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and Szegö’s theorem.

I Gaussian correlation conjecture?

I Gaussian free field

I Multiplicative chaos/cascade

I Zeros of Gaussian polynomials

I Nodal lines of random functions (Malevich, Nazarov-Sodin)

7



Chapter 1

Basics of Gaussian random variables

1.0.1 Standard Gaussian

A standard normal or Gaussian random variable is one with density ϕ(x) := 1√
2π

e−
1
2 x2

on the

real line. Its distribution function is Φ(x) =
∫ x
−∞

ϕ(t)dt and its tail distribution function is

denoted Φ̄(x) := 1−Φ(x). If Xi are i.i.d. standard Gaussians, then X = (X1, . . . ,Xn) is called

a standard Gaussian vector in Rn. It has density ∏
n
i=1 ϕ(xi) = (2π)−n/2 exp{−|x|2/2} with

respect to Lebesgue measure on Rn. The measure is denoted γn, so that for every Borel set

A in Rn we have γn(A) = (2π)−n/2 ∫
A

exp{−|x|2/2}dx.

The most important symmetry property of the standard Gaussian measure is this:

Exercise 1. [Orthogonal invariance] If Pn×n is an orthogonal matrix, then γnP−1 = γn or

equivalently, PX d
= X when X ∼ γn. More generally, if p≤ n and Pp×n is a matrix such that

PPt = Ip and X ∼ γn, then PX ∼ γp.

Conversely, if a random vector with independent co-ordinates has a distribution invari-

ant under orthogonal transformations, then it has the same distribution as cX for some

(non-random) scalar c.

To get an idea why, specialize to n = 2 and assume that X1 has density ψ(x) on R. By

the orthogonal invariance, X2 has the same density and the independence of co-ordinates

implies that the joint density is ψ(x1)ψ(x2). Using orthogonal invariance again, we see

that ψ(
√

x2
1 + x2

2)ψ(0) = ψ(x1)ψ(x2). The well-known characterization of the exponential

function (if f (x+ y) = f (x) f (y) for all x,y and f is measurable, then f (x) = ecx or f = 0)

shows that ψ(x) = exp(−cx2) for some c > 0. We leave it as an exercise to generalize the

proof to all dimensions and remove the assumption that X1 has a density.
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1.0.2 Multivariate Gaussian

If Ym×1 = µm×1 +Bm×nXn×1 where Xn×1 ∼ γn, then we say that Y ∼ Nm(µ,Σ) with Σ = BBt .

Implicit in this notation is the fact that the distribution of Y depends only on Σ and not on

B. This follows from Exercise 1: The matrices Bm×n and Cm×p with p≤ n satisfy BBt =CCt

if and only if B =CP for an p×n matrix P that satisfies PPt = Ip. It is a simple exercise that

µi = E[Xi] and σi, j = Cov(Xi,X j). Further, if Y ∼ Nm(µ,Σ) and Zp×1 = Cp×mY + θp×1, then

Z ∼ Np(θ+Cµ,CΣCt). Thus, affine linear transformations of normal random vectors are

again normal.

Quite often, in studying Y ∼ Nn(µ,Σ), it is useful to express it explicitly as Y = BX + µ

where X ∼ γm and Bn×m satisfies BBt = Σ. This is done by writing Σ = PΛPt where Pn×n

is an orthogonal matrix and Λ is diagonal with positive1 entries, and taking B = PΛ
1
2 Q

for any Qn×m satisfying QQt = In. In particular, there is always the choice of m = n and

B = Σ
1
2 := PΛ

1
2 Pt , the unique symmetric matrix whose square is Σ. Another illuminating

way is to write the spectral decomposition Σ = λ1v1vt
1 + . . .+λnvnvt

n and setting

X =
n

∑
k=1

Zk
√

λkvk

where Zk are i.i.d. standard Gaussians. Strictly speaking, some eigenvalues of Σ could

coincide, and then there are multiple choices for an orthonormal basis of eigenvectors.

Orthogonal invariance ensures that the above representation is valid for any choice.

Exercise 2. Show that a random vector Xn×1 has multivariate Gaussian distribution if and

only if every linear combination of X (i.e., vtX for any v ∈ Rn) has univariate Gaussian

distribution.

We say that a collection of random variables (Xi)i∈I (some index set I) is said to have

joint Gaussian distribution if any finite sub-collection has multivariate Gaussian distribu-

tion. Equivalently, it just means that the finite linear combination a1Xi1 + . . .+ akXik has a

univariate Gaussian distribution for every k ≥ 0 and i1, . . . , ik ∈ I and a j ∈ R.

Exercise 3. Let X ∼ Nn(µ,Σ) and X ′ ∼ Nn(µ′,Σ′) be independent Gaussian vectors on a

common probability space. Then, X +X ′ ∼ Nn(µ+µ′,Σ+Σ′).
1Thanks to the corona virus, let me take me in-class rants to the broader world. I use the word positive to

mean non-negative. One reason is that it avoids the slight mental effort of hearing the sound negative and

negating it, but what bothers me more is that if we must always say non-negative and strictly positive, we

lose the use of the simpler and nicer word positive. I rest my case and hope that the supreme court does not

find me in contempt of non-negativity (I am positive that it is not that idiotic).
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Exercise 4. Nn(µ,Σ) has density with respect to Lebesgue measure on R if and only if Σ is

non-singular, and in that case the density is

1
(2π)n/2

√
det(Σ)

exp
{
−1

2
(y−µ)t

Σ
−1(y−µ)

}
.

If Σ is singular, then X takes values in a lower dimensional subspace in Rn and hence does

not have density.

1.0.3 Covariance matrices

Let Pn denote the set of n×n positive semi-definite matrices and P+
n denote the subset of

positive definite matrices. That is, Σ ∈ Pn if and only if vtΣv≥ 0 for all v ∈ Rn. And Σ ∈ P+
n

if and only if strict inequality holds for v 6= 0.

Σ ∈ Pn if and only if Σ = BBt (in one direction B may be allowed to be rectangular,

in the other it may be restricted to be square). Therefore, Pn is precisely the set of n× n

covariance matrices. Some basic facts about such matrices are collected in this exercise.

Exercise 5. Let A be a real symmetric n×n matrix. The following are equivalent.

1. A ∈ Pn, i.e., vtAv≥ 0 for all v ∈ Rn.

2. A = BBt for some matrix Bn×m for some m.

3. A =C2 for some real symmetric n×n matrix C.

4. A = eX for some n×n symmetric matrix X .

5. The eigenvalues of A are non-negative.

6. A is a covariance matrix: Ai, j = E[XiX j] for some random variables X1, . . . ,Xn on some

probability space.

7. A is a Gram matrix: Ai, j = 〈vi,v j〉 for some vectors v1, . . . ,vn in some Hilbert space.

1.0.4 Gaussian process

Let X = (Xt)t∈T indexed by a set T , be a collection of random variables on a common

probability space (Ω,F ,P). Equivalently, X : Ω 7→ RT is a random variable, where the set
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RT is endowed with the cylinder sigma algebra (the smallest sigma algebra for which the

projections ω 7→ω(t) from RT to R are measurable. Such an X is called a stochastic process.
A stochastic process X is said to be a Gaussian process if every finite linear combina-

tion c1X(t1) + . . .+ cnX(tn), where n ≥ 1, ti ∈ T , ci ∈ R, has a one-dimensional Gaussian

distribution (possibly degenerate). Equivalently, one may say that any finite sub-collection

has a multivariate Gaussian distribution. By what we have seen for multivariate Gaus-

sian vectors, the distribution of X (which is entirely determined by distributions of all

finite subcollections) is determined by the mean function m : T 7→R and covariance kernel

K : T ×T 7→ R given by m(t) = E[X(t)] and K(t,s) = E[X(t)X(s)].

Example 6. Let T = R and let X = (Xt), where Xt are i.i.d. N(0,1) random variables. Then

X is called white noise. It exists, and its distribution is the product measure ⊗T N(0,1).

Observe that the only probability questions that can be asked about X are about events

and random variables that depend only on countably many coordinates. One cannot ask,

for example, for the probability that X is a continuous function of t.

Example 7. Let T = [0,∞) and let m(t) = 0 and K(s, t) = s∧ t. Brownian motion W is a

stochastic process with this mean function and covariance kernel. But it is not the only

one such. Construct a process with discontinuous sample paths that has the same mean

and covariance.

There is no contradiction here. On the cylinder sigma-algebra on RT , there is at most

one Gaussian measure with given mean function and covariance kernel. But when we

talk of Brownian motion with continuous sample paths, we are talking of a measure on

C(T ) and not on RT . As the latter only contains events described by countably many

coordinates, it is too weak and uninteresting. One of the important questions we shall

investigate is to find conditions on the covariance kernel so that there exists a Gaussian

process taking values in C(T ) (assuming T has a topology) and having that covariance (say

when T = [0,∞)).

Example 8. Let T be an index set and let m : T 7→ R and K : T ×T 7→ R. Show that there

exists a Gaussian process with mean function m and covariance kernel K if and only if K

is p.s.d. By definition, this means that ∑
n
i, j=1 cic jK(ti, t j)≥ 0 for any n≥ 1, ti ∈ T , ci ∈ R.

1.0.5 Characteristic function

The characteristic function of X ∼Nd(0,Σ) is E[ei〈λ,X〉] := e−
1
2 λtΣλ for λ∈Rd. We leave this as

an exercise. This extends to all of λ ∈Cd analytically and the moment generating function

11



is E[e〈λ,X〉] = e
1
2 λtΣλ is the characteristic function evaluated at iλ.

Exercise 9. If X ∼ Nd(0,Σ), show that E[ei〈λ,X〉] = e−
1
2 λtΣλ for λ ∈ Rd. In particular, if X ∼

N(0,σ2), then its characteristic function is E[eiλX ] = e−
1
2 σ2λ2

for λ ∈ R.

Closely related is the moment generating function, E[e〈λ,X〉] = e
1
2 λtΣλ for λ ∈ Rd. If

we extend the characteristic function to λ ∈ Cd (in this case it does extend naturally),

then evaluating it at a point where all co-ordinates are imaginary gives us the moment

generating function. As a special case, when X ∼ N(0,σ2), we have

E[eλX− 1
2 λ2σ2

] = 1.

This is a combination that occurs often. For example, when W is a standard Brownian

motion, it is well-known that Mλ(t) = eλWt− 1
2 λ2t is a martingale, for any fixed λ ∈ R.

1.0.6 Moments and Wick formula

Differentiating the characteristic function at λ = 0, one can get all the joint moments of the

Xis. In the univariate case, E[X2p] = σ2p(2p−1)× (2p−3)× . . .×3×1. Of course the odd

moments are zero. To see this, let σ2 = 1 without loss of generality and write E[X2p] as
d2p

dλ2p e−λ2/2. As e−λ2/2 = ∑p≥0
1

2p p!λ
2p, it follows that E[X2p] = (2p)!

2p p! , which is the same as the

claimed formula. The 2p-th moment has the combinatorial interpretation of the number

of ways to divide up [2p] := {1,2, . . . ,2p− 1,2p} into p disjoint pairs. This generalizes as

follows.

Exercise 10. Prove the Wick formula (also called Feynman diagram formula): Let X ∼
Nn(0,Σ). Then, E[X1 . . .Xn] =∑M∈Mn ∏{i, j}∈M σi, j, where Mn is the collection of all matchings

of the set [n] (thus Mn is empty if n is odd) and the product is over all matched pairs.

Observe that a matching is an unordered collection of n/2 pairwise disjoint subsets of

[n] of size 2 each. Because of the symmetry of the covariance matrix, it does not matter

how we order each pair or the collection of pairs. For example, E[X1X2X3X4] = σ12σ34 +

σ13σ24 +σ14σ23.

Cumulants: Let X be a real-valued random variable with E[etX ] < ∞ for t in a neighbour-

hood of 0. Then, we can write the power series expansions

E[eiλX ] =
∞

∑
k=0

mn(X)
λn

n!
, logE[eiλX ] =

∞

∑
k=1

κn[X ]
λn

n!
.

12



Here mn[X ] = E[Xn] are the moments while κn[X ] is a linear combination of the first n

moments (κ1 = m1, κ2 = m2−m2
1, etc). Then κn is called the nth cumulant of X . If X and Y

are independent, then it is clear that κn[X +Y ] = κn[X ]+κn[Y ].

Exercise 11. (optional). Prove the following relationship between moments and cumu-

lants. The sums below are over partitions Π of the set [n] and Π1, . . . ,Π`Π
denote the blocks

of Π.

mn[X ] = ∑
Π

∏
i

κ|Πi|[X ], κn[X ] = ∑
Π

(−1)`Π−1
∏

i
m|Πi|[X ].

Thus κ1 = m1, κ2 = m2−m2
1,

If X ∼ N(µ,σ2), it has charcteristic function eiµλ−λ2/2σ2
, which shows that κ1[X ] = µ,

κ2[X ] = σ2 and κp[X ] = 0 for p≥ 3. The converse of this result is also true and often useful

in proving that a random variable is normal. For instance, the theorem below implies that

to show that a sequence of random variables converges to normal, it suffices to show that

cumulants κm[Xn]→ 0 for all m≥ m0 for some m0.

Result 12 (Marcinkiewicz). If X is a random variable with finite moments of all orders

and κn[X ] = 0 for all n≥ n0 for some n0, then X is Gaussian.

These considerations extend to the multivariate random vectors Xd×1, by writing

E[ei〈λ,X〉] =
∞

∑
(k1,...,kd):ki≥0

mX [k1, . . . ,kd]
λ

k1
1 . . .λkd

d
k1! . . .kd!

,

logE[ei〈λ,X〉] =
∞

∑
(k1,...,kd)6=0:ki≥0

κX [k1, . . . ,kd]
λ

k1
1 . . .λkd

d
k1! . . .kd!

but we omit the details here.

1.0.7 Conditional distributions

We saw that Gaussianity is preserved by affine linear transformations and also under con-

volutions. Now we recall that marginals and conditional distributions of Gaussians are

Gaussians.

Exercise 13. If Uk×1 and V(m−k)×1 are such that Y t = (U t ,V t), and we write µt = (µ1,µ2) and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
are partitioned accordingly, then

13



1. U ∼ Nk(µ1,Σ11).

2. U
∣∣∣
V
∼ Nk(µ1−Σ12Σ

−1/2
22 V, Σ11−Σ12Σ

−1
22 Σ21) (assume that Σ22 is invertible).

It is an important observation that the conditional expectation is linear in the conditioning

variable and the conditional variance does not depend on it at all.

It is worth noting the particular case k = 1. Let X ∼ Nn(µ,Σ). Then the conditional

dis- tribution of X1 given Y = (X2, . . . ,Xn) is Gaussian with mean µ1−utB−1Y and variance

σ1,1−utB−1u, where ut = (σ1,2, . . . ,σ1,n) and B = (σi, j)2≤i, j≤n.

Recall the interpretation of conditional expectation as projection in L2. Thus, if we want

to find the function f that minimizes E[|X1− f (Y )|2], then the solution is f (Y ) = µ1−utB−1Y

and the minimum value of the error is σ1,1−utB−1u. Thus, the conditional mean is the best

predictor of X1 in terms of Y and the conditional variance measures how good this predictor

is.

One of the topics we shall study is the problem of prediction when we have an infi-

nite collection of random variables X = (Xn)n∈Z (with additional property of stationarity).

When predicting X0 in terms of the “past observations” Y = (Xn)n<0, it may happen that

the conditional variance is zero, which means that X0 is determined by the past (and then

each Xk is determined by the preceding Xis, hence all the randomness in the process is at

the infinitely distant past!). There is a nice condition that tells us when this happens.

Exercise 14. Let (Xt)t∈T be a Gaussian process. Fix A ⊆ T and t0 ∈ T . Show that the con-

ditional distribution of X(t0) given G = σ{Xt : t ∈ A} is Gaussian. What are its parameters?

(Give the answer in terms of conditional expectations given G)

1.0.8 Weak convergence

It is very easy to see that if µn→ µ and Σn→ Σ, then Nd(µn,Σn)
d→ N(µ,Σ). The converse is

also true.

Exercise 15. The family of distributions Nd(µ,Σ), where µ∈Rd and Σd×d is a positive semi-

definite matrix, is closed under convergence in distribution (for this statement to be valid

we include N(µ,0) which is taken to mean δµ).

14



1.0.9 Characterizations of Gaussians

Gaussian distributions have many special properties. Some properties are not shared with

any other distributions. Such properties characterize Gaussian distributions. We just men-

tion a few of these here.

1. If X = (X1, . . . ,Xn) is a random vector such that Xis are independent and PX d
= X for

all orthogonal matrices P, then X ∼ Nn(0,σ2In) for some σ2 ≥ 0.

2. If Xi are i.i.d. (real-valued) and X1 +X2
d
=
√

2X1, then Xi ∼ N(0,σ2).

3. If E[X f (X)] = E[ f ′(X)] for all f : R 7→ R with bounded continuous derivative, then

X ∼ N(0,1). This is Stein’s characterization and we talk about it later.

4. If the cumulants of X eventually vanish, i.e., if logE[eiλX ] is a polynomial of λ, then

X ∼ N(µ,σ2) for some µ,σ2.

One can extend this list endlessly, and each property sheds some light on the importance

and ubiquity of Gaussian distribution. For example, the second property explains why it

arises as the limiting distribution in central limit theorem.

1.0.10 Entropy

Here we explain another “reason” for the appearance of the Gaussian.

Definition 16. Let X be a Rn-valued random variable. Its entropy is defined as −∞ is X

does not have density with respect to Lebesgue measure, and if X does have density f with

respect to Lebesgue measure, then the entropy is defined as

E(X) :=
∫
Rn

log
1

f (x)
f (x)dx.

