no closed form expression
in terms of elementary functions (polynomials, trigonometric and exponential functions),
hence the following estimate is often useful. Let ®(¢) = 1 — ®(¢) denote the tail.

Exercise 31. For any ¢ > 0,

[\
~
[}

1
1 e 2t

<P(t) <
t+ s®) s

~ | =
Q
l—

~ =
g
a
g
4

In particular, ®(¢) ~ %(p(t) as t — oo. It is often more convenient to use simpler inequalities
. - 1.2 - 1.2
like ®(1) <e 2" fort > 1 or ®(t) <e'" 2" forall ¢t > 0.

Exact inequalities that hold for every ¢ are sometimes convenient. But as ¢t — oo, one
can get better approximations by the asymptotic expansion:
— - (2n—1
cI) t Z —)
t\/2n 121

with the convention that (—1)!!=1and 2n—1)!!=2n—1)x (2n—3)x...3x 1 forn > 1.
For any ¢ € R, the series on the right diverges! The meaning of asymptotic expansion is

that for any p > 1, ast — oo,

o —1 p 2n—1)N
&) - = Y (-1 P oty
V21 = "

1.0.18 Maximum of i.i.d. Gaussians

Let Z; be i.i.d. standard Gaussians and let M,, = max{Z,...,Z,}. How big is M,? This is a
question that recurs in many situations and an understanding is quite important. We shall
show that

My,  ag

Jalogn — 1. (2)
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In fact we can get sharper statements along the same lines, but this can serve as a first
goal.

Where does the y/2logn come from? Since there are n independent variables, if b, is
chosen so that ®(b,) = %, then the expected number of Z;s that are more than b, is exactly
1. This suggests that the maximum is of the order of b,. For the Gaussian distribution,

using ®(t) ~ ﬁe*%tz, as t — oo, it follows that b, ~ \/2logn.

Exercise 32. Show that /2logn+ %loglogn is a better approximation for b,,.

To prove (??), fix 8 > 0 and consider the events {M, > (1 + 8)\/2logn}. By the tail
estimate for the Gaussian distribution, for large enough n (so that (1+9)/2logn > 1),

its probability is at most exp{—%(1 +8)*2logn} = n~(14+9° which is summable over n. By
M,

v/2logn S

1 + 9, almost surely. Take intersection over countably many & approaching 0 from above,

Borel-Cantelli lemma, only finitely many of these events occur, and hence limsup,,

we see that limsup,, \/é‘f—o#gn < 1, almost surely.

To get the lower bound, let 8 > 0 and consider the event Z, > (1 —§)\/2logn. By the
lower bound for the Gaussian tail,

1 2 1
B N —(1-8)"logn -
P{Z, > (1—-8)/2logn} T —S)WE n1-3?, /logn

which is not summable. As Z, are independent, by Borel-Cantelli lemma, infinitely many

of these events occur, almost surely. But M,, > Z,, hence we see that limsup, My >3,

V2logn —
almost surely. Take intersection over countably many 6 approaching 0 from above to see
. M,
that limsup,, oI > 1, almost surely.

Putting together the upper and lower bounds, we have proved (??).
One can make more accurate estimates (we give up on “almost sure” and consider “in

probability” below).

Exercise 33. Let Z, be i.i.d. standard Gaussians. Show that \/logn(M, — v/2logn) is tight.
In other words, P{—h, < \/logn(M, —+/2logn) < h,} — 1 for any sequence h,, — oo.

In any natural situation, if a sequence of random variables is tight, one should ask if it
converges in distribution. In the current setting, it is true. For any « € R, we have

P{+\/2logn(M, —+/2logn) <u} —e ¢ ". 3)
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The limiting distribution is known as Gumbel distribution. To prove the above claim, let
us define b, as before, satisfying ®(b,) = 1. Consider

P{by (M, —by) < u} = P{M, < by + bi}
n

= (1—6(bn+bi)>n.

n

= 1.2
From the fact that ®(r) ~ ——e~2" as ¢ — o, we see that

V21
B(by+ L) ~ Bby)e " = Lot
n b, n - n

Therefore, P{b,(M,, —b,) <u} = (1— 1JFL(l)e‘“)” — e~ ". Since b, ~ /2logn, the conver-

n

gence in distribution holds with /2logn in place of b,, completing the proof of (3).

Another perspective: Motivated by a discussion in class, let us write this in a different
way. For b(p) = 3! (p) denote the inverse of the tail CDF. What we denoted b, above is in
this notation »(1/n). The number of Z;, ..., Z, that fall above b(p) has Bin(n, p) distribution.
Hence, for any fixed A > 0

#{k<n:Z.>b\/n)} % Pois(A).

Remark 34. With a little more care, one can say make the following statement: Let
Np(A,00) = #{k :Z; > b(A/n)}. Then N, converges in distribution to Poisson point process
with intensity 1 on R. To make this statement precise, one needs to understand the mean-

ing of convergence in distribution for point processes.

Since the number on the left is zero if and only if M, < b(A/n), we see that P{M,, <
b(\/n)} — e~*. From the Gaussian tail, one can work out that b(p) ~ 210gll) (and more
accurately b(p) = 2log 3, —2loglog ; +...), from which it follows that \/ZMR’;W L)

1.0.19 Complex Gaussians

By a complex Gaussian random variable, we mean a C-valued random variable { with
density %e“z‘z on the complex plane. In other words, Re{ and Im{ are ii.d. N(0,3)
random variables. The distribution of 6¢+a is denote N¢(a,6?) for a € C and 6 > 0.
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We say that a collection of complex-valued random variables { = ({;);er has a joint
complex Gaussian distribution if any finite linear combination of them has a univariate
complex Gaussian distribution. The distribution of { is determined by the mean func-
tion m(r) = E[{(r)] and covariance kernel K(z,s) = E[{(r){(s)]. It should be noted that
E[C(r){(s)] =0 for all 7,5 € T (including 7 = s). The matrix (K(,s))ser is called the covari-
ance matrix of {.

Almost all the things said so far for real Gaussians can be carried out for these. We
just state a few salient properties below and leave them as exercises. One can prove them
either by carrying out the analogy with the real Gaussian case, or by breaking all the
complex variables into their real and imaginary parts, and using the results for the real
Gaussian case. We prefer the first approach. In fact, in many ways, the standard complex
Gaussian is more natural than the real Gaussian. When proving that [ e~ dx = /21 or
when simulating a Gaussian on a computer, we know that it is easier done by considering
a complex Gaussian. The fundamental reason is that the standard complex Gaussian has
independent components in two co-ordinate systems: Cartesian and polar.

a few things to fill here
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Chapter 2
Examples of Gaussian processes

To define a Gaussian process X = (X(¢));er is the same as to specify the mean function
m: T — R and covariance function K : T x T — R. The role of the mean function is trivial:
If X is a process with mean function 0 then X + m has mean function m. Thus it suffices
to understand centered (zero mean) processes, and all our processes will be centered
unless stated otherwise. The covariance kernel has to be positive semi-definite, and that
is something nontrivial. How to check if a given function K is p.s.d.? How to generate
examples of p.s.d. kernels? How to generate all of them?

2.1 Random series

Example 1. Let T = {1,2,...,n} be a finite set. Then K = (K; ;)i<; j<x iS a matrix. We
know that K is p.s.d. if and only if it is a Gram matrix, i.e., K; ; = (v;,v;) for some vectors
vi,...,V, € R". This gives a characterization of all p.s.d. matrices. The corresponding
Gaussian process is easy to generate: Let Z ~ ¥, and set X; = (Z,v;).

An alternate way to say the same is to write K = ulut1 + ...+ u,u, for some u; € R".
Then set X = Zjuy +. ..+ Z,u,, where Z; are i.i.d. standard Gaussians.

One direction of this works for arbitrary T. If f; : T — R are arbitrary functions, then
the function K(z,s) = f1(¢) fi(s) + ...+ fu(t) fu(s) for t,s € T, is the covariance kernel of the
process X (t) =Z fi(t) +...+Z,fn(t), where Z; are i.i.d. standard Gaussians.

Does it work with infinitely many functions?

Example 2. Let f;: T — R, i > 1, be a collection of functions such that ¥;|fi(t)|> < e
for all r € T. Then K(t,s) := Y, fi(t) fi(s), t,s € T, is a well-defined p.s.d. kernel. It is in
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fact the covariance kernel of the Gaussian process X(¢) := Y;Zfi(t), t € T, where Z; are
i.i.d. standard Gaussians. Observe that to even define K(¢,7), the condition on square
summability of (f(¢));>1 is necessary, and then, K(t,s) is well-defined as it is the inner
product in /2 of the sequences (fi(¢))i>1 and (fi(s))i>1.

Indeed, for each 7 € T, by Khinchine’s theorem, the series defining X(z) converges al-

most surely. As a limit of finite linear combinations of Gaussians, it is Gaussian, and

E[X(1)X(s)] = X1, fi(1)fi(s)E[ZiZ;] = ¥, fi(1) fi(s)-

With some caveats, all positive semi-definite kernels are of the above form. For now we

do not need to worry why, we just mention a few special cases of these examples.

1. T=R and fi(t) =¢ fori=0,1,...,n. Then X(¢t) =Zo+Zit +...+Z,t" is a random
polynomial. We may also take 7= C, but then f; are not real-valued, hence we
should say that (ReX(z),ImX(z)).cc is a Gaussian process.

2. Let fi(t) = cit', i > 0. Then X(t) = Y0 Zicit' and K(t,s) = ¥;>¢c?(ts)'. The domain T
depends on ¢;s. For example if ¢; = 1 for all i, then ¥; f;(¢)*> converges for r € (—1,1),
hence X is a Gaussian process on 7 = (—1,1) having covariance kernel ﬁ If ¢; =
1/4/i!, then T = R and K(t,s) = ¢'*. If ¢; = i! is fast growing, then T = {0}, as the
square summability condition fails for all 7 # 0.

Similarly, one can form random trigonometric polynomials agZy + Y.;_, (axZi cos(2mkt) +
bxZ; sin(2mkt)), where g;,b; are fixed real numbers. Let us see an example that is not
obviously in this form.

Example 3. Let T = [0,) and K(¢,s) =t As. To see that it is p.s.d., we may observe that
K(t,s) = (1, 1)), showing that K is a Gram matrix (or to be pedantic, (K(t;;))i j<n
is a Gram matrix for any n > 1 and 7; € T). Thus there exists a Gaussian process with
this covariance. However, that is a random variable taking values in R? with its cylinder
sigma-algebra. It can be proved that there is a Gaussian process with the same mean
and covariance and for which the sample paths are C(7T)-valued. That is what is called

Brownian motion.

As in this example, existence of a version of the Gaussian process with continuous

sample paths is a fundamental question that we shall discuss in some detail later.

Our next class of examples is a natural progression from summation to integration.
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Exercise 4. Let ® be some index set carrying a sigma algebra and a measure p. Let
f:®xT — Rbe a function that is measurable and square integrable in the first co-ordinate
for each fixed t € T. Define K : T x T — R by K(t,5) = [o f(0,t)f(0,5)dp(8). Show that a
Gaussian process with this covariance exists. Show that the same holds if f is complex-
valued, provided K(z,s) := [g £(8,1)f(8,5)dp(8) is real-valued.

Unlike in the case of finite sums, it is not clear how to write this process in terms of
independent Gaussians.

Example 5. Let T = [0, 1]? and let K((t1,12), (s1,52)) = (t1 As1) + (12 As2). The corresponding
Gaussian process can again be realized as a random continuous function and will thereafter

be called Brownian sheet.

2.2 Stationary Gaussian processes

If T has a group structure, or more generally if there is an action by a group G on 7, then
we can consider Gaussian processes that respect the symmetry of this action. What that
means is that the Gaussian process X = (X;);cr should have the same distribution as the
shifted-process X8 = (X, ,);cr, for any g € G. Such a process is called G-stationary. When
T = G, the action is understood to be multiplication from the left.

Since the distribution of a Gaussian process is determined by the mean function m
and covariance kernel K, the G-stationarity condition is equivalent to the conditions:
(1) m(g.t)=m(t) forallge G,t € T, and (2) K(g.t,g.s) = K(t,s) forallt,s € T and g € G.

It suffices for this course to consider only three cases, when T is Z, (finite cyclic group)
or Z (integers) or R (real line), and the natural extensions to higher dimensions. The case
of Z, serves as a motivating example. For some comments on general groups, go to the

end of this section.
Finite cyclic group: Let X be a centered stationary process on Z, = {0,1,...,n— 1} with

addition modulo n. The covariance must satisfy E[X;X;] = K(j — k), where j— k is modulo
n, of course. Clearly K(j) = K(n— j), hence K is an even function. The full covariance
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matrix can be written as

K(©O) K(1) K(n—1)
K(n—1) K0) ... K@n-2)
K= : : : : =KO0)+K()C+K2)C*+...+K(n—1)C""!
K(2) K(0) K(1)
K(1) K(n—1) K(0)

where the unitary matrix C = (¢; j)o<i j<n—1 has ¢;j =11if j—i=1 and ¢; ; = 0 otherwise.
That is

0O 1 0 0

0 0 1 0
C=1{(: + +

0O ... ... 01

I ... ... 00

It is easy to see that the eigenvalues of C are the nth roots of unity, and the eigenvector
corresponding to ¢ where 6; = 2% is v; = (1,e/%,¢2% .. ("= all for0 <k <n—1.

n
Since any stationary covariance matrix K is a polynomial in C, it has the same eigenvec-
tors, and the eigenvalue corresponding to vg, is i := K(0) +K(1)e™® +...+ K (n—1)e!"= 1%,

As K is positive semi-definite, p; > 0. Thus from the spectral decomposition,
K = uovovo +11ViVi 4. Al 1Vp—1V,

we see that
2mim

K(m) = po+pje »

2nim (n_ 1) 2nim

~|—/J2627—|—...—|—,un,1e no,

Whenever u = (uo,...,u,—1)" is a vector, which we think of as a function on the group

A

Z, = {e*™*n : 0 <k <n—1}, the right hand side of the above expression defines a function
on Zj, that is called the discrete Fourier transform of u. In our case, y; > 0, hence we may
think of u as a measure on Z,. In fact, it is easy to see the symmetry u; = u,_x. In summary

we have the following theorem.
Theorem 6. Let K : Z, — R be an even function. The following are equivalent.
1. The matrix (K(j —k))o<jk<n—1 is positive semi-definite (i.e., a covariance matrix).

2. K is the discrete Fourier transform of a symmetric measure on Z,.
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Exercise 7. Work out the analogue of Theorem 6 for T = Z¢.

The group of integers: Consider the case when T = Z¢, 4 > 1. Without any attempt at
precision, we may think of Z as a limiting case of Z, (better to write Z, = {—m,—m+
1,...,m—1,m} when n =2m+ 1 to make this intuitively clear), and Z,, which consists of
the n-th roots of unity fills up the whose circle S!. This makes the following statement
believable.

Theorem 8. Let K : Z¢ — R be an even function. The following are equivalent.
1. (K(j—k));kez is positive semi-definite.

2. K is the Fourier transform of a finite symmetric measure u on T? := [-m @], i.e.,

u(—A) = u(A) and K(m) = [rae"™® du(®) for all m € 7.

The group of real numbers: Now suppose 7 = R?. The analogous theorem, due to
Bochner is the following.

Theorem 9 (Bochner’s theorem). Let K : R? — R be an even function. The following are

equivalent.
1. K is continuous and (K(t —s)), scga IS positive semi-definite.
2. K is the Fourier transform of a finite symmetric measure on R.

Example 10. Let W be standard Brownian motion and let X (r) = e ~*/2W (¢") for —oo < 1 < co.
Clearly X is a Gaussian process with zero mean and covariance E[X(7)X(s)] = e~ 2lt=sl,
Therefore, if ¥ = 0:X, then Y is also a centered Gaussian process with covariance E[X (t —
)X (s—1)] = ¢~ 21'=51 Two Gaussian processes with the same mean function and covariance
kernel are equal. Hence X is stationary. It is known as the Ornstein-Uhlenbeck process.

The dual and the isomorphism: For T = Z,R, let T = S!, R, respectively. For a stationary
Gaussian process X on T, the covariance kernel (when continuous) is seen to be of the
form K(t,s) = ji(t — s), for some finite symmetric measure on 7. The measure u is called
the spectral measure of X. Except for the mean (which is a constant), the spectral measure
determines the distribution of the Gaussian process. Further, there can only be one spectral
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measure for a given stationary process. Thus, centered stationary Gaussian processes and
spectral measures are in on-one correspondence with each other.

Here is another view of this correspondence. For ¢ € T, define ¢; : T+ C by ¢;(x) = e/~
Then the mapping e, — X; from L*(T, B;,u) to L*(Q, F,P) is an isometry. As such, linear
questions about the process can be transferred to questions about the Hilbert space L (u).

A prime example of such a question is one of prediction: Suppose we want to predict
X(0) based on the past {X(¢) : t < —T} for some T > 0. The best predictor is the conditional
expectation, which is the linear projection in L?(Q, ¥ ,P) of X, onto span{X; :t < —T}. By
the isomorphism, this is equivalent to projecting ey = 1 onto span{e; : t < —T} in L?(u).

Proof of the easy side of Bochner’s theorem. Let u be a finite, symmetric measure on 7. Then
we are in the setting of Exercise 4, with ® = 7 and p = u and f(A,1) = ¢, since ji(r —s) =

S M dp(h) = 3 £ (1) f (N, s)dp(h). u

The proof of the converse is not trivial. But it is of the same kind as one sees in Riesz’s
representation theorem or the moment problem. In all these cases, a linear functional is
given on a vector space of functions such as C(T) or polynomials or linear combinations
of complex exponentials. If the space is sufficiently large and all non-negative functions in
this class take non-negative values under the linear functional, then the linear functional
is an integral with respect to some (positive) measure. We skip the details and refer the
reader to ?.

Interpreting the spectral measure: How to think of the Gaussian process itself? Let
X = (X;):er be a Gaussian process with an atomic spectral measure u = p;8y, + ...+ p,0,
(to be symmetric, each A; and its negative occur with the same weight). This means that
E[X(1)X(0)] = X, pje™'. If we define X (1) = /p1 Zie™' + ...+ /pn Zpe™', with iid.
standard Gaussians Z;s, then it is clear that E[X ()X (0)] = p1e™’ + ...+ pye™' = i(\). Thus
X is the Gaussian process with spectral measure u.

This gives an idea of how the spectral measure defines the process. Basically X is a
linear combination of complex exponentials ¢, (1) := /™, where A is in the support of u, and
the coefficients of these exponentials are independent Gaussians with variances depending
on how much mass u puts at A. This intuitive understanding is useful. For example, the
tail of the spectral measure dictates the smoothness of the process and the smoothness of
the spectral measure dictates the decay of correlation between the process values at far off
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time points. To see this, we recall the following facts from basic Fourier analysis'
1. If [ |x|*du(x) < oo for k < p, then g € CP) and g\P)(r) = [g (ix)Pe™du(x).

2. If u has density f with respect to Lebesgue measure and f € C(?), then f(t) = o(|t| %)
as t — oo,

At least the first one is seen in the discrete example above - if A;s are large, then X

has high frequency component ¢ and that means fast oscillations or less smoothness.
For example, the Cauchy distribution is heavy tailed and that is why the O-U process has

non-smooth paths.

Now it is clear how to generate many examples of stationary processes - just start with
any symmetric measure and find its Fourier series/transform. Here is an example where
we start with the process and find the spectral measure.

Example 11. The Ornstein-Uhlenbeck process has covatiance K(r —s) where K(u) = e~ 2l

It is known that this is the Fourier transform of - dx, which is a scaling of the standard

symmetric Cauchy measure. This is the spectral measure of the OU-process.

There is no magic to find the spectral measure. It need not be easy in general, but is
sometimes.

» In the discrete setting, X = (X (n)),cz, We can try to write the density of the spectral
measure as f(A) = Y,z K(n)e™. If ¥,,|K(n)| < oo, this series converges absolutely and
uniformly on [—=,7]. Therefore, f is a continuous function and 5- [ e I (M) dh = K (0).
In other words, ﬁ f(A)dA\ is the spectral measure.

» In the continuous setting too, if K € L' (R), then by the Fourier inversion formula the
spectral measure has density f(A) = 5 [xk K (t)e~™dt. In the example of the O-U process,
this is the easiest way to guess the spectral measure.

Example 12. Let Z, be i.i.d. standard Gaussians and let X,, = Z, —Z,_;. Both Z = (Z,) and
X = (X,) are stationary Gaussian processes. Their covariances are

Kz(l’l,m) = 5n,m Kx (n;m) = 26n,m - 6n,erl - 8n,mfl-

From this and the above recipes to construct the spectral density, we see that the spectral
densities are fz(A) = 5 (uniform on [—=,7]) and fx(A) =2 —2cosA.

IThe second volume of Feller’s famous books on probability has an excellent chapter on characteristic
functions. Proofs can be found there.
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Exercise 13. Let X = (X, ),z be a stationary Gaussian sequence with spectral measure p.
Let Y be the result of passing it through a linear filter, i.e., Y,, = aoX,, + a1 X—1 + . . . + amXn—m,
where m > 0 and ay,...,a, € R are fixed. Find the spectral measure of Y.

Here is an example in two dimensions.

Example 14. Let T = R? and let u be the uniform measure on the unit circle {x*> +y> = 1}.

Its Fourier transform

2
JO(}V) ::/O nei(kl cosz-}—kzsint);i_;

is known as the Bessel function of the first kind of order zero. The centered Gaussian
process with this covariance is known as the random plane wave. In the interpretation
given above, it is a random superposition of waves of unit frequencies, equally in all direc-
tions. Its importance lies in the fact that high energy eigenfunctions of the Laplacian on
Riemannian manifolds look like this random function, conjecturally (Berry’s random wave

conjecture).

Exercise 15. Let X be a stationary Gaussian process on R with an absolutely continuous
spectral measure du(x) = h(x)dx (then # is called the spectral density of the process). Find
the spectral measures of the following processes:

1. Y, = X, where a > 0.
2. Y, = Xs,, for m € Z, where 6 > 0.
3. Y, = (—1)"Xg, for m € Z, where 8 > 0.

Exercise 16. Let p,(t) = Zo+ Zit + ... + Z,t" be the Kac polynomial, where Z; are i.i.d.
standard Gaussians. Consider the rescaled process around 1, namely g,(t) = p,(1+ 1),
—oo < t < 0. Show that g, converges to a stationary Gaussian process as n — < (in the
sense of convergence of finite dimensional distributions) and find the limiting process and
its spectral measure.