As with expectation, variance etc., entropy depends only on the distribution of X .

Example 17. If X ∼ Unif[a,b], then E(X) = log(b−a).

Example 18. If X ∼ N(µ,σ2)), then

E(X) =
∫
R

[
(x−µ)2

2σ2 + log(σ
√

2π)

]
1

σ
√

2π
e−

1
2
(x−µ)2

2σ2 dx

=
1

2σ2 E[(X−µ)2]+ log(σ
√

2π)

= logσ+
1
2

log(2πe).
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From these examples, we see that the entropy is low (possibly negative) when the

distribution is concentrated (approaching a discrete distribution) and increases to infinity

as the distribution spreads out. For instance, if X = tY , then E(X) = E(X)+ log t. In the

first example, by considering the equality case in Jensen’s inequality, it is easy to see that

Uniform[a,b] uniquely has the largest entropy among all distributions supported on [a,b].

Here is a similar problem to which Gaussian distribution is the answer.

Lemma 19. Among all distributions with given mean and variance, the Gaussian distribution
uniquely has the highest entropy.

The same is true in higher dimensions if we fix the mean vector and the covariance

matrix. We leave that as an exercise and present the proof for the one-dimensional case.

Proof. If X is any random variable with finite variance σ2, and ϕσ is the Gaussian density

with the same variance, then

E(X) =−
∫
R

[
log

f (x)
ϕσ(x)

+ logϕσ(x)
]

f (x)dx

=
∫
R

log
ϕσ

f
f − 1

2

∫
R

x2 f (x)dx.

The second integral is equal to
∫

x2ϕσ(x)dx. The first integral is bounded above by log
(∫

R
ϕσ

f f
)

which is zero. Further the bound is an equality when f = ϕσ. Thus, E( f )≤ E(ϕσ). �

Note that we did not use the equality of means. Indeed, E(X + a) = E(X), hence the

shift does not change entropy.

More generally, if (Ω,F ,ν) is a measure space, then for a probability measure µ on F ,

we define its entropy (w.r.t. ν) as
∫

Ω
f log 1

f dν if f = dµ
dν

and as −∞ if µ is not absolutely

continuous to µ. The entropy maximizing measures below are called Gibbs measures.

Exercise 20. (Optional) Let H : Ω 7→ R be a function such that ψ(β) :=
∫

eβxdν(x) < ∞

(which could be ∞). Consider the problem of maximizing the entropy of a probability

measure on Ω subject to the constraint
∫

Ω
Hdµ = E0. If there exists a β0 such that ψ(β0) =

E0, then show that the entropy maximizing measure has density proportional to eβH with

respect to ν.

Apply this to the function H(x) = x on Ω =R+, to H(x) = 1 on Ω = [a,b] and to H(x) = x2

on Ω = R to recover familiar examples of probability distributions.
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1.0.11 Gaussian from uniform measures on high dimensional spheres

Let µn denote the uniform measure on Sn = {x ∈ Rn+1 : ‖x‖2 = 1}. By definition, this is

the unique probability measure on Sn that is invariant under orthogonal transformations.

One way to see that it exists is to consider the standard Gaussian measure γn+1 on Rn+1

and push it forward under the mapping x 7→ x/‖x‖ from Rn+1 \{0} to Sn. The orthogonal

invariance of γn+1 carries over to µn.

Exercise 21. Show that |V (n)
1 |2 has Beta(n−1,1) distribution. More generally, (|V1|2, . . . , |Vk|2)

has Dirichlet(k;1,1, . . . ,1,n− k) distribution. (Recall that Dirichlet(k;a1, . . . ,ak,ak+1) dis-

tribution is the one with density Cxa1−1
1 . . .xak−1

k (1− x1− . . .− xk)
ak+1−1 on {(x1, . . . ,xk) ∈

Rk
+ : x1 + . . .+ xk < 1}. The normalization constant C = Γ(a1+...+ak+1)

Γ(a1)...Γ(ak+1)
.)

Thus, the Gaussian measure is a convenient tool to do calculations on the uniform

measure on spheres. Sometimes, the usefulness may be in the reverse direction, using the

following way of getting to Gaussian from uniform.

Claim: Let V (n) = (V (n)
1 , . . . ,V (n)

n ) ∼ µn. Fix k ≥ 1. Then
√

n(V (n)
1 , . . . ,V (k)

n ) converges in

distribution to a vector of i.i.d. standard Gaussians, as n→ ∞.

The easiest proof is from the construction used above for V (n). Indeed, let Xi be i.i.d.

standard Gaussians. Then

V (n) =
(X1, . . . ,Xn)√
X2

1 + . . .+X2
n

is uniform on Sn−1. By the law of large numbers X2
1 +...+X2

n
n

a.s.→ 1. Therefore,
√

n(V (n)
1 , . . . ,V (n)

k )

converges to (X1, . . . ,Xk) almost surely, and hence in distribution. �

Remark 22. Apparently, Maxwell arrived at the above fact in his study of the velocity

distribution of molecules in a gas. The idea is that a box of (monatomic) gas in a box

maintained at a fixed temperature has about N = 1023 atoms, and the temperature is (a

multiple of) the sum of squares of the velocity components of the atoms. Basic principles

of statistical mechanics assert that the individual velocity components are random and

uniformly distributed on the set of all allowed values, in this case, a sphere in 3N dimen-

sions. Maxwell then deduced that the three velocity components of any single atom (say

randomly chosen atom) are i.i.d. Gaussian.
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1.0.12 Gaussian Hilbert space

If (Ω,F ,P) is a probability space, then L2(P) is a Hilbert space with inner product 〈X ,Y 〉 :=

E[XY ] (of course X ,Y are to be interpreted as equivalence classes). Any closed subspace

H ⊆ L2(P) is also a Hilber space. If every X ∈ H has a univariate Gaussian distribution,

then we say that H is a Gaussian Hilbert space.

If (Xi)i∈I is any collection of jointly Gaussian random variables, then W = span{Xi : i∈ I}
is a GHS. The closure is in L2(P). The reason is that linear combinations are Gaussian and

L2-limits of Gaussians are also Gaussian (as L2-convergence implies convergence in distri-

bution). In this sense, when studying a jointly Gaussian collection, there is no reason to

not enlarge the collection to a closed subspace of L2(P). That is called the GHS associated

to the original collection.

For example, suppose X ∼ Nm(0,Σ) be a random vector in some probability space

(Ω,F ,P). Then, W = {Xv := vtX : v ∈ Rm}. By v 7→ Xv}, this is isomorphic to the Hilbert

space Rm with the inner product 〈v,w〉 = vtΣw. Of course, if Σ is singular, then this is a

pseudo inner product (not all linear combinations are distinct).

Conversely, given a Hilbert space H with orthonormal basis {ei : i ∈ I} (no big loss to

assume that I is countable), then we can form a collection of Gaussians whose GHS is

(isomorphic to) H. For this, consider a probability space (Ω,F ,P) on which there are

i.i.d. standard Gaussians Zi. For any v ∈ H, define Xv = ∑i〈v,ei〉Zi. The series converges

by Khinchine’s theorem since ∑i |〈v,ei〉|2 = ‖v‖2 is finite. As E[XvXu] = 〈v,u〉, the GHS

{Xv : v ∈ H} ⊆ L2(P) is isomorphic to H under the bijection v↔ Xv, proving the claim2.

1.0.13 The Gaussian density and the heat equation

Recall the standard Gaussian density ϕ(x). The corresponding cumulative distribution

function is denoted by Φ and the tail is denoted by Φ̄(x) :=
∫

∞

x ϕ(t)dt. The following esti-

mate will be used very often.

Exercise 23. For all x > 0, we have 1√
2π

x
1+x2 e−

1
2 x2 ≤ Φ̄(x)≤ 1√

2π

1
x e−

1
2 x2

In particular3, Φ̄(x)∼

2This may seem fairly pointless, but here is one thought-provoking question. Given a vector space of

Gaussian random variables, we can multiply any two of them and thus get a larger vector space spanned by

the given Gaussian random variables and all pair-wise products of them. What does this new vector space

correspond to in terms of H?
3The notation f (x)∼ g(x) means that lim

x→∞

f (x)
g(x) = 1.
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x−1ϕ(x) as x→ ∞. Most often the following simpler bound, valid for x≥ 1, suffices.

1
10x

e−
1
2 x2
≤ Φ̄(x)≤ e−

1
2 x2

.

For t > 0, let pt(x) := 1√
t ϕ(x/

√
t) be the N(0, t) density. We interpret p0(x)dx as the

degenerate measure at 0. These densities have the following interesting properties.

Exercise 24. Show that pt ? ps = pt+s, i.e.,
∫
R

pt(x− y)ps(y)dy = pt+s(x).

Exercise 25. Show that pt(x) satisfies the heat equation: ∂

∂t pt(x) = 1
2

∂2

∂x2 pt(x) for all t > 0

and x ∈ R.

Remark 26. Put together, these facts say that pt(x) is the fundamental solution to the

heat equation. This just means that the heat equation ∂

∂t u(t,x) = 1
2

∂2

∂x2 u(t,x) with the initial

condition u(0,x) = f (x) can be solved simply as u(t,x) = ( f ? pt)(x) :=
∫
R f (y)pt(x− y)dy.

This works for reasonable f (say f ∈ L1(R)).

All this generalized to higher dimensions. Write pd,t(x)dx for the measure Nd(0, tId)

where t = 0 corresponds to δ0. Then pd,t ? pd,s = pd,t+s. Further, the heat equation

∂

∂t
pt(x) =

1
2

∆pt(x)

where ∆ = ∑
d
i=1

∂2

∂x2
i

is the Laplacian on Rd. Then u(x, t) :=
∫
Rd f (y)pd,t(x− y) satisfies the

heat equation with the initial condition u(·,0) = f (for reasonable f , where we omit the

discussion of what is reasonable).

One can rewrite the heat equation in the following way. Let d = 1 for simplicity. Let

Zt ∼ N(0, t) have density pt . Then Zt/
√

t is a standard Gaussian for each t, and hence

for any reasonable test function, E[ f (Zt/
√

t)] is constant. If f is smooth enough, we can

differentiate under the integral to get

0 =
d
dt

∫
R

f (z/
√

t)pt(z)dz

=
∫
R

[
−z

2t
3
2

f ′(z/
√

t)+
1
2

f (z/
√

t)p′′t (z)
]

dz

=
∫
R

[
−z

2t
3
2

f ′(z/
√

t)+
1
2t

f ′′(z/
√

t)
]

pt(z)dz

by integration by parts in the second integral. Set t = 1 to get E[Z f ′(Z)] = E[ f ′′(Z)]. This is

true for all smooth enough f for which the expectations exist.
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Remark 27. One choice of Zt is to let Z be a standard Brownian motion in one dimension,

with a minor change of variables, Xt = e−t/2Zet is an Ornstein-Uhlenbeck process which is

stationary in time. Then the equation obtained here has is just the Komogorov forward

equation for this process.

1.0.14 Stein’s equation

If Z ∼ N(0,1), we obtained the equation E[Z f ′(Z)] = E[ f ′′(Z)]. Writing g = f ′, this becomes

E[Zg(Z)] = E[g′(Z)], which involves only first order derivatives. This is called Stein’s equa-

tion. Suppose a random variable W satisfies

E[Wg(W )] = σ
2E[g′(W )]

for a large class of g (say all g ∈ C1 for which both expectations exist), then taking the

special functions g(w) = eiλw, we see that W has the characteristic function ψ satisfying

ψ′(λ) = −σ2ψ(λ), which implies that W ∼ N(0,σ2). Thus the Stein-equation characterizes

the Gaussian distribution.

Stein made this the starting point of what is now famous as Stein’s method, show-

ing that if W satisfies the Stein’s equation approximately, then the distribution of W is

approximately Gaussian. This allowed him to prove central limit theorems in many sit-

uations that were out of reach of the method of characteristic functions (for example, if

W = (X1 + . . .+Xn)/
√

n where Xi are weakly dependent variables with zero mean and unit

variance).

In higher dimensions, we have the following “integration by parts” formula that we

shall have occasion to use.

Exercise 28. Let X ∼ Nn(0,Σ) and let F : Rn → R. Under suitable conditions on F (state

sufficient conditions), show that E [XiF(X)] = ∑
n
j=1 σi jE[∂ jF(X)]. As a corollary, deduce the

Wick formula of Exercise 10.

1.0.15 Semigroups

Recall the Ornstein-Uhlenbeck process that is defined as X(t) = e−t/2W (et), for −∞ < t < ∞,

where W is a standard Brownian motion in d-dimensions. Then X = (X1, . . . ,Xd) where Xi

are i.i.d. O-U processes in one dimensions. Let us take d = 1 for now.
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The O-U process X is clearly a Gaussian process and E[X(t)] = 0 and E[X(t),X(s)] =

e−|t−s|. This shows that X is stationary, that is X(· − τ)
d
= X(·) for any τ ∈ R. There are

alternate descriptions of X , for example by the stochastic differential equation

dX(t) =−1
2

X(t)dt +dB(t)

where B is standard Brownian motion. The meaning of this is that

X(t)−X(0) =−1
2

∫ t

0
X(s)ds+B(t).

In more intuitive terms, for small h > 0, the displacement X(t +h)−X(t) is independent of

{X(s) : s ≤ t} and has (approximately) Gaussian distribution with mean equal to −1
2X(t)h

and variance equal to h. If the mean was zero, this would just be the description of

standard Brownian motion. However, the mean is −1
2X(t), which means that it tends to

move towards the origin.

Another way to think of it is to drop the Brownian motion term (if you don’t like

revolutionary changes, consider dX(t) =−1
2X(t)+αdB(t) and drive the parameter α to 0).

We get the ODE x′(t) =−1
2x(t), which means that x is the velocity of a particle performing

simple harmonic motion (a mass tied to a spring that pulls it towards the origin). In that

sense, O-U process is a particle performing simple harmonic motion, except that there is

some randomness (“thermal noise”) in its motion given by the Brownian motion.

The O-U process is a Markov process. To see its transition density, observe that for

fixed t > 0, the random variable X(t) has the same distribution as e−
t
2 X(0)+

√
1− e−tZ,

where Z ∼ N(0,1) is independent of X(0) (independent of the entire past up to time 0,

in fact). In other words, the conditional distribution of X(t) given F0 = σ{X(s) : s ≤ 0} is

N(e−t/2X(0),1−e−t). For a reasonable function f : R 7→R, let (Pt f )(x) = E[ f (Xt)
∣∣∣∣∣∣ X(0) = x].

The precise class of f for which this makes sense will be left open now, but ignoring that

point, it is easy to see that Pt ◦Ps =Pt+s and of course P0 = I. Thus, (Pt)t≥0 form a semigroup

(meaning that Pt ◦Ps = Pt+s). This is called the O-U semigroup.
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1.0.16 Hermite polynomials

Hermite polynomials are useful, in fact indispensable, tools to study the Gaussian measure.

For n≥ 0, thenth Hermite polynomial is defined as4

Hn(x) = (−1)n dn

dxn e−
1
2 x2

.

It is clear from this that Hn is a monic polynomial of degree n. For example, H0(x) = 1,

H1(x) = x, H2(x) = x2−1, H3(x) = x3−3x. It is possible to write the explicit formula for Hn,

but that is not the best way to understand its properties. To this end, observe that

e−
1
2 x2

∞

∑
n=0

Hn(x)
wn

n!
= e−

1
2 (x−w)2

. (1)

This can be seen by writing the power series expansion of the right hand side as a function

of w, with x held fixed (donÕt expand the exponential, just recall that the nth coefficient

is got by differentiating the function n times at the origin...). Multiply two of these expres-

sions with w and z, multiply by 1√
2π

e
1
2 x2

, integrate and interchange integral with summation

to get

∑
m,n≥0

〈Hn,Hm〉γ
wnzm

n!m!
=

1√
2π

∫
R

e
1
2 x2

e−
1
2 (x−w)2

e−
1
2 (x−z)2

dx

= ezw 1√
2π

∫
R

e−
1
2 (x−(w+z))2

dx

= ∑
p≥0

wpzp

p!
.

Equating the coefficients, we see that 〈Hn,Hm〉γ = δm,nn!. Thus 1√
n!

Hn, n ≥ 0, form an or-

thonormal basis for L2(γ) (since polynomials are dense in L2(γ)). As such, applying Gram-

Schmidt procedure to 1,x,x2, . . . in L2(γ) would have led to the same polynomials. Hermite

polynomials satisfy difference relations and differential equations.

Exercise 29. Show that check constants here

1. Hn+1(x) = xHn(x)−nHn−1(x).

4There are different conventions. Wikipedia denotes our Hn as Hen, and calls it the “probabilistÕs Hermite

polynomials”. The notation Hn is used for the “physicistÕs Hermite polynomials” that are defined without

the 1
2 in the exponent of the Gaussian density.
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2. d
dxHn(x) = Hn−1(x) and (− d

dx + x)Hn(x) = Hn+1(x).

3. d
dx(−

d
dx + x)Hn(x) = Hn(x).

As{ 1√
n!

Hn : n ≥ 0} form an orthonormal basis for L2(γ), for any f : R 7→ R such that

E[ f (Z)2]< ∞, we can write the Hermite expansion of f ,

f (Z)
L2(γ)
=

∞

∑
n=0

1
n!
〈 f ,Hn〉γ Hn(Z).

For specific functions f , the convergence can be in better senses of course (if the coeffi-

cients 〈 f ,Hn〉 decay fast). This can be useful in many ways, for example to compute mo-

ments of f (Z). For example, if Xi are jointly Gaussian (centered) and have unit variances,

then if fi are nice enough, then

E[ f1(X1) . . . fk(Xk)] = ∑
n1,...,nk≥0

k

∏
j=1

〈 f j,Hn j〉γ
n j!

E[Hn1(X1) . . .Hnk(Xk)].

Thus, in principle, all we need are expectations of products of Hermite polynomials. While

the Wick formulas can in principle be used to compute expectations of products of any

polynomials of Gaussians, the formulas get way too complicated. For Hermite polynomials,

everything is magically simpler. Let X ∼ Nk(0,Σ) where σi,i = 1 for all i. Then each Xi is a

standard Gaussian, hence (1) is applicable and we can write,

∑
n1,...,nk≥0

E[Hn1(X1) . . .Hnk(Xk)]
wn1

1 . . .wnk
k

n1! . . .nk!
=

∫
Rk

e∑
k
j=1 x jw j− 1

2 ∑
k
j=1 w2

j
1

(2π)k/2
√

det(Σ)
e−

1
2 xtΣ−1x dx

= e−
1
2 (w

2
1+...+w2

k)e
1
2 wtΣw

= e
1
2 wt(Σ−Ik)w.

From this, one can get the formula for E[Hn1(X1) . . .Hnk(Xk)] as follows.

Exercise 30. Consider the complete k-partite graph with vertex set V1tV2t . . .tVk, where

Vi is a set of cardinality ni. This means that there is an edge between any two vertices not

belonging to the same Vj. Endow any edge connecting a vertex in Vi to a vertex in Vj, with

i 6= j, with weight σi, j. Then, with the setting above,

E[Hn1(X1) . . .Hnk(Xk)] =
n1! . . .nk!

(n1 + . . .+nk)!
∑
M

w(M)
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where the sum is over all complete matchings of the graph, and the weight of a matching

is the product of the weights of its edges.

In particular, if X1 = X2 = . . .= Xk = Z then, (n1+...+nk)!
n1!...nk! E[Hn1(Z) . . .Hnk(Z)] is equal to the

number of complete matchings of the graph.

1.0.17 Tail of the Gaussian distribution

The cumulative distribution function Φ(t) =
∫ t
−∞

1√
2π

e−
1
2 x2

dx has no closed form expression

in terms of elementary functions (polynomials, trigonometric and exponential functions),

hence the following estimate is often useful. Let Φ(t) = 1−Φ(t) denote the tail.

Exercise 31. For any t > 0,

1
t + 1

t

e−
1
2 t2

√
2π
≤Φ(t)≤ 1

t
e−

1
2 t2

√
2π

.

In particular, Φ(t)∼ 1
t ϕ(t) as t→ ∞. It is often more convenient to use simpler inequalities

like Φ(t)≤ e−
1
2 t2

for t ≥ 1 or Φ(t)≤ e1− 1
2 t2

for all t > 0.

Exact inequalities that hold for every t are sometimes convenient. But as t → ∞, one

can get better approximations by the asymptotic expansion:

Φ(t) =
e−

1
2 t2

t
√

2π

∞

∑
n=0

(−1)n (2n−1)!!
t2n

with the convention that (−1)!! = 1 and (2n−1)!! = (2n−1)× (2n−3)× . . .3×1 for n≥ 1.

For any t ∈ R, the series on the right diverges! The meaning of asymptotic expansion is

that for any p≥ 1, as t→ ∞,

Φ(t)− e−
1
2 t2

t
√

2π

p

∑
n=0

(−1)n (2n−1)!!
t2n = O(t−2p−2e−

1
2 t2

).

1.0.18 Maximum of i.i.d. Gaussians

Let Zi be i.i.d. standard Gaussians and let Mn = max{Z1, . . . ,Zn}. How big is Mn? This is a

question that recurs in many situations and an understanding is quite important. We shall

show that
Mn√
2logn

a.s.→ 1. (2)
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In fact we can get sharper statements along the same lines, but this can serve as a first

goal.

Where does the
√

2logn come from? Since there are n independent variables, if bn is

chosen so that Φ(bn) =
1
n , then the expected number of Zis that are more than bn is exactly

1. This suggests that the maximum is of the order of bn. For the Gaussian distribution,

using Φ(t)∼ 1
t
√

2π
e−

1
2 t2

, as t→ ∞, it follows that bn ∼
√

2logn.

Exercise 32. Show that
√

2logn+ 1
2 log logn is a better approximation for bn.

To prove (??), fix δ > 0 and consider the events {Mn > (1+ δ)
√

2logn}. By the tail

estimate for the Gaussian distribution, for large enough n (so that (1+ δ)
√

2logn ≥ 1),

its probability is at most exp{−1
2(1+ δ)22logn} = n−(1+δ)2

, which is summable over n. By

Borel-Cantelli lemma, only finitely many of these events occur, and hence limsupn
Mn√
2logn ≤

1+ δ, almost surely. Take intersection over countably many δ approaching 0 from above,

we see that limsupn
Mn√
2logn ≤ 1, almost surely.

To get the lower bound, let δ > 0 and consider the event Zn > (1− δ)
√

2logn. By the

lower bound for the Gaussian tail,

P{Zn > (1−δ)
√

2logn} ∼ 1
(1−δ)

√
2logn

e−(1−δ)2 logn � 1
n(1−δ)2√logn

which is not summable. As Zn are independent, by Borel-Cantelli lemma, infinitely many

of these events occur, almost surely. But Mn ≥ Zn, hence we see that limsupn
Mn√
2logn ≥ 1−δ,

almost surely. Take intersection over countably many δ approaching 0 from above to see

that limsupn
Mn√
2logn ≥ 1, almost surely.

Putting together the upper and lower bounds, we have proved (??).

One can make more accurate estimates (we give up on “almost sure” and consider “in

probability” below).

Exercise 33. Let Zn be i.i.d. standard Gaussians. Show that
√

logn(Mn−
√

2logn) is tight.

In other words, P{−hn <
√

logn(Mn−
√

2logn)< hn}→ 1 for any sequence hn→ ∞.

In any natural situation, if a sequence of random variables is tight, one should ask if it

converges in distribution. In the current setting, it is true. For any u ∈ R, we have

P{
√

2logn(Mn−
√

2logn)≤ u}→ e−e−u
. (3)
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The limiting distribution is known as Gumbel distribution. To prove the above claim, let

us define bn as before, satisfying Φ(bn) =
1
n . Consider

P{bn(Mn−bn)≤ u}= P{Mn ≤ bn +
u
bn
}

=

(
1−Φ(bn +

u
bn

)

)n

.

From the fact that Φ(t)∼ 1
t
√

2π
e−

1
2 t2

as t→ ∞, we see that

Φ(bn +
u
bn

)∼Φ(bn)e−u =
1
n

e−u.

Therefore, P{bn(Mn−bn) ≤ u} = (1− 1+o(1)
n e−u)n→ e−e−u

. Since bn ∼
√

2logn, the conver-

gence in distribution holds with
√

2logn in place of bn, completing the proof of (3).

Another perspective: Motivated by a discussion in class, let us write this in a different

way. For b(p) = Φ
−1
(p) denote the inverse of the tail CDF. What we denoted bn above is in

this notation b(1/n). The number of Z1, . . . ,Zn that fall above b(p) has Bin(n, p) distribution.

Hence, for any fixed λ > 0

#{k ≤ n : Zk > b(λ/n)} d→ Pois(λ).

Remark 34. With a little more care, one can say make the following statement: Let

Nn(λ,∞) = #{k : Zk > b(λ/n)}. Then Nn converges in distribution to Poisson point process

with intensity 1 on R. To make this statement precise, one needs to understand the mean-

ing of convergence in distribution for point processes.

Since the number on the left is zero if and only if Mn < b(λ/n), we see that P{Mn <

b(λ/n)} → e−λ. From the Gaussian tail, one can work out that b(p) ∼ 2log 1
p (and more

accurately b(p) = 2log 1
p −2loglog 1

p + . . .), from which it follows that Mn√
2logn

P→ 1.

1.0.19 Complex Gaussians

By a complex Gaussian random variable, we mean a C-valued random variable ζ with

density 1
π

e−|z|
2

on the complex plane. In other words, Reζ and Imζ are i.i.d. N(0, 1
2)

random variables. The distribution of σζ+a is denote NC(a,σ2) for a ∈ C and σ > 0.
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We say that a collection of complex-valued random variables ζ = (ζt)t∈T has a joint

complex Gaussian distribution if any finite linear combination of them has a univariate

complex Gaussian distribution. The distribution of ζ is determined by the mean func-

tion m(t) = E[ζ(t)] and covariance kernel K(t,s) = E[ζ(t)ζ(s)]. It should be noted that

E[ζ(t)ζ(s)] = 0 for all t,s ∈ T (including t = s). The matrix (K(t,s))t,s∈T is called the covari-

ance matrix of ζ.

Almost all the things said so far for real Gaussians can be carried out for these. We

just state a few salient properties below and leave them as exercises. One can prove them

either by carrying out the analogy with the real Gaussian case, or by breaking all the

complex variables into their real and imaginary parts, and using the results for the real

Gaussian case. We prefer the first approach. In fact, in many ways, the standard complex

Gaussian is more natural than the real Gaussian. When proving that
∫
R e−

1
2 x2

dx =
√

2π or

when simulating a Gaussian on a computer, we know that it is easier done by considering

a complex Gaussian. The fundamental reason is that the standard complex Gaussian has

independent components in two co-ordinate systems: Cartesian and polar.

a few things to fill here
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Chapter 2

Examples of Gaussian processes

To define a Gaussian process X = (X(t))t∈T is the same as to specify the mean function

m : T 7→ R and covariance function K : T ×T 7→ R. The role of the mean function is trivial:

If X is a process with mean function 0 then X +m has mean function m. Thus it suffices

to understand centered (zero mean) processes, and all our processes will be centered

unless stated otherwise. The covariance kernel has to be positive semi-definite, and that

is something nontrivial. How to check if a given function K is p.s.d.? How to generate

examples of p.s.d. kernels? How to generate all of them?

2.1 Random series

Example 1. Let T = {1,2, . . . ,n} be a finite set. Then K = (Ki, j)1≤i, j≤n is a matrix. We

know that K is p.s.d. if and only if it is a Gram matrix, i.e., Ki, j = 〈vi,v j〉 for some vectors

v1, . . . ,vn ∈ Rn. This gives a characterization of all p.s.d. matrices. The corresponding

Gaussian process is easy to generate: Let Z ∼ γn and set Xi = 〈Z,vi〉.
An alternate way to say the same is to write K = u1ut

1 + . . .+ unut
n for some ui ∈ Rn.

Then set X = Z1u1 + . . .+Znun, where Zi are i.i.d. standard Gaussians.

One direction of this works for arbitrary T . If fi : T 7→ R are arbitrary functions, then

the function K(t,s) = f1(t) f1(s)+ . . .+ fn(t) fn(s) for t,s ∈ T , is the covariance kernel of the

process X(t) = Z1 f1(t)+ . . .+Zn fn(t), where Zi are i.i.d. standard Gaussians.

Does it work with infinitely many functions?

Example 2. Let fi : T 7→ R, i ≥ 1, be a collection of functions such that ∑i | fi(t)|2 < ∞

for all t ∈ T . Then K(t,s) := ∑i fi(t) fi(s), t,s ∈ T , is a well-defined p.s.d. kernel. It is in
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fact the covariance kernel of the Gaussian process X(t) := ∑i Zi fi(t), t ∈ T , where Zi are

i.i.d. standard Gaussians. Observe that to even define K(t, t), the condition on square

summability of ( fi(t))i≥1 is necessary, and then, K(t,s) is well-defined as it is the inner

product in `2 of the sequences ( fi(t))i≥1 and ( fi(s))i≥1.

Indeed, for each t ∈ T , by Khinchine’s theorem, the series defining X(t) converges al-

most surely. As a limit of finite linear combinations of Gaussians, it is Gaussian, and

E[X(t)X(s)] = ∑i, j fi(t) f j(s)E[ZiZ j] = ∑i fi(t) fi(s).

With some caveats, all positive semi-definite kernels are of the above form. For now we

do not need to worry why, we just mention a few special cases of these examples.

1. T = R and fi(t) = t i for i = 0,1, . . . ,n. Then X(t) = Z0 +Z1t + . . .+Zntn is a random

polynomial. We may also take T = C, but then fi are not real-valued, hence we

should say that (ReX(z), ImX(z))z∈C is a Gaussian process.

2. Let fi(t) = cit i, i ≥ 0. Then X(t) = ∑i≥0 Zicit i and K(t,s) = ∑i≥0 c2
i (ts)

i. The domain T

depends on cis. For example if ci = 1 for all i, then ∑i fi(t)2 converges for t ∈ (−1,1),

hence X is a Gaussian process on T = (−1,1) having covariance kernel 1
1−ts . If ci =

1/
√

i!, then T = R and K(t,s) = ets. If ci = i! is fast growing, then T = {0}, as the

square summability condition fails for all t 6= 0.

Similarly, one can form random trigonometric polynomials a0Z0 +∑
n
k=1(akZk cos(2πkt) +

bkZ′k sin(2πkt)), where ai,bi are fixed real numbers. Let us see an example that is not

obviously in this form.

Example 3. Let T = [0,∞) and K(t,s) = t ∧ s. To see that it is p.s.d., we may observe that

K(t,s) = 〈1[0,t],1[0,s]〉, showing that K is a Gram matrix (or to be pedantic, (K(ti, t j))i, j≤n

is a Gram matrix for any n ≥ 1 and ti ∈ T ). Thus there exists a Gaussian process with

this covariance. However, that is a random variable taking values in RT with its cylinder

sigma-algebra. It can be proved that there is a Gaussian process with the same mean

and covariance and for which the sample paths are C(T )-valued. That is what is called

Brownian motion.

As in this example, existence of a version of the Gaussian process with continuous

sample paths is a fundamental question that we shall discuss in some detail later.

Our next class of examples is a natural progression from summation to integration.
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Exercise 4. Let Θ be some index set carrying a sigma algebra and a measure ρ. Let

f : Θ×T 7→R be a function that is measurable and square integrable in the first co-ordinate

for each fixed t ∈ T . Define K : T ×T 7→ R by K(t,s) =
∫

Θ
f (θ, t) f (θ,s)dρ(θ). Show that a

Gaussian process with this covariance exists. Show that the same holds if f is complex-

valued, provided K(t,s) :=
∫

Θ
f (θ, t) f (θ,s)dρ(θ) is real-valued.

Unlike in the case of finite sums, it is not clear how to write this process in terms of

independent Gaussians.

Example 5. Let T = [0,1]2 and let K((t1, t2),(s1,s2)) = (t1∧s1)+(t2∧s2). The corresponding

Gaussian process can again be realized as a random continuous function and will thereafter

be called Brownian sheet.

2.2 Stationary Gaussian processes

If T has a group structure, or more generally if there is an action by a group G on T , then

we can consider Gaussian processes that respect the symmetry of this action. What that

means is that the Gaussian process X = (Xt)t∈T should have the same distribution as the

shifted-process Xg = (Xg.t)t∈T , for any g ∈ G. Such a process is called G-stationary. When

T = G, the action is understood to be multiplication from the left.

Since the distribution of a Gaussian process is determined by the mean function m

and covariance kernel K, the G-stationarity condition is equivalent to the conditions:

(1) m(g.t) = m(t) for all g ∈ G, t ∈ T , and (2) K(g.t,g.s) = K(t,s) for all t,s ∈ T and g ∈ G.

It suffices for this course to consider only three cases, when T is Zn (finite cyclic group)

or Z (integers) or R (real line), and the natural extensions to higher dimensions. The case

of Zn serves as a motivating example. For some comments on general groups, go to the

end of this section.

Finite cyclic group: Let X be a centered stationary process on Zn = {0,1, . . . ,n− 1} with

addition modulo n. The covariance must satisfy E[X jXk] = K( j− k), where j− k is modulo

n, of course. Clearly K( j) = K(n− j), hence K is an even function. The full covariance
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matrix can be written as

K=



K(0) K(1) . . . K(n−1)

K(n−1) K(0) . . . K(n−2)
...

...
...

...

K(2) . . . K(0) K(1)

K(1) . . . K(n−1) K(0)


= K(0)+K(1)C+K(2)C2 + . . .+K(n−1)Cn−1

where the unitary matrix C = (ci, j)0≤i, j≤n−1 has ci, j = 1 if j− i = 1 and ci, j = 0 otherwise.

That is

C =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 . . . . . . 0 1

1 . . . . . . 0 0


.

It is easy to see that the eigenvalues of C are the nth roots of unity, and the eigenvector

corresponding to eiθk where θk =
2πk

n is vk = (1,eiθk ,e2iθk , . . . ,ei(n−1)θk)t , all for 0≤ k ≤ n−1.

Since any stationary covariance matrix K is a polynomial in C, it has the same eigenvec-

tors, and the eigenvalue corresponding to vθk is µk :=K(0)+K(1)eiθk + . . .+K(n−1)ei(n−1)θk .

As K is positive semi-definite, pk ≥ 0. Thus from the spectral decomposition,

K= µ0v0v∗0 +µ1v1v∗1 + . . .+µn−1vn−1v∗n−1

we see that

K(m) = µ0 +µ1e
2πim

n +µ2e2 2πim
n + . . .+µn−1e(n−1) 2πim

n .

Whenever µ = (µ0, . . . ,µn−1)
t is a vector, which we think of as a function on the group

Ẑn := {e2πikn : 0≤ k≤ n−1}, the right hand side of the above expression defines a function

on Zn that is called the discrete Fourier transform of µ. In our case, µk ≥ 0, hence we may

think of µ as a measure on Ẑn. In fact, it is easy to see the symmetry µk = µn−k. In summary

we have the following theorem.

Theorem 6. Let K : Zn 7→ R be an even function. The following are equivalent.