On general groups

Let G be an Abelian topological group that is locally compact. Then there is a unique
Haar measure u (meaning u(g.A) = u(A.g) = u(A) for all Borel sets A and all g € G). Now
consider the regular action of G on L?(G,u) defined by t,f(h) = f(g+h), for g,h € G. Each
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T, is a unitary transformation on L?(G). Further, 1, and 1, commute for any g,4 € G.
Consequently, they have a simultaneous spectral decomposition.

For simplicity, assume that G is finite with n = |G|, and then u is the counting measure
on G. Then there is an orthogonal basis of common eigenfunctions ¥1,...,%,. That is,
ToXk = M(g)Xk for all g € G and 1 <k < n. To understand what the eigenfunctions and
eigenvalues are, consider one of these and write it as Tyx = A(g)X.

Then y(g+h) = M(g)y(h) for all g,h. This shows that ) cannot vanish, and we may
normalize it so that % (0) = 1, where 0 is the identity of G. Then we see that A(g) = x(g)
(set h = 0) and consequently, x(g+ %) = x(g)x(h). Thus, x is a homomorphism from G
to the multiplicative group C\ {0}. It is easy to see that it must map into S'. Thus, the

common eigenfunctions are just homomorphisms from G to S!. to complete or delete

2.3 Gaussian free field and related processes

Let G = (V,E) be a finite connected graph. What we wish to find are jointly Gaussian
random variables X,, v € V, having joint density proportional to exp{—%Q(x)}, where
Q(x) = ¥, (x, — x,)%. But this is not integrable, since Q is not strictly positive definite,
as Q(1) = 0. Alternately, consider the simplest case of a graph with a single edge, in which
case we have e~z —2)’ whose integral over R? is infinite.

To overcome this problem, one must impose a constraint to a lower dimensional space
of RY. Indeed, Q(x) = 0 if and only if x,, = x, for all u ~ v, which happens if and only if x
is constant (because G is connected). Hence, if we restrict to any subspace W C RV that
contains no constant functions (we refer to vectors in RV as functions on V) other than the
zero function, then Q is strictly positive definite on W, and then the Gaussian distribution

with density exp{—3Q(x)} on this subspace does exist. Two examples:

1. Fix a non-empty subset B C V and set W = {x € R : x, = 0 for v € B}. The corre-
sponding Gaussian field is called the GFF with Dirichlet boundary condition on B.

2. Let W:=1+ = {x € RV : ¥, x, = 0}. The corresponding GFF is called the GFF with

ZE€ro average.

Note that we have not specified the covariance of the GFF directly. To find that, it is
necessary to write Q(x) = x'2~'x for x € W. For this purpose, define the Laplacian matrix
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L of the graph, which is the V x V matrix such that

d, ifu=v,
Luyv)=< -1 ifu~v
0 otherwise

where d, is the degree of v. Then, it is easy to check that (Lx,x) = Q(x). Since L1 =0,
it has no inverse. But on W it has an inverse, and that is the covariance of the GFF. We
shall analyse it in more detail in greater generality soon, but here is the summary: The
covariance of X, and X, is G(u,v) where G(u,v) is the expected number of visits to v by a
simple random walk on G started at « and killed when it hits the set B.

On trees it is easy to understand the GFF by hand. Here is the simplest example of the
line graph.

Example 17. Let G be the subgraph of Z induced by the vertices V = {0,1,...,n}. Then
O(x) =Xy (xj —xj-1 )2. Two cases of the GFF with Dirichlet boundary condition.

1. B={0}. (Xi,...,X,) have density proportional to exp{—%Z?zl(Xj —X;_1)%}. Hence
we may represent them as X; = Z; +...+Z; where Z; are i.i.d. N(0,1). Thus X is jsut
random walk with N(0, 1) steps and E[X;X;| = jAk.

2. B={0,n}. The way to construct thisis X; =Z+...+Z; — %(Zl +...4+Z,) where Z; are
i.i.d. N(0,1). The covariance is E[X;X;| = j(n—k)/n. This is random walk bridge with
Gaussian steps. One can also describe is the the Gaussian random walk conditioned
to be at 0 at time n.

Exercise 18. Let T be a finite rooted tree and let B = {root} be a singleton. In this case,
describe the GFF on T (if the question sounds vague, assume that you have a supply of
ii.d. N(0,1) random variables and use them to construct the GFF on 7). Either from your
construction or by finding the Green’s function, give an expression for E[X,X,] for two
distinct vertices u, v.

Extension to general reversible Markov chains: Let P be a transition matrix for a Markov
chain on a finite state space V. We shall assume that the chain is reversible with respect
to some m: V — (0,), hence this chain can be thought of as random walk on the graph
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G = (V,E,(c.)ecE), where the edges are {u,v} with P,, > 0 and the conductances are C,,, =
n(u)P,,. The assumption of reversibility ensures that the graph is undirected so are the
conductances. The random walk transitions are P,, = C,,/Y.,cy Cu and the reversible
measure is T(u) = Y, , Cu-

For simplicity, we work with the case n(u) =1, so P,, = P,,. The general case will be
left as exercise. Then the matrix P is symmetric and has a spectral decomposition. All its
eigenvalues are in [—1,1]. One of the eigenvalues is 1. Hence for 0 < 6 < 1, the matrix
(I —6P)~! is positive definite. Let us assume that P is aperiodic, so that by the Perron-
Frobenius theorem, all other eigenvalues are in (—1,1) and we can write the power series
expansion

(I—6P) ' =14+06P+0°P>+0°P ...

We would like to set 6 = 1, but the series on the right does not converge and the inverse on
the left does not exist. By fixing a non-empty set B C V and imposing Dirichlet conditions
there, we are changing the Markov chain so that the states in B become absorbing states,
and the transition probabilities from vertices outside B remain unchanged. Then the chain
is transient and the above series converges. The centered Gaussian process indexed by V
and having covariance (I — P)~! is the generalized notion of GFF.

Agreement with the original definition: If all the conductances are 1, the chain becomes
SRW on G. Further, if © has to be uniform, then the degrees must agree (recall that
(1) = ¥~uCuw), let us say d is the common degree. Then I —P = ﬁL, where L is the
Laplacian matrix of G, defined by L(i,i) = deg(i) and L(i,j) = —1 for i ~ j (other entries
are zero). Thus, up to a scaling by v/d, this agrees with the earlier definition of a Gaussian
free field on an unweighted graph.

Green’s function: For a transient Markov chain (ona. countable state space), we define

its Green’s function

G(u,v) = i)Pt(u,v) = E,

Z 1X,—v] ’
t=0

the expected number of visits to v by a chain that started at u. This is the covariance kernel
of the Gaussian free field for a transient chain, and what we did above in case of random
walk on a finite graph (which is certainly recurrent) is to convert it to a transient chain
by introducing one or more absorbing states and then taking the Green’s function of the
resulting transient chain as the covariance function of our Gaussian process.
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Continuum GFF: In the continuum setting, there is a well-known definition of Green’s
function, which happens to be G(x,y) = czlog|x —y|=2 in R? and G(x,y) = cq4lx — y| 412
in R for d > 3. If Q is a reasonable subset of R’ (e.g., bounded open set with smooth
boundary), then there is a notion of Green’s function G (it corresponds to the Laplacian
with Dirichlet boundary condition or equivalently to Brownian motion that is killed at the
boundary of Q), but that also has singularity (of the kind log(1/|x —y|) in 2-dimensions
and 1/|x —y|/?"? in higher dimensions) and hence there is no Gaussian process whose
covariance function is G(x,y) (the variance would have to be infinite!). But nevertheless, it
is an object one can make sense of in various limiting senses or as a random distribution.
Working in the discrete setting avoids these technicalities, but also loses out on some of
the symmetries such as scaling (there are richer symmetries such as conformal invariance
in 2-dimensions). However, features of the continuum GFF can often be seen in some
asymptotic sense in the discrete GFF.

2.3.1 Continuum GFF

Suppose X is a centered Gaussian process on an open set U C R? with covariance kernel K.
Assume that it so happens that ¢ — X;(®) is almost surely continuous. Then we can create
new fields on more exotic index sets as follows.

* For f € C.(U), define Y(f) := [, f(¢)X(t)dt. This is a Gaussian process on C.(U) with
covariance K(f,g) = [y f(t)g(s)K(t,s)dtds.

* For any curve v: [0,1] — U, define Z(y) = [, Xdy:= folX(y(u))y’(u)du. Then Z is a
Gaussian field on the space of all curves in U with covariance

ko) = [ [ KO0 Gan ) du

* Let M be the space of finite Borel measures on U and define W (u) = [, X (¢)du(t).
This is a Gaussian field on M with covariance kernel

K (4, v) = /U /U K(t,5)du(t)av(s).

In some sense, the original field can be got from Y by taking a sequence f, € C.(U) that
1

approaches §,. For example, if ¢ € C.(R?) whose integral is 1, we can set f,(t) = 20((1o +
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t)/€) (for small enough €) and it is easy to see that Y(f,,) — X(f9) as n — . Similarly one
can recover X from Z (take curves that stay close to 7y) or from W (let u, — &,).

The continuum GFF is a peculiar case where we have the approximating fields Y,Z,W,
but the original field X does not exist! We imagine it as existing as a limit of the others.

GFF on a bounded domain having Green’s function: Let U be a bounded domain
that has a Green’s function Gy. By definition, the (Dirichlet) Green’s function is the
unique function on U x U — such that (1) Gy(-,y) is harmonic on U \ {y} for any y € U,
(2) Gy(x,y) = 0asx— U, (3) Gy(x,y) = —log|x—y|+O(1) as x — y.

The existence of a Green’s function requires mild regularity on the domain U. A
sufficient condition is that for every boundary point, there is a continuous curve whose
image intersects U in that boundary point alone. But for our purposes one may just
stick to the unit disk D, in which case the Green’s function has the explicit formula
Gp(z,w) = log ||f:%vz||.
in the co-ordinates. Further, the harmonicity and behaviour near y may be summarised as

As in this example, in general, the Green’s function is symmetric

saying AGy (-,y) = —2nd,(-) in the weak sense that

| 46(x) Glxy) dx = ~2mp(y), for any ¢ € CX(U).
U

Informally, Green’s function is the inverse of the Laplacian (with Dirichlet boundary con-
ditions).

With this preparation, the GFF on U is supposed to be the Gaussian process on U with
covariance kernel Gy. For this to make sense, Gy must be positive semi-definite. We see
that this poses some problems.

It is a non-trivial fact that the —A has a discrete spectrum 0 < A} < A, < ... and the
corresponding eigenfunctions {¢,} (properly chosen) form an orthonormal basis for L?(U).
Thus, —A@, = A,¢,. Then, the Green’s function has the representation

Gy(x,y) = i—@n(xi:lpn(y ).

This shows that Gy is formally positive semi-definite. The fact is, Gy (x,x) = oo (recall the
singularity at y = x), hence this is only formally true. Hence we must take an indirect

route?.

2This is taken from the beautiful notes Introduction to the Gaussian Free Field and Liouville Quantum

Gravity of Nathanaél Berestycki.
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Let M, be the set of all compactly supported positive Borel measures on U such that
[ [ Gu(x,y)du(x)du(y) < e. Thenlet M = {uy —u_ : ur € M, } be the set of signed measures
having a similar property. Observe that if a measure has atoms, it is not in M whereas if
it has continuous density, then it is definitely in M (continuity is more than enough to
integrate out the logarithmic singularity). Uniform measures on open subsets and even
length measures on smooth curves are in 9/, .

Define (why is it finite?)

K(uv) = [ [ Guley)dutav(s).

By the formal expansion of Gy, it follows that (need justification)

K(uv) = ¥ 5 L), Llw)i= [ oudu

n>1
from which the positive semi-definiteness of K is clear.

Definition 19. The Gaussian free field on U is defined to be the centered Gaussian process
on M with covariance kernel K.

Of course, is a Gaussian process X on U with covariance Gy were to exist, then we
would have got the above process by integrating: Y (u) = [, X (z)du(z). The whole point is
that X does not exist but Y does. By considering Y (u,) where u, — 9., we imagine that we
are probing X.

Exercise 20. Consider GFF F on a domain U C R?. Suppose D(x,R) C U. Let yy, denote
the uniform probability measure on D(x,e™"). Define X (r) = F (uy,) for t > —logR. Find the
covariance of the process X.

2.4 Processes on a tree and on its boundary

Let 7 be a rooted tree in which all vertices having finite degrees. Let V denote its vertex
set, and let 0 denote the root. We write |u| for the distance of u from the root. Let
7, ={v € V :|v| = n} denote the n-th generation of vertices. We write u ~~ v to mean that
v is a child of u (i.e., v is adjacent to u and |v| = |u| + 1) or that u is the parent of v. We
write u — v to mean that v is a descendent of u or that u is an ancestor of v. This means

that the path from the root to v passes through u. For two vertices u,v, the vertex u Av is
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the farthest vertex from the root that is a common ancestor of both u and v. It is called the
last common ancestor of u and v.
Let w:V — R, be given. Let Z,, v € V, be i.i.d. N(0, 1) random variables. Define

X, = Z w(u)Z,.

Then, X is a centered Gaussian process on V with covariance E[X,X,] := ¥, .,y w%. There
are different choices of trees and weights for which this process is interesting. A common
sort of interest is in defining X as the restriction of X to 7, and studying its asymptotics
as n — o. For example, when 7 is the regular 4-ary tree (where every vertex including
the root has exactly four children) and w, = 1 for all v, then the processes X} may be
considered a crude version of the Gaussian free field on the unit square in the plane. This

we explain in one dimension first.

Example 21. Let 7 be a regular binary tree (all vertices have two children) and let w, = 1
for all v. Consider the process X = (Xy)|v|=n on the n-th generation vertices. Then,
E[X,X,] = [uAv|.

One may code the vertices of 7" by binary strings, starting with the root vertex (0), its
children (00) and (01), the children of (00) are (000) and (001), and so on, with the n-th
generation vertices coded by binary strings of length n. These binary strings may in turn
by identified with dyadic rational numbers in [0,1]. For example, (01011) corresponds to
3+ 5+ 1¢- Define the distance d, on T, by dj (u,v) = Az lunl,

With these notations, we see that E[X,X,] = @log m. Although the distance dj,
on dyadic rationals is not quite the same as the Euclidean distance, it may be considered
a reasonable substitute and then X may be considered a substitute or a toy version of
a logarithmically correlated field. Then one may study the processes X(™) as n — oo. For

example, one can look at® M, = max,cq X, .

Similarly, if 7" is a 4-ary tree, then using the dyadic decomposition of the unit square
into sub-squares, one can see that X are logarithmically correlated. Since the Gaussian
free field on the unit square has (in a formal sense) covariance kernel G(x,y), and the
Green’s function G(x,y) ~ clog(1/|x—y|), the processes X"} may be thought of as crude
approximants to the GFF on the unit square.

3See for example, the lecture notes of Ofer Zeitouni on Gaussian processes where this is studied at length
(“branching random walk”).
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Processes on the boundary of the tree: To the tree 7, one can associate its boundary

07, which is a metric space whose elements are infinite simple paths from the root:
0T :={& = (0=uo,uy,up,...): ux ~ uxy1 for k > 0}.

To define a metric on 7, fix A > 1 and define d,(§,n) = A~z where E A is the largest
n for which the first n co-ordinates of § and n agree (we call it the last common ancestor
of { and n).

Exercise 22. Check that d, is a metric and that 97 is compact under this metric space. [In
fact, dy, is an ultrametric, i.e., dy (§,m) < dy(§,0) Vdy ({,m) for all E,n,{ € 97 .]

Let w, = w, for all v with |v| =n. If ¥, w? < o, then we can define the Gaussian process X
on 97 by Xg = Yy>owiZy, if § = (vo,v1,...). Here Z,, v €V, are i.i.d. N(0, 1) variables. Then
X is a Gaussian process on 97 with covariance kernel K(§,M) = Yi<jenn| w?. Alternately, we
may write E[|Xz — Xy ] = 2 ¥4 jean| Wi-

For the particular choice of weights wy = A7%/2, we see that E[|X; — Xy |*] = Xz—}lk’%’\“',
which is the same as d; up to a constant factor. That is, d) is essentially the pull back of
the L?(P) metric under the map & — Xe from 97 to L?>(P). This pull-back metric will play
much role in the study of the Gaussian process later.
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Chapter 3

Gaussian isoperimetric inequality and

concentration

Always v,, denotes the standard Gaussian measure on R™, or on any vector space with a
given inner product (for example, if W is a k-dimensional subspace of R”, we use vy; for the
Gaussian measure on W with the inherited inner product). For any set A C R4 and € > 0,
let A®={ycRY: |y—x| < ¢ for some x € A}.

Theorem 1 (Borell, Tsirelson-Ibragimov-Sudakov (1970s)). Let A be any Borel subset of R™
with v,,(A) > 0 and let H be a half-space in R™ with ¥,,(H) = Yu(A). Then Y,,(A%) > v (H®)
for all € > 0. If A is a closed set with v,,(A) > 0, then equality holds for some € > 0 if and only
if A is a half-space.

We present two proof of this theorem. The first one, which is the original proof of
Borrell and of Sudakov-Tsirelson, uses isoperimetric inequality on spheres and the fact that
Gaussian measure arises as the limit of uniform measures on high dimensional spheres.
The second one, due to Ehrardt, is a self-contained proof using the idea of symmetrization
which is also one approach to proving isoperimetric inequality on spheres and in Euclidean

space!.

1Our proof is cobbled together from the paper of Ehrhard, Symétrisation de Uespace de Gauss and the
appendix to the paper of Figiel, Lindenstrauss and Milman, The dimension of almost spherical sections of
convex bodies. The symmetrization idea is from Ehrhard. But the rest of the details needed to complete
the proof seems most cleanly presented in the paper of Figiel, Lindenstrass and Milman, albeit for the
isoperimetric inequality on the sphere. These details appear to go through for the Gaussian case with minimal
modification. If there are gaps or mistakes, please let me know.
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First, the one-dimensional case as an exercise. We give a solution later, since the sym-

metrization proof of Theorem 1 works by induction on m.

Exercise 2. For any closed set A C R and any € > 0, we have ®~!(y;(4%)) > &~ ! (y;(4)) +¢.
[Hint: Try proving it for one interval and then a finite union of intervals. From there to
closed sets may be omitted.]

3.1 Proof of GIE via isoperimetric inequality on spheres

Let 6, denote the uniform probability measure on S"~!. Endow it with the spherical met-
ric d and let Ag := {y € S""! : d(y,A) < &} denote the e-enlargement of A. The isoperimetric
inequality on the sphere says the following.

Lemma 3. Let A€ B(S" ') and let B={xc S" ! : x| >t} (for somet € (—1,1)) be a spherical
cap such that 6,—1(A) = 6,—1(B). Then, 6,-1(A¢) > 6,—1(Be¢) for any € > 0.

LetIT, 4 : S"~! — RY be defined by I, 4(x) = v/n(x1,...,%4). Let g, 4 = 6,1 oIT, |, denote

the push-forward probability measure on R?. We showed earlier that y, 4 LA Y2. This means
that u, 4(A) — v4(A) for A C RY with y,(dA) = 0. A stronger statement is true.

Exercise 4. For any A C RY measurable, Mnd(A) = Ya(A).

Proof of the GIE

Fix A € Bps (or even measurable?) with ®(a) =y,(A4) € (0,1). Fix any B < o and let
B = {xcR%:x; <B}. Then B is a a half-space with probability ®(B) under y; and Bt =
{x:x; < B+¢} has probability ®(p + €) under v,.

Forn>d, let A,,B,,A, ¢, B¢ denote the inverse images under I1,, ; of A, B,A®, B® respec-
tively. These are subsets of S"~! and By,B,¢ are spherical caps. Further, 6,_; measure of
these sets converge to y; measure of the corresponding sets in R? (i.e., 6,_1(4,) — Y4(A)
etc.). One last observation is that A, ¢ contains (A, )¥ V" (this last is an enlargement in S"~!
with respect to the spherical metric in which u,v € S"~! have distance cos ™! ((u,v))).

Since B < a, for large enough n, we have 6,_1(A,) > 6,-1(B,). By the isoperimetric
inequality and the observation above, we see that 6,,_1(A,¢) > G, 1((Bn)£/ ﬁ). However,
it is easy to see that 6,1 ((B,)¥/ V") — y4(B®) (direct calculation). Putting all this together,
we see that liminfc,_1(A,) > v:(B%) and hence y,(A®) > v;(B?). As this is true for all f < a,
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letting B 1 o, we see that v;(A®) > y;(H®) where H = {x € R? : x; < a}. This completes the
proof.

3.2 Proof of GIE by symmetrization

Notation: For a unit vector u € R” and ¢ € R, define the closed half-space Hy(r) :=
{x: (x,u) <t}. For a closed subset A C R™, define

e M(A):={BCR":Bis closed, Vu(A) = Ym(B),Ym(A%) > v,(BE) for all € > 0}.
* r(A) :=inf{r e R: A C Hy(t) for some unit vector u}.

The set M[A] is the collection of all closed sets that are at least as good as A from the
isoperimetry point of view. The quantity r(A) will be of use in proofs. We now collect some
basic facts about M[A] and r(A).

Lemma 5. Let C be the set of all closed subsets of R™ endowed with the Hausdorff metric d.
1. The function A — r(A) is continuous.
2. The function A — ¥,,(A) is upper semicontinuous.
3. If A is a closed subset of R™ with 7,,(A) > 0, then r(-) attains its minimum on M(A).

The main idea in proving Theorem 1 is a symmetrization procedure due to Antoine
Ehrhard (analogous to Steiner’s symmetrization for the classical isoperimetric inequality
in Euclidean space) that takes a set and produces another that is better in the isoperimetric

Sense.