1. The matrix (K( j− k))0≤ j,k≤n−1 is positive semi-definite (i.e., a covariance matrix).

2. K is the discrete Fourier transform of a symmetric measure on Ẑn.
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Exercise 7. Work out the analogue of Theorem 6 for T = Zd
n.

The group of integers: Consider the case when T = Zd, d ≥ 1. Without any attempt at

precision, we may think of Z as a limiting case of Zn (better to write Zn = {−m,−m+

1, . . . ,m− 1,m} when n = 2m+ 1 to make this intuitively clear), and Ẑn, which consists of

the n-th roots of unity fills up the whose circle S1. This makes the following statement

believable.

Theorem 8. Let K : Zd 7→ R be an even function. The following are equivalent.

1. (K( j− k)) j,k∈Z is positive semi-definite.

2. K is the Fourier transform of a finite symmetric measure µ on Td := [−π,π]d, i.e.,
µ(−A) = µ(A) and K(m) =

∫
Td ei〈m,θ〉dµ(θ) for all m ∈ Zd.

The group of real numbers: Now suppose T = Rd. The analogous theorem, due to

Bochner is the following.

Theorem 9 (Bochner’s theorem). Let K : Rd 7→ R be an even function. The following are
equivalent.

1. K is continuous and (K(t− s))t,s∈Rd is positive semi-definite.

2. K is the Fourier transform of a finite symmetric measure on R.

Example 10. Let W be standard Brownian motion and let X(t) = e−t/2W (et) for−∞< t <∞.

Clearly X is a Gaussian process with zero mean and covariance E[X(t)X(s)] = e−
1
2 |t−s|.

Therefore, if Y = θτX , then Y is also a centered Gaussian process with covariance E[X(t−
τ)X(s−τ)] = e−

1
2 |t−s|. Two Gaussian processes with the same mean function and covariance

kernel are equal. Hence X is stationary. It is known as the Ornstein-Uhlenbeck process.

The dual and the isomorphism: For T = Z,R, let T̂ = S1,R, respectively. For a stationary

Gaussian process X on T , the covariance kernel (when continuous) is seen to be of the

form K(t,s) = µ̂(t− s), for some finite symmetric measure on T̂ . The measure µ is called

the spectral measure of X . Except for the mean (which is a constant), the spectral measure

determines the distribution of the Gaussian process. Further, there can only be one spectral
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measure for a given stationary process. Thus, centered stationary Gaussian processes and

spectral measures are in on-one correspondence with each other.

Here is another view of this correspondence. For t ∈ T , define et : T̂ 7→ C by et(x) = eitx.

Then the mapping et 7→ Xt from L2(T̂ ,BT̂ ,µ) to L2(Ω,F ,P) is an isometry. As such, linear

questions about the process can be transferred to questions about the Hilbert space L2(µ).

A prime example of such a question is one of prediction: Suppose we want to predict

X(0) based on the past {X(t) : t ≤−T} for some T > 0. The best predictor is the conditional

expectation, which is the linear projection in L2(Ω,F ,P) of X0 onto span{Xt : t ≤−T}. By

the isomorphism, this is equivalent to projecting e0 = 1 onto span{et : t ≤−T} in L2(µ).

Proof of the easy side of Bochner’s theorem. Let µ be a finite, symmetric measure on T̂ . Then

we are in the setting of Exercise 4, with Θ = T̂ and ρ = µ and f (λ, t) = eiλt , since µ̂(t− s) =∫
T̂ eiλ(t−s)dµ(λ) =

∫
T̂ f (λ, t) f (λ,s)dµ(λ). �

The proof of the converse is not trivial. But it is of the same kind as one sees in Riesz’s

representation theorem or the moment problem. In all these cases, a linear functional is

given on a vector space of functions such as C(T ) or polynomials or linear combinations

of complex exponentials. If the space is sufficiently large and all non-negative functions in

this class take non-negative values under the linear functional, then the linear functional

is an integral with respect to some (positive) measure. We skip the details and refer the

reader to ?.

Interpreting the spectral measure: How to think of the Gaussian process itself? Let

X = (Xt)t∈R be a Gaussian process with an atomic spectral measure µ = p1δλ1 + . . .+ pnδλn

(to be symmetric, each λi and its negative occur with the same weight). This means that

E[X(t)X(0)] = ∑
n
j=1 p jeiλ jt . If we define X(t) =

√
p1 Z1eiλ1t + . . .+

√
pn Zneiλnt , with i.i.d.

standard Gaussians Zis, then it is clear that E[X(t)X(0)] = p1eiλ1t + . . .+ pneiλnt = µ̂(λ). Thus

X is the Gaussian process with spectral measure µ.

This gives an idea of how the spectral measure defines the process. Basically X is a

linear combination of complex exponentials eλ(t) := eiλt , where λ is in the support of µ, and

the coefficients of these exponentials are independent Gaussians with variances depending

on how much mass µ puts at λ. This intuitive understanding is useful. For example, the

tail of the spectral measure dictates the smoothness of the process and the smoothness of

the spectral measure dictates the decay of correlation between the process values at far off
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time points. To see this, we recall the following facts from basic Fourier analysis1

1. If
∫
|x|kdµ(x)< ∞ for k ≤ p, then µ̂ ∈C(p) and µ̂(p)(t) =

∫
R(ix)

peitxdµ(x).

2. If µ has density f with respect to Lebesgue measure and f ∈C(p), then µ̂(t) = o(|t|−k)

as t→±∞.

At least the first one is seen in the discrete example above - if λks are large, then X

has high frequency component eiλ jt and that means fast oscillations or less smoothness.

For example, the Cauchy distribution is heavy tailed and that is why the O-U process has

non-smooth paths.

Now it is clear how to generate many examples of stationary processes - just start with

any symmetric measure and find its Fourier series/transform. Here is an example where

we start with the process and find the spectral measure.

Example 11. The Ornstein-Uhlenbeck process has covatiance K(t−s) where K(u) = e−
1
2 |u|.

It is known that this is the Fourier transform of
1
2

π( 1
4+x2)

dx, which is a scaling of the standard

symmetric Cauchy measure. This is the spectral measure of the OU-process.

There is no magic to find the spectral measure. It need not be easy in general, but is

sometimes.

I In the discrete setting, X = (X(n))n∈Z, we can try to write the density of the spectral

measure as f (λ) = ∑n∈ZK(n)einλ. If ∑n |K(n)| < ∞, this series converges absolutely and

uniformly on [−π,π]. Therefore, f is a continuous function and 1
2π

∫
S1 e−i`λ f (λ)dλ = K(`).

In other words, 1
2π

f (λ)dλ is the spectral measure.

I In the continuous setting too, if K ∈ L1(R), then by the Fourier inversion formula the

spectral measure has density f (λ) = 1
2π

∫
RK(t)e−iλtdt. In the example of the O-U process,

this is the easiest way to guess the spectral measure.

Example 12. Let Zn be i.i.d. standard Gaussians and let Xn = Zn−Zn−1. Both Z = (Zn) and

X = (Xn) are stationary Gaussian processes. Their covariances are

KZ(n,m) = δn,m KX(n,m) = 2δn,m−δn,m+1−δn,m−1.

From this and the above recipes to construct the spectral density, we see that the spectral

densities are fZ(λ) =
1

2π
(uniform on [−π,π]) and fX(λ) = 2−2cosλ.

1The second volume of Feller’s famous books on probability has an excellent chapter on characteristic

functions. Proofs can be found there.
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Exercise 13. Let X = (Xn)n∈Z be a stationary Gaussian sequence with spectral measure µ.

Let Y be the result of passing it through a linear filter, i.e., Yn = a0Xn+a1Xn−1+ . . .+amXn−m,

where m≥ 0 and a0, . . . ,am ∈ R are fixed. Find the spectral measure of Y .

Here is an example in two dimensions.

Example 14. Let T =R2 and let µ be the uniform measure on the unit circle {x2 +y2 = 1}.
Its Fourier transform

J0(λ) :=
∫ 2π

0
ei(λ1 cos t+λ2 sin t) dt

2π

is known as the Bessel function of the first kind of order zero. The centered Gaussian

process with this covariance is known as the random plane wave. In the interpretation

given above, it is a random superposition of waves of unit frequencies, equally in all direc-

tions. Its importance lies in the fact that high energy eigenfunctions of the Laplacian on

Riemannian manifolds look like this random function, conjecturally (Berry’s random wave
conjecture).

Exercise 15. Let X be a stationary Gaussian process on R with an absolutely continuous

spectral measure dµ(x) = h(x)dx (then h is called the spectral density of the process). Find

the spectral measures of the following processes:

1. Yt = Xαt where α > 0.

2. Ym = Xδm for m ∈ Z, where δ > 0.

3. Ym = (−1)mXδm for m ∈ Z, where δ > 0.

Exercise 16. Let pn(t) = Z0 + Z1t + . . .+ Zntn be the Kac polynomial, where Zk are i.i.d.

standard Gaussians. Consider the rescaled process around 1, namely qn(t) = pn(1+ t
n),

−∞ < t < ∞. Show that qn converges to a stationary Gaussian process as n→ ∞ (in the

sense of convergence of finite dimensional distributions) and find the limiting process and

its spectral measure.

On general groups

Let G be an Abelian topological group that is locally compact. Then there is a unique

Haar measure µ (meaning µ(g.A) = µ(A.g) = µ(A) for all Borel sets A and all g ∈ G). Now

consider the regular action of G on L2(G,µ) defined by τg f (h) = f (g+h), for g,h ∈G. Each
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τg is a unitary transformation on L2(G). Further, τg and τh commute for any g,h ∈ G.

Consequently, they have a simultaneous spectral decomposition.

For simplicity, assume that G is finite with n = |G|, and then µ is the counting measure

on G. Then there is an orthogonal basis of common eigenfunctions χ1, . . . ,χn. That is,

τgχk = λk(g)χk for all g ∈ G and 1 ≤ k ≤ n. To understand what the eigenfunctions and

eigenvalues are, consider one of these and write it as τgχ = λ(g)χ.

Then χ(g+ h) = λ(g)χ(h) for all g,h. This shows that χ cannot vanish, and we may

normalize it so that χ(0) = 1, where 0 is the identity of G. Then we see that λ(g) = χ(g)

(set h = 0) and consequently, χ(g+ h) = χ(g)χ(h). Thus, χ is a homomorphism from G

to the multiplicative group C \ {0}. It is easy to see that it must map into S1. Thus, the

common eigenfunctions are just homomorphisms from G to S1. to complete or delete

2.3 Gaussian free field and related processes

Let G = (V,E) be a finite connected graph. What we wish to find are jointly Gaussian

random variables Xv, v ∈ V , having joint density proportional to exp{−1
2Q(x)}, where

Q(x) = ∑u∼v(xu− xv)
2. But this is not integrable, since Q is not strictly positive definite,

as Q(1) = 0. Alternately, consider the simplest case of a graph with a single edge, in which

case we have e−
1
2 (x1−x2)

2
, whose integral over R2 is infinite.

To overcome this problem, one must impose a constraint to a lower dimensional space

of RV . Indeed, Q(x) = 0 if and only if xu = xv for all u ∼ v, which happens if and only if x
is constant (because G is connected). Hence, if we restrict to any subspace W ⊆ RV that

contains no constant functions (we refer to vectors in RV as functions on V ) other than the

zero function, then Q is strictly positive definite on W , and then the Gaussian distribution

with density exp{−1
2Q(x)} on this subspace does exist. Two examples:

1. Fix a non-empty subset B ⊆ V and set W = {x ∈ RV : xv = 0 for v ∈ B}. The corre-

sponding Gaussian field is called the GFF with Dirichlet boundary condition on B.

2. Let W := 1⊥ = {x ∈ RV : ∑v xv = 0}. The corresponding GFF is called the GFF with

zero average.

Note that we have not specified the covariance of the GFF directly. To find that, it is

necessary to write Q(x) = xtΣ−1x for x ∈W . For this purpose, define the Laplacian matrix
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L of the graph, which is the V ×V matrix such that

L(u,v) =


du if u = v,

−1 if u∼ v

0 otherwise

where dv is the degree of v. Then, it is easy to check that 〈Lx,x〉 = Q(x). Since L1 = 0,

it has no inverse. But on W it has an inverse, and that is the covariance of the GFF. We

shall analyse it in more detail in greater generality soon, but here is the summary: The

covariance of Xu and Xv is G(u,v) where G(u,v) is the expected number of visits to v by a

simple random walk on G started at u and killed when it hits the set B.

On trees it is easy to understand the GFF by hand. Here is the simplest example of the

line graph.

Example 17. Let G be the subgraph of Z induced by the vertices V = {0,1, . . . ,n}. Then

Q(x) = ∑
n
j=1(x j− x j−1)

2. Two cases of the GFF with Dirichlet boundary condition.

1. B = {0}. (X1, . . . ,Xn) have density proportional to exp{−1
2 ∑

n
j=1(X j−X j−1)

2}. Hence

we may represent them as X j = Z1 + . . .+Z j where Z j are i.i.d. N(0,1). Thus X is jsut

random walk with N(0,1) steps and E[X jXk] = j∧ k.

2. B= {0,n}. The way to construct this is X j = Z1+ . . .+Z j− j
n(Z1+ . . .+Zn) where Zi are

i.i.d. N(0,1). The covariance is E[X jXk] = j(n−k)/n. This is random walk bridge with

Gaussian steps. One can also describe is the the Gaussian random walk conditioned

to be at 0 at time n.

Exercise 18. Let T be a finite rooted tree and let B = {root} be a singleton. In this case,

describe the GFF on T (if the question sounds vague, assume that you have a supply of

i.i.d. N(0,1) random variables and use them to construct the GFF on T ). Either from your

construction or by finding the Green’s function, give an expression for E[XuXv] for two

distinct vertices u,v.

Extension to general reversible Markov chains: Let P be a transition matrix for a Markov

chain on a finite state space V . We shall assume that the chain is reversible with respect

to some π : V 7→ (0,∞), hence this chain can be thought of as random walk on the graph
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G = (V,E,(ce)e∈E), where the edges are {u,v} with Pu,v > 0 and the conductances are Cu,v =

π(u)Pu,v. The assumption of reversibility ensures that the graph is undirected so are the

conductances. The random walk transitions are Pu,v = Cu,v/∑w∈V Cu,w and the reversible

measure is π(u) = ∑w∼uCu,w.

For simplicity, we work with the case π(u) = 1, so Pu,v = Pv,u. The general case will be

left as exercise. Then the matrix P is symmetric and has a spectral decomposition. All its

eigenvalues are in [−1,1]. One of the eigenvalues is 1. Hence for 0 < θ < 1, the matrix

(I− θP)−1 is positive definite. Let us assume that P is aperiodic, so that by the Perron-

Frobenius theorem, all other eigenvalues are in (−1,1) and we can write the power series

expansion

(I−θP)−1 = I +θP+θ
2P2 +θ

3P3 + . . .

We would like to set θ = 1, but the series on the right does not converge and the inverse on

the left does not exist. By fixing a non-empty set B⊆V and imposing Dirichlet conditions

there, we are changing the Markov chain so that the states in B become absorbing states,

and the transition probabilities from vertices outside B remain unchanged. Then the chain

is transient and the above series converges. The centered Gaussian process indexed by V

and having covariance (I−P)−1 is the generalized notion of GFF.

Agreement with the original definition: If all the conductances are 1, the chain becomes

SRW on G. Further, if π has to be uniform, then the degrees must agree (recall that

π(u) = ∑w∼uCu,w), let us say d is the common degree. Then I−P = 1
d L, where L is the

Laplacian matrix of G, defined by L(i, i) = deg(i) and L(i, j) = −1 for i ∼ j (other entries

are zero). Thus, up to a scaling by
√

d, this agrees with the earlier definition of a Gaussian

free field on an unweighted graph.

Green’s function: For a transient Markov chain (ona. countable state space), we define

its Green’s function

G(u,v) =
∞

∑
t=0

Pt(u,v) = Eu

[
∞

∑
t=0

1Xt=v

]
,

the expected number of visits to v by a chain that started at u. This is the covariance kernel

of the Gaussian free field for a transient chain, and what we did above in case of random

walk on a finite graph (which is certainly recurrent) is to convert it to a transient chain

by introducing one or more absorbing states and then taking the Green’s function of the

resulting transient chain as the covariance function of our Gaussian process.

38



Continuum GFF: In the continuum setting, there is a well-known definition of Green’s

function, which happens to be G(x,y) = c2 log |x− y|−2 in R2 and G(x,y) = cd|x− y|−d+2

in Rd for d ≥ 3. If Ω is a reasonable subset of Rd (e.g., bounded open set with smooth

boundary), then there is a notion of Green’s function GΩ (it corresponds to the Laplacian

with Dirichlet boundary condition or equivalently to Brownian motion that is killed at the

boundary of Ω), but that also has singularity (of the kind log(1/|x− y|) in 2-dimensions

and 1/|x− y|d−2 in higher dimensions) and hence there is no Gaussian process whose

covariance function is G(x,y) (the variance would have to be infinite!). But nevertheless, it

is an object one can make sense of in various limiting senses or as a random distribution.

Working in the discrete setting avoids these technicalities, but also loses out on some of

the symmetries such as scaling (there are richer symmetries such as conformal invariance

in 2-dimensions). However, features of the continuum GFF can often be seen in some

asymptotic sense in the discrete GFF.

2.3.1 Continuum GFF

Suppose X is a centered Gaussian process on an open set U ⊆R2 with covariance kernel K.

Assume that it so happens that t 7→ Xt(ω) is almost surely continuous. Then we can create

new fields on more exotic index sets as follows.

• For f ∈Cc(U), define Y ( f ) :=
∫

U f (t)X(t)dt. This is a Gaussian process on Cc(U) with

covariance K( f ,g) =
∫

U×U f (t)g(s)K(t,s)dtds.

• For any curve γ : [0,1] 7→ U , define Z(γ) =
∫

γ
Xdγ :=

∫ 1
0 X(γ(u))γ′(u)du. Then Z is a

Gaussian field on the space of all curves in U with covariance

K(γ,η) =
∫ 1

0

∫ 1

0
K(γ(u),η(v))γ′(u)η′(v) du dv.

• Let M be the space of finite Borel measures on U and define W (µ) =
∫

U X(t)dµ(t).

This is a Gaussian field on M with covariance kernel

K(µ,ν) =
∫

U

∫
U

K(t,s)dµ(t)dν(s).

In some sense, the original field can be got from Y by taking a sequence fn ∈ Cc(U) that

approaches δt . For example, if ϕ ∈Cc(R2) whose integral is 1, we can set fn(t) = 1
ε2 ϕ((t0 +
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t)/ε) (for small enough ε) and it is easy to see that Y ( fn)→ X(t0) as n→ ∞. Similarly one

can recover X from Z (take curves that stay close to t0) or from W (let µn→ δt0).

The continuum GFF is a peculiar case where we have the approximating fields Y,Z,W ,

but the original field X does not exist! We imagine it as existing as a limit of the others.

GFF on a bounded domain having Green’s function: Let U be a bounded domain

that has a Green’s function GU . By definition, the (Dirichlet) Green’s function is the

unique function on U ×U 7→ such that (1) GU(·,y) is harmonic on U \ {y} for any y ∈U ,

(2) GU(x,y)→ 0 as x→ ∂U , (3) GU(x,y) =− log |x− y|+O(1) as x→ y.

The existence of a Green’s function requires mild regularity on the domain U . A

sufficient condition is that for every boundary point, there is a continuous curve whose

image intersects U in that boundary point alone. But for our purposes one may just

stick to the unit disk D, in which case the Green’s function has the explicit formula

GD(z,w) = log |z−w|
|1−wz| . As in this example, in general, the Green’s function is symmetric

in the co-ordinates. Further, the harmonicity and behaviour near y may be summarised as

saying ∆GU(·,y) =−2πδy(·) in the weak sense that∫
U

∆ϕ(x) G(x,y) dx =−2πϕ(y), for any ϕ ∈C2
c (U).

Informally, Green’s function is the inverse of the Laplacian (with Dirichlet boundary con-

ditions).

With this preparation, the GFF on U is supposed to be the Gaussian process on U with

covariance kernel GU . For this to make sense, GU must be positive semi-definite. We see

that this poses some problems.

It is a non-trivial fact that the −∆ has a discrete spectrum 0 < λ1 ≤ λ2 ≤ . . . and the

corresponding eigenfunctions {ϕn} (properly chosen) form an orthonormal basis for L2(U).

Thus, −∆ϕn = λnϕn. Then, the Green’s function has the representation

GU(x,y) =
∞

∑
n=1

ϕn(x)ϕn(y)
λn

.

This shows that GU is formally positive semi-definite. The fact is, GU(x,x) = ∞ (recall the

singularity at y = x), hence this is only formally true. Hence we must take an indirect

route2.
2This is taken from the beautiful notes Introduction to the Gaussian Free Field and Liouville Quantum

Gravity of Nathanaël Berestycki.
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Let M+ be the set of all compactly supported positive Borel measures on U such that∫ ∫
GU(x,y)dµ(x)dµ(y)<∞. Then let M = {µ+−µ− : µ± ∈M+} be the set of signed measures

having a similar property. Observe that if a measure has atoms, it is not in M whereas if

it has continuous density, then it is definitely in M (continuity is more than enough to

integrate out the logarithmic singularity). Uniform measures on open subsets and even

length measures on smooth curves are in M+.

Define (why is it finite?)

K(µ,ν) =
∫ ∫

GU(x,y)dµ(x)dν(y).

By the formal expansion of GU , it follows that (need justification)

K(µ,ν) = ∑
n≥1

1
λn

Ln(µ)Ln(ν), Ln(µ) :=
∫

ϕndµ,

from which the positive semi-definiteness of K is clear.

Definition 19. The Gaussian free field on U is defined to be the centered Gaussian process

on M with covariance kernel K.

Of course, is a Gaussian process X on U with covariance GU were to exist, then we

would have got the above process by integrating: Y (µ) =
∫

U X(z)dµ(z). The whole point is

that X does not exist but Y does. By considering Y (µn) where µn→ δz, we imagine that we

are probing X .

Exercise 20. Consider GFF F on a domain U ⊆ R2. Suppose D(x,R) ⊆U . Let µx,t denote

the uniform probability measure on D(x,e−t). Define X(t) = F(µx,t) for t ≥− logR. Find the

covariance of the process X .

2.4 Processes on a tree and on its boundary

Let T be a rooted tree in which all vertices having finite degrees. Let V denote its vertex

set, and let 0 denote the root. We write |u| for the distance of u from the root. Let

Tn = {v ∈ V : |v| = n} denote the n-th generation of vertices. We write u v to mean that

v is a child of u (i.e., v is adjacent to u and |v| = |u|+ 1) or that u is the parent of v. We

write u 7→ v to mean that v is a descendent of u or that u is an ancestor of v. This means

that the path from the root to v passes through u. For two vertices u,v, the vertex u∧ v is
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the farthest vertex from the root that is a common ancestor of both u and v. It is called the

last common ancestor of u and v.

Let w : V 7→ R+ be given. Let Zv, v ∈V , be i.i.d. N(0,1) random variables. Define

Xv = ∑
u7→v

w(u)Zu.

Then, X is a centered Gaussian process on V with covariance E[XuXv] := ∑y7→u∧v w2
y . There

are different choices of trees and weights for which this process is interesting. A common

sort of interest is in defining X (n) as the restriction of X to Tn and studying its asymptotics

as n→ ∞. For example, when T is the regular 4-ary tree (where every vertex including

the root has exactly four children) and wv = 1 for all v, then the processes X (n) may be

considered a crude version of the Gaussian free field on the unit square in the plane. This

we explain in one dimension first.

Example 21. Let T be a regular binary tree (all vertices have two children) and let wv = 1

for all v. Consider the process X (n) = (Xv)|v|=n on the n-th generation vertices. Then,

E[XuXv] = |u∧ v|.
One may code the vertices of T by binary strings, starting with the root vertex (0), its

children (00) and (01), the children of (00) are (000) and (001), and so on, with the n-th

generation vertices coded by binary strings of length n. These binary strings may in turn

by identified with dyadic rational numbers in [0,1]. For example, (01011) corresponds to
1
2 +

1
8 +

1
16 . Define the distance dλ on Tn by dλ(u,v) = λ

− 1
2 |u∧v|.

With these notations, we see that E[XuXv] =
2

logλ
log 1

dλ(u,v)
. Although the distance dλ

on dyadic rationals is not quite the same as the Euclidean distance, it may be considered

a reasonable substitute and then X may be considered a substitute or a toy version of

a logarithmically correlated field. Then one may study the processes X (n) as n→ ∞. For

example, one can look at3 Mn = maxv∈Tn Xv.

Similarly, if T is a 4-ary tree, then using the dyadic decomposition of the unit square

into sub-squares, one can see that X (n) are logarithmically correlated. Since the Gaussian

free field on the unit square has (in a formal sense) covariance kernel G(x,y), and the

Green’s function G(x,y) ∼ c log(1/|x− y|), the processes X (n) may be thought of as crude

approximants to the GFF on the unit square.

3See for example, the lecture notes of Ofer Zeitouni on Gaussian processes where this is studied at length

(“branching random walk”).
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Processes on the boundary of the tree: To the tree T , one can associate its boundary

∂T , which is a metric space whose elements are infinite simple paths from the root:

∂T := {ξ = (0 = u0,u1,u2, . . .) : uk uk+1 for k ≥ 0}.

To define a metric on T , fix λ > 1 and define dλ(ξ,η) = λ
− 1

2 |ξ∧η|, where ξ∧η is the largest

n for which the first n co-ordinates of ξ and η agree (we call it the last common ancestor

of ξ and η).

Exercise 22. Check that dλ is a metric and that ∂T is compact under this metric space. [In

fact, dλ is an ultrametric, i.e., dλ(ξ,η)≤ dλ(ξ,ζ)∨dλ(ζ,η) for all ξ,η,ζ ∈ ∂T .]

Let wv =wn for all v with |v|= n. If ∑v w2
v <∞, then we can define the Gaussian process X

on ∂T by Xξ = ∑k≥0 wkZvk if ξ = (v0,v1, . . .). Here Zv, v ∈V , are i.i.d. N(0,1) variables. Then

X is a Gaussian process on ∂T with covariance kernel K(ξ,η) = ∑k≤|ξ∧η|w2
k . Alternately, we

may write E[|Xξ−Xη|2] = 2∑k>|ξ∧η|w2
k .

For the particular choice of weights wk = λ−k/2, we see that E[|Xξ−Xη|2] = 2λ

λ−1λ
− 1

2 |ξ∧η|,

which is the same as dλ up to a constant factor. That is, dλ is essentially the pull back of

the L2(P) metric under the map ξ 7→ Xξ from ∂T to L2(P). This pull-back metric will play

much role in the study of the Gaussian process later.
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Chapter 3

Gaussian isoperimetric inequality and

concentration

Always γm denotes the standard Gaussian measure on Rm, or on any vector space with a

given inner product (for example, if W is a k-dimensional subspace of Rm, we use γk for the

Gaussian measure on W with the inherited inner product). For any set A ⊆ Rd and ε > 0,

let Aε = {y ∈ Rd : |y− x| ≤ ε for some x ∈ A}.

Theorem 1 (Borell, Tsirelson-Ibragimov-Sudakov (1970s)). Let A be any Borel subset of Rm

with γm(A) > 0 and let H be a half-space in Rm with γm(H) = γm(A). Then γm(Aε) ≥ γm(Hε)

for all ε > 0. If A is a closed set with γm(A)> 0, then equality holds for some ε > 0 if and only
if A is a half-space.

We present two proof of this theorem. The first one, which is the original proof of

Borrell and of Sudakov–Tsirelson, uses isoperimetric inequality on spheres and the fact that

Gaussian measure arises as the limit of uniform measures on high dimensional spheres.

The second one, due to Ehrardt, is a self-contained proof using the idea of symmetrization

which is also one approach to proving isoperimetric inequality on spheres and in Euclidean

space1.

1Our proof is cobbled together from the paper of Ehrhard, Symétrisation de l’espace de Gauss and the

appendix to the paper of Figiel, Lindenstrauss and Milman, The dimension of almost spherical sections of
convex bodies. The symmetrization idea is from Ehrhard. But the rest of the details needed to complete

the proof seems most cleanly presented in the paper of Figiel, Lindenstrass and Milman, albeit for the

isoperimetric inequality on the sphere. These details appear to go through for the Gaussian case with minimal

modification. If there are gaps or mistakes, please let me know.
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First, the one-dimensional case as an exercise. We give a solution later, since the sym-

metrization proof of Theorem 1 works by induction on m.

Exercise 2. For any closed set A⊆R and any ε > 0, we have Φ−1(γ1(Aε))≥Φ−1(γ1(A))+ε.

[Hint: Try proving it for one interval and then a finite union of intervals. From there to

closed sets may be omitted.]

3.1 Proof of GIE via isoperimetric inequality on spheres

Let σn−1 denote the uniform probability measure on Sn−1. Endow it with the spherical met-

ric d and let Aε := {y ∈ Sn−1 : d(y,A)≤ ε} denote the ε-enlargement of A. The isoperimetric

inequality on the sphere says the following.

Lemma 3. Let A∈B(Sn−1) and let B= {x∈ Sn−1 : x1 > t} (for some t ∈ (−1,1)) be a spherical

cap such that σn−1(A) = σn−1(B). Then, σn−1(Aε)≥ σn−1(Bε) for any ε > 0.

Let Πn,d : Sn−1 7→Rd be defined by Πn,d(x) =
√

n(x1, . . . ,xd). Let µn,d = σn−1 ◦Π
−1
n,d denote

the push-forward probability measure on Rd. We showed earlier that µn,d
d→ γd. This means

that µn,d(A)→ γd(A) for A⊆ Rd with γd(∂A) = 0. A stronger statement is true.

Exercise 4. For any A⊆ Rd measurable, µn,d(A)→ γd(A).

Proof of the GIE

Fix A ∈ BRd (or even measurable?) with Φ(α) = γd(A) ∈ (0,1). Fix any β < α and let

B = {x ∈ Rd : x1 ≤ β}. Then B is a a half-space with probability Φ(β) under γd and Bε =

{x : x1 ≤ β+ ε} has probability Φ(β+ ε) under γd.

For n≥ d, let An,Bn,An,ε,Bn,ε denote the inverse images under Πn,d of A,B,Aε,Bε respec-

tively. These are subsets of Sn−1 and Bn,Bn,ε are spherical caps. Further, σn−1 measure of

these sets converge to γd measure of the corresponding sets in Rd (i.e., σn−1(An)→ γd(A)

etc.). One last observation is that An,ε contains (An)
ε/
√

n (this last is an enlargement in Sn−1

with respect to the spherical metric in which u,v ∈ Sn−1 have distance cos−1(〈u,v〉)).

Since β < α, for large enough n, we have σn−1(An) > σn−1(Bn). By the isoperimetric

inequality and the observation above, we see that σn−1(An,ε) ≥ σn−1((Bn)
ε/
√

n). However,

it is easy to see that σn−1((Bn)
ε/
√

n)→ γd(Bε) (direct calculation). Putting all this together,

we see that liminfσn−1(An)≥ γd(Bε) and hence γd(Aε)≥ γd(Bε). As this is true for all β < α,
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letting β ↑ α, we see that γd(Aε)≥ γd(Hε) where H = {x ∈ Rd : x1 ≤ α}. This completes the

proof.

3.2 Proof of GIE by symmetrization

Notation: For a unit vector u ∈ Rm and t ∈ R, define the closed half-space Hu(t) :=

{x : 〈x,u〉 ≤ t}. For a closed subset A⊆ Rm, define

• M(A) := {B⊆ Rm : B is closed, γm(A) = γm(B),γm(Aε)≥ γm(Bε) for all ε > 0}.

• r(A) := inf{t ∈ R : A⊆ Hu(t) for some unit vector u}.

The set M[A] is the collection of all closed sets that are at least as good as A from the

isoperimetry point of view. The quantity r(A) will be of use in proofs. We now collect some

basic facts about M[A] and r(A).

Lemma 5. Let C be the set of all closed subsets of Rm endowed with the Hausdorff metric d.

1. The function A→ r(A) is continuous.

2. The function A→ γm(A) is upper semicontinuous.

3. If A is a closed subset of Rm with γm(A)> 0, then r(·) attains its minimum on M(A).

The main idea in proving Theorem 1 is a symmetrization procedure due to Antoine

Ehrhard (analogous to Steiner’s symmetrization for the classical isoperimetric inequality

in Euclidean space) that takes a set and produces another that is better in the isoperimetric

sense.

Ehrhard’s symmetrization: Let ` be a one-dimensional affine subspace in Rm and let

u ∈ `⊥ be a unit vector. For any A⊆Rm, define its symmetrization w.r.t. (`,u) as the subset

B = S`,u[A] such that

1. for any t ∈ `, the section B∩ (t + `⊥) is a half-space in t + `⊥ whose boundary is

orthogonal to u,

2. γm−1(B∩ (t + `⊥)) = γm−1(A∩ (t + `⊥)).
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Here is a more explicit description of B. For each t ∈ R, find the unique a = at ∈ R∪{±∞}
such that γm−1(Hu(a)∩ (t + `⊥)) = γm−1(A∩ (t + `⊥)) and set B =

⋃
t∈`(Hu(at)∩ (t + `⊥)).

As S`,u[A] is defined by an uncountable union of sections, it is not obvious that it is

measurable, even for a nice set A. The following lemma shows that any symmetrization

transforms closed sets to closed sets, in particular measurable.

Lemma 6. Let A be a closed set. Then S`,v[A] is also closed.

The following two lemmas show why symmetrization improves a set and that the only

sets that cannot be improved by further symmetrizations are half-spaces. They justify the

use of symmetrization as a tool and their proofs form the heart of the proof of Theorem 1.

Lemma 7. Let A be closed and non-empty in Rm. Then S(`,v)[A]∈M(A) for any symmetrization
(`,v).

Lemma 8. Let A be a non-empty closed subset of Rm. Then there exist a finite sequence of
symmetrizations under which A transforms to a set B with r(B)< r(A).

Now we prove the main theorem assuming all the lemmas stated so far.

Proof of Theorem 1. Let A be any closed set with γm(A)> 0. By the third part of Lemma 5,

there is some B ∈ M[A] with r(B) ≤ r(X) for all X ∈ M[A]. If B is not a half-space, then

by Lemma 8 we could get apply a finite number of symmetrizations to get a set C with

r(C) < r(B). Lemma 7 implies that C ∈ M[B]. But since M[B] ⊆ M[A] this contradicts the

minimality of r(B). Thus, B must be a half-space. This proves the isoperimetric inequality

for closed sets A. Recall that (2) is an equivalent form of the inequality and thus it has

been proved now for closed sets.

If A is any Borel set, by regularity of γm, for any δ > 0 there exists a compact sets K ⊆ A

with γm(K)≥ γm(A)−δ. Then

Φ
−1(γm(Aε))≥Φ

−1(γm(Kε)) (because K ⊆ A)

≥Φ
−1(γm(K))+ ε (by the proved inequality (2) for closed sets)

≥Φ
−1(γm(A)−δ)+ ε. (because Φ

−1 is increasing)

Let δ ↓ 0 to get Φ−1(γm(Aε))≥Φ−1(γm(A))+ ε. �
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3.2.1 Proofs of lemmas used to prove the Gaussian isoperimetric in-

equality

Proof of Lemma 5. 1. Suppose d(A,B) < δ for some A,B ∈ C . If a half-space H contains

A, then Hδ contains B. Therefore r(B)≤ r(A)+δ. Reversing the roles of A and B we

see that A→ r(A) is in fact a Lipschitz function on C .