Ehrhard’s symmetrization: Let ¢/ be a one-dimensional affine subspace in R” and let
u € /* be a unit vector. For any A C R™, define its symmetrization w.r.t. (¢,u) as the subset
B = Sy u[A] such that

1. for any ¢ € /, the section BN (¢ +¢*) is a half-space in ¢ + ¢+ whose boundary is
orthogonal to u,

2. Yot (BO(t+05)) = Y1 (AN (2 4+ £1)).

46



Here is a more explicit description of B. For each r € R, find the unique a = a;, € RU {£}
such that ¥,,_ 1 (Hy(a) N (t +61)) = Yu_1(AN (t +£1)) and set B = U, (Hu(a) N (¢ +£1)).

As S;u[A] is defined by an uncountable union of sections, it is not obvious that it is
measurable, even for a nice set A. The following lemma shows that any symmetrization
transforms closed sets to closed sets, in particular measurable.

Lemma 6. Let A be a closed set. Then Sy y[A] is also closed.

The following two lemmas show why symmetrization improves a set and that the only
sets that cannot be improved by further symmetrizations are half-spaces. They justify the
use of symmetrization as a tool and their proofs form the heart of the proof of Theorem 1.

Lemma 7. Let A be closed and non-empty in R™. Then S, y)[A] € M(A) for any symmetrization
(4,v).

Lemma 8. Let A be a non-empty closed subset of R™. Then there exist a finite sequence of
symmetrizations under which A transforms to a set B with r(B) < r(A).

Now we prove the main theorem assuming all the lemmas stated so far.

Proof of Theorem 1. Let A be any closed set with vy,,(A) > 0. By the third part of Lemma 5,
there is some B € M[A] with r(B) < r(X) for all X € M[A]. If B is not a half-space, then
by Lemma 8 we could get apply a finite number of symmetrizations to get a set C with
r(C) < r(B). Lemma 7 implies that C € M[B]. But since M[B] C M[A] this contradicts the
minimality of r(B). Thus, B must be a half-space. This proves the isoperimetric inequality
for closed sets A. Recall that (2) is an equivalent form of the inequality and thus it has
been proved now for closed sets.

If A is any Borel set, by regularity of v,,, for any d > 0 there exists a compact sets K C A
with v,,(K) > ¥ (A) — 8. Then

@ ! (,,(A%)) > @ 1 (y,,(K®)) (because K C A)
> @ !(y,,(K)) +¢ (by the proved inequality (2) for closed sets)

> @ !(y,,(A) —8) +¢. (because ® ! is increasing)

Let 8/ 0 to get @1 (y,,(A%)) > D~ (y,(4)) +&. u
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3.2.1 Proofs of lemmas used to prove the Gaussian isoperimetric in-
equality

Proof of Lemma 5. 1. Suppose d(A,B) < & for some A,B € C. If a half-space H contains
A, then H® contains B. Therefore r(B) < r(A) + 8. Reversing the roles of A and B we
see that A — r(A) is in fact a Lipschitz function on (.

2. If d(A,B) < & then A% D B and hence v,,(A%) > y(B). Hence, if d(A;,A) — 0, then
Ym(A®) > limsupy,,(Ax) as k — co. This holds for any & and 7,,(A%) — Y. (A) as & — 0.
Therefore ¥,,(A%) > limsup,_,.. Y(Ax) showing that y,, is u.s.c. on C.

3. Let r =inf{r(X) : X € A}. Since ®(r(X)) > yn(A) > 0 for all X € M[A], it follows that
r > —oo, If r = 4o, then we may take B = A. Thus we assume that r is finite.

Let By € M[A] with ry :=r(By) | r. Then By C Hy,(rx+ 1/k) for some unit vectors u;. By
passing to a subsequence we may assume that u; — u for some unit vector u. Since
Ym(Bk) = Ym(A) > 0, there is a finite number R such that B(0,Ry) has a non-empty
intersection with By for all k. By Lemma 10, we can pass to a further subsequence
and assume that BN K — BN K in Hausdorff metric for every compact set K. Here B
is a closed set.

By the second part, ¥, (BNK) > limsupY,,(Bx N K) > limsup ¥, (Bx) — Ym(K¢). Since
By € M[A], by taking arbitrarily large K we get ¥,,(B) > Y (A).

Now fix K. For any & > 0 we have BNK C (BxNK)?® for large enough k and hence
Y ((BNK)E) < liminfy,, ((By N K)3*E) < v,,(A¥H?) since each By € M[A]. Now let § | 0 to
get Ym((BNK)F) < v, (A®) for all € > 0. Then let K increase to R™ and conclude that
Y (BE) < Ym(A?). Thus, B € M[A].

We claim that B C Hy(r). For if not, then for some small enough & > 0 and large
enough compact set K we must have (BN K) N dHy(r+8) # 0. But for large enough
k we have By NK C Hy(r+8/3) and BNK C (B, NK)%? which implies that BNK C
H,(r+28/3), a contradiction.

Putting everything together, we have found a set B € M[A] and B C Hy(r). Thus
r(B) = r and the proof is complete. |

Proof of Lemma 6. Fix ¢ and v and write points of R” as (¢,x) with ¢ € £ and x € /. For any
set A, let A, =AN(t+4+) fort € d.

48



Suppose 1, — t. If (#;,x;) € A and (1, %) — (,x), then (¢,x) € A as A is closed. Therefore,
A; 2 limsupA,,, in particular y,,—1(A;) > limsupY,—1(A;,). This implies a, > limsupay, .

Now let B := Sy y[A] and suppose that (#,yx) € B and (#,yx) — (¢,y). By definition of
symmetrization, (y,v) < a, and hence (y,v) <limsupa, < a, which implies that (z,y) € B.
Thus B is closed. |

Proof of Lemma 7. Fix £,v and let B = S, )[A]. We need to prove two things.
(@) Ym(B) =Ym(A) and (D) Ym(B®) < vm(A®) for each € > 0.

The first assertion is easy. Use Fubini’s theorem to see that
V(@) = [ Yocal(eu+ €90k (6) = [ oo (00 £9) OBl 1) = 10 (B).

The proof of (b) is non-trivial and it is the key step in the entire proof of Theorem 1.
By Fubini’s theorem, it suffices to show that v, [(B?)/] < Ym—1[(A%),] for all ¢ € ¢, where
A; == AN (t+¢14) is the t-section of A.

Without loss of generality let { =Rej and v=e,. For each s € R, then By = {(s,u2,...,u,) : up <
as} where ®(a;) = v,,_1(As). Let © denote the orthogonal projection from R™ onto ¢+ =
span{es,...,e,}.

Fix r € R. Then (z,x) € B® if and only if there exists s with |s —¢| <€ and y € B, with

ly — x| < & := /€% — (s —t)2. This means
n(B)]= U @B)>  wla)]= U @A™ D

st|s—t|<e s:|s—t|<e

In R*~!, n(By) is a half-space with the same 7,,_; measure as 7(A,) (by definition of sym-
metrization). Therefore, inductively assuming the the Gaussian isoperimetric inequality
for lower dimensions (the ground case m = 1 is checked in Exercise 2), we get ¥, [(%[B;])%] <
Ym—1[(m[As])%] for each s. Therefore, using the second set-identity in (1) we get y,,_1[([B,])%] <
Ym—1[7[(A®);] for each s € [r —¢&,1 +€].

Now note that (n[B,])% = {(u,...u,) : up < as+ &} are all half-spaces. For any two of
them, one contains the other. Hence, their union is an increasing union of a countable
number of them. Therefore,

Y1 [R((B))] = sup Yot [(R[B))>] < Yo [1[(A°),].

st|s—t|<e

Equivalently v,,—1[(B?);] < Ym—1[(A%);]. By Fubini’s theorem, this proves (b). |
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Proof of Lemma 8. Since A is closed, the infimum in the definition of r(A) is a minimum.
Let v be a unit vector such that Hy(r) O A with r = r(A). Without loss of generality we
assume v = e,. Let W = re,, +¢;-, the boundary of the half-space H := H,,(r).

First pick any line ¢, inside W and let A’ = Sy, ., [A]. Since A is closed and not the whole
half-space, A’ is a closed proper subset of H. Further, if x € A’ and y € H has y; = x; for
i<n-—1andy, <x, theny € A’ too. Therefore, it is clear that there is a point p € W and
3 > 0 such that A'NQ,(28) = 0 where 0,(28) = p+ (—28§,29)".

Now let /; = p+re,+Re; fori=1,2,...,n— 1. These are lines inside W, passing through
p and parallel to the co-ordinate directions.

Let A” = Sy, 5, [A"]. For each € [-38,8] the section (¢ +/¢{)NA’ is a subset of [(t +¢{) N
(H\ Q,(3))]. Therefore, there is some & > 0 such that A” N ([-§,8] x R™~!) is contained in
Hy(r—19).

Now symmetrize w.r.t. (¢»,v) and let A” =S, [A"]. For each t € {», the section A" N (r+
(y) is a subset of Hy(r —&'). Therefore, there is some &” > 0 such that A" C Hy(r —§").
Thus in (at most) three symmetrizations we arrive at a set A” with r(A"”) < r(A). |

Solution to Exercise 2. For p € (0,1) define Q, = ®~!(1 — p), the (1 — p)-quantile. For x <
Q,, define b,(x) by the equation vi[x,b,(x)] = p. Let o, denote the unique x such that
bp(x) = —x. Differentiating p = [ @(r)dr, we get ¢(b,(x))b),(x) — ¢(x) = 0.

Fix p € (0,1), € > 0 and define A(x) =y [x —€,b,(x) + €] and observe that

W () = 9(by(x) + )b () — 9x — )
o o0 1)) el—e)
“"“{ oby®) o }

Note that @(u+¢€)/o(u) = ¢~~2% is decreasing in x. Hence, when x > o, (x) (which is
equivalent to b,(x) > —x), we have /’(x) < 0. Thus h(a,) > h(x) > h(Q,) for all x € (a,, Q)).
Case of one closed interval: If A is an interval with y;(x) = p, then it is of the form
[x,b,(x)] for some x. We may also assume that x > o, (otherwise replace A by —A). Thus,
by the above deduction, y(A®) is minimized when x = Q,,.

Case of multiple closed intervals: We write A as I} UL ... U, with I; = [xj,b,(x;)] with
by(xi—1) < x; for all i. There are two reductions which improve our set in isoperimetric
setting.
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1. Suppose that I, and I differ by less than 2e, i.e., b,(xx—1) +€ > xx — €. In this
case, if we move the interval [xi,b,(x;)] to the left (i.e., decrease x;), then y;(A) stays
the same but v; (A®) decreases till x; hits b,(xx—1). This results in a set with (k—1)
intervals and better isoperimetric profile.

2. Suppose that I;_; and I, are separated by at least 2e. Without loss of generality
by(xx) > —x; (otherwise, replace [ by —Ii, which would be even further to the right
than /; and the separation condition continues to hold). Then, by the earlier deduc-
tion, as x; increases, y;(A) stays the same but v, (A®) decreases, till x; = Q,,.

Repeatedly applying these two reductions, we can reduce A to the interval [Q), o).

Case of an arbitrary closed set: Let A be closed with y;(A) = p. For any small 1 > 0, the set
A" is the closure of an open set, and hence it is a union of countably many disjoint closed
intervals. At the cost of losing an n probability, we drop all but finitely many intervals. This
gives us a set B with the property that BC A" and p’ :=v;(B) > p—n. By the already proved
inequality, y; (B®) > v1(Q,y —€,%0). Of course B® C A""¢ and therefore y; (A%) > 71[Q,y —€,0).
Letting 1 | 0 and noticing that p’ — p, we get v (A®) > v[Q) —€,0). [

3.2.2 Appendix: Hausdroff metric

Let (X,d) be a metric space and let Cx denote the set of all non-empty closed subsets of
X. The Hausdorff distance between two closed sets A,B is defined by dy(A,B) = inf{r >
0:A" D Band B" D A} where A" = {x:d(x,A) < r}. The value +oo is allowed and (C,d) is
a metric space (if you are not comfortable with a metric that takes infinite values, just use
du(A,B) A 1 which is a finite metric).

Exercise 9. Let (X,d) be a compact metric space. Then (Cx,dy) is a compact metric space.
We shall work in R™ which is not compact.

Lemma 10. Let Ay be a sequence of closed non-empty sets in R™. Assume that AyNB(0,Ry) # 0
for all k for some Ry. Then, there exists a subsequence k; and a non-empty closed set X such
that Ay; NK — X N K in Hausdorff metric for every non-empty compact K C R™.

Proof For each j > Ry, use Exercise 9 to see that A, N B(0, j) has a subsequence that con-
verges in Hausdorff metric to some set X; C B(0, ). Set X = U;X;. Then it is easy to see
that X is closed and the conclusions hold (check!). [ |
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3.2.3 Appendix: Gap in the proof!

In lecture we realized that there is a gap in the proof that we gave for the isoperimetric
inequality. It is in the proof of Lemma 8. The given proof is correct in dimensions 3 and
higher but not in dimension 2 as there is only one line contained in the boundary of a half
space in R?! We fix this below?.

Lemma 11. Let v; = (cos6,sin6;) with 6p = 0 and 0; = %for k> 1. Let {, = v,f and let
Sk 1= S¢, —v,. Given a closed set A C R?, define Ag = So[A] and Ay, = Sy[Ax_1] for k > 1.

1. If x € Ay then x+1tvg+svy € Ay for all t,s > 0.

2. Let H={(x,y):y>® '(v2(A))}. Then A; converges to H on compacta in Hausdorff
metric i.e., AyN K — HNK in Hausdorff metric for every compact set K.

Proof 1. By definition of symmetrization, it is clear that if x € A; then x+tv, € A for
t > 0. It remains to prove for k > 1 that if x € A; then x+17vy € A;. The case k =0 is

trivial.

Consider k = 1. By the v, (AN (tvo+¢;)) is increasing in ¢ (because of the case k = 0),
which shows that if x € A| then x+ vy € A;. This completes the proof for k = 1.

Fix k > 2 and let  denote the projection onto KkL and letAy_j; =A;_1N (tvkL +€kL)] and
A = AN (tviE +61)] so that Ay, is a half-line with v, (Ax,) = Y1 (Ax—1,). Observe that
¢, is the angle bisector of v, and v(. Therefore, inductively assuming the lemma for
k—1, we see that w[Ay_; ;y¢| 2 T[Ag_1,J® (the e-enlargement in ¢+ =R). Consequently,
by the one-dimensional isoperimetric inequality we deduce that ®w[As, ¢| 2 T[Ak )%
Draw a picture to see that this precisely implies that if x € A; then x+1vy € A; for
t > 0.

2. If y2(A) = 0 then Ay is empty for all k and the statement is valid. Hence assume
v2(A) > 0. By properties of symmetrization, for every k we have y,(A;) = y2(A) and
Y2(A%) < 12(A®) for all € > 0. Also define the cone G = {svo+1v:s,t >0} and C. =
{(x,y) 1y = 0}s.

Let R be large enough such that y,(Bo(R)) < 72(A). Then there exists x; € Ay N By(R).
Having fixed € > 0 and R > 0, it is clear that for large enough k and every x € By(R)

2Proof is taken from Bogachev’s book, chapter 4
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we have ((x+ G) NBo(R))®* 2 (x+ ) NBo(R). Since ¢ C C.. we obviously have
(x4 Co)NBo(R))® 2 (x+ G) NBo(R).
|

3.3 Some consequences of the Gaussian isoperimetric in-

equality

Equivalent formulations: We present two equivalent ways of writing the Gaussian isoperi-
metric inequality. The first one, without explicit reference to half-spaces is

@ (1, (A%)) > @ (,(A)) +¢ for all Borel sets A and any & > 0. (2)

Exercise 12. Deduce (2) and Theorem 1 from each other.
Here is yet another formulation®.

Proposition 13. Let f: R" — R be a Lip(x) function. Then there exists a Lip(x) function
g:R — Rsuch that y,o f~! =7y, 0g~!. In other words, the distribution of the random variable
f on the probability space (R", Bgrn,Y,) is the same as the distribution of the random variable

g on (R7$R7'Yl>‘
Exercise 14. Deduce Proposition 13 and Theorem 1 from each other.

Proposition 13 shows the dimension-free nature of isoperimetric inequality. In other
words, the isoperimetric inequality will hold for standard Gaussian measures in infinite
dimensions, once we make sense of such an object! This would not have been the case if
Proposition 13 only asserted that g is Lip(xlogn), for example.

Log-concave densities: What made the proof of isoperimetric inequality in one dimension
click? Looking back, we see that the key point was that @(u+€)/¢@(u) is decreasing in u,
for any fixed € > 0. Any other density f satisfying this will also satisfy the isoperimetric
inequality (perhaps we need symmetry?). This condition is equivalent to log f(u +¢€) —
log f(u) being decreasing in u. Assuming smoothness for simplicity, this happens if and only
if (log f)'(u) is decreasing in u, which in turn is equivalent to (log )" () being negative. In
other words, equivalent to log f being a concave function.

3Taken from Boris Tsirelson’s lecture notes available on his home page.
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Any density (in any dimension) for which log f is concave, is called log-concave. Ex-
amples in one dimension are symmetric exponential density %e*M, uniform density on an
interval, and of course the Gaussian. Examples in higher dimensions are uniform mea-
sures on compact convex sets and the densities exp{—|x|?} for p > 1. One can get many
more from these few, since log-concave densities are closed under convolutions and under
linear transformations (eg., marginals). Log-concave densities are a very important class
of densities that share many properties of Gaussian measures, in particular, concentration
properties.

Gaussian Brunn-Minkowski inequality: In Euclidean space, we deduced the isoperimet-
ric inequality from the Brunn-Minkowski inequality. Is there an analogue for the Gaus-
sian measure? Ehrhard initiated this study and proved the inequality below for convex
sets, again using his symmetrization procedure. The convexity assumption was relaxed by
Latala and completely removed by Borell.

Result 15 (Ehrhard, Latala, Borell). If A, B C R" (Borel sets), and o € [0, 1], then P! (Yn(0A+
(1-a)B)) > ad ! (y,(A)) + (1 — )@~ (74(B)).

We shall not use this and hence not give a proof*.

Concentration inequalities: The isoperimetric inequality implies concentration inequal-
ities for various functions of Gaussian random variables. This is its primary importance
in probability. It is possible to deduce some of these concentration bounds directly with-
out using the isoperimetric inequality, albeit with poorer constants, but the isoperimetric
inequality yields the sharpest general bounds.

Theorem 16. Let f: R" — R be a Lip(x) function. Let My be a median of f, defined by
Yul{f > M} > 5 and v, {f < My} > 3. Then, for every t >0, we have
2

Mz} <@(5) e, 3)

'Yn{|f_Mf|Zl}§2Ci><%) <2e 2. 4)

4Potential presentation topic! See Borell’s paper The Ehrhard inequality. Another potential topic is a very
different proof of the Gaussian isoperimteric inequality by Bobkov, see An isoperimetric inequality on the
discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space.
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Proof. If A= {f <M/} then A’ C {f < My+xt}. But @ !(y,(A)) > 0 and hence by (2) we
get @ 1(y,(A")) >t. Hence y,{f > My +«t} < ®(t) which shows the first claim. The second
follows by adding the same estimate for y,{f < My —t}. [

Remark 17. Since ®(¢) is strictly smaller than % for every ¢t > 0, it follows that the median
is unique! Incidentally, we have been writing statements in terms of measures, but one can
equivalently state them in terms of random variables. If X,..., X, are i.i.d. N(0,1) random
variables on some probability space, and V = f(Xj,...,X,) for a Lip(x) function f, then

P{|V —Med[V]| > 1} < 2¢/2¢.

The random variable is concentrated around its median. Incidentally, inequalities of this
type, with perhaps not the optimal constants on the right, can be obtained by easier meth-
ods (see the end of this section). Often that suffices in applications but we decided to
go through the isoperimetric inequality for its natural appeal, in addition to sharpness of
constants.

Example 18. Some examples of Lipschitz functions of interest are max;x;, ||x||, (or any
norm, for that matter), d(x,A) for a fixed closed set A. A smooth function is Lipschitz if
and only if its gradient is bounded.

What about functions of correlated Gaussians? Here is a simple exercise.

Exercise 19. Suppose X ~ N,(u,X) and let f: R" — R is a Lip(k) function. Let V = f(X).
Then P{|V —Med[V]| > ¢} < 21/ with ), being the maximal eigenvalue of X.

Concentration inequalities of the type given by Theorem 16 are desirable to have for
many other probability measures too. Deduce the following from Theorem 16.

Exercise 20. Let V, be the uniform probability measure on [0, 1]". If f: [0,1]" — R is Lip(x),
show that

,Yn {f_Mf Z t} S e—Ctz/K27
Yo {If =Myl 21} < 2e7/%.
Here ¢ is a numerical constant (find it!).

For general product measures, for example uniform measure on the discrete cube
{0,1}", getting a similar concentration inequality is hard. This is the famous Talagrand’s
inequality, proved by Talagrand and now a cornerstone in probability.
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Concentration about the mean: Usually mean is easier to compute than median and
concentration inequalities are often expressed around the mean. Here is a simple way
to get a (sub-optimal) concentration inequality around the mean for the same setting as
above. Let f:R" — R be a Lip(x) function and let M, be its median under vy, and let
E; = [ f(x)dY,(x) be its expectation.

Using the bound in Theorem 16 we get

(>} oo _ K
E(f—M :/ A f > M +tdt§/<1>t1<dt:—.
The same bound holds for E[(f —My)_] and we get E[|f —M/|] < \/%K < K. In particular,
|[Ef —My| < k. Therefore, for t > 2, we get

VS~ Ep > 15} <, {f My > ) < 8(0/2)

by another application of Theorem 16. For r <2, we use the trivial bound v,{f — Ef >
trx} < 1. Putting all this together and using the same for deviations below E; we arrive at
the following result.

Theorem 21. Let f: R" — R be a Lip(x) function. Let Ey = [ fdYy,. Then, for every t >0, we
have (with C = 1/®(1))

2

Yn{f—Eth}SCiD(;—K) < Ce 82, )
_ st 2

Yn{‘f_Ef‘Zt}SCq)(ﬁ)gce =8 ©

Weaker forms of concentration by easier methods: As we remarked earlier, weaker
forms of concentration inequalities can be obtained by easier methods some of which we
mention here.

Let f: R" — R be a Lip(1) function and let X ~ vy,. We look for a number A, such
that f(X) is well-concentrated about A;. The crudest bound is as follows. Let Y be an
independent copy of X on the same probability space, and use E[|f(X) — f(Y)|] < E[|| X —
Y||] < \/n. Observing that min,E[| f(X) —a|] < E[|f(X)— f(Y)]], we get a number A; such

SFor a spectacular presentation leading up from simpler inequalities up to the Borell-TIS inequality, see
the lecture notes of Boris Tsirelson http://www.tau.ac.il/~tsirel/Courses/Gaussian/lect2.pdf. Here I
have taken a couple of points from those notes.
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that E[|f(X) —Ay|] < +/n. By Markov’s inequality this gives weak bounds like P{|f(X) —
Af| >t} S ‘/TE This compares poorly with the bound in (16).

To improve this, we introduce a technique that will be used many times later. Interpo-
late between X and Y by setting Z(8) = (cos8)X + (sin6)Y for 0 <6 < 7 so that Z(0) = X
and Z(n/2) =Y. The key property of this interpolation is that for any 6, the random vec-
tors Zg = (cos0)X + (sinB)Y and Zg = —(sin0)X + (cos0)Y are independent and have v,
distribution.

Now assume that f is smooth, then the Lipschitz condition is equivalent to |V f(x)| < x
for all x € R”. It is easy to approximate Lipschitz functions uniformly by smooth Lipschitz
functions and thus extend the bounds obtained below to all Lipschitz functions, a step we
shall not elaborate on. Then, write f(X)— f(Y) as the integral of % f(Zg) = (Vf(Zy),Zg) to
get

/2 .
Elf(0)— ()| < [ BV (Zo). Zo)ldo
2 rm/2
—\/5 [ RNV 1a0
0
T
<4/ =.
<3

From this we get some number Ay such that P{|f(X) —Ay| > ¢} < L. This does not decay
fast in ¢, but is free of n, already a remarkable improvement over the crude bound.

By bounding E[G(|f(X) — f(Y)|)] for some convex increasing function G we can get
better bounds along the same lines.

Exercise 22. For b > 0 and x € R" define Gy(x) = (|x| —b)+. Use the convexity of G to
obtain the bound E[|G,(X) — G,(Y)| > t] < E[G(5X)].

What concentration of f(X) does this yield?

57



Chapter 4
Comparison inequalities

The study of the maximum (or supremum) of a collection of Gaussian random variables is
of fundamental importance. In such cases, certain comparison inequalities are helpful in
reducing the problem at hand to the same problem for a simpler correlation matrix. In an-
other direction, if two covariance matrices are close, the distributions of the corresponding
Gaussian vectors are close. Quantitative statements to this effect are useful. In this chapter
we study such general results and illustrate their uses with applications.

4.1 Preparatory lemmas

We start with a lemma of this kind and from which we derive two important results -
Slepian’s inequality and the Sudakov-Fernique inequality'!. When the function does not
depend on the covariance matrix, this lemma is due to Kahane, but the same proof applies
in this more general situation.

Let P, be the space of n x n symmetric, positive semi-definite matrices (local notation)
and let F : R" x P, — R be a smooth function. We write F(z,X) with z € R" and X € %, and
write d;f for g—g and 5(i’j)f for %.

IThe presentation here is cooked up from Ledoux-Talagrand (the book titled Probability on Banach spaces)
and from Sourav Chatterjee’s paper on Sudakov-Fernique inequality. Chatterjee’s proof can be used to prove
Kahane’s inequality too, and consequently Slepian’s, and that is the way we present it here. I have not seen
Lemma 1 written anywhere but the idea that one can allow the function to depend on the random vector
and the covariance matrix of the random vector was inspired by one special case which appears as a key
lemma in the theory of Gaussian multiplicative chaos.
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Lemma 1. Let X and Y be n x 1 mutivariate Gaussian vectors with equal means, i.e., E[X;] =
E[Y;] for all i. Let F : R" x B, — R be any C? function all of whose partial derivatives up to
second order have subgaussian growth in the first variable. Assume that (a) (9;0; +2§(i7i))F
has the same sign as 6}, — o, for all i, and (b) (3;0;+9; ;))F has the same sign as o} =05

foralli# j. Then E[F(X,Zx)] <E[F(Y,Zy)].
To be clear about the assumption, what we mean is that pointwise

(o}, —07;) x (9i0i + 25(571'))1: 20, (o7,

i,i

Note that no condition is imposed in cases where ¥ = o! i
When the function depends only on the Gaussian variables and not on the covariance
matrix, we get the following corollary.

Corollary 2 (Kahane). Let f: R" — R be a C? function whose first two partial derivatives have
sub-Gaussian growth. If X,Y are as in the statement of the theorem and (G{j - cgfj)a,-a,f(x) >
0 for all i, j, and for all x € R", then E[f(X)] < E[f(Y)].

The key idea in the proof is one that is widely useful. Instead of comparing two Gaus-
sians, it is better to interpolate between them smoothly and use the power of Calculus to
prove a differential inequality which can then be integrated. In all examples of this chap-
ter, the interpolation is a straight line between the two covariance matrices. In principle
nothing precludes consideration of other curves.

Proof of Lemma 1. First assume that both X and Y are centered. Without loss of generality,
assume that X and Y are defined on the same probability space and independent of each
other.

Interpolate between them by setting Z(8) = (cos8)X + (sin®)Y for 0 < 6 < 7 so that
Z(0) =X and Z(n/2) =Y. Let £(8) = (cos>0)Zy + (sin’0)Ly denote the covariance matrix
of Z(8). Let W(8) = (Z(8),X(0)). Then, differentiating under the expectation,

d . n n
%E[F(W(G))] = —sin® ,-:ZIE[X’BIF(W(GM +cosO i:ZIE[YlE),F(W(G))]
+ ZSinGCOSGZ(GIYJ — G?fj)E[é(iJ)F(W(G))]
i<j
The integration by parts formula for Gaussians says that E[X;g(X)] = ¥/_, o E[0;8(X)].

Use the independence of X and Y and apply this formula by first conditioning on Y (or vice
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versa) to get

E[X;0;F (W ; E[0;0:F (W (8))],
E[Y;;F (W (0))] = sin@ ZGYEaaF W (0))].
Therefore,
BIF(2(6),2(6) —smecoselzijz: !, — X[ (W (6))]
+2sinecosei;j(c{j —o};)E[0; ;) F (W(8))]

= sin®cos0 Zn: (G{i — G,}fi)E[(aiai + 2§(i,i))F(W(e))]
i=1

+2sinBcosO Z.(G{j - ij)E[(ajai + 5(,~7J-))F(W(9))]. @Y
i<j
The assumptions were made so that each summand is positive. Therefore, 8 — E[F (W (0)]
is increasing on [0, 7], hence E[F (W (0))] < E[F(W(1))] which is exactly what we wanted
to prove.

It remains to consider the case when the means are not zero. Let y; = E[X;| = E[Y;] and
set X; = X; —u; and ¥; = Y; — y; and let g(x1,...,x,) = F(x1 +u1,..., X, +u,). Then F(X) = g(X)
and F(Y) = g(Y) while 9;0,g(x) = 9;0;F (x +u). Thus, the already proved statement for
centered variables implies the one for non-centered variables. [

Remark 3. The interpolation is often alternately written as v/tX ++/1 —tY,0<¢ <1 or as
e 'X++vV1—e2Y,0<t<o. There is no difference in substance.

A speculative (possibly naive) question: In Corollary 2, we compare E[F (X)] and E[F (Y )]
for some F : R" — R. In Lemma 1 this is extended this to a function F : R" x P, — R and
compare E[F(X,A)| to E[F (Y,B)] where A, B are the covariance matrices of X and Y. Can we
go on to generalize to compare quantities like E[F (X,A,T")] where F takes three arguments,
X eR", Ac B, and I" € T4(B,) is a tangent vector to P, at the point A? And so on, to higher
derivatives, getting a hierarchy of more and more general inequalities?
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4.2 Slepian’s and Gordon’s inequalities

We write X* for max;X;. The general intuition is that when X;s are positively correlated,
then they tend to stick together, and X* is unlikely to be large. To illustrate this, let Z;,Z,
be i.i.d. standard Gaussians and consider U = (Z,,2,), V = (Z1,Z2), and W = (Z;,—Z;), in
which the correlations are 1,0, —1, respectively. Then U* = Z;, V* =Z,VZ, and W* = |Z|.
Thus,

P{U" <t} =d(1), P{V* <1} =®(r)? P{W* <t} =2®(t)— 1.

Clearly these are in decreasing order, showing that? U* < V* < W*. Extending this intu-
ition, Slepian showed the following general stochatic comparison inequality.

Lemma 4 (Slepian’s inequality). Let X and Y be n x 1 mutivariate Gaussian vectors with
equal means, and equal variance, i.e., E[X;] = E[Y;] and E[X?] = E[Y?] for all i. Assume that
E[Xin] > E[Yin] fOl‘ all i,]J. Then,

1. For any realty,...,t,, we have P{X; <t; for all i} > P{Y; <t; for all i}.
2. X*<Y* e, P{X* >t} <P{Y* >t} forallt.

We would like to say that the first conclusion follows from Corollary 2 by taking
f(x1,...,x,) =1, 1y« The only wrinkle is that f is not smooth. Approximating the

indicator with smooth decreasing functions, this can be converted to a rigorous proof.

Proof. To elaborate, let y; : R+ [0,1] be smooth decreasing functions with y;(¢) = 1 for
t <t;and y;(r) =0 forr >1;+¢€. Let fe(x1,...,x,) = [T ; Vi(x;). Then

90 f () = Wi(x) W (x;) T wa(ox) > 0.

ki,

Corollary 2 applies to show that E[f¢(X)] <E[f¢(Y)]. Let € | 0 and apply monotone conver-
gence theorem to get the first conclusion.
Taking 7; = ¢, we immediately get the second conclusion from the first. [

Remark 5. The second statement is not less general than the first. Indeed, applying the
second statement to (X;/z,...,X,/t,) and (Y1 /t1,...,Y,/t,), one gets the first.

Here is another inequality which specializes to Slepian’s inequality when m = 1.

2We say that U is stochastically dominated by V and write U <V if P{U >t} <P{V >t} for all € R.
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Lemma 6 (Gordon’s inequality). Let X; ; and Y; ; be m x n arrays of joint Gaussians with
equal means. Assume that (1) Cov(X; j,X;¢) > Cov(Y; j,Yir), (2) Cov(X; j,Xx¢) < Cov(Y; j,Yir)
ifi #k (3) Var(X; ;) = Var(Y; j). Then

1. For any real t; j we have P {ﬂU{Xi,j < ti,j}} > P{ﬂU{YM < t,v7j}},
iJ ij

2. minmaxX; j < minmax; .
i J U J

Exercise 7. Deduce Gordon’t inequality from Lemma 1 (or Corollary 2).

4.3 Sudakov-Fernique inequality

Studying the maximum of a Gaussian process is a very important problem. Slepian’s (or
Gordon’s) inequality helps to control the maximum of our process by that of a simpler
process. For example, if X;,...,X,, are standard normal variables with positive correlation
between any pair of them, then maxX; is stochastically smaller than the maximum of » in-
dependent standard normals (which is easy). However, the equality of variances condition
of Slepian’s inequality is restrictive, and the conclusion is much stronger than what one
needs in many situations. Here is a more applicable substitute.

Theorem 8 (Sudakov-Fernique inequality). Let X and Y be n x 1 Gaussian vectors satisfying
E[X;] = E[Y]] for all i and E[(X; — X;)?] < E[(Y; —Y;)?] for all i # j. Then, E[X*] <E[r*].

Remark 9. Assume that the processes are centered. If the two processes had the same
variances, then the condition E[(X; — X;)?] < E[(Y; —¥;)?] would be the same as Cov(X;,X;) >
Cov(Y;,Y;). In that case, Slepian’s inequality would apply and we would get the much
stronger conclusion of X* < Y*. The point here is that we relax the assumption of equal
variances and settle for the weaker conclusion which only compares expectations of the
maxima.

For non-centered processes one may wonder whether it would not be more appropriate
to compare Var(X; — X;) with Var(¥; —Y;) in the assumption. But since E[(X; — X;)?] =
Var(X; — X;) + (E[X;] — E[X;]), and the means are assumed to be equal, that would be the
same condition!

Proof As in the proof of Lemma 1, we interpolate between X and Y using Z(6) = cos6 X +
sin@Y for0<H < % Since our function now depends on the random variables only (i.e.,
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5(i,j)F =0 for all i, j), (1) becomes

%E[F(Z(O) = sinBcos0 i , E[0;0,F(W(9))].

i,j=1
Now we specialize to the function fg(x) = Llogyn | &P where B > 0 is fixed (again,

eB
Zn P’

there is no dependence on ¥). Let p;(x) = so that (p;(x),...,pa(x)) is a probability

vector for each x € R". Observe that
0if (x) = pi(x), 0;0,f(x) = Bpi(x)8; ; — Bpi(x)pj(x).

Thus, (1) gives (writing P, = p;(Zg) for simplicity of notation)

1 d <
S — (Zo)] = E PS5, — PP
B(cos0)(sinB) d El/p(Z)] jz_" "/ i
n n y
= Z z - Z (Gij_ ij)E[Pin]
i=1 i.j=1
Since Y; pi(x) = 1 for any x, we can write P; = }; P;P; and hence
4 d E[f3(Ze) Zn: — o E[PP;] — Zn: (of. — 6X)E[PP]]
B(cosB)(sinB) d p(Z0)] =t A

% —20];+20))

ZE[Pin] O —054‘0
i<j

~ ¥ KRR (0 1) @

i<j

where 7 = 6} + 0%, — 26}, = E[(X; — y; — X; +u;)?]. Of course, the latter is equal to E[(X; —
X;)?] = (ui — pj)>. Smce the y; are the same for X as for ¥ we get y}; <v};. Clearly p;(x) >0

too and hence E[P,P;] > 0. Therefore, & E[f3(Zg)] > 0 and we get E[fg(X)] < E[f3(Y)].
Letting T o we get E[X*] < E[Y*]. |

Remark 10. This proof contains another useful idea - to express max;x; in terms of fg(x).
The advantage is that f3 is smooth while the maximum is not. And for large j3, the two are

close because max; x; < fg(x) < max;x; + lo[§ -

If Sudakov-Fernique inequality is considered a modification of Slepian’s inequality, the
analogous modification of Gordon’s inequality is the following. We leave it as exercise as
we may not use it in the course.
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Exercise 11. (optional) Let X; ; and Y; ; be n x m arrays of joint Gaussians with equal means.
Assume that

1. EHXi,j —Xi7f|2] > EHYlj _Yi.,f|2]>
2. E[|X;j —Xio[*] <E[|Vi;—Yiel?) if i # k.

Then E[minmaxX; ;] < E[minmaxY; ;].
i j i j

4.4 Positive association

Definition 12. A random vector X = (Xj,...,X,) is said to have positive association if any
two bounded increasing functions of X are positively correlated. That is, if f,g: R" — R
are bounded and non-decreasing in each co-ordinate, then E[f(X)g(X)] > E[f(X)|E[g(X)].

Some remarks.

1. If positive association holds, two decreasing functions are also positively correlated.
An increasing function of X is negatively correlated with a decreasing function of X.

2. The boundedness condition is only to ensure that the expectations exist. If f,g are
increasing in each co-ordinate and all expectations in the definition exist, then let
fn:=(fAN)V(=N) and gy = (g AN)V (—N). These are bounded functions that are
increasing in each co-ordinate, hence E[fy(X)gn(X)] > E[fv(X)]E[gn(X)]. By DCT
(since |fy| < |f] and |gn| < |g]), we see that E[fx(X)], E[gn(X)], E[fn(X)gn(X)] con-
verge to E[f(X)], E[g(X)], E[f(X)g(X)] respectively as N — o, and the inequality
extends to f,g.

3. The definition naturally extends to infinite collections of random variables.

Positive association is a very stringent requirement. When it holds, it is a powerful tool.
In percolation and certain models of statistical mechanics, this is often known as FKG
inequality as it was proved by Fortouin, Kastelyn and Ginibre in those settings. One basic

well-known example of positive association is the following.

Result 13 (Harris’s inequality). Let X; be independent real valued random variables. Then

X is positively associated.

64



We skip the well-known proof here®. Instead, we come to the main result of interest.

Theorem 14 (Loren Pitt (1982)). Let X be a centered Gaussian vector. Then X is positively
associated if and only if all correlations are positive (i.e., E[X;X;] > 0).

One direction is obvious (and has nothing to do with Gaussians): Positive association
implies positive correlation by applying to the increasing functions X — X; and X — X;. We

prove the other direction now.

Proof that positively correlated Gaussians are positively associated. Let X,Y be i.i.d. copies
and as in earlier proofs, define the interpolation Z(8) = cos® X +sin® Y for 0 <6 < 7. Let
f,g : R" — R be smooth functions such that d;f,drg > 0 for all k. Then E[f(X)g(Z(0))] is
equal to E[f(X)g(X)] when 6 = 0 and equal to E[f(X)]E[¢(X)] when 6 = . Therefore, it
suffices to show that 8 — E[f(X)g(Z(0))] is decreasing. To this end, consider

9 EF()3(2(9)] = Y. ELF(X)3ks(Zs)(~ sin® X +cos® i)
k=1
:cosesinekf’1 il(clij—c,{d) [f(X)0;0kg(Z(0)] —cos® i E[ajf 10kg(Z(0))].
— ]: :

This calculation is almost the same as in the proof of Lemma 1, except that when we use
integration by parts on E[X; f(X)g(Z(0))], the partial derivative with respect to X; can fall
on f(X) or on g(Z(0)) whereas the corresponding partial derivative with respect to ¥; in
E[Y:f(X)g(Z(0))] falls only on g(Z(0)).

Now, X,Y have the same distribution, hence fo = G{ and the first summand van-
ishes. In the second summand, d;f,0dig,0x j,cos8 are all positive. Hence the derivative
of E[f(X)g(Z(8))] is decreasing in 6. This completes the proof for smooth f,g.

For general bounded functions, a standard approximation argument via smooth func-
tions must be used, but we skip the details here. [

4.5 Negative association

Negative association is a stronger form of negative correlation just as positive association

is a stronger form of positive correlation.

3See section 5.8 of Probability on trees and networks by Lyons and Peres, for example.
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Definition 15. Let X = (X,...,X,) be a random vector. We say that it is negatively associ-
ated if for any disjoint sets A, B C [n] and any increasing bounded f : R* — R and increasing
bounded g : R +— R, we have Cov(f(X4),g(Xp)) <O0.

Unlike in the case of positive association, disjointness of the “supports” of the two
functions is essential. For example, no random variable would be negatively correlated
with itself. Independent random variables are trivially negatively associated. An important
and intuitive non-trivial example of a negatively associated random vector is this*.

Example 16. Consider a box with n coupons carrying labels (not necessarily distinct)
ui,...,u,. Sample uniformly at random from this box, without replacement, and note the
labels to get random variables Xi,...,X,, (in other words, pick a permutation & € S, uni-
formly at random and set X; = uz) for all k). Then X;s are negatively associated.

Theorem 17 (Joag-Deyv, Proschan). A Gaussian vector X is negatively associated if and only
if Cov(X;,X;) <O forall i # j.

For j # k, the functions f(X) = X; and g(X) = X; depend on disjoint subsets of variables
and are increasing, hence negative correlation is necessary for negative association. It
is the other direction that needs proof. We shall prove the following more precise and
stronger statement. What it says is that in the language of Theorem 17 and the definition
of negative association, to get the conclusion that E[f(X4)g(X5)] < 0, it suffices to assume
that Cov(X;,X;) <0OforicAand jeB.

Lemma 18. Let X,,«1,W, x| be jointly Gaussian vectors and let f: R™ +— R and g : R" — R be
increasing in each co-ordinate. If Cov(X;,W;) <0 for all i, j, then Cov(f(X),g(W)) <O.

Proof. By subtracting the means, we may assume that X and W are centered. We also
assume at first that f,g are smooth. Without loss of generality, we assume that there is
a random vector Y that is independent of (X,W) and has the same distribution as X. As
always, interpolate between them with Z(8) = cos6 X +sinf ¥, 0 <6 < g We show that
E[f(Z(0))g(W)] is increasing by computing its derivative

d

9 B£(2(0)5(W)] = Y. Els(W)a, F(Z(6))(~ sind X; +cos0 )]
k=1

4For proof of this and more, see the paper Negative Association of Random Variables with Applications by
Kumar Joag-Dev and Frank Proschan (Annals of Statstics, 11, No. 1, 286-295, (1983)).
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As in the proof of Lemma 1, we condition on ¥ (or (X,W)) and use the Gaussian integration
by parts formula. We get

E[Xg(W)dif (Ze)] =C059iE[XkX |E[g(W)0;0rf(Ze)] +iE[XkW JE[0;8(W)dif(Z(0))],
j=1 j=1

E[Yig(W)3if (Ze)] = sin0 Y BV, Elg(W)9,9f(Ze)] + Y. E¥eW;E[D;8(W)a f(Z(60))]
Jj=1 j=1

m
=sin® ) E[VY;|E[g(W)d,0:f(Ze)]
=1
since E[Y;W;] =0 for all k,j. As X and Y have the same distribution, E[X;X;| = E[\}Y;] for
all k, j. Plugging back into the earlier equation, we get

m o n
g PIeW) (2] = —sino Y. 3. KX, JE (V)21 (2(0)

As f,g are increasing in each co-ordinate, d;g¢ > 0 and d,f > 0, hence the second expec-
tation is positive. The first expectation is negative, and sin® > 0, hence E[g(W)f(Zp)] is
increasing in 6. At 6 = 0 this is E[f(X)g(W)] whereas at 8 = T this is E[g(W)]E[f(X)].
Hence, the comparison at these two points shows that Cov(f(X),g(W)) <0.

The boring step of approximating general increasing functions by smooth functions is
omitted as exercise. [

Here is a use of negative association.

Exercise 19. Suppose X = (Xi,...,X,) is negatively associated. Assume that E[X;] = 0 and
that each X; is bounded. Then, Hoeffding’s inequality holds for § = X; +... +X,,.