2. If d(A,B) < δ then Aδ ⊇ B and hence γm(Aδ) ≥ γ(B). Hence, if d(Ak,A)→ 0, then

γm(Aδ) ≥ limsupγm(Ak) as k→ ∞. This holds for any δ and γm(Aδ)→ γm(A) as δ→ 0.

Therefore γm(Aδ)≥ limsupk→∞ γm(Ak) showing that γm is u.s.c. on C .

3. Let r = inf{r(X) : X ∈ A}. Since Φ(r(X)) ≥ γm(A) > 0 for all X ∈M[A], it follows that

r >−∞. If r =+∞, then we may take B = A. Thus we assume that r is finite.

Let Bk ∈M[A] with rk := r(Bk) ↓ r. Then Bk ⊆Huk(rk+1/k) for some unit vectors uk. By

passing to a subsequence we may assume that uk→ u for some unit vector u. Since

γm(Bk) = γm(A) > 0, there is a finite number R0 such that B(0,R0) has a non-empty

intersection with Bk for all k. By Lemma 10, we can pass to a further subsequence

and assume that Bk∩K→ B∩K in Hausdorff metric for every compact set K. Here B

is a closed set.

By the second part, γm(B∩K) ≥ limsupγm(Bk ∩K) ≥ limsupγm(Bk)− γm(Kc). Since

Bk ∈M[A], by taking arbitrarily large K we get γm(B)≥ γm(A).

Now fix K. For any δ > 0 we have B∩K ⊆ (Bk ∩K)δ for large enough k and hence

γm((B∩K)ε)≤ liminfγm((Bk∩K)δ+ε)≤ γm(Aε+δ) since each Bk ∈M[A]. Now let δ ↓ 0 to

get γm((B∩K)ε) ≤ γm(Aε) for all ε > 0. Then let K increase to Rm and conclude that

γm(Bε)≤ γm(Aε). Thus, B ∈M[A].

We claim that B ⊆ Hu(r). For if not, then for some small enough δ > 0 and large

enough compact set K we must have (B∩K)∩ ∂Hu(r+ δ) 6= /0. But for large enough

k we have Bk ∩K ⊆ Hu(r+ δ/3) and B∩K ⊆ (Bk ∩K)δ/3 which implies that B∩K ⊆
Hu(r+2δ/3), a contradiction.

Putting everything together, we have found a set B ∈ M[A] and B ⊆ Hu(r). Thus

r(B) = r and the proof is complete. �

Proof of Lemma 6. Fix ` and v and write points of Rm as (t,x) with t ∈ ` and x ∈ `⊥. For any

set A, let At = A∩ (t + `⊥) for t ∈ `.
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Suppose tk→ t. If (tk,xk)∈ A and (tk,xk)→ (t,x), then (t,x)∈ A as A is closed. Therefore,

At ⊇ limsupAtk , in particular γm−1(At)≥ limsupγm−1(Atk). This implies at ≥ limsupatk .

Now let B := S`,v[A] and suppose that (tk,yk) ∈ B and (tk,yk)→ (t,y). By definition of

symmetrization, 〈yk,v〉 ≤ atk and hence 〈y,v〉 ≤ limsupatk ≤ at which implies that (t,y) ∈ B.

Thus B is closed. �

Proof of Lemma 7. Fix `,v and let B = S(`,v)[A]. We need to prove two things.

(a) γm(B) = γm(A) and (b) γm(Bε)≤ γm(Aε) for each ε > 0.

The first assertion is easy. Use Fubini’s theorem to see that

γm(A) =
∫
R

γm−1[(tu+ `⊥)∩A]dγ1(t) =
∫
R

γm−1[(tu+ `⊥)∩B]dγ1(t) = γm(B).

The proof of (b) is non-trivial and it is the key step in the entire proof of Theorem 1.

By Fubini’s theorem, it suffices to show that γm−1[(Bε)t ] ≤ γm−1[(Aε)t ] for all t ∈ `, where

At := A∩ (t + `⊥) is the t-section of A.

Without loss of generality let `=Re1 and v= e2. For each s∈R, then Bs = {(s,u2, . . . ,un) : u2≤
as} where Φ(as) = γm−1(As). Let π denote the orthogonal projection from Rm onto `⊥ =

span{e2, . . . ,en}.
Fix t ∈ R. Then (t,x) ∈ Bε if and only if there exists s with |s− t| ≤ ε and y ∈ Bs with

|y−x| ≤ δs :=
√

ε2− (s− t)2. This means

π[(Bε)t ] =
⋃

s:|s−t|<ε

(π[Bs])
δs, π[(Aε)t ] =

⋃
s:|s−t|<ε

(π[As])
δs. (1)

In Rn−1, π(Bs) is a half-space with the same γm−1 measure as π(As) (by definition of sym-

metrization). Therefore, inductively assuming the the Gaussian isoperimetric inequality

for lower dimensions (the ground case m= 1 is checked in Exercise 2), we get γm−1[(π[Bs])
δs]≤

γm−1[(π[As])
δs] for each s. Therefore, using the second set-identity in (1) we get γm−1[(π[Bs])

δs]≤
γm−1[π[(Aε)t ] for each s ∈ [t− ε, t + ε].

Now note that (π[Bs])
δs = {(u2, . . .un) : u2 ≤ as + δs} are all half-spaces. For any two of

them, one contains the other. Hence, their union is an increasing union of a countable

number of them. Therefore,

γm−1[π((Bε)t)] = sup
s:|s−t|≤ε

γm−1[(π[Bs])
δs]≤ γm−1[π[(Aε)t ].

Equivalently γm−1[(Bε)t ]≤ γm−1[(Aε)t ]. By Fubini’s theorem, this proves (b). �
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Proof of Lemma 8. Since A is closed, the infimum in the definition of r(A) is a minimum.

Let v be a unit vector such that Hv(r) ⊇ A with r = r(A). Without loss of generality we

assume v = en. Let W = ren + e⊥n , the boundary of the half-space H := Hen(r).

First pick any line `0 inside W and let A′ = S`0,en[A]. Since A is closed and not the whole

half-space, A′ is a closed proper subset of H. Further, if x ∈ A′ and y ∈ H has yi = xi for

i≤ n−1 and yn < xn, then y ∈ A′ too. Therefore, it is clear that there is a point p ∈W and

δ > 0 such that A′∩Qp(2δ) = /0 where Qp(2δ) = p+(−2δ,2δ)n.

Now let `i = p+ren+Rei for i = 1,2, . . . ,n−1. These are lines inside W , passing through

p and parallel to the co-ordinate directions.

Let A′′ = S`1,p1[A
′]. For each t ∈ [−δ,δ] the section (t + `⊥1 )∩A′ is a subset of [(t + `⊥1 )∩

(H \Qp(δ))]. Therefore, there is some δ′ > 0 such that A′′∩ ([−δ,δ]×Rm−1) is contained in

Hv(r−δ′).

Now symmetrize w.r.t. (`2,v) and let A′′′ = S`,v[A′′]. For each t ∈ `2, the section A′′∩ (t +
`⊥2 ) is a subset of Hv(r− δ′). Therefore, there is some δ′′ > 0 such that A′′′ ⊆ Hv(r− δ′′).

Thus in (at most) three symmetrizations we arrive at a set A′′′ with r(A′′′)< r(A). �

Solution to Exercise 2. For p ∈ (0,1) define Qp = Φ−1(1− p), the (1− p)-quantile. For x ≤
Qp, define bp(x) by the equation γ1[x,bp(x)] = p. Let αp denote the unique x such that

bp(x) =−x. Differentiating p =
∫ bp(x)

x ϕ(t)dt, we get ϕ(bp(x))b′p(x)−ϕ(x) = 0.

Fix p ∈ (0,1), ε > 0 and define h(x) = γ1[x− ε,bp(x)+ ε] and observe that

h′(x) = ϕ(bp(x)+ ε)b′p(x)−ϕ(x− ε)

= ϕ(x)
{

ϕ(bp(x)+ ε)

ϕ(bp(x))
− ϕ(x− ε)

ϕ(x)

}
= ϕ(x)

{
ϕ(bp(x)+ ε)

ϕ(bp(x))
− ϕ(−x+ ε)

ϕ(−x)

}
.

Note that ϕ(u+ ε)/ϕ(u) = e−uε− 1
2 ε2

is decreasing in x. Hence, when x > αp(x) (which is

equivalent to bp(x)>−x), we have h′(x)< 0. Thus h(αp)> h(x)> h(Qp) for all x ∈ (αp,Qp).

Case of one closed interval: If A is an interval with γ1(x) = p, then it is of the form

[x,bp(x)] for some x. We may also assume that x ≥ αp (otherwise replace A by −A). Thus,

by the above deduction, γ(Aε) is minimized when x = Qp.

Case of multiple closed intervals: We write A as I1 t I2 . . .t Ik with I j = [x j,bp(x j)] with

bp(xi−1) < xi for all i. There are two reductions which improve our set in isoperimetric

setting.
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1. Suppose that Ik and Ik−1 differ by less than 2ε, i.e., bp(xk−1) + ε > xk − ε. In this

case, if we move the interval [xk,bp(xk)] to the left (i.e., decrease xk), then γ1(A) stays

the same but γ1(Aε) decreases till xk hits bp(xk−1). This results in a set with (k− 1)

intervals and better isoperimetric profile.

2. Suppose that Ik−1 and Ik are separated by at least 2ε. Without loss of generality

bp(xk)>−xk (otherwise, replace Ik by −Ik, which would be even further to the right

than Ik and the separation condition continues to hold). Then, by the earlier deduc-

tion, as xk increases, γ1(A) stays the same but γ1(Aε) decreases, till xk = Qpk .

Repeatedly applying these two reductions, we can reduce A to the interval [Qp,∞).

Case of an arbitrary closed set: Let A be closed with γ1(A)= p. For any small η> 0, the set

Aη is the closure of an open set, and hence it is a union of countably many disjoint closed

intervals. At the cost of losing an η probability, we drop all but finitely many intervals. This

gives us a set B with the property that B⊆Aη and p′ := γ1(B)≥ p−η. By the already proved

inequality, γ1(Bε)≥ γ1[Qp′−ε,∞). Of course Bε ⊆ Aη+ε and therefore γ1(Aε)≥ γ1[Qp′−ε,∞).

Letting η ↓ 0 and noticing that p′→ p, we get γ1(Aε)≥ γ1[Qp− ε,∞). �

3.2.2 Appendix: Hausdroff metric

Let (X ,d) be a metric space and let CX denote the set of all non-empty closed subsets of

X . The Hausdorff distance between two closed sets A,B is defined by dH(A,B) = inf{r >
0 : Ar ⊇ B and Br ⊇ A} where Ar = {x : d(x,A) ≤ r}. The value +∞ is allowed and (C ,d) is

a metric space (if you are not comfortable with a metric that takes infinite values, just use

dH(A,B)∧1 which is a finite metric).

Exercise 9. Let (X ,d) be a compact metric space. Then (CX ,dH) is a compact metric space.

We shall work in Rm which is not compact.

Lemma 10. Let Ak be a sequence of closed non-empty sets in Rm. Assume that Ak∩B(0,R0) 6= /0

for all k for some R0. Then, there exists a subsequence k j and a non-empty closed set X such
that Ak j ∩K→ X ∩K in Hausdorff metric for every non-empty compact K ⊆ Rm.

Proof. For each j > R0, use Exercise 9 to see that Ak ∩ ¯B(0, j) has a subsequence that con-

verges in Hausdorff metric to some set X j ⊆ ¯B(0, j). Set X = ∪ jX j. Then it is easy to see

that X is closed and the conclusions hold (check!). �
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3.2.3 Appendix: Gap in the proof!

In lecture we realized that there is a gap in the proof that we gave for the isoperimetric

inequality. It is in the proof of Lemma 8. The given proof is correct in dimensions 3 and

higher but not in dimension 2 as there is only one line contained in the boundary of a half

space in R2! We fix this below2.

Lemma 11. Let vk = (cosθk,sinθk) with θ0 = 0 and θk =
π+θk−1

2 for k≥ 1. Let `k = v⊥k and let
Sk := S`k,−vk . Given a closed set A⊆ R2, define A0 = S0[A] and Ak = Sk[Ak−1] for k ≥ 1.

1. If x ∈ Ak then x+ tv0 + svk ∈ Ak for all t,s≥ 0.

2. Let H = {(x,y) : y ≥ Φ−1(γ2(A))}. Then Ak converges to H on compacta in Hausdorff
metric i.e., Ak∩K→ H ∩K in Hausdorff metric for every compact set K.

Proof. 1. By definition of symmetrization, it is clear that if x ∈ Ak then x+ tvk ∈ Ak for

t > 0. It remains to prove for k ≥ 1 that if x ∈ Ak then x+ tv0 ∈ Ak. The case k = 0 is

trivial.

Consider k = 1. By the γ1(A∩ (tv0 + `⊥1 )) is increasing in t (because of the case k = 0),

which shows that if x ∈ A1 then x+ tv0 ∈ A1. This completes the proof for k = 1.

Fix k≥ 2 and let π denote the projection onto `⊥k and let Ak−1,t =Ak−1∩(tv⊥k +`⊥k )] and

Ak,t = Ak∩ (tv⊥k + `⊥k )] so that Ak,t is a half-line with γ1(Ak,t) = γ1(Ak−1,t). Observe that

`k is the angle bisector of vk and v0. Therefore, inductively assuming the lemma for

k−1, we see that π[Ak−1,t+ε]⊇ π[Ak−1,t ]
ε (the ε-enlargement in `⊥=R). Consequently,

by the one-dimensional isoperimetric inequality we deduce that π[Ak,t+ε] ⊇ π[Ak,t ]
ε.

Draw a picture to see that this precisely implies that if x ∈ Ak then x+ tv0 ∈ Ak for

t ≥ 0.

2. If γ2(A) = 0 then Ak is empty for all k and the statement is valid. Hence assume

γ2(A) > 0. By properties of symmetrization, for every k we have γ2(Ak) = γ2(A) and

γ2(Aε

k) ≤ γ2(Aε) for all ε > 0. Also define the cone Ck = {sv0 + tvk : s, t ≥ 0} and C∞ =

{(x,y) : y≥ 0}s.

Let R be large enough such that γ2(B0(R)c)< γ2(A). Then there exists xk ∈ Ak∩B0(R).

Having fixed ε > 0 and R > 0, it is clear that for large enough k and every x ∈ B0(R)

2Proof is taken from Bogachev’s book, chapter 4
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we have ((x + Ck)∩ B0(R))ε ⊇ (x + C∞)∩ B0(R). Since Ck ⊆ C∞ we obviously have

((x+C∞)∩B0(R))ε ⊇ (x+Ck)∩B0(R).

�

3.3 Some consequences of the Gaussian isoperimetric in-

equality

Equivalent formulations: We present two equivalent ways of writing the Gaussian isoperi-

metric inequality. The first one, without explicit reference to half-spaces is

Φ
−1(γm(Aε))≥Φ

−1(γm(A))+ ε for all Borel sets A and any ε > 0. (2)

Exercise 12. Deduce (2) and Theorem 1 from each other.

Here is yet another formulation3.

Proposition 13. Let f : Rn → R be a Lip(κ) function. Then there exists a Lip(κ) function
g : R→R such that γn ◦ f−1 = γ1 ◦g−1. In other words, the distribution of the random variable
f on the probability space (Rn,BRn,γn) is the same as the distribution of the random variable
g on (R,BR,γ1).

Exercise 14. Deduce Proposition 13 and Theorem 1 from each other.

Proposition 13 shows the dimension-free nature of isoperimetric inequality. In other

words, the isoperimetric inequality will hold for standard Gaussian measures in infinite

dimensions, once we make sense of such an object! This would not have been the case if

Proposition 13 only asserted that g is Lip(κ logn), for example.

Log-concave densities: What made the proof of isoperimetric inequality in one dimension

click? Looking back, we see that the key point was that ϕ(u+ ε)/ϕ(u) is decreasing in u,

for any fixed ε > 0. Any other density f satisfying this will also satisfy the isoperimetric

inequality (perhaps we need symmetry?). This condition is equivalent to log f (u+ ε)−
log f (u) being decreasing in u. Assuming smoothness for simplicity, this happens if and only

if (log f )′(u) is decreasing in u, which in turn is equivalent to (log f )′′(u) being negative. In

other words, equivalent to log f being a concave function.
3Taken from Boris Tsirelson’s lecture notes available on his home page.
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Any density (in any dimension) for which log f is concave, is called log-concave. Ex-

amples in one dimension are symmetric exponential density 1
2e−|x|, uniform density on an

interval, and of course the Gaussian. Examples in higher dimensions are uniform mea-

sures on compact convex sets and the densities exp{−|x|p} for p ≥ 1. One can get many

more from these few, since log-concave densities are closed under convolutions and under

linear transformations (eg., marginals). Log-concave densities are a very important class

of densities that share many properties of Gaussian measures, in particular, concentration

properties.

Gaussian Brunn-Minkowski inequality: In Euclidean space, we deduced the isoperimet-

ric inequality from the Brunn-Minkowski inequality. Is there an analogue for the Gaus-

sian measure? Ehrhard initiated this study and proved the inequality below for convex

sets, again using his symmetrization procedure. The convexity assumption was relaxed by

Latala and completely removed by Borell.