The intuition behind negative correlations extends to the following situation where the
functions are not dependent on disjoint sets of variables. How do you deal with it?

Exercise 20. Let f: R +— R, be an increasing function. Let X be a Gaussian vector
with negative correlation. Define the random probability vector P with co-ordinates P, =
F(Xk)/ L=, f(Xj). Show that P and P, are negatively correlated. Is P negatively associ-
ated? (I have not checked the last statement myself).
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4.6 Piterbarg’s identity

Piterbarg wrote an identity for the difference in the probabilities of a set under two Gaus-
sian distributions. We state the simplest special case of this.

Proposition 21 (Piterbarg). Let X, Y be centered Gaussian random vectors in R" with co-
variance matrices ¥* and X¥. Assume that c}; = o}, for all i. Let A = (ay ,a] x ... x (a, ,a].
Let Z(0) = cos® X +sin6 Y and let (P?,j denote the density of (Z;(0),Z;(8)). Then, P{Y €
A} —P{X € A} is equal to

Y (o, o) ‘1,17\,/ of (", d")P{Z(0) € A | Z/(8) = &, Z;(8) = d*} sinBcos® db
i<j /J,?uE{+ -}

Some remarks.

1. In the interpolation, the covariance matrices of Z(0) lie on the line segment con-
necting XX with £¥. As det(r£X + (1 —¢)X") is a polynomial in ¢, there are at most n
exceptional values of 6 where the covariance matrix of Z(0) is singular. At all other
0, the density \pg ; exists for all i < j. In Piterbarg’s statement, which is written in
greater generality, he assumes that ¢X;, = 1 = G - and |o¥ il <1lfori# j. Iam not

seeing the need for this in the proof below.

2. I cannot explain the meaning of the inequality. One point is that the terms on the
right hand side comes from cases when Z(8) € A but only barely - two of the co-
ordinates are at the boundaries of their intervals. Also see the corollary below.

3. The expression on the right appears very complicated. The way to use it is to get
bounds on the integrals, which then shows that if XX and X' are entry-wise close,
then P{X € A} and P{Y € A} are also close. For example, it could be that o ;is small
for all i # j, and we wish to see if we can replace X; by independent Gau351ans having
the same variances.

If we let a; — —oo for all i, then we get the following limiting formulation (since the
densities @; j( . ]) goes to zero if one of A or p is ¢

Corollary 22. Let X,Y be as in Proposition 21 and let A = (—o0,aj] X ... X (—o0,ay|. Then,
P{X €A} —P{Y € A} is equal to

/2
Z(G{j—cx-)/o (pl](a,,a])P{Z ) €A | Zi(0) = a;,Z;(0) = a;j} sinOcos6d6.

LJj
i<j
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In fact, the proposition can be deduced from this corollary by inclusion-exclusion for-

mula.

Proof. Fix € > 0 and let y; be a smooth function such that o) SVWi S 1o
fe( ) = i:lWl(xl)- From (1),

%E[fg(z(e))] =sinBcosO Z(sz — foj)E[aiajfg(Z(e))]

i<j

,a,-++8] . Let

a;

and hence E[f:(Y)] — E[f¢(X)] is the integral of the right side quantity over 6 € [0,2m].
Now, 0,0, fe(x) = ;(x:) ' (x;) H ‘Ilfk (xx). Observe that y; vanishes outside the intervals

I = (a; —¢,a; ) and I, := (a; ,a] +8) Thus,

E[0,0;f:(Z(®))]= ) E

1:(Zi(6))1,2(2,(8))wi(Zi(6))w;(Z;(6)) [ ] \lfk(Zk(G))]

1

mAe{+,—} k#i,j
_ _ 0
L / VW 0)E | TT wel#(0)) | Zi(8) =u, 2;(6) = ] 9%, () dudy.
n ?»e{+ -} k#i, j
We could choose y; so that y} has constant sign on each /' (positive if u = — and negative

if u=+). Since the integral of y! over such an interval is £1, the (u,A) term above can be
considered an average over I' x I?‘ of the function (up to sign)

(u,v) —E

[T wi(2(8)) | Zi(8) = u, Z;(6) = V] 07 (u,v).
by

This is a continuous function of (u,v) (except at the exceptional 0 values referred to ear-
lier), hence as € | 0, the integral over I x I;“ converges to

ulE

IT 1r0) | 000 . 210 - | o (.
ki, j

It is obvious that E[f;(Y)] — E[fe(X)] is converges to P{Y € A} — P{X € A}. Putting every-
thing together, we get the claim in the statement of the proposition. [

Remark 23. If G is the algebra generated by the collection of left-open, right-closed rect-
angles of the form considered in the proposition above. Any element of G can be written
as a finite, pairwise disjoint union of such rectangles. Hence the result of the proposition
can be added for the rectangles.
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4.7 Going beyond finite vectors

Now that we have stated all the general comparison inequalities that we want, it is worth
stating that while the essence of things is already in finite dimensional Gaussian vectors,
all these comparison inequalities also apply to general Gaussian processes. Let us indicate
how.

Assume that X = (Xj);c; and Y = (Y;);c; are Gaussian processes. If they have sufficient
regularity so that X* = sup; X; and Y* = sup, Y; are measurable, then it shall also be the case
that X* = sup{E[X/] : F C [ is finite} where Xr = (X;)icr. Similar expression for Y*.

Now suppose the means of X; and ¥; agree for all i, and E[(X; — X;)?] < E[(Y; - Y;)?] for
all i, j. Then by Sudakov-Fernique inequality, E[X}:| < E[Y;] for all finite F C /. Clearly that
implies that E[X*] < E[Y*].

Similar considerations apply to Slepian’s inequality, Gordon’s inequality, positive asso-
ciation, etc. We shall use these inequalities without further comment in future. The only
subtlety one should be aware of (in ‘real examples’ that never arises!) is that without any
conditions on the process, X* need not be a random variable (back to the poorness of the
cylinder sigma algebra).

4.8 Application: Mean width of convex bodies

Consider the problem of maximizing or minimizing E[X*] among all Gaussian vectors
X ~ N,(0,X) for which oy =1 for all k. Equating the variances to 1 provides the right
normalization so that the comparison makes sense. In this section, let us refer to these as
the admissible Gaussians.

The minimization question: Let Y ~ N,(0,J,) where J, is the all ones matrix. In other
words, ¥} = ... =Y, ~N(0,1). Clearly, for any admissible Gaussian X, we have E[X;X;] <
E[Y}Y;] for any i,j. And the means and variances of X; agree with those of ¥;, for each i.
Hence, Slepian’s inequality applies and we see that E[X*] > E[Y*]. In fact, there is even a
stochastic comparison. Thus, Y is the solution to the minimization problem.

The maximization problem: By the same logic, to push the expectation of X* as high as

possible, we should make the covariances as low as possible. However, we cannot make

all cross-covariances equal to —1, as the resulting matrix is not p.s.d. That leaves us with
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a dilemma - is it better to make some of them very negative or make all of them equally
(but less) negative? It is an unproved conjecture that the latter is better.

Conjecture 24 (Gritzmann-Klee, as reformulated by Kabluchko—Litvak—Zaporozhets). For
any admissible Gaussian, E[X*] < E[Y*] where Y ~ N,(0, - (nl, — J,)). That is, E[\;Y;] =
—%for all i # j.

The original formulation of Gritzmann and Klee concerned the mean width of convex
bodies among all convex bodies. If K is a convex body (a compact convex set with non-
empty interior) in R”, its mean width is defined as the expected length of the projection
of a convex body in a uniformly chosen random direction. The conjecture was that among
all convex hulls of n points on S"~!, the one that maximizes the mean width is the regular
simplex centered at the origin.

If Z ~ 7,, then one can show that the mean width is equal to v/2nE[max,ck (Z,u)] (Su-
dakov’s formula). Hence the conjecture about mean-width can be transformed to the above
conjecture about Gaussians.

Exercise 25. Prove Sudakov’s formula and derive the equivalence of the two conjectures.

While the conjecture is open, here is an exercise (actually a theorem of Kabluchko—
Litvak-Zaporozhets) that suggests why the dilemma stated earlier is resolved in this way.

Proposition 26. Assume n = 2m is even and let X,Y be centered Gaussian vectors with unit
variances and (1) E[Y;Y;] = —515 for all i # j, (2) E[Xoi-1Xo] = —1 for 1 <i<m and all
other cross-covariances are zero.Then E[X*] < E[Y*].

Proof. Let X,Y be independently constructed on a common probability space and introduce
the usual interpolation Z(6) = cos® X +sin6 ¥, 0 <6 < 7. From (2) in the proof of the
Sudakov-Fernique inequality, we have

%E[fﬁ(z(e))] =sin0 COSGZE[Pin] (YE _Yz)j)

i<j
where fg(x) = llog):zz1 B and P, = P%(0) Yioi eBZ®) and
M= = )] —E[(Xi - X;)?]

2—%1 if {i, j} = {2k,2k — 1} for some k < m,

— nle otherwise.
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Therefore,

1 d

2 m
sin@ COSG%E[fB(Z(e))] R ;jE[B'Pj] +2};E[P2k11’2k]
:_nll(l_. E[Pz'z])+22E[P2k—1P2k]

=1 k=1

since };P; = 1. By symmetry, it is clear that at any 0, the variables P; are identically
distributed and the variables (P»;_1,Ps;) are identically distributed. Therefore,

1 d 1 5
Now we wish to claim that E[P;P,] < E[P,P;] for any i # j (the idea being that P;,P, are
more negatively correlated than P, P;). Granting this, the right hand side of the above
expression is bounded by

—1+iE[P,~2]+2ZE[P,~Pj] =—1+E[(LP)’] = 0.

i=1 i<j i

It remains to show that® E[P;P,] < E[P,P3]. |

4.9 Application: Kahane’s convexity inequality

Here is the only application I know so far, where the extra power of Lemma 1 over Corol-
lary 2 is required. This lemma is crucially used in the theory of Gaussian multiplicative
chaos.

Lemma 27 (Kahane’s convexity inequality). Let X and Y be centered Gaussian vectors in R”".
Assume that E[X;X;| < E[Y}Y;] for all i,j. Then, for any p € R, and any convex f: R, — R

that grows slowly enough, we have
! 1 piy2
f Z pre’c 2B
k=1

f (i pkeXk_éE[sz}>
k=1

>In their paper, Kabluchko-Litvak-Zaporozhets invoke negative association (not clear how, but believable)
to say that E[P, P,] < E[P||E[Py]. But then, the desired derivative is negative if and only if E[P?] < niz, whereas

E <E

E[P}] > n%’ by Cauchy-Schwarz inequality.
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Proof. Define F(x,A) = f ():Zzlpkexk’%“k,k) As Gf-:j > Gl’.fj for all i, j, to apply Lemma 1 to

obtain the desired comparison, we only need to check that for any i # j,
(8,-8]- +5(i,j)>F >0 and (8,2 + 25(1’,1’))F >0.
Denotingw =Y _, pke"k_%“kak, direct computation gives

3,F (x) = f'(w)pjei~ 190
Q05 (x) = " (w)pip ;33 18y f'(w) pyets 3

1

0 jF (x) = =3§;, jif "(w)pje* 3%,
As f” >0, the first summand in 9;0;F (x) is non-negative for any i,j. That first term is
equal to (8i8j+§(,~7j))F if i # j, and equal to (97 +25(,-’,~))F if i = j. Hence the conditions of

Lemma 1 are satisfied and we get the claimed inequality. [

4.10 Application: Eigenvalues of random matrices

Here we present® few applications of the basic results on Gaussian processes, namely con-
centration of measure and comparison theorems.

Extreme singular values of a rectangular Gaussian matrix: Let A, , = (a; j)i<m,j<n b€ a
matrix whose entries are i.i.d. N(0,1). We assume m < n and denote the singular values of
Abys; <sp <...<sy, (by definition sl.2 are the eigenvalues of AA’). The following result

gives bounds for the smallest and largest singular values.
Theorem 28 (Gordon). With A as above, E[s1] > v/n—+/m and Els,| < \/n+ /m.

Proof. For (u,v) € T :=§"~' x """ define X(u,v) = u'Av = Y1, YI_ a; juiv;. It has zero
mean and E[|X,,, — X,/ v [*] =2 —2(u,u’)(»,v') (check!).

Consider a different Gaussian process on the same index set defined by ¥ (u,v) = Y7 | u;&;i +
Y)_vin; where &, n; are iid. N(0,1). Then E[[Y,, —Yyy[*] = [u—u/P+p—V[> =4 —
2(u,u’y —2(v,v'). Both X and Y are continuous on 7 and hence the comparison theorems
are applicable.

5This material is taken from the paper Local operator theory, random matrices and Banach spaces, by
Davidson and Szarek. Roman Vershynin has several lecture notes that cover this and much more.
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Thus,
El[Yuw — Yo P~ Ell Xy — Xy 7] = 200~ ) (1= (1))

which is non-negative for all (u,v),(«',v') € T. Therefore, by the Sudakov-Fernique in-

equality we get E[X*] <E[Y"]. Clearly Y* < [[§]| + |n| and E[[|§]]] < \/E[[|§||*] = v/m and
E[|[n|] < VE[|n|[?] = v/n. But X* is precisely s,,. Therefore Els,,] < \/n+ +/m.

Next observe that s; = min, max, X,,,. We have already seen that
E[|Y,, — Yy .|?] > E[|X, | for all u,v,u’,V/,
E[Y,, — Y, | = E[|Xu7v — X, \2] for all u,v,'.

For the second, observe that (u,u’) = 1 when u = u'. Gordon’s inequality applies to give
E[s;] > E[min, max, Y,,]. As the last step in the proof, observe that picking v =1/||n|| and

u=—&/||€|| achieves the min, max, Y, , and gives E[min, max, Y, ,] = E[|n|]] — E[||§||]. Since
mI? ~ %1
Var (2
E 2 lgy =Y 2 )
Il = Spcr75 / Ve =
and similarly E[|[E]|] = fr(,g) . Thus the theorem is proved if we show that E[||n]||] —
E[||§|]] > v/n — /m. Deduce this from Exercise 29. |
Var(“4t)

Exercise 29. Show that v — — /v is increasing for v > 1.

2
r'(3)

Location of individual singular values of a Gaussian matrix: Let A, , be a real sym-
metric matrix such that a; ;, i < j are i.i.d. N(0,1) (it is okay to allow the diagonals to
have variance 2 to make it exactly a GOE matrix). Let A, < ... <A,, be the eigenvalues
of A,/\/n (normalized so that the empirical distribution of eigenvalues converges to the
semicircle distribution as n tends to infinity)

Theorem 30. There exist deterministic numbers t, x such that P{|A,x —t, x| > u} < Ce—cme®

for all k < n.

Proof. Recall the min-max representation

1 )
Minkil = —= min max u'Au.
’ \/ﬁV17~~~7Vk—1 wuly;
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From this (since A — u’Au is linear for each u) it follows that the function (g; j)i<j<n —
Mnn—k+1 is Lip(2/+/n). By the Gaussian concentration inequality, if 7, ,_4; is @ median of
)Lmn,]ﬁL] then P{p\'n,nkarl — tn,nkarl‘ > l/l} < 2@(”/2\/%) < 2€_nu2/8. |

Remark 31. The well-known Wigner’s semicircle law says that the histogram of eigen-
values is close to the semi-circle density 7-v/4—x2. This does not imply a quantitative
estimate for the location of individual eigenvalues. In contrast, the above theorem shows
that each eigenvalue is concentrated in a window of length essentially 1/,/n. However
the actual facts (proved by harder methods specific to the problem) are that eigenvalues
are concentrated in even smaller windows (of length 1/n if k is away from 1 and » and of
length n=2/3 if k is close to 1 or n).

4.11 Application: Persistence probability

Let X = (X,,)ncz be a stationary Gaussian process. Define the persistence probability
Hx(n) =P{X; >0,...,X, > 0}.

This is the probability that the process persists above level zero. It is a quantity that has
been studied considerably. Here we get a lower bound for positively correlated processes.

Claim 32. Assume that E[X,] = 0 and E[X,,X,,] > O for all m,n. Then Hx(n) >27".

Proof. Fix m,n > 0 and let X,Y be two i.i.d. copies of the process. Observe that U =
(X1, Xmsn) and V = (X1,.... X, Yu+1,- - -, Ym+n) have equal means and variances, and
E[U;U;| > E[V;V,] for all i,j. Therefore, by Slepian’s inequality, we see that P{U* < 0} >
P{V* < 0}, which is the same as Hx(m-+n) > Hx(m)Hx(n). In particular, Hx(n) > Hx(1)" =
27", |

In fact, by Fekete’s lemma, %logHX(n) exists and is equal to x := sup, %Hx(n). Con-
sequently, if one can calculate Hx(p) for a specific p, then one can get the better bound
Il)logHX(p) for .

The positivity of correlations used here is necessary (in general; we do not mean that
it is always needed).

Example 33. Let Z, be i.i.d. standard Gaussians and let X, = Z, —Z, ;. Then X is a
stationary Gaussian process and Hx(n) =P{Zy < Z; < ... < Z,} = nl!, which decays faster
than exponentially. In this example, E[X,,X,,_|] = —1, not positive.
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4.12 Application: Mixing

Let X = (X, )ncz be a centered stationary Gaussian process with k(n) = E[X,,, X;,+|. Without
loss of generality, assume that k(0) = 1. If the covariance decays fast, we expect the process
at far off times to be approximately independent. To make a precise definition, introduce
the sigma-algebras % = o{X; :k <t} and #, = 6{X; : k > t}. These are generated by the
corresponding algebras 4, and 4, that are generated by left-open, right closed cylinders.
More precisely, 4, consists of finite unions of disjoint cylinder sets of the form N_ {a; <
X, < bj} where p > 1, t; <t, aj,b; € R. The algebra 4, is similar, except that we require
tj >t.
The mixing coefficient is defined as

o(T) :=sup{|P(ANB) —P(A)P(B) :A <€ %y, BE Fr}
=sup{|P(ANB) —P(A)P(B) :A € Ay, B< Ar}.

The equality comes from the general fact that if P is a probability measure on a sigma-
algebra ¥ generated by an algebra 4, then for any A € ¥ and € > 0, there is a B € 4 such
that P(AAB) < e.

A sufficient condition for mixing in stationary Gaussian sequences: We need to bound
P{X ;<a;,1<i<m, Xry;j<bj,1<j<n}-P{X_;<a,1<i<m}P{Xry;<b;,1<j<n}

We apply Piterbarg’s identity to U = ((X_;)i<m, (X7+i)i<n) and V = ((X_i)i<m, Y7+i)i<n),
where Y is an independent copy of X. The left hand side of the identity is exactly the
difference in probabilities that we want. On the right, many terms vanish and we are left
with (here ¢; ; is the density of (X_;, X7 ;))

m n /2
Y Y (k(T+j+i)— 1)/ 0} j(ai,b;)P{x|Zi(8) = a;, Zr+ ;(8) = b;} sinBcos® dO
i=1j=1 0

which can be bounded by
C Y [x(T+i+))
ij>1
1
2/ 1—k(T+j+i)2"
K(t) — 0 as t — oo, then for large enough ¢, this can be bounded by 2. Thus,

where C = sup; ;1 [|¢} [lsup. Observe that ¢ ; is bounded by Hence, if

UT)<C Y [k(T+i+))|<CY C|e(T+1)].

i,j=1 >1
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If Y ; jlx(j)| < o, then this quantity goes to zero as T — . Hence we arrive at

Proposition 34. Let X be a a centered stationary Gaussian process with correlation function
k(1) = E[XoX:]. If ¥ j>1 jIx(j)| < oo, then a(T) — 0 as T — .

4.13 Application: LLN for maximum

For the i.i.d. sequence Z,, we have seen that with M,, = max{Z,,...,Z,}, then,

Mn P

— 1.
v2logn

In fact we proved the stronger statement M,, —\/2logn 0. To what extend these asymp-

totics extend to approximately independent Gaussian sequences? Berman found pleasantly
simple and mild conditions.

Let Xp, X1, ... be jointly Gaussian random variables with zero means and unit variances.
Let K(m,n) = E[X,,X,| and let r(n) = sup,,K(m,m+n). If X is a stationary sequence, then
K(m,n) = r(n—m) for all m,n. Let MX = max{Xy,...,X,_1}.

MY P
V2logn — 1.

One side of this is trivial. If M > (1 +¢)y/2logn, then X; > (1 +¢)y/2logn for some

0 <i<n—1. Union bound shows that

Theorem 35 (Berman). If r(n) — 0 as n — oo, then

1
P{M* > (1+¢)/2logn} < ne (119 logn < - (3)

What remains is to show that P{MX > (1 —¢)y/2logn} — 1 for any € > 0. We shall need the

following claim.

Exercise 36. Let Y1,...,Y, be jointly Gaussian with E[Y;] =0, E[Y?] = 1 and E[Y;Y;] =p >0
for all i # j. Show that for any € > 0, there is a sequence §,(¢) — 0 such that

P{MY > \/2(1 —p—¢)logn} > 1—3§,(e).

Proof of Berman’s theorem. Fix p > 0 and find m such that Since |r(k)| < p for all k > m.
Consider the vector (Xo, X, Xom; - - -, X(¢—1)m) and compare it to the vector Y in the exercise
above. The means and variances are the same, and Y;s are more positively correlated,
hence by Slepian’s inequality,

P{ max X;, >+/2(1—-2p)logl}>1—-9

0<j<t—1
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for some §; — 0. Consequently, taking ¢, = [n/m| as a function of n, we have

P{MS > \/2(1—2p)logn} > 13y,

since Mff > max{Xj, :0<j</{,—1}. As §;, — 0 and p is arbitrary, together with (3) this
completes the proof. [

Remark 37. Berman also shows that under the stronger assumption (say for stationary

Gaussian sequence) that nr(n) — 0, the stronger conclusion M, —+/2logn % 0 holds.

Remark 38. What happens in continuous time? If X = (X;),cr is a stationary Gaussian
process, then so is X, := (Xun)nez, for any a > 0. Consequently MX(T) =sup{X,: 0<t < T}
is at least as large as M*«(T). Hence, under the condition Cov(Xy,X;) — 0 as t — o, the
lower bound of y/2log T remains valid in continuous time.

Without regularity of paths, one can have MX(T) = « a.s. for all T > 0. Hence, to get
an upper bound, some regularity is required. After that, the upper bound of \/2logT can
be deduced.
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Chapter 5

Boundedness and continuity of a
Gaussian process

5.1 The questions

Let X = (X;);er be a centered Gaussian process on a probability space (Q,F,P). Two
important questions that we shall address in this chapter: Can the Gaussian process be
constructed so that for a.e. ® € Q, the sample paths are (1) bounded? (2) continuous? For
the second question to make sense, 7 must be assumed to have a topology. The continuity
question is natural, but why boundedness? It is really the study of X* := sup, X, and
| X || = sup,cr |X¢|, which we have studied in specific situations earlier. Even the continuity
question, which is about the study of the (uniform) modulus of continuity

ox(€) :=sup{X; —Xs:t,s €T, d(t,s) <&}

as €0, is about the supremum of the Gaussian process X; — X, on the set {(¢,s) : d(t,s) < €}.
Irrespective of whether T comes with a metric or not, a big role will be played by the

metric ©(s,7) = [|X; — X;[|;2(p) that comes by pulling back the metric under the curve ¢ — X,

in the Hilbert space L?(P). Observe that T may be a pseudo-metric, but this will not cause

any problems. Eg., If X, = Z for all ¢, then K(z,s) = 1 for all ¢,s and t(z,s5) = 0 for all ¢,s.
We make a few preliminary observations.

1. As a standing convention, assume that X* is measurable so that quantities such as
P{X* > u} and E[X*] make sense. Alternately, simply assume that 7 is countable, in

which case X* is indeed measurable. In all cases of interest (e.g., T = R), one can
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work with a countable dense set and then extend the conclusions to the full space in
the end.

. Firstly, bounds on tail of X* and bounds on the expected value of X* imply each other.

* By Markov’s inequality, P{X* > u} < E[(X*)+]/u.

* We have E[(X*){] = [y P{X* > u}du. The lower side never poses a problem
since X* > X,, for any # € T and hence E[(X*)_] < E[(X,,)_] = /K (to,%0) /2.

. Obviously (X*)+ < ||X||. For a bound the other way, observe that for any 7o € T,

X < |Xiy| +sup(X; — Xy, ) +sup(Xy, — X7).
teT teT

Hence it suffices to study X*, for example, E[|| X||] <2E[X*|+E[|X,,|] which is 2E[X*| +
\/K(to,l‘o)\/%.

. For boundedness, a necessary condition is that 67 := sup, E[X?] be finite. Indeed, for
any fixedr e T

is a fixed constant. Hence by taking ¢ such that ¢, approaches o, we see that P{X* >
or} > ®(1). In particular, if 67 = o, then X* = oo with positive probability (you can
make that probability equal to 1/2, or P{||X|| =~} = 1).

. For continuity, a necessary condition for continuity of X (when 7T is a metric space)
is that the mean function and covariance kernel be continuous. Other ways to say
this are that the curve  — X; in L?(P) must be continuous or that 4 must be stronger
than .

To see this, fix t,s € T and sequences t, — r and s,, — s. From almost sure convergence
follows the convergence in distribution of (X; ,Xj,) to (X;,X,), and as everything is
Gaussian, E[X; X;,| — E[X;X,]. That is, K(t,,s,) — K(t,s), showing that K : T x T — R
is continuous. Similarly, the mean function has to be continuous. Thus, continuity of

the mean and covariance kernel are necessary for the continuity of sample paths.

That this condition is not sufficient is perhaps surprising at first, but that is the precise
topic of the chapter - to work out additional conditions that ensure continuity.
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6. When d is stronger than t (i.e., if the covariance is continuous), then id : (7,d) —
(T,7) is continuous. Thus if X has continuous sample paths w.r.t. 7, then it has
continuous sample paths w.r.t. d.

Now suppose (7T,d) is compact. Then id: (7,d) — (T,7) is actually a homeomorphism
(being continuous, it maps compact sets to compact sets, and hence open sets to
open sets, proving the continuity in the reverse direction).

Thus, for compact metric spaces, continuity of the Gaussian process in the original
metric is equivalent to its continuity in the t-metric. The restriction to compact
spaces is not a restriction - our spaces will be 6-compact, and in any case one does
not expect processes to be bounded or uniformly continuous on non-compact spaces.

7. We claim that whenever E[X*] is finite, X* has Gaussian tails above its mean (with
exponent given by the maximal variance).

Consider the case of finite 7 = {1,2,...,n}. The mapping (xi,...,x,) — x* = max;x;
is a Lipschitz function with Lipschitz constant 1. If X ~ N,(0,X), we represent it as
X = BZ where Z ~ v, and BB’ = X. For any z,w € R”,

|(B2)" — (Bw)"|

= (mlaxciJ) llz—w]|2.

Thus, the mapping is Lipschitz with constant 7. By the Gaussian isoperimetric in-

equality (see the form in Theorem 21), it follows that
P{X* > E[X*] + orx} < Ce

for universal constants C,c. In all cases of interest, it will be the case that X* is ap-
proximable by finite subsets of T, and hence (why?) we have the above concentration
bound for the upper tail of X*.

With all these comments, let us not forget that we have not actually calculated the max-
imum except in the i.i.d. case and a weakly dependent case (Berman’s theorem). But
we have already built essential tools, such as the isoperimetric inequality that gave us the
concentration results above and comparison inequalities that will come in handy below.
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5.2 A lower bound for the expectation of the maximum

For a metric space T, let N(¢) denote the smallest size of an e-net for T in the metric T (i.e.,
the smallest m for which there are points 7y,...,t, € T such that B(r;,e)U...UB(t;y,€) =T).
A closely related quantity if N'(¢), defined as the maximum size of an e-separated set (i.e.,
the maximum m for which there are points #1,...,1, such that t(s;,7;) > € for all i # j). It
is also called €/2-packing number, since it is the maximum number of pairwise disjoint
€/2-radius balls that one can pack into 7. The two quantities N and N’ are comparable,
and can be used interchangeably.

Claim 1. N(g) < N'(e) < N(g/2).

Proof. Letty,...,t, be a maximal-cardinality e-separated set in T so that m = N'(¢). The the
balls B(zj,€/2) are pairwise disjoint, showing that any £/2-net of T must contain a point
in each of these balls. Hence N(g/2) > m. Further, B(t;,e), 1 < j <m, cover T, or else we
could add one more point to {fy,...,%,} maintaining e-separation. Hence N(¢) <N’(¢). N

The quantity logN(¢) is called the metric entropy of (T,t). If one uses logarithm to base
2, the metric entropy can be interpreted as the number of bits needed to identify any point
of T to an accuracy of €. Because of the following inequalities, the same interpretation
applies to logN’(¢) and the same. The metric entropy function measures the size of the
metric space.

Theorem 2 (Fernique/Sudakov minoration). Let X be a centered Gaussian process on T. Let
T be the associated metric on T. Then, if X* is measurable, then E[X*] > ke+/logN (¢) for any
€ > 0 (where x is a universal cosntant). In particular, if T is not totally bounded in the metric
T, then X must be unbounded w.p.1.

Proof. Let ty,...,ty be a minimal e-net for 7. Then t(1;,t;) > 1& Then E[|X(1;) — X (¢;)|*] >
3€’E[|Z; — Z;|*], where Z; are ii.d. standard Gaussians. By Sudakov-Fernique inequality,
X* > max;<y X (1;) has greater expectation than max;<y €Z;. But we know that E[max;<, Z;| ~
2logn as n — oo, hence E[max;<,Z;] > k\/logn for some x > 0. Consequently, E[X*] >
ke\/log N e).
To say that T is not totally bounded is the same as saying that N (&) = « for some € > 0,
hence the second statement in the theorem. [

This theorem shows the relevance of the metric entropy to the problems of boundedness
of a Gaussian process. The following exercise shows the same for the continuity question.
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However, although entropy bounds are very powerful and sufficient for most purposes,
we shall see that the precise geometric feature of the metric space (7,t) that controls the
boundedness/continuity is a different one.

Exercise 3. With the notation as in Fernique’s theorem, show that E[wy (€)] > ke\/logN(g).

5.3 The generic chaining upper bound

As we have remarked earlier, the lower tail of X* poses no difficulty, it is only the upper tail
that we need to control. Hence we can either write our bounds for E[(X*)+] and P{X* > u},
or define Y (r) = X (r) — X (tp) for some fixed 7y € T and study Y* (the convenience being that
Y* > 0 necessarily). The approaches are equivalent since X* =Y* — X(1y). Here is the basic
lemma by the method of generic chaining'.

Setting: Let X = (X;),er be a stochastic process with zero mean random variables indexed
by a metric space (7,7) such that P{|X; — X,| > ut(t,s)} < 2exp{—4u?} for all u > 0 and
for all t,s € T. The case of interest for us is that of a centered Gaussian process with

1(s,1) == /E[|X; — X;|?].

Lemma 4 (The generic chaining bound). Let T be finite or countable. Fix to € T and numbers
up > 1. Choose any finite subsets T, C T with Ty = {t} and such that each t € T is contained
in Ty for all large k. Then for any x > 0 we have

P{X*—X, >A}<Q.

where A =2sup Y, uyt(t,Ty) and Q =2 Y, |Ty| - |Tx—1 ]e*“%/z.
reT k=1 k=1

Proof. First take x = 0. Let mi(¢) be any point of 7 closest to ¢, i.e., T(¢,m (1)) = (¢, Ty.).
Then X[ —X[O == ZID::IXTC]((I) _Xnk—l

large enough k). If X; —X;, > 2Y  ut(¢,Tx), then there must be at least one k such that
Xeo(t) = X () > wk(2(#, i) + (¢, Ty—1)). Forany t,s € T and u > 1,

T—1

(1) (the sum is finite by the assumption that m;(¢) =t for

P{|X, — X,| > ut(t,s)} <2e 2.

IThis topic is beautifully explained in the book Upper and lower bounds for stochastic processes by Tala-
grand, who was after all the discoverer of many of these things. The older book Generic chaining by Talagrand
is also sufficient for our purposes (although strongly discouraged by Talagrand!).
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Hence, as t(m (1), m¢—1(¢)) < t(t,Tx) + (¢, Tx—1), it follows that

2

P{| Xz, (1) = Xn, ()] > (22, Ti) +7(t, Ti—1)) } < Do 3.

There are |T;| possibilities for m;(¢), hence the union bound gives
P{sup|X; — X,| > A} <2 Y |Ti| x |Ti_s| e 2%
! k>1

The right side is exactly Q. [

What is the right choice of ;s and 7;s? That is what we investigate next.

5.4 Dudley’s integral

For any choice of s, to reduce the bound A, it is important that t(¢,7;) be small. Hence
it seems natural to take 7; to be a minimal ¢;-net for some sequence ¢, | 0. Then the
kth summand is like N(gx)N (ek_l)e*%“l% . But then to get a finite Q, we must take u; 2>
C\/Tog ).

Let us make the following choices: Let g, = 27X, let 7 be a minimal cardinality ;-net
and u = u(1+4+/log(N; +k)) where u > 1 and N; = N(g;). Then,

0< Z N}gef%uz(l+16log(Nk+k))

k>0
2
k>0 (Ne+k)
<e 2

In the last line we used the fact that (Ny + k) > 8N2k® to bound the series in the previous
line by ¥, (8%k%)~!, which is safely bounded by 1. Further, since sup, t(t, T;) < &,

o)

A<2Y wesupt(t, Ty)
k=1 teT

<2u Y &(1+4+/log(Ny+k)).
k=1
Now write y/log(x+y) < y/logx+ 1/logy to bound the right hand side by

2u (i 27K(1 +4+/1ogk) + 4 i 2_k\/logNk> <Cu(1+J(T))
k=1

k=1
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where C is a constant (it can be easily bounded by 10) and J'(T) = ¥, 2~*\/TogNi. By the
fact that € — N(¢) is decreasing, we see that

27/(
2751 /logN; < / . 1\/logN(s)als <2751 /logNiy 1.
ke

and hence J'(T) < J(T) where the Dudley integral J(T) is defined as

J(T) = /O " flogN(e)de.

The conclusion is summarized in the theorem below.

Theorem 5 (Dudley’s integral for boundedness). Let T be countable and fix to € T. With
the notations above, for any u > 1, we have

P{X* — X, > Cu(1+J(T))} < e 2.

Further, E[(X*)4] <CJ(T). Here C is a pure number. In particular, the finiteness of the Dudley
integral is a sufficient condition for the almost sure boundedness of the Gaussian process.

The extra additive term 1 is irrelevant and may be removed to write P{X* — X, >
Cul(T)} < e~2"*. We leave it as an exercise.
Compare the upper bound from Dudley integral to the lower bound due to Fernique

E[X*] > ksupey/logN(g).
€

Dudley’s upper bound and Fernique’s lower bound are almost enough to answer the bound-

that we have seen before:

edness question decisively, but not quite. The ambiguity remains when the Dudley integral
is finite but Fernique’s lower bound is finite.

e If N(g) <exp{—e ¢} for ¢ < 2, then the Dudley integral is finite, showing bounded-
ness.

e If N(g) > exp{—€ “} for some ¢ > 2, then the lower bound of Fernique is inifinite,
showing that the process is not bounded.

o If N(g) < exp{e~?}, then the lower bound is finite and the upper bound is infinite,
and hence the boundedness question remains unanswered.

As it happens, both Dudley’s and Fernique’s bounds are loose, and the right quantity that
determines boundedness is a different one, given in the next section. However, we shall
also see later that for stationary Gaussian processes, convergence of Dudley’s integral is
necessary for boundedness.
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5.5 Talagrand’s y,-functional

We define two fundamental quantities.

Definition 6. For a metric space (7,t), define the following by taking infima over all
choices of the sets {7} } subject to the condition |7;| = 2%,

1. Talagrand’s y,-functional: y,(T) := inf sup i 2K24(1, Ty,).
{Te} + k=0

2. Dudley’s integral: J'(T) := inf i 2K 2 sup(r, Ty).
{Ti} k=0 1
Observe that the choice u; = 2¢/2 is consistent with the need that u; > /log|T;|. The
name Dudley integral is justified by the following exercise.

Exercise 7. Show that 7'(T) is (up to constants) the same as J(T) defined earlier.

The difference between D(T) and y»(7T) is that in the former, the supremum is taken
inside the sum. The extra flexibility of y, comes from the fact that the sequence of sets {7} }
an be chosen adapted to the point 7. It gives both an upper and lower bound, and thus
settles the problem of finding the right condition for boundedness of a Gaussian process!

Theorem 8 (Talagrand). E[sup, X; — X;,| < v2(T).

We have already proved the upper bound E[X* —X; )] <72(7T) (the first genereic chaining
bound!). The lower bound was conjectured by Fernique (in a different form) and proved
by Talagrand. We shall not prove this theorem here.

5.6 Dudley integral criterion for continuity

Recall that the modulus of continuity of a function f : X — R on a metric space (X,d) is
defined as w/(d) := sup{|f(x) — f(y)| : x,y € T, d(x,y) < 6}. The uniform continuity of f is
equivalent to ws(8) L 0as 81 0. If ws(d) < Crd* for some o € (0,1] and Cy < oo, we say that
f is Holder(o). When o = 1, we say that f is Lipschitz with Lipschitz constant Cy.

We now want to investigate the modulus of continuity of a Gaussian process X on a
set T. We assume that T is countable as before. Let K be the covariance kernel and let
T be the associated metric. The analysis is parallel to the generic chaining bound for the
supremum, and we constantly refer to the reasoning there for details.
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As in the generic chaining bound, let {#p} =To C T C 7> C ... that increase to T, and let
7, (1) be the “projection” of 7 to T as defined there. For t,s5 € T, write the telescoping sum
as before:

— Xy = ZXTCk X 1(1) Xy —Xip = ZXTEk X 1(s)"

Now suppose mi(r) = m(s) for k < m(t,s). The idea being that if r and s are close, then
m(t,s) is large (one must choose 7;s reasonably, of course). Then,

X —X| < Y Ko —Xn0l+ Y| X1 (9)]
k>m(t,s) k>mt, s)
<4 Z max  |X, —X,|.
kZm(t,s)ueTk’VETk_l

Hence if we write A,, =4sup Y, wt(t,T;) and Q,, =2 Z \Ti| - | Tre—1le™ “:/2 (for some choice
teT k>m

of u;s), then we see that for fixed 6 > 0, writing m(6) = mm{m(t,s) 1t(t,5) <8},

P{ox(8) > Ayus)} < Oms)

Now let us make the choice of ;s and Tjs, as in the Dudley integral bound earlier. That
is, fix £, = 27* and let 7, be a maximal cardinality e;-separated set in 7' (earlier we chose
it to be a minimal cardinality €;-net) and set u; = 1+ 5./log(N; +k). Then, with similar
analysis as before,

Ni
On< ) ———=
" k;m (Nk+k)5
B k>m 1 +k3
< 1

and

An<CY 275 /logNy

k>m

where N; = N(275).
For this choice of T;s, if t(z,s) < 272, then

(e (1), Tr () < T (2),1) +T(mi(s),s) +T(s,7) <3277,
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for k < r and hence m(r) = mi(s) for k < r (otherwise t(u,v) > 27" for u,v € T,). Thus,
m(d) > clog(1/9). Putting this together with the previous bounds, we arrive at

P{ >C/ \/Wde} 12

As this is summable, we see that with probability one, wx(27") <C fozfr \/logN(g)de for all
large enough r, or equivalently

8) <K /0 ? JlogN(@)de

for all 8 € (0,1], for some random constant K. This shows that whenever the Dudley inte-
gral is finite, the process X is uniformly continuous on 7. We summarize the conclusions.

Theorem 9. Let T be a countable set and let X be a centered Gaussian process on T with the
associated pseudo-metric (t,s) := || X, — X;|| 2. If the Dudley integral J(T) = [y \/logN(e)de
converges, then the process X is uniformly continuous on T and has (w.r.t. 1) the modulus of
continuity ox(d) < K fO8 \/st for all b for a random variable K that is finite almost

surely.

In the remaining sections, we apply these general theorems based on Dudley’s bound
in many examples of interest.

5.7 Example: Independent Gaussians

Let X; ~ N(0,07) be independent. Assume that o7 decreases to 0. Then t(m,n) = /02 + 62,
Note that for m < n we have 6,, < t(m,n) < 6,,1/2. For simplicity let us pretend that t(m,n) =
6. (We leave it as an exercise to make appropriate modifications).

If 0 < € < o], then there is a unique n such that 6, <& < 6,_;. Then {1,2,...,n} is an
e-net whence N(¢) < n. Since t(i,j) > 0,-1 > ¢€fori,j <n—1,itis clear that N(¢) >n—1.
Thus the Dudley integral is (as always ignoring constant factors) J =Y ;" ,(0x—1 — 0x)/Iogk.

On the other hand, we may write X, = 6,&, where §, are i.i.d. N(0, 1) variables. Recall

that hm sup \/2%’7 =1 a.s. (if not clear, provide a proof!). Thus, sup, X, < e a.s. whenever

hmsupcn\/logn < oo,
Thus, by choosing, for example, G, = W’ we see that the Dudley integral may

diverge but the supremum is finite.

Exercise 10. Compute 7y, or at lease verify that it is finite for this choice of G,s.
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5.8 Example: Brownian motion

Suppose X is a Gaussian process on [0, 1] satisfying E[|X; — X;|*] < C|t — s|* for some o, > 0
and constant C. We restrict to a coutnable dense subset such as dyadic rationals to apply
the theorem above.

Then 1(z,5) < C|r — s|* and N(e) < Ce~"/* and hence the Dudley integral converges.
Thus X is almost surely uniformly continuous on dyadic rationals, and hence extends con-
tinuously to [0,1] almost surely. Further, the modulus of continuity of X on [0,1] is the
same as on the dense subset. It is

® (8)<£/6\/10 lde < K'34/lo !
X = o gg = gs-

Observe that this is with respect to the metric . If | —s| < §, then t(z,s5) < C3%* and hence

with respect to the Euclidean metric wy(8) < K”8%,/log %. In particular, the sample paths
of X are almost surely Holder(f) for any B < a.

In the special case of Brownian motion, K(t,s) =t As and hence t(¢,s) = /|t — s|. This
corresponds to the case o= 5. Therefore, the modulus of continuity is O(y/8log %) and the

paths are Hélder(% —¢) for any € > 0.

5.9 Example: Processes on the boundary of spherically

symmetric trees

Let 7 be a rooted locally finite tree. Fix A > 1 and recall the Gaussian process on the
boundary 97 defined by 2.

Xe:= Y Z,AK?
k=0

for & = (vo,v1,...) € 9T. We have fixed A > 1 and chosen Z, i.i.d. standard Gaussians. We
have seen that the associated metric T is (up to some constant multiple that we ignore)
given by t(&,m) = A&l

2The lower bounds here are all due to Fernique. Our presentation is essentially from Kahane’s book
Some random series of functions. He does not mention trees but what we call spherically symmetric trees are
referred to as generalized Cantor sets there. But the essence is the same. We have simplified some proofs,
perhaps correctly.
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The goal: We wish to say that for a class of such processes, convergence of the Dudley
integral is necessary for the boundedness of the process.

With this goal in mind, we need an upper bound for the Dudley integral and a lower
bound for the expectation of the supremum. We restrict to a class of trees known as
spherically symmetric trees. By definition, this means that there are numbers m; > 1 such

that all vertices in the kth generation have exactly my children.