Result 15 (Ehrhard, Latala, Borell). If A,B⊆Rn (Borel sets), and α∈ [0,1], then Φ−1(γn(αA+

(1−α)B))≥ αΦ−1(γn(A))+(1−α)Φ−1(γn(B)).

We shall not use this and hence not give a proof4.

Concentration inequalities: The isoperimetric inequality implies concentration inequal-

ities for various functions of Gaussian random variables. This is its primary importance

in probability. It is possible to deduce some of these concentration bounds directly with-

out using the isoperimetric inequality, albeit with poorer constants, but the isoperimetric

inequality yields the sharpest general bounds.

Theorem 16. Let f : Rn → R be a Lip(κ) function. Let M f be a median of f , defined by
γn{ f ≥M f } ≥ 1

2 and γn{ f ≤M f } ≥ 1
2 . Then, for every t > 0, we have

γn
{

f −M f ≥ t
}
≤ Φ̄

( t
κ

)
≤ e−

t2

2κ2 , (3)

γn
{
| f −M f | ≥ t

}
≤ 2Φ̄

( t
κ

)
≤ 2e−

t2

2κ2 . (4)

4Potential presentation topic! See Borell’s paper The Ehrhard inequality. Another potential topic is a very

different proof of the Gaussian isoperimteric inequality by Bobkov, see An isoperimetric inequality on the
discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space.
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Proof. If A = { f ≤M f } then At ⊆ { f ≤M f +κt}. But Φ−1(γn(A)) ≥ 0 and hence by (2) we

get Φ−1(γn(At))≥ t. Hence γn{ f ≥M f +κt} ≤ Φ̄(t) which shows the first claim. The second

follows by adding the same estimate for γn{ f ≤M f − t}. �

Remark 17. Since Φ̄(t) is strictly smaller than 1
2 for every t > 0, it follows that the median

is unique! Incidentally, we have been writing statements in terms of measures, but one can

equivalently state them in terms of random variables. If X1, . . . ,Xn are i.i.d. N(0,1) random

variables on some probability space, and V = f (X1, . . . ,Xn) for a Lip(κ) function f , then

P{|V −Med[V ]| ≥ t} ≤ 2e−t2/2κ2
.

The random variable is concentrated around its median. Incidentally, inequalities of this

type, with perhaps not the optimal constants on the right, can be obtained by easier meth-

ods (see the end of this section). Often that suffices in applications but we decided to

go through the isoperimetric inequality for its natural appeal, in addition to sharpness of

constants.

Example 18. Some examples of Lipschitz functions of interest are maxi xi, ‖x‖p (or any

norm, for that matter), d(x,A) for a fixed closed set A. A smooth function is Lipschitz if

and only if its gradient is bounded.

What about functions of correlated Gaussians? Here is a simple exercise.

Exercise 19. Suppose X ∼ Nn(µ,Σ) and let f : Rn→ R is a Lip(κ) function. Let V = f (X).

Then P{|V −Med[V ]| ≥ t} ≤ 2e−t2/2λ1κ2
with λ1 being the maximal eigenvalue of Σ.

Concentration inequalities of the type given by Theorem 16 are desirable to have for

many other probability measures too. Deduce the following from Theorem 16.

Exercise 20. Let Vn be the uniform probability measure on [0,1]n. If f : [0,1]n→R is Lip(κ),

show that

γn
{

f −M f ≥ t
}
≤ e−ct2/κ2

,

γn
{
| f −M f | ≥ t

}
≤ 2e−ct2/κ2

.

Here c is a numerical constant (find it!).

For general product measures, for example uniform measure on the discrete cube

{0,1}n, getting a similar concentration inequality is hard. This is the famous Talagrand’s
inequality, proved by Talagrand and now a cornerstone in probability.
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Concentration about the mean: Usually mean is easier to compute than median and

concentration inequalities are often expressed around the mean. Here is a simple way

to get a (sub-optimal) concentration inequality around the mean for the same setting as

above. Let f : Rn → R be a Lip(κ) function and let M f be its median under γn and let

E f =
∫

f (x)dγn(x) be its expectation.

Using the bound in Theorem 16 we get

E[( f −M f )+] =
∫

∞

0
γn{ f > M f + t}dt ≤

∫
∞

0
Φ̄(t/κ)dt =

κ√
2π

.

The same bound holds for E[( f −M f )−] and we get E[| f −M f |] ≤
√

2
π

κ < κ. In particular,

|E f −M f |< κ. Therefore, for t ≥ 2, we get

γn{ f −E f > tκ} ≤ γn

{
f −M f >

t
2

κ

}
≤ Φ̄(t/2),

by another application of Theorem 16. For t ≤ 2, we use the trivial bound γn{ f −E f >

tκ} ≤ 1. Putting all this together and using the same for deviations below E f we arrive at

the following result.

Theorem 21. Let f : Rn→ R be a Lip(κ) function. Let E f =
∫

f dγn. Then, for every t > 0, we
have (with C = 1/Φ̄(1))

γn
{

f −E f ≥ t
}
≤CΦ̄

( t
2κ

)
≤Ce−

t2

8κ2 , (5)

γn
{
| f −E f | ≥ t

}
≤CΦ̄

( t
2κ

)
≤Ce−

t2

8κ2 . (6)

Weaker forms of concentration by easier methods: As we remarked earlier, weaker

forms of concentration inequalities can be obtained by easier methods some of which we

mention here5.

Let f : Rn → R be a Lip(1) function and let X ∼ γn. We look for a number A f such

that f (X) is well-concentrated about A f . The crudest bound is as follows. Let Y be an

independent copy of X on the same probability space, and use E[| f (X)− f (Y )|] ≤ E[‖X −
Y‖] �

√
n. Observing that mina E[| f (X)− a|] ≤ E[| f (X)− f (Y )|], we get a number A f such

5For a spectacular presentation leading up from simpler inequalities up to the Borell-TIS inequality, see

the lecture notes of Boris Tsirelson http://www.tau.ac.il/˜tsirel/Courses/Gaussian/lect2.pdf. Here I

have taken a couple of points from those notes.
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that E[| f (X)−A f |] .
√

n. By Markov’s inequality this gives weak bounds like P{| f (X)−
A f | ≥ t}.

√
n

t . This compares poorly with the bound in (16).

To improve this, we introduce a technique that will be used many times later. Interpo-

late between X and Y by setting Z(θ) = (cosθ)X +(sinθ)Y for 0 ≤ θ ≤ π

2 so that Z(0) = X

and Z(π/2) = Y . The key property of this interpolation is that for any θ, the random vec-

tors Zθ = (cosθ)X + (sinθ)Y and Żθ = −(sinθ)X + (cosθ)Y are independent and have γn

distribution.

Now assume that f is smooth, then the Lipschitz condition is equivalent to |∇ f (x)| ≤ κ

for all x ∈ Rn. It is easy to approximate Lipschitz functions uniformly by smooth Lipschitz

functions and thus extend the bounds obtained below to all Lipschitz functions, a step we

shall not elaborate on. Then, write f (X)− f (Y ) as the integral of d
dθ

f (Zθ) = 〈∇ f (Zθ), Żθ〉 to

get

E[| f (X)− f (Y )|]≤
∫

π/2

0
E[〈∇ f (Zθ), Żθ〉]dθ

=

√
2
π

∫
π/2

0
E[‖∇ f (Zθ)‖]dθ

≤
√

π

2
.

From this we get some number A f such that P{| f (X)−A f | ≥ t} . 1
t . This does not decay

fast in t, but is free of n, already a remarkable improvement over the crude bound.

By bounding E[G(| f (X)− f (Y )|)] for some convex increasing function G we can get

better bounds along the same lines.

Exercise 22. For b > 0 and x ∈ Rn define Gb(x) = (|x| − b)+. Use the convexity of G to

obtain the bound E[|Gb(X)−Gb(Y )| ≥ t]≤ E[G(π

2 X)].

What concentration of f (X) does this yield?
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Chapter 4

Comparison inequalities

The study of the maximum (or supremum) of a collection of Gaussian random variables is

of fundamental importance. In such cases, certain comparison inequalities are helpful in

reducing the problem at hand to the same problem for a simpler correlation matrix. In an-

other direction, if two covariance matrices are close, the distributions of the corresponding

Gaussian vectors are close. Quantitative statements to this effect are useful. In this chapter

we study such general results and illustrate their uses with applications.

4.1 Preparatory lemmas

We start with a lemma of this kind and from which we derive two important results -

Slepian’s inequality and the Sudakov-Fernique inequality1. When the function does not

depend on the covariance matrix, this lemma is due to Kahane, but the same proof applies

in this more general situation.

Let Pn be the space of n×n symmetric, positive semi-definite matrices (local notation)

and let F : Rn×Pn 7→ R be a smooth function. We write F(z,Σ) with z ∈ Rn and Σ ∈ Pn and

write ∂i f for ∂ f
∂zi

and ∂(i, j) f for ∂ f
∂σi, j

.

1The presentation here is cooked up from Ledoux-Talagrand (the book titled Probability on Banach spaces)
and from Sourav Chatterjee’s paper on Sudakov-Fernique inequality. Chatterjee’s proof can be used to prove

Kahane’s inequality too, and consequently Slepian’s, and that is the way we present it here. I have not seen

Lemma 1 written anywhere but the idea that one can allow the function to depend on the random vector

and the covariance matrix of the random vector was inspired by one special case which appears as a key

lemma in the theory of Gaussian multiplicative chaos.
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Lemma 1. Let X and Y be n×1 mutivariate Gaussian vectors with equal means, i.e., E[Xi] =

E[Yi] for all i. Let F : Rn×Pn→ R be any C2 function all of whose partial derivatives up to
second order have subgaussian growth in the first variable. Assume that (a) (∂i∂i + 2∂(i,i))F

has the same sign as σY
i,i−σX

i,i for all i, and (b) (∂ j∂i +∂(i, j))F has the same sign as σY
i, j−σX

i, j

for all i 6= j. Then E[F(X ,ΣX)]≤ E[F(Y,ΣY )].

To be clear about the assumption, what we mean is that pointwise

(σY
i,i−σ

X
i,i)× (∂i∂i +2∂(i,i))F ≥ 0, (σY

i,i−σ
X
i,i)× (∂i∂ j +∂(i, j))F ≥ 0.

Note that no condition is imposed in cases where σX
i, j = σY

i, j.

When the function depends only on the Gaussian variables and not on the covariance

matrix, we get the following corollary.

Corollary 2 (Kahane). Let f :Rn 7→R be a C2 function whose first two partial derivatives have
sub-Gaussian growth. If X ,Y are as in the statement of the theorem and (σY

i, j−σX
i, j)∂i∂ j f (x)≥

0 for all i, j, and for all x ∈ Rn, then E[ f (X)]≤ E[ f (Y )].

The key idea in the proof is one that is widely useful. Instead of comparing two Gaus-

sians, it is better to interpolate between them smoothly and use the power of Calculus to

prove a differential inequality which can then be integrated. In all examples of this chap-

ter, the interpolation is a straight line between the two covariance matrices. In principle

nothing precludes consideration of other curves.

Proof of Lemma 1. First assume that both X and Y are centered. Without loss of generality,

assume that X and Y are defined on the same probability space and independent of each

other.

Interpolate between them by setting Z(θ) = (cosθ)X + (sinθ)Y for 0 ≤ θ ≤ π

2 so that

Z(0) = X and Z(π/2) = Y . Let Σ(θ) = (cos2 θ)ΣX +(sin2
θ)ΣY denote the covariance matrix

of Z(θ). Let W (θ) = (Z(θ),Σ(θ)). Then, differentiating under the expectation,

d
dθ

E[F(W (θ))] =−sinθ

n

∑
i=1

E[Xi∂iF(W (θ))]+ cosθ

n

∑
i=1

E[Yi∂iF(W (θ))]

+2sinθcosθ ∑
i≤ j

(σY
i, j−σ

X
i, j)E[∂(i, j)F(W (θ))]

The integration by parts formula for Gaussians says that E[Xig(X)] = ∑
n
j=1 σX

i, jE[∂ jg(X)].

Use the independence of X and Y and apply this formula by first conditioning on Y (or vice

59



versa) to get

E[Xi∂iF(W (θ))] = cosθ

n

∑
j=1

σ
X
i, jE[∂ j∂iF(W (θ))],

E[Yi∂iF(W (θ))] = sinθ

n

∑
j=1

σ
Y
i, jE[∂ j∂iF(W (θ))].

Therefore,

d
dθ

E[F(Z(θ),Σ(θ))] = sinθcosθ

n

∑
i=1

n

∑
j=1

(σY
i, j−σ

X
i, j)E[∂ j∂iF(W (θ))]

+2sinθcosθ ∑
i≤ j

(σY
i, j−σ

X
i, j)E[∂(i, j)F(W (θ))]

= sinθcosθ

n

∑
i=1

(σY
i,i−σ

X
i,i)E[(∂i∂i +2∂(i,i))F(W (θ))]

+2sinθcosθ ∑
i< j

(σY
i, j−σ

X
i, j)E[(∂ j∂i +∂(i, j))F(W (θ))]. (1)

The assumptions were made so that each summand is positive. Therefore, θ 7→ E[F(W (θ)]

is increasing on [0, 1
2π], hence E[F(W (0))] ≤ E[F(W (1))] which is exactly what we wanted

to prove.

It remains to consider the case when the means are not zero. Let µi = E[Xi] = E[Yi] and

set X̂i =Xi−µi and Ŷi =Yi−µi and let g(x1, . . . ,xn) =F(x1+µ1, . . . ,xn+µn). Then F(X) = g(X̂)

and F(Y ) = g(Ŷ ) while ∂i∂ jg(x) = ∂i∂ jF(x+ µ). Thus, the already proved statement for

centered variables implies the one for non-centered variables. �

Remark 3. The interpolation is often alternately written as
√

tX +
√

1− tY , 0≤ t ≤ 1 or as

e−tX +
√

1− e−2t Y , 0≤ t ≤ ∞. There is no difference in substance.

A speculative (possibly naive) question: In Corollary 2, we compare E[F(X)] and E[F(Y )]

for some F : Rn 7→ R. In Lemma 1 this is extended this to a function F : Rn×Pn 7→ R and

compare E[F(X ,A)] to E[F(Y,B)] where A,B are the covariance matrices of X and Y . Can we

go on to generalize to compare quantities like E[F(X ,A,Γ)] where F takes three arguments,

X ∈Rn, A ∈ Pn and Γ ∈ TA(Pn) is a tangent vector to Pn at the point A? And so on, to higher

derivatives, getting a hierarchy of more and more general inequalities?
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4.2 Slepian’s and Gordon’s inequalities

We write X∗ for maxi Xi. The general intuition is that when Xis are positively correlated,

then they tend to stick together, and X∗ is unlikely to be large. To illustrate this, let Z1,Z2

be i.i.d. standard Gaussians and consider U = (Z1,Z1), V = (Z1,Z2), and W = (Z1,−Z1), in

which the correlations are 1,0,−1, respectively. Then U∗ = Z1, V ∗ = Z1∨Z2 and W ∗ = |Z1|.
Thus,

P{U∗ < t}= Φ(t), P{V ∗ < t}= Φ(t)2, P{W ∗ < t}= 2Φ(t)−1.

Clearly these are in decreasing order, showing that2 U∗ ≺ V ∗ ≺W ∗. Extending this intu-

ition, Slepian showed the following general stochatic comparison inequality.

Lemma 4 (Slepian’s inequality). Let X and Y be n× 1 mutivariate Gaussian vectors with
equal means, and equal variance, i.e., E[Xi] = E[Yi] and E[X2

i ] = E[Y 2
i ] for all i. Assume that

E[XiX j]≥ E[YiYj] for all i, j. Then,

1. For any real t1, . . . , tn, we have P{Xi < ti for all i} ≥ P{Yi < ti for all i}.

2. X∗ ≺ Y ∗, i.e., P{X∗ > t} ≤ P{Y ∗ > t} for all t.

We would like to say that the first conclusion follows from Corollary 2 by taking

f (x1, . . . ,xn) = ∏
n
i=1 1xi<ti. The only wrinkle is that f is not smooth. Approximating the

indicator with smooth decreasing functions, this can be converted to a rigorous proof.

Proof. To elaborate, let ψi : R 7→ [0,1] be smooth decreasing functions with ψi(t) = 1 for

t ≤ ti and ψi(t) = 0 for t ≥ ti + ε. Let fε(x1, . . . ,xn) = ∏
n
i=1 ψi(xi). Then

∂i∂ j f (x) = ψ
′
i(xi)ψ

′
j(x j) ∏

k 6=i, j
ψk(xk)≥ 0.

Corollary 2 applies to show that E[ fε(X)]≤ E[ fε(Y )]. Let ε ↓ 0 and apply monotone conver-

gence theorem to get the first conclusion.

Taking ti = t, we immediately get the second conclusion from the first. �

Remark 5. The second statement is not less general than the first. Indeed, applying the

second statement to (X1/t1, . . . ,Xn/tn) and (Y1/t1, . . . ,Yn/tn), one gets the first.

Here is another inequality which specializes to Slepian’s inequality when m = 1.

2We say that U is stochastically dominated by V and write U ≺V if P{U > t} ≤ P{V > t} for all t ∈ R.
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Lemma 6 (Gordon’s inequality). Let Xi, j and Yi, j be m× n arrays of joint Gaussians with
equal means. Assume that (1) Cov(Xi, j,Xi,`)≥ Cov(Yi, j,Yi,`), (2) Cov(Xi, j,Xk,`)≤ Cov(Yi, j,Yk,`)

if i 6= k, (3) Var(Xi, j) = Var(Yi, j). Then

1. For any real ti, j we have P

{⋂
i

⋃
j
{Xi, j < ti, j}

}
≥ P

{⋂
i

⋃
j
{Yi, j < ti, j}

}
,

2. min
i

max
j

Xi, j ≺min
i

max
j

Yi, j.