Upper bound for the Dudley integral: Given € > 0, choose m such that A ™" <& < A7"F1,
If we take a collection of |Z,| paths from the root, one passing through each vertex in the
n-th generation, then that gives an e-net for 07 (since any path from the root has to pass
through one of these vertices). Therefore, N(¢) < |Z,|. Hence the Dudley integral

JOT) <G Y. A2\ /log|Ti].

k>0

Under the assumption of spherical symmetry, | 7| = mom ...my_;. Therefore, using \/log(x+y) <
VlIogx++/logy, we see that

k—1
JOT)<G Y AM2Y Jlogm;
=0

k>0 j
=Cy, i \/logm; i A K2
=0 k=j+1

gC&ZK*]’/zx/long-. (D
j=0

Lower bound for the expected supremum: One way to get a lower bound for X* is to use
a greedy algorithm. We define uyp = 0 (the root) and having chosen uy,...,u;, we choose
ur.1 as the child of u; for which Z, is maximized. That is, Z,, , > Z, for u; ~~ v. Let the

resulting path be & = (ug,u1,...) € 97. Then

k+1
X > X = kgbxk/ M (ug)

where M(u) = max{Z, : u ~ v}.
Recall that the expectation of the maximum of n i.i.d. standard Gaussians is at least
Ky/logn for some ¥ > 0. Therefore, if F = o{Z,: |v| <k}, then E[M (u;) | Fi] > x/logmy
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and the same lower bound must hold for the unconditional expectation. Consequently,

EX*]>x Y 272 /logm. 2)
k>0
By comparing (2) with (1),and the general upper bound E[X*] < J, we arrive at the fol-
lowing theorem.

Theorem 11. Let T be a locally finite, infinite, rooted, spherically symmetric tree. Let Z, be
i.i.d. standard Gaussian variables indexed by the vertices of T and let A > 1. Let X be the
Gaussian process on 07 defined by X (§) = ZkZOZ@{?Fk/Z. Then, E[X*| < J(97). In particular;
the process is bounded if and only if the Dudley integral is finite.

Exercise 12. Under the same conditions, is it true that the process is continuous on 97 if
and only if the Dudley integral is finite?

Exercise 13. Exact homogeneity is not needed. Let m; be as above and suppose each vertex
in generation k has between m%! and m® children. The tree need no longer be spherically

symmetric, but show Dudley integral is a lower bound for the expected supremum.

5.10 Example: Stationary processes

If G is a group and X is a centered Gaussian process indexed by G, then recall that X is

said to be left-stationary if (Xp,), 4 (X,)¢ec for any h € G. For Gaussian processes, this just
means that t(hg,hg') = t(g,¢’) for all g,¢, h.

Theorem 14 (Fernique). Let G be a locally compact group and let X be a centered stationary
Gaussian process on G. For any compact K C G, let J(K) denote the Dudley integral of (K,tx).
Then, for any go € K, we have E[sup,g X, — Xg)] > kJ(K) for some constant k > 0 (which may
depend on the group).

Proof. Let © = 1tx. Without loss of generality, assume that dia;(K) = 1. Let Sp = {1} and
for k > 1 let S; be a maximal 2 *-separated set in B;(1,27%*!) (open ball centered at the
identity). If g; € S; for all i > 1, then

(g1 8my81---8m_1) =T(1,gn) <271
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as S, forms a 2~"-net for B;(1,27""!). From this, just as in binary expansion of numbers,
it follows that all finite products of the form g;g,...g,, where m > 1 and g; € S;, are distinct.
The set of all such elements are dense in B¢(1,1) and hence in K. To see this, start with
g€ B:(1,1), find g; € S so that t(g,g;) <2~'. Then g, 'g € B:(1,27") and hence within 272
distance of some g, € S, which means that g, 1gl_lg € B;(1,272), and so on, showing that
g1...8m converges to g.

Now let 7" be the tree whose vertex set is the collection of all such finite products
g1...gnwithm>1andg; €S;, where gy...g,,+1 isachildof g; ...g,. Then 7T is a spherically
symmetric tree in which all vertices in the kth generation have my, | = |Si | children. From
the earlier discussion, it is clear that the each element of & = (ug, u,...) € 7 may be mapped
to the group element of gz = limu,. It is possible that gz = gy for distinct ;1. In fact, in

terms of the metric 14(&,1) = 4~ 5" we have

T(Em) :=1(ge,gn) <3u(En) forall§meoT,

but no such inequality holds in the other direction. However, the reverse inequality can
hold on appropriate subsets of 7. For example, consider the subsets dy7 and 9,7 defined
by

0,7 ={& = (uo,ui,...) €97 : upy is the first child of u; if k # r(mod 2)}

If & = (up,u1,...) and M = (vo,v1,...) are in 9,7, then u; # v;j for [EAN|+1 < j < [EAN|+9,
which implies that

t(&,m) > 4715 (1 + 411 -3 4—f>
j=2

> 14(E,M) (3

as the sum in the brackets on the previous line is equal to 1. This is the reverse inequality
we wanted.

Now we have two processes on 07: The process X (or more precisely the process
€~ X(ge) from the Gaussian process on G and the process Yz = Y, 4K/ 2Zy for &= (1=
uo,ui,uz,...), where Z, are i.i.d. standard Gaussians. The metrics on 07 associated to X
and Y are T and 14, respectively. Therefore, it is clear that

Jz(0T) < 3J, (7).
In particular, if Jx(dT) is infinite, then so is J;, (07). We also know that E[Y*] < J;, (7).
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The Sudakov-Fernique inequality gives E[X*| < 3E[Y*], but we need an inequality in the
other direction (something that gives a lower bound for E[X*]). For that purpose, consider
the subtrees 0,7, r =0,1. Indeed, from the inequality (3), we see that E[X] ;] <E[Y] ;]
forr=0,1.

Now, we leave it as an exercise to check that E[Y;,.] < J(d,7) for r =0, 1. And also that
Jo, (0T ) < Jiy (00T ) + Jr, (017).

Combining all these, we arrive at E[Xz]| < J(tk). |

Exercise 15. Let X be a stationary Gaussian process on a locally compact group G. If X is
continuous a.s., then is it true that the Dudley integral must converge?

5.11 Example: GFF on a domain

Recall that the Gaussian free field on a domain U having Green’s function G was defined to
be a Gaussian process on the space M of signed-measures having finite logarithmic energy

(i.e., [[ G(x,y)d|u|(x)d|u|(y) is finite).

Question: Is this process continuous on M ? Bounded on compact subsets of M?

5.12 A lemma of Garsia, Rodemich and Rumsey

Around the same time as Dudley’s criterion, a different approach was found to generalize
Dudley’s criterion. The relationship between the two, their relative strengths etc.,?. The

key to this approach is a real-variable lemma that has no randomness in it.

Lemma 16 (Garsia, Rodemich, Rumsey). Let f € [0,1] — R be a continuous function. Let
¥.p: Ry — Ry be strictly increasing continuous functions such that W(0) =0, p(0) =0,
Y(x) — oo as x — co. Suppose

I:z/(j/(f‘l‘(%) dt ds < oo.

Then, ©;(8) < 8 [W!(41/u?) dp(u) for any &> 0.

For now, we skip the proof>. Let us see how this is useful to the question of continuity
of Gaussian processes.

3It is explained in good detail in several lecture notes of S. R. S. Varadhan, this one for example.
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Remark 17. One may worry that the hypothesis of the lemma already has continuity in it.
It can be rephrased for a measurable function f satisfying I < o that

lf(x)—f(y)] < 8/08‘1’1(41/u2) dp(u) fora.e.x,y€0,1].

Then of course, one may consider the restriction of f to this set of full measure and extend
it continuously to [0, 1] preserving the same modulus of continuity.

Let X = (Xi);c[o,1] be a stochastic process (not necessarily Gaussian) on [0, 1]. Assume,
like in the Kolmogorov-Centsov theorem, that E[|X; — X;|*] < C|t — 5|7 for all ¢,s € [0, 1],
for some a,b > 0 and C < . Then let p(x) = u¢ for some ¢ > 0 and let ¥(u) = uP. These

functions are as in the Lemma above, and further,
X, — X,
/ / Xe=X1TT 4 g
It — s]Cb
< c// it —s|' Tt dr ds
0J0

< oo ifl+a—cb>—1.

a+2

Thus for ¢ < 4=, almost every sample path satisfies the conditions of the lemma, and we

conclude that the modulus of continuity is
8 1 2
d) < 8/ (41 /u®)'? cut~'du = CI58 5.
0

Thus, we get Holder continuity with any exponent less that 7. Note that the constant / is
random, as one would expect, but it is finite almost surely, as its expectation is finite. This
may be the point to note in applying the GRR lemma to random processes. To show that
I < oo w.p.1., one can work on its expectation, and that only requires knowledge of the
bivariate distributions (X;,X;).

Exercise 18. Assume that the process X is Gaussian. Choose ¥ and p differently to prove

that wx(3) < Cdh log% for all & > 0, for a random finite constant C.

5.13 Remark on sigma-algebras when T is not countable

Recall that the main lemmas using chaining were stated for countable index sets. What
about in general? For definiteness, let us take 7' = [0, 1], the general situation being similar.
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As defined, a stochastic process is a random variable X on some (Q, ¥, P), taking values
in (R”, Cr), where Cr := ®;c7Bg is the cylinder sigma-algebra. Any event measurable with
respect to Cr depends only on countably many co-ordinates. Hence, natural subsets of R”
such as C(T), C!(T), C*(T), etc., are not measurable. The question: “Does X (®) belong to
C(T) for almost all ®?” does not make literal sense. There are two ways in which we make
sense of this and similar questions.

First, let use say that Y (on a possibly different probability space) is a version of X if
Y £X. As Cr is generated by finite dimensional cylinder sets, this is the same as saying
that the finite dimensional distributions agree: (Y (1),...,Y (%)) 4 (X(t1),...,X(t)) for all
k>1and1,...,t; € T. The question, “Is X continuous a.s.” is then interpreted as “Is there
a version of X that has continuous sample paths a.s.”. This distinction is necessary because
even if one version is continuous, other versions need not be. For example, when 7 = [0, 1]
and X is a continuous stochastic process, if we pick U ~ uniform|0, 1] independent of X, and
set ¥; = X;1,.y, then then Y is not continuous (in general). Similar considerations apply
to questions such as “Does X have smooth sample paths?”. Since there is no reason to
use versions that are not the best possible in sample path behaviour, one simply says “X is
continuous/smooth”, implying that one is considering a version that is continuous/smooth.

A second way, which is just as good for everything of interest, is to consider a count-
able dense set D C T, such as the set of dyadic rationals. For the restricted stochastic
process Xp = (X;):ep, the cylinder sigma-algebra has all the events one wants. For exam-
ple, {X is uniformly continuous on D} is an event in (p, as it can be written as

NU N {x-x<i}

n>1 k=1 t,sED:\tfs\S%

Similarly, {Xp extends to T as a smooth function} is also an event in (p (why?). Now, the
original question “Is X continuous on 7 a.s.?” may be interpreted as “Is Xp uniformly
continuous on D?”. Similarly, “Does X have smooth sample paths?” is interpreted as “Does
the event {Xp extends to T as a smooth function} have probability 1?”. The only point one
should check in this approach is that the answers do not depend on the chosen countable

dense set, which we leave as an exercise.
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5.14 Smooth Gaussian processes

So far we have been worried about whether the process is good enough to be continuous
or bounded. What about asking for more? It turns out to be easier, in a way.

Proposition 19. Let X be a Gaussian process on a open subset T of R? with covariance
function K. The sample paths of X are C*(T) almost surely if and only if K is C*(T x T).

One can also write counterparts of this theorem for C(?) paths, which is roughly (but
not exactly) equivalent to the covariance being C(?).

Proof. For simplicity of notation we assume d = 1. And we assume the process is centered
as always.

Suppose that X has smooth sample paths almost surely. Let X () = (X(t+h) —X(¢))/h
for h > 0. For each h, the process X; is a Gaussian process, in fact, X and X}, are jointly
Gaussian and |

E[X,()X (5)] = - (K(t +h.5) = K(1.5)).

As Xj,(r) — X'(t) a.s. as h — 0, and for Gaussians this implies convergence of the parameters,
the left hand side converges to E[X’(z)X(s)]. This shows that K(-,s) is differentiable and
has derivative 9,K(¢,s) = E[X'(r)X (s)]. Now play the same game to see that

alK(l‘,S—i—h) —alK(l‘,S)
h

= E[X'(1)Xy(s)] = E[X(£)X'(s)]

to see that 902K (¢, s) = E[X'(¢)X'(s)]. More generally, inductively one can see that 703K (z,s) =
E[X () ()X (s)] for any p,q > 1.

Conversely, suppose K is smooth. Without loss of generality, let us assume that X(0) =0
a.s. (otherwise we work with the process X(r) — X(0)). From the calculations above, we
see that

K(t+h,s+h)—K(t+h,s)—K(t,s+h)+K(t,s)
h2

E[X(1)Xn(s)] = — 0102K(t,5).

This shows that d,0,K(¢,s) is a limit of covariance functions and hence positive semi-
definite. Let Y be a Gaussian process with covariance 0,9,K. As the covariance is smooth,
it is clear from the Dudley integral that Y is continuous (i.e., we may choose Y to be
continuous) a.s. Define X(¢) = [ ¥ (s)ds. Since we assumed that X(0) = 0, it follows that
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K(t,0) =0=K(0,s) for all ,s, from which it is easy to see that (this is for the second line
below)

E[£ ()% (s)] = /0 t /0 "919:K(u,v) dvdu  (by linearity)
=K(t,s).

Thus, X is a version of X. But X is C' with derivative equal to Y. Continuing this way, we
see that for any p, the process X has a version that is C(?),

To conclude that X has an infinitely smooth version, fix a countable dense subset D C R
as in the previous section. Let 4, be the even that Xp = (X;),cp extends as a CP) function
to all of R. By the proof so far, P{4,} =1 for all p > 1, hence P{N,4,} = 1. That means
that there is an infinitely smooth version. [ |

Another way to prove this proposition is to express X as a random series (which is
possible as we shall see later). The following exercise is a simpler illustration of this idea.

Exercise 20. Show that X has a real-analytic version on R? if and only if K is real-analytic
on R? x R,

Stationary processes

From Fourier analysis, we know that if u is a finite measure on R, then j is infinitely
smooth if and only if u has moments of all orders. Therefore, a stationary Gaussian pro-
cess has smooth sample paths if and only if its spectral measure has moments of all orders.
Similarly, real-analyticity of the sample paths (and hence of the covariance function) cor-
responds to existence of moment generation function (in a neighbourhood of the origin)

of the spectral measure.
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Chapter 6

Stationary Gaussian processes

Let T =R? or Z?. For some parts of this chapter we stick to one or the other, or d = 1,
while other parts may be generalizable to other groups.

6.1 Parameterizing stationary Gaussian processes

Let T be Z¢ or R and let X = (X, ),cr be a stationary Gaussian process on T. Its distribution
is determined by the covariance function, which is of the form E[X;X;] = K(r —s), where
K : T — R is a positive semi-definite function. Assuming continuity, we have seem that
such a function is necessarily the Fourier transform of a finite symmetric measure u on
T (where T = [-m,n]? if T = Z¢ and T = R? if T = R?), which is known as its spectral
measure. Sometimes it gets annoying and restrictive to impose symmetry on the spectral
measure, hence some authors consider complex-valued Gaussian processes (meaning X +
i¥, where XY are jointly Gaussian processes), in which case, the spectral measure is any
finite measure on 7. But we stick to real-valued processes.

In this sense, stationary Gaussian processes on 7 are parameterized by either the class
of positive semi-definite functions or by the class of finite symmetric measures. There are
other parametrizations that are possible and sometimes convenient. We introduce one of

them now!.

Case T = Z: Let u be any finite measure on S' = [—7,]. One can apply Gram-Schmidt pro-

IThe parts about Verblunsky coefficients and OPUC are taken from Barry Simon’s book Orthogonal poly-
nomials on the unit circle Part 1: Classical theory and Bingham’s paper Szegd’s theorem and its probabilistic

descendents.
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cedure to e;(z) = X, k > 0, in L*>(S', ), to get an orthonormal basis {@o(z), 91 (z), ¢2(z), ...}
Then @, is a polynomial of degree k, and we write @,(z) = x,®,, where &, is a monic
polynomial and k2 = HfIDnHiz(lJ). If u is not finitely supported, these polynomial sequences

are infinite. Let P*(z) = Z"P(1/z). If P(z) = ap+aiz+...+ay", then P*(z) =a, +a,—1z+

...+a@ " ! +a@yz". Observe that &,...,®; also span the space of degree n polynomials.

The key point is that ®; is orthogonal to e, ...,e;_; while &} is orthogonal to ey,...,¢.
The polynomial e;®; — &, | has degree k and hence (¢ =e_; on S')

(1P — Pry1,€j) = (Prrej—1) — (Prt1,¢j) = 0

for 1 < j <k—1. Therefore, we must have e;®; — ®; | = % P; for some o4 € C. By the
orthogonality,
ler@xl|® = | @yt |+ oxf|| D |

= || Dyt || > + |0t || k]

showing that |oy| < 1 and k7, = &, 2(1 — |ot,|?). Hence, ;2 = (1 —|ap[?)... (1 —|ot,—1|?) for
all n (the right side is interpreted as 1 when n = 0). The numbers oy are called Verblunsky

coefficients. We summarize the Szego recursions

P 11(2) = 2P (z) = 0P, (2),

n1(2) = —0nz®Pn(2) + P, (2).
The second equation can be got by applying the % operation to the first equation. It is a
fact that we do not justify here, that the correspondence between measures u on S! with

infinite support and sequences o = (0, ),>0 € DY, is in fact a bijection. The measure u is
symmetric if and only if o, is real for each n (why?).

Remark 1. It is often useful to write this in matrix form

q)n-l-l(z) ] . [ < —0ly

;. () | oz 1

D,(z)
D7, (2)

This suggests that the linear fractional transformation z +— f__—g‘"z is lurking in the back-

ground.

The upshot of all this is that centered Gaussian processes (on Z may also be parameter-
ized by IN where I = (—1, 1) (strictly speaking, by /N U{—1, 1} Ul x {—1,1}Ul?> x {~1,1}U...,
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if you allow spectral measures with finite support) via the Verblunsky coefficients of the
spectral measure. This is in some ways better than the original parameterization by the
correlation function K = (K (n)),>0, because the correlation coefficients satisfy complicated
positivity inequalities, while the Verblunsky coefficients are unrestricted! On the other
hand, the probabilistic interpretation of the Verblunsky coefficients is less obvious.

Exercise 2. Let P; ,y denote the projection operator in L*(u) onto span{e, : j < q<k}. Then
0ty = (I — Pjo n))en, (I — P_p_17)e0)- By the isomorphism, this is the same as the correlation
between X, — E[X,, | Xo,...,X,—1] and Xo —E[Xo|X_1,...,X_,]. In Statistics, it is known as the

partial autocorrelation function of n.

Remark 3. If 4 was supported on n points, then ®, = 0, which shows that |o,_{|> = 1.
Thus, in the finite support case, we have (0, ...,a,) € D"~! x S!. This is in fact a one-one
parameterization of measures supported on exactly n points.

6.2 The one sided prediction problem

Consider a stationary Gaussian process on Z or R. The one-dimensionality is important
here (there may be analogues in higher dimension). For definiteness, let us consider X =
(Xu)nez, @ centered Gaussian process with spectral measure y on [—x,7t]. Let F; = o{X;:s <
t}. The best predictor in L?-sense for X, given ¥_; is E[X | F_1] and the prediction error is

E UXO_E[XO | f]‘ll]|2] :Var(Xo | ,{77,1).

On the right one should say E[Var(Xj | F-1)] in general, but we know that for Gaussians,
the conditional variance does not depend on the conditioned values of the random vari-
ables.

Here is a characterisation of the situations in which the prediction is perfect!

Theorem 4. [Szego]Let du(x) = w(x)g—fE + dug(x) where ug is singular to Lebesgue measure
and w is the density of the absolutely continuous part. Then, the prediction error is zero if and
only if f[fm] logw(x)dx > —eo. Further,

1. The prediction error is precisely exp {ﬁ Jiinn logw(x)dx}.
2. In case where the prediction error is zero, Var(X, | Fm) =0 for any m < n.
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First we make some preparations. Let X, = ((j —k))1< k<, and let v, = (1(1),...,f1(n)).
Let 62 = Var(Xo | X_1,...,X_,) which is the same as ||(I—P[_n7_1])eo||%2(y) by the isomor-
phism theorem. Clearly 62 is decreasing, its limit 6> exists. By the interpretation as norms
of projections onto decreasing subspaces, it is also clear that 6> = Var(X, | F-1) which is
the same as ||(1 — P_o, _1))eol 7 () Therefore

G%zmin{/]U]zd,u:U:eo—i—cle_l—f—...—f—cne_n, Ck E]R}. (D

For U as above, Ue, is a monic polynomial, and has the same L?(u) norm, hence the above
infimum may also be taken over monic polynomials of degree n in one complex variable.

This is the form that we shall use, but it is worth noting that there are several other
forms that one could write. For instance, by the formulas for conditional distribution of
Gaussians,

det(X,41)

2 n ~ ! 1

= 7" 0(0) =Y T . 2
Gn let(Zn) /.1( ) vn n % ( )

Yet another formula is in terms of the Verblunsky coefficients:
2 2
o, = [T(1—loul*). (3)

k=0

Therefore, the following quantities are all equal.

—

. Var(Xo | f/’:l).

2. inf{[|U]|;2(, : U is a monic polynomial in one variable}.

3. exp {ﬁ S logw(x)dx}.

4. 1im €21 anq fim det(X,)!/".

n—oco det(z’ﬂ) n—oo
5. T1(1—o)?).
n=0

Even if one forgets the probabilistic interpretation, the equality of the other quantities is
non-trivial and interesting! For example, the equality of the third and fourth expressions

above gives asymptotics of Toeplitz determinants (a Toeplitz matrix is one whose (i, j)
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entry depends only on j —i). There is a more refined theorem on this asymptotics due to
Ibragimov and Golinskii which we do not go into here?.

First half of the proof of Theorem 4. For any U as in (1),

/IU|2du2/|U(e"’“>|2W(X>@
> exp {/log(lU(ei’C)VW(x))g_;}

- ooo{ [0 g { g2}

But U(z) = ¢, + ...+ c1z+ 1 is holomorphic, hence log|U|? is subharmonic®, and hence

d
/ log[U(PSS. > log[U(0)F = 0.

Thus, we have shown that for all n,

2>ex /low dx
p g m

and hence 62 > exp { [logw(x) £ }. u

It remains to prove that 6> < exp { [logw(x)2}. Looking back to where the inequality
appeared in the lower bound, there are three places.(l) When we replaced u by its abso-
lutely continuous part w(x)dx. (2) When we applied Jensen’s inequality to |U|*w. (3) When
we used subharmonicity of log|U|>. According to Remark 6 below, |U|?> can never have
roots in the unit disk, hence log|U|? is actually harmonic, showing that the third circum-
stance was in fact spurious. In addition, this allows us to rewrite (1) with the infimum over
non-negative trigonometric polynomials and by approximation, over continuous functions
satisfying [logh(x)dx = 0.

= inf{/hdy chec(sh), h>0, /logh(x)dx: 0}

2A comprehensive reference for the Szegd theorems are Barry Simon’s two books Orthogonal polynomials
on the unit circle, Part-1 and Part-2. In particular Part 1 contains at least five proof of Szegd’s theorem and
the stronger form mentioned here. However, our presentation of the proof is taken from the older book of
Grenander and Szeg0 Toeplitz forms and their applications.

3If subharmonicity is not familiar, here is the point: Write e,(z)U(z) = (z—¢1)...(z — {,) to see that
[log|UPE =2YL, [T logle™ — (4. We leave it as an exercise to show that [logle™ — |4 = g5 log|].
Then it follows that [log|U (x)[*% = 2Yc,>1 log |G| which is no less than log |U(0)|* = 2 Y log |G/
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We need to deal with the first two.

For the second one, we can achieve equality in Jensen’s if we can choose U so that
|U|?w is a constant. That is not possible, hence we must proceed by approximation. We do
this first assuming that u is absolutely continuous and in the end take care of the singular
part if it exists.

Proof of the second half of Theorem 4 for absolutely continuous u. First assume that w(x) >
d > 0 for a.e. x. Then 1/w is integrable, hence by Lemma 5 and the density of continuous
functions in L'(S!), there exist U, having no roots inside the disk such that |U,|> — v_lv in
L'(Sh). u

To give a very quick idea of what works, consider the restricted case where du(x) =
w(x)g—j; where w is continuous on S! and w > § for some & > 0. In this case, \/LVV is a
continuous function and can be approximated uniformly by trigonometric polynomials U,,.
Then |U,|* — 1 and wU? — 1 and log(w|U,|?) — 0, all uniformly on S'. By Lemma 5, w e
can also arrange it so that U, has no roots inside the unit disk, in which case [log|U,|> = 0.
Consequently,

First suppose that - € L! i.e., h:= - € L?. Then the partial sums of the Fourier series of
w Vw

h (which are just 4* D,, where D,, is the Dirichlet kernel) converge to 4 in L>. Hence, h* K,
also converge to h in L?, where K,, is the Fejer kernel. Recall that K;, = FII(DO +...+Dy),
and that K,, is in fact a probability density on S'.

To avoid problems of taking reciprocals, fix 6 > 0 and let wg = w+ 3, which is bounded
below. By the density of trigonometric polynomials in L', we can find some U such that
U — \/LW?HLI < ¢. Here L' is with respect to uniform measure on S'. Then, |[U?ws— 1|1 <.

Trigonometric polynomials and approximation

By the Stone-Weierstrass theorem, trigonometric polynomials (which are, by definition,
finite linear combinations of e,, n € Z) are dense in C(S!) (with the sup-norm metric).
Hence they are are also dense in L”(S') for 1 < p < oo. Here is a more refined approximation
statement that we used above.

Lemma 5 (Fejér-Riesz). Suppose f € C(S!) and f > 8. Then there are trigonometric polyno-
mials T, such that (a) T,, > 6 and (b) T, has no roots inside the open unit disk and (c) T, — f
uniformly on S'.
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In this statement and elsewhere, we freely extend trigonometric polynomials holomor-
phically outside S!, since they are all of the form P(z) /7" for a polynomial P.

Proof. One can add 0 at the end to f and 7,, hence we assume that 6 = 0.

Suppose f € C(S!) and f > 0. Take trigonometric polynomials 7;, converging uniformly
to \/f. Then {T,} and f are uniformly bounded in absolute value by some number M.
Hence || f — T2 ||lsuop < 2VM||\/F — Tp||sup @lso goes to zero. Of course 7 is a non-negative
trigonometric polynomial.

To satisfy the condition about roots, suppose 7, has roots a,...,04 in the unit disk. Let
s k1-djz
Tn(z) = Tu(2) J. .
j=1 279

Then T, has no roots inside the disk. As |T,| = |T;| on S! it follows that |7;,|? is a trigono-
metric polynomial (even if 7, is not) and that |T},|*> — f uniformly on S!. [

Remark 6. The proof in fact shows that |T|?> cannot have zeros in the open unit disk. This
is because it is equal to |T'|> on S', and hence everywhere. As we show below, every non-
negative trigonometric polynomial is of the form |T|?> for a trigonometric polynomial T,
hence no non-negative trigonometric polynomial has zeros in the open unit disk.

Let us justify the claim that any non-negative trigonometric polynomial S are of the
form |T|? for some trigonometric polynomial 7 (we are allowing complex coefficients
here). To see this, write S(z) = P(z) /7" for some polynomial P. Since z = 1/Z on S! and S is
real-valued there, S(z) = S(1/z) for all z € C\ {0} and consequently z>"P(1/z) = P(z). Thus,
if { is a root of P, then so is 1/{ (what about { = 0?). The roots that are on the unit circle
must occur with even multiplicity (or else on one side of S' of such a root, S must take
negative values). Conclude that S = |T|? for some trigonometric polynomial 7.

6.3 Ergodicity and mixing: Statements of the results

Everywhere T will denote R? or Z¢. When writing proofs we often stick to d = 1 for
simplicity of notation. Let Q be a probability measure on (R, (), where C denotes the
cylinder sigma-algebra on R”. The group T acts on R’ by translations: t,m(-) = (- +s).
We say that Q is stationary (for shifts) if Qo1, ! = Q for all s € T. We also say that shifts
are measure preserving on (R”, C,Q).
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If X = (X;)ier is a stationary stochastic process on some (Q, F,P), then its distribution
Q=PoX ! on (R7,() is stationary in the above sense. Conversely, for any stationary
Q, the projections IT = (IL; ),y form a stationary stochastic process in the sense defined
earlier. In short, we may assume that the probability space on which our stochastic process
is defined is (R”, C,Q).

Below T will denote R? or Z¢. What is special about these index sets is that they are
(abelian) groups. If X = (X;);er is a stochastic process, then its translate X" is another
stochastic process on T defined as X*(t) = X(r — t). The process X is called stationary (or

translation invariant) if X* 2 X for all T eT.

Ergodicity: An event A € ( is said to be invariant if 7, ! (A) = A for all s € T. The measure
Q is said to be ergodic if any invariant event A has Q(A) =0 or Q(A) = 1. Observe that the
set of all invariant events I forms a sigma-algebra. Hence ergodicity is the statement that
Q is trivial on I.

Mixing: Q is said to be mixing if Q(ANt, 'B) — Q(A)Q(B) for all A,B € C.
As always, we say that a stationary process is ergodic or mixing, if its distribution Q on
(R, C) is ergodic or mixing, respectively. The two main theorems that we wish to prove

are as follows.

Theorem 7 (Maruyama, Grenander, Fomin). A stationary Gaussian process on R? or Z¢ is

ergodic if and only if its spectral measure has no atoms.

Theorem 8. A stationary Gaussian process on R? or Z@ with covariance K(t — s) is mixing if
and only if K(t) — 0 as |t| — oo.

There are multiple notions of mixing. Here are a few others, in increasing order of
strength.

1. The Cesaro average of |Q(AN7;'B) — Q(A)Q(B)| converges to 0 as s — oo, for any
ABeC.

2. |Q(AN1,'B) —Q(A)Q(B)| converges to 0 as s — oo, for any A,B € C. This was what

we called mixing above.
3. supge|QANT,'B) —Q(A)Q(B)| — O for all A € C as s — oo.
4. Supy gec |Q(ANT;'B) —Q(A)Q(B)| — 0 as s — oo,
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5. supsc|Q(t; 'B | A)—Q(B)| —>0ass— oo,

What for Gaussian processes?

6.4 Proof of the mixing theorem

Here we prove Theorem 8.

Since K(t) = E[XoX;], it is clear that it must go to zero to have mixing. But since the
definition of mixing was for events and not unbounded random variables, let us elaborate
on this point. assume K(0) = 1 without loss of generality and observe that

1 1
P{Xp >0,X; >0} = i %arccosl((t).

For mixing to hold, this must converge to P{X; > 0} = %, as t — o. That happens if and
only if K(t) — 0 as ¢ — oo.

To prove the other way implication, assume that K(¢) — 0. Consider any two cylinder
sets A=TI;! , (C) and B=TI' _ (D) where C € B and D € Brn. We may and shall
assume that (X(#1),...,X(,)) and (X(s1),...,X(sn)) have non-singular covariance matrices.
For, if say X (#1),...,X (t,) satisfy some linear relationship among themselves, we can choose
a subset {X(#;,),...,X(#,)} of them that forms a basis for span{X(z;),...,X(t,)} and express
A as H;.l{._.ﬁ.p (C') for some C' € Bgp.

Then Q(ANt, !B) is the probability that the vector (X;,,...,X;,, X5, +s,- - -, X5, +5) belongs
to C x D. As the covariance matrix is

(K(ti —1))i,j<n (K(ti —5j—5))i<n,j<m
(K(tj—si—5))i<nj<m  (K(si—$)))ij<m

we see that as s — oo, it converges to block-diagonal form. By our assumption, the two di-
agonal blocks are non-singular, hence for large s the above matrix is also non-singular, and
the Gaussian density of the above covariance converges to that of (X;,,....X;,,Y;,,...,Y,),
where Y is an independent copy of X. From the convergence of densities, it follows that
for any Borel C,D, as s — oo,

P{(X;\, ..., X, Xs, 155+ Xg, 15) ECXD} = P{(Xy,,.... X, Xg 151, Xg, 15) €C XD}

=P{(X,,....X,) € C} xP{(X,,,..., X, ) € D}.

106



which is the same as Q(ANt; 'B) — Q(A)Q(B). This completes the proof for cylinder sets.
If A,B € C, then for any € > 0, there are cylinder sets A;, B; such that Q(AAA;) < € and
Q(BAB)) < €. Hence

QANT,'B) - Q(A)Q(B)| < |Q(A1 NT, 'B) — Q(A1)Q(B))|
+]Q(ANT,; 'B) - Q(ANT,; 'B)| +|Q(A)Q(B) — Q(A1)Q(By)|.

The second and third summands are bounded by 2¢ and the first goes to zero as s — . As
¢ is arbitrary, this shows that Q(ANt, 'B) — Q(A)Q(B). u

6.5 Proof of the ergodicity theorem

Now we prove Theorem 7.

First suppose the spectral measure u has an atom. Then there is some a € T such
that u{a} = u{—a} = p > 0. Consider the isomorphism between H = span{Il;:r € T} (a
closed subspace of L?(R”, C,Q)) with L?(u) given by X; <+ e;, where ¢, : T + C is given by
e;(x) = ¢/, The definition of the spectral measure is that E[X,X;] = ji(r —s) = (e;, ;) 2(u)>
hence this is an isomorphism. Now let § € H correspond to 1,. Then E[§?] = u{a} > 0 and
E[f] = 0 (all random variables in H have zero mean, as we assume that X is centered).
Hence § is not a constant. Further, we claim that § is invariant.

To see this, observe that in the case T = 7Z, we have

1 I
T k;T ex(x—a) = 1,4(x)

pointwise and in L?(u), therefore, & is the limit in H of

1 &
ﬁ Z e*lk(lHkh

k=T
But then 1,,§ is the limit in H of
1 & ma | o ilkrm)
—ika _ ima —1 m
o7 k_}_:Te My = €™ k_}_Te i tm

which differs from
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Chapter 7

Karhunen Loeve expansion

Reproducing kernel Hilbert spaces: A Hilbert space (we take the scalar field to be reals)
H of functions on a set T is called a reproducing kernel Hilbert space (rkhs) if for each
t, the functional A,(f) = f(¢) defines a bounded linear functional A; on H. Then, there
must exist an element K; € H such that A,(f) = (f,K;). We shall write K(s,¢) for K;(s) and
consequently K(-,¢) for K;(-). Some observations.

1. By symmetry of inner product (K, K;) = (K;,K). Therefore K(s,t) = K(t,s).
2. For any f € H we have (f,K(-,t)) = f(¢), in particular,

Let X be a centered Gaussian process on T with covariance kernel K. We define two
Hilbert spaces.

1. For each #,s € T, define the inner product between the functions K(-,7) and K(-,s) to
be K(t,s). This is a valid definition of a (pseudo) inner product because K is p.s.d. In
other words, on span{K(-,7) : t € T} we get a well-defined inner product by setting

<iaiK(-,ll’), iij(-,Sj» = Zaiij(li,Sj).
i= =

i,j
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Chapter 8

Zeros of smooth Gaussian processes

Let X be a smooth Gaussian process on a subset of R”. The random set X' {u} is called
the level set of level u. We are interested in studying the properties of this random set. In
particular, in measuring its size. More generally, one may be interested in simultaneous
zeros of several jointly Gaussian processes Xi,...,X,. Before going into that, one must
know what kind of a set it is.

By dimension considerations, one would expect that generically, X; ' {u; }N...N X, {un}
must be a manifold of dimension n —m if n > m. When n = m the zero-dimensional set is
perhaps a discrete set. When n < m, we expect the set to be empty.

First we show that these expectations are indeed correct. Once that is done, one may
measure the size of the set by the appropriate Hausdoff measure. Of course, one may
choose other measures, such as counting the number of connected components of the set.

8.1 Bulinskaya’s lemma

Let us show that generically n+ 1 functions on R” will not have a common zero. Here and
in general, we do not aim for optimal conditions under which theorems hold, but only
for sufficiently powerful theorems that cover examples of interest to us (which are usually
very “nice”).

Lemma 1 (Bulinskaya). Let U be an open set in R" and let g : U + R"*! be a random
function. Assume that (A) g € C'(U) a.s. and (B) The vector g(x) has a density on R"! that
is bounded uniformly over x in compact subsets of U. Then g~'{0} is almost surely empty.

Proof. It suffices to assume that g = (go,&1,---,4n) is defined on a neighbourhood of 7,1 | =
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(0,11 and show that g~ '{0}N1,;1 = 0 a.s. If not, there is a point x € ;| such that
gj(x)=0forall0 < j<n.

Fix ¢ > 1 and let D, = {k279:1 <k <29}. Then there is a point ¢ € DZJrl such that
|x —t]|ee <279, Writing ||Dg||e :=sup{||Vg;(»)|| : 0 < j <n, y € L,41}, it follows that |g;(r)| <
|Dgl|~277 for 0 < j < n. This implies that for any M < oo,

P{g {0} L1 #0} < ) P{llg(1)]| < M27%} +P{||Dgl > M}

reppt!
< 2"Co(2M27)" ! + P{||Dg|l. > M}

< €2 1 P{||Dgll. > M}.

As g — oo, the first term goes to zero. As M — oo, the second term goes to zero since ||Dg||
is a finite random variable. Thus, P{g='{0} N1, # 0} =0. [

As a corollary, we deduce that under mild (but not optimal) conditions, zero sets of
random functions are smooth manifolds.

Corollary 2. Let U be an open subset of R" and let f : U — R be a random function. Assume
that m < n and that f € C'(U) a.s. and also that (f(x),Vf(x)) has a density p(x) on R**!
and that p is uniformly bounded on compact subsets of U.

1. If m = n, then f~'{0} is almost surely discrete.
2. If m <n, then f~'{0} is almost surely an n —m dimensional manifold.

Proof. Let go = f and g; =9;f for 1 < j <n. The assumptions of Bulinskaya’s lemma are
satisfied and hence there is almost surely no point where f(x) =0 and Vf(x) =0.

If m=nand f~'{0} > x) - x € U, then f(x) =0, then Vf(x) = 0, contradicting the
conclusion above. Hence the zero set of f can have no accumulation points in U.

If m < n, then since Vf(x) # 0 for any x € f~'{0} (almost surely), it follows from the
implicit function theorem that all points of f~'{0} are regular and hence f~'{0} is a
manifold of dimension n — m. [

Remark 3. These conclusions can be drawn in greater generality. For example, in the book
of Cramer and Leadbetter, they show this (or rather, some equivalent reformulations) even
without assuming smoothness of f.

110



8.2 Kac-Rice formula in one dimension

Let f: U — R be a smooth random function on an open interval U C R. By Corollary 2, the
level set Z; := f~1{0} is almost surely discrete. We wish to calculate E[|Z;N1|] for I CU.

Lemma 4 (Kac-Rice). Let f : U +— R be a random function that is almost surely C'. Assume
that (f(x), f'(x)) has a density p(x;u,v) on R? that is continuous in (x;u,v) that is bounded
over (x;u,v) € I xR xR for any compact I C U. Then,

E[|Z;N1]] :/[/R|v]p(x;0,v) dv dx.

Let X be a smooth centered Gaussian process on R? with covariance K and spectral
measure u. The random closed set Z := {t € R? : X(¢) = 0} is called the nodal set of X. One
can also consider other level lines Z, := {t € R? : X(¢) = a} for a € R. Of interest is to study

the statistical properties of Z (or Z,).

Here is a quick discussion.

In d = 1, under mild conditions on K, the random sets Z, are discrete w.p.1. That is,
almost surely, there are only finitely many zeros of X in any bounded interval, and in
fact these zeros are simple.

In d = 2, again under mild conditions on K, the random sets Z, consist of simple
closed loops and simple bi-infinite paths (the bi-infinite paths, if they exist, converge
to infinity on both sides)

In d = 1, the primary object of study are the random variables Z(I) :=#(ZN1I), the
number of zeros in /. More generally one can consider the linear statistics Z[@] :=
Y.cz0(t) for a compactly supported test function ¢. When ¢ = 1; we recover the
particle counts Z([).

There exist formulas for the joint intensities of Z. That is, there exist function py :
RF — R such that the kth moment of Z(I) can be expressed in terms of [, p,(-) for
1 <r <k. The formula for py is given by

Kac-Rice formula: Under some conditions on the process X, we have

pk(tl,...,tk) =E H’X/(tj)‘;x(tl) :...:X(tk):O .



m In d =2, the counting function of zeros can be generalized in two different directions.

1. ¢z(A), the length of the nodal set intersected with a bounded set A C R?.
2. Nz(A), the number of components of the nodal set contained entirely inside A.

While /7 is a local quantity, Nz is a not (and hence much harder to study). In partic-
ular, there exist formulas (again called Kac-Rice formulas) that give the joint intensi-

ties of Z in terms of the process X, namely
k
pk(ll,...,lk) =E H |VX/(lj)| ; X(Z‘l) =... ZX(lk) =0].
=1

And moments of /z(A) can be expressed in terms of [ p,(t1,...,t,) for 1 <r <k.
Ar
Although the formulas get complicated quickly, the mean is always easy, the variance

is sometimes calculable and even asymptotic normality (as the region gets larger and
larger) can be proved sometimes.

m No such formulas can be expected for Nz(A) as it is not a local quantity! Nevertheless
the following result is known (if you include some closely related results, it is one of
the main advances in recent times in the subject).

Theorem 5 (Malevich, Nazarov-Sodin). Let Q7 = [~T,T]%. Under some mild condi-
tions on the process X, we have E[Nz(Qr)] ~ CT? where C is a constant that depends on

the covariance kernel only. Further, T ~>Nz(Qr) RCcasT — o

In contrast to /z, it is an entirely open problem to say anything about Var(Nz(Qr)),
even in special Gaussian processes (eg., the random plane wave)!
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Chapter 9

Hypercontractivity - lecture by Nanda
Kishore Reddy, Kartick Adhikari and
Tulasi Ram Reddy

For a Gaussian Hilbert space H C L*(Q, ¥ ,P) we define H™ = ®,N P | where B, is the
closed span of the products &;...&, with ; € H.

Theorem 1 (Wiener’s chaos decomposition). Let Fy be the sigma-algebra generated by H.
Then L*(Q, Fy,P) = H" ® H'" © H?> & ... (direct sum, by definition includes closure).

Here is the prime example.

Example 2. Let H = RE be a one dimensional GHS where & ~ N(0,1). Then H" = Rh, ()
where £, is the nth (monic) Hermite polynomial. L?(Q, #,P) is naturally isomorphic to
L*(R,y;) (under that isomorphism & maps to the identity function). The theorem above is
just the assertion that &,(-)/v/n! is an ONB for L*(R,7;).

Let &, : L*(Q, #4,P) — H™ be the orthogonal projection. Let A : H — H be a linear
operator. We define A : H"™ — H"™ by setting

AT (T[Sr - Ga]) = Ta[(A&)) - . (Aw)].

For this definition to make sense, prove the following exercise.

Exercise 3. If &;,n; € H and m,[€;...&,] = myN1...M,] then show that (AE))...(AE,) —
(AN1)...(An,) € B,—;. Conclude that A™ is well defined and ||A™|| < ||A||".
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Definition 4. If A: H — H and ||A|| < 1, then define the operator I'/A] from L*(Q, 7, P) to
itself by I'A](X) = ¥,,50A™ (7, [X]).

Exercise 5. Check that I'[A] does map L?(P) into itself and ||T[A]|| < 1.
Example 6. If A = rI with r < 1 then I'[r]](X) = Y, "7, [X].

Observe that H and hence (by Holder’s inequality) 7, and H* are contained in L”(Q,P)
for all p > 1. In H all variables are centered Gaussian, hence ||&||, < c,,H&Hé’/ ? for a universal
constant c,. How the different norms compare on H"" is less clear. The following results
are asserted.

Theorem 7. Let A < 1 and let I'|A] be defined as above,
1. If X € N, L? then T[A](X) € N, L? and further |T[A]X|, < [|X]|p-

2. By the density of (\L? in any L?, it follows that I'[A] extends as a contraction to all of
LP.

3. T|AB] = T[A]T[B].

Theorem 8 (The Hypercontractivity theorem). If ||A|| < r < 1, then |I'[A]X||4, < ||X]|, for
every l<p<q<(p—1Dr?+1.

Example 9. Consider the basic case H = RE with A = rI. The hypercontractivity theorem
says in this case that

I ZanrnhnHU/(y,) <| ZanhnHU’(Yl)
n n

whenever r <,/ % and any coefficients a,.
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