Exercise 7. Deduce Gordon’t inequality from Lemma 1 (or Corollary 2).

4.3 Sudakov-Fernique inequality

Studying the maximum of a Gaussian process is a very important problem. Slepian’s (or

Gordon’s) inequality helps to control the maximum of our process by that of a simpler

process. For example, if X1, . . . ,Xn are standard normal variables with positive correlation

between any pair of them, then maxXi is stochastically smaller than the maximum of n in-

dependent standard normals (which is easy). However, the equality of variances condition

of Slepian’s inequality is restrictive, and the conclusion is much stronger than what one

needs in many situations. Here is a more applicable substitute.

Theorem 8 (Sudakov-Fernique inequality). Let X and Y be n×1 Gaussian vectors satisfying
E[Xi] = E[Yi] for all i and E[(Xi−X j)

2]≤ E[(Yi−Yj)
2] for all i 6= j. Then, E[X∗]≤ E[Y ∗].

Remark 9. Assume that the processes are centered. If the two processes had the same

variances, then the condition E[(Xi−X j)
2]≤E[(Yi−Yj)

2] would be the same as Cov(Xi,X j)≥
Cov(Yi,Yj). In that case, Slepian’s inequality would apply and we would get the much

stronger conclusion of X∗ ≺ Y ∗. The point here is that we relax the assumption of equal

variances and settle for the weaker conclusion which only compares expectations of the

maxima.

For non-centered processes one may wonder whether it would not be more appropriate

to compare Var(Xi − X j) with Var(Yi −Y j) in the assumption. But since E[(Xi − X j)
2] =

Var(Xi−X j)+ (E[Xi]−E[X j])
2, and the means are assumed to be equal, that would be the

same condition!

Proof. As in the proof of Lemma 1, we interpolate between X and Y using Z(θ) = cosθ X +

sinθ Y for 0 ≤ θ ≤ π

2 . Since our function now depends on the random variables only (i.e.,
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∂(i, j)F = 0 for all i, j), (1) becomes

d
dθ

E[F(Z(θ))] = sinθcosθ

n

∑
i, j=1

(σY
i, j−σ

X
i, j)E[∂ j∂iF(W (θ))].

Now we specialize to the function fβ(x) =
1
β

log∑
n
i=1 eβxi where β > 0 is fixed (again,

there is no dependence on Σ). Let pi(x) = eβxi

∑
n
i=1 eβxi

, so that (p1(x), . . . , pn(x)) is a probability

vector for each x ∈ Rn. Observe that

∂i f (x) = pi(x), ∂i∂ j f (x) = βpi(x)δi, j−βpi(x)p j(x).

Thus, (1) gives (writing Pi = pi(Zθ) for simplicity of notation)

1
β(cosθ)(sinθ)

d
dθ

E[ fβ(Zθ)] =
n

∑
i, j=1

(σY
i j−σ

X
i j)E

[
Piδi, j−PiPj

]
=

n

∑
i=1

(σY
ii −σ

X
ii )E[Pi]−

n

∑
i, j=1

(σY
i j−σ

X
i j)E[PiPj]

Since ∑i pi(x) = 1 for any x, we can write Pi = ∑ j PiPj and hence

1
β(cosθ)(sinθ)

d
dθ

E[ fβ(Zθ)] =
n

∑
i, j=1

(σY
ii −σ

X
ii )E[PiPj]−

n

∑
i, j=1

(σY
i j−σ

X
i j)E[PiPj]

= ∑
i< j

E[PiPj]
(
σ

Y
ii −σ

X
ii +σ

Y
j j−σ

X
j j−2σ

Y
i j +2σ

X
i j
)

= ∑
i< j

E[PiPj]
(
γ
Y
i j− γ

X
i j
)

(2)

where γX
i j = σX

ii +σX
j j−2σX

i j = E[(Xi−µi−X j +µ j)
2]. Of course, the latter is equal to E[(Xi−

X j)
2]− (µi−µ j)

2. Since the µi are the same for X as for Y we get γX
i j ≤ γY

i j. Clearly pi(x)≥ 0

too and hence E[PiPj] ≥ 0. Therefore, d
dθ

E[ fβ(Zθ)] ≥ 0 and we get E[ fβ(X)] ≤ E[ fβ(Y )].

Letting β ↑ ∞ we get E[X∗]≤ E[Y ∗]. �

Remark 10. This proof contains another useful idea - to express maxi xi in terms of fβ(x).

The advantage is that fβ is smooth while the maximum is not. And for large β, the two are

close because maxi xi ≤ fβ(x)≤maxi xi +
logn

β
.

If Sudakov-Fernique inequality is considered a modification of Slepian’s inequality, the

analogous modification of Gordon’s inequality is the following. We leave it as exercise as

we may not use it in the course.
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Exercise 11. (optional) Let Xi, j and Yi, j be n×m arrays of joint Gaussians with equal means.

Assume that

1. E[|Xi, j−Xi,`|2]≥ E[|Yi, j−Yi,`|2],

2. E[|Xi, j−Xk,`|2]≤ E[|Yi, j−Yk,`|2] if i 6= k.

Then E[min
i

max
j

Xi, j]≤ E[min
i

max
j

Yi, j].

4.4 Positive association

Definition 12. A random vector X = (X1, . . . ,Xn) is said to have positive association if any

two bounded increasing functions of X are positively correlated. That is, if f ,g : Rn 7→ R
are bounded and non-decreasing in each co-ordinate, then E[ f (X)g(X)]≥ E[ f (X)]E[g(X)].

Some remarks.

1. If positive association holds, two decreasing functions are also positively correlated.

An increasing function of X is negatively correlated with a decreasing function of X .

2. The boundedness condition is only to ensure that the expectations exist. If f ,g are

increasing in each co-ordinate and all expectations in the definition exist, then let

fN := ( f ∧N)∨ (−N) and gN = (g∧N)∨ (−N). These are bounded functions that are

increasing in each co-ordinate, hence E[ fN(X)gN(X)] ≥ E[ fN(X)]E[gN(X)]. By DCT

(since | fN | ≤ | f | and |gN | ≤ |g|), we see that E[ fN(X)], E[gN(X)], E[ fN(X)gN(X)] con-

verge to E[ f (X)], E[g(X)], E[ f (X)g(X)] respectively as N → ∞, and the inequality

extends to f ,g.

3. The definition naturally extends to infinite collections of random variables.

Positive association is a very stringent requirement. When it holds, it is a powerful tool.

In percolation and certain models of statistical mechanics, this is often known as FKG
inequality as it was proved by Fortouin, Kastelyn and Ginibre in those settings. One basic

well-known example of positive association is the following.

Result 13 (Harris’s inequality). Let Xk be independent real valued random variables. Then

X is positively associated.
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We skip the well-known proof here3. Instead, we come to the main result of interest.

Theorem 14 (Loren Pitt (1982)). Let X be a centered Gaussian vector. Then X is positively
associated if and only if all correlations are positive (i.e., E[XiX j]≥ 0).

One direction is obvious (and has nothing to do with Gaussians): Positive association

implies positive correlation by applying to the increasing functions X 7→ Xk and X 7→ X j. We

prove the other direction now.

Proof that positively correlated Gaussians are positively associated. Let X ,Y be i.i.d. copies

and as in earlier proofs, define the interpolation Z(θ) = cosθ X + sinθ Y for 0≤ θ≤ π

2 . Let

f ,g : Rn 7→ R be smooth functions such that ∂k f ,∂kg ≥ 0 for all k. Then E[ f (X)g(Z(θ))] is

equal to E[ f (X)g(X)] when θ = 0 and equal to E[ f (X)]E[g(X)] when θ = π

2 . Therefore, it

suffices to show that θ 7→ E[ f (X)g(Z(θ))] is decreasing. To this end, consider

d
dθ

E[ f (X)g(Z(θ)] =
n

∑
k=1

E[ f (X)∂kg(Zθ)(−sinθ Xk + cosθ Yk)]

= cosθsinθ

n

∑
k=1

n

∑
j=1

(σY
k, j−σ

Y
k, j)E[ f (X)∂ j∂kg(Z(θ)]− cosθ

n

∑
k=1

σ
X
k, jE[∂ j f (X)∂kg(Z(θ))].

This calculation is almost the same as in the proof of Lemma 1, except that when we use

integration by parts on E[Xk f (X)g(Z(θ))], the partial derivative with respect to Xk can fall

on f (X) or on g(Z(θ)) whereas the corresponding partial derivative with respect to Yk in

E[Yk f (X)g(Z(θ))] falls only on g(Z(θ)).

Now, X ,Y have the same distribution, hence σX
k = σY

k and the first summand van-

ishes. In the second summand, ∂ j f ,∂kg,σk, j,cosθ are all positive. Hence the derivative

of E[ f (X)g(Z(θ))] is decreasing in θ. This completes the proof for smooth f ,g.

For general bounded functions, a standard approximation argument via smooth func-

tions must be used, but we skip the details here. �

4.5 Negative association

Negative association is a stronger form of negative correlation just as positive association

is a stronger form of positive correlation.

3See section 5.8 of Probability on trees and networks by Lyons and Peres, for example.
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Definition 15. Let X = (X1, . . . ,Xn) be a random vector. We say that it is negatively associ-

ated if for any disjoint sets A,B⊆ [n] and any increasing bounded f :RA 7→R and increasing

bounded g : RB 7→ R, we have Cov( f (XA),g(XB))≤ 0.

Unlike in the case of positive association, disjointness of the “supports” of the two

functions is essential. For example, no random variable would be negatively correlated

with itself. Independent random variables are trivially negatively associated. An important

and intuitive non-trivial example of a negatively associated random vector is this4.

Example 16. Consider a box with n coupons carrying labels (not necessarily distinct)

u1, . . . ,un. Sample uniformly at random from this box, without replacement, and note the

labels to get random variables X1, . . . ,Xn (in other words, pick a permutation π ∈ Sn uni-

formly at random and set Xk = uπ(k) for all k). Then Xis are negatively associated.

Theorem 17 (Joag-Dev, Proschan). A Gaussian vector X is negatively associated if and only
if Cov(Xi,X j)≤ 0 for all i 6= j.

For j 6= k, the functions f (X) = X j and g(X) = Xk depend on disjoint subsets of variables

and are increasing, hence negative correlation is necessary for negative association. It

is the other direction that needs proof. We shall prove the following more precise and

stronger statement. What it says is that in the language of Theorem 17 and the definition

of negative association, to get the conclusion that E[ f (XA)g(XB)]≤ 0, it suffices to assume

that Cov(Xi,X j)≤ 0 for i ∈ A and j ∈ B.

Lemma 18. Let Xm×1,Wn×1 be jointly Gaussian vectors and let f : Rm 7→R and g : Rn 7→R be
increasing in each co-ordinate. If Cov(Xi,Wj)≤ 0 for all i, j, then Cov( f (X),g(W ))≤ 0.

Proof. By subtracting the means, we may assume that X and W are centered. We also

assume at first that f ,g are smooth. Without loss of generality, we assume that there is

a random vector Y that is independent of (X ,W ) and has the same distribution as X . As

always, interpolate between them with Z(θ) = cosθ X + sinθ Y , 0 ≤ θ ≤ π

2 . We show that

E[ f (Z(θ))g(W )] is increasing by computing its derivative

d
dθ

E[ f (Z(θ))g(W )] =
m

∑
k=1

E[g(W )∂k f (Z(θ))(−sinθ Xk + cosθ Yk)].

4For proof of this and more, see the paper Negative Association of Random Variables with Applications by

Kumar Joag-Dev and Frank Proschan (Annals of Statstics, 11, No. 1, 286–295, (1983)).
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As in the proof of Lemma 1, we condition on Y (or (X ,W )) and use the Gaussian integration

by parts formula. We get

E[Xkg(W )∂k f (Zθ)] = cosθ

m

∑
j=1

E[XkX j]E[g(W )∂ j∂k f (Zθ)]+
n

∑
j=1

E[XkWj]E[∂ jg(W )∂k f (Z(θ))],

E[Ykg(W )∂k f (Zθ)] = sinθ

m

∑
j=1

E[YkY j]E[g(W )∂ j∂k f (Zθ)]+
n

∑
j=1

E[YkWj]E[∂ jg(W )∂k f (Z(θ))]

= sinθ

m

∑
j=1

E[YkYj]E[g(W )∂ j∂k f (Zθ)]

since E[YkWj] = 0 for all k, j. As X and Y have the same distribution, E[XkX j] = E[YkY j] for

all k, j. Plugging back into the earlier equation, we get

d
dθ

E[g(W ) f (Zθ)] =−sinθ

m

∑
k=1

n

∑
j=1

E[XkWj]E[∂ jg(W )∂k f (Z(θ))].

As f ,g are increasing in each co-ordinate, ∂ jg ≥ 0 and ∂ j f ≥ 0, hence the second expec-

tation is positive. The first expectation is negative, and sinθ ≥ 0, hence E[g(W ) f (Zθ)] is

increasing in θ. At θ = 0 this is E[ f (X)g(W )] whereas at θ = π

2 this is E[g(W )]E[ f (X)].

Hence, the comparison at these two points shows that Cov( f (X),g(W ))≤ 0.

The boring step of approximating general increasing functions by smooth functions is

omitted as exercise. �

Here is a use of negative association.

Exercise 19. Suppose X = (X1, . . . ,Xn) is negatively associated. Assume that E[Xi] = 0 and

that each Xi is bounded. Then, Hoeffding’s inequality holds for S = X1 + . . .+Xn.

The intuition behind negative correlations extends to the following situation where the

functions are not dependent on disjoint sets of variables. How do you deal with it?

Exercise 20. Let f : R 7→ R+ be an increasing function. Let X be a Gaussian vector

with negative correlation. Define the random probability vector P with co-ordinates Pk =

f (Xk)/∑
n
j=1 f (X j). Show that P1 and P2 are negatively correlated. Is P negatively associ-

ated? (I have not checked the last statement myself).
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4.6 Piterbarg’s identity

Piterbarg wrote an identity for the difference in the probabilities of a set under two Gaus-

sian distributions. We state the simplest special case of this.

Proposition 21 (Piterbarg). Let X , Y be centered Gaussian random vectors in Rn with co-
variance matrices ΣX and ΣY . Assume that σX

i,i = σY
i,i for all i. Let A = (a−1 ,a

+
1 ]× . . .× (a−n ,a

+
n ].

Let Z(θ) = cosθ X + sinθ Y and let ϕθ
i, j denote the density of (Zi(θ),Z j(θ)). Then, P{Y ∈

A}−P{X ∈ A} is equal to

∑
i< j

(σY
i, j−σ

X
i, j) ∑

µ,λ∈{+,−}
µλ

∫
π/2

0
ϕ

θ
i, j(a

µ
i ,a

λ
j )P{Z(θ) ∈ A

∣∣ Zi(θ) = aµ
i ,Z j(θ) = aλ

j} sinθcosθ dθ

Some remarks.

1. In the interpolation, the covariance matrices of Z(θ) lie on the line segment con-

necting ΣX with ΣY . As det(tΣX +(1− t)ΣY ) is a polynomial in t, there are at most n

exceptional values of θ where the covariance matrix of Z(θ) is singular. At all other

θ, the density ψθ
i, j exists for all i < j. In Piterbarg’s statement, which is written in

greater generality, he assumes that σX
i,i = 1 = σY

i,i and |σX
i, j| < 1 for i 6= j. I am not

seeing the need for this in the proof below.

2. I cannot explain the meaning of the inequality. One point is that the terms on the

right hand side comes from cases when Z(θ) ∈ A but only barely - two of the co-

ordinates are at the boundaries of their intervals. Also see the corollary below.

3. The expression on the right appears very complicated. The way to use it is to get

bounds on the integrals, which then shows that if ΣX and ΣY are entry-wise close,

then P{X ∈ A} and P{Y ∈ A} are also close. For example, it could be that σX
i, j is small

for all i 6= j, and we wish to see if we can replace Xi by independent Gaussians having

the same variances.

If we let a−i → −∞ for all i, then we get the following limiting formulation (since the

densities ϕθ
i, j(a

µ
i ,a

λ
j ) goes to zero if one of λ or µ is ‘−’.

Corollary 22. Let X ,Y be as in Proposition 21 and let A = (−∞,a1]× . . .× (−∞,an]. Then,
P{X ∈ A}−P{Y ∈ A} is equal to

∑
i< j

(σY
i, j−σ

X
i, j)

∫
π/2

0
ϕ

θ
i, j(ai,a j)P{Z(θ) ∈ A

∣∣ Zi(θ) = ai,Z j(θ) = a j} sinθcosθdθ.
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In fact, the proposition can be deduced from this corollary by inclusion-exclusion for-

mula.

Proof. Fix ε > 0 and let ψi be a smooth function such that 1(a−i ,a+i ] ≤ ψi ≤ 1(a−i −ε,a+i +ε]. Let

fε(x) = ∏
n
i=1 ψi(xi). From (1),

d
dθ

E[ fε(Z(θ))] = sinθcosθ ∑
i< j

(σY
i, j−σ

X
i, j)E[∂i∂ j fε(Z(θ))]

and hence E[ fε(Y )]−E[ fε(X)] is the integral of the right side quantity over θ ∈ [0,2π].

Now, ∂i∂ j fε(x) = ψ′i(xi)ψ
′
j(x j) ∏

k 6=i, j
ψk(xk). Observe that ψ′k vanishes outside the intervals

I−k := (a−k − ε,a−k ) and I+k := (a+k ,a
+
k + ε). Thus,

E[∂i∂ j fε(Z(θ))] = ∑
µ,λ∈{+,−}

E

[
1Iµ

i
(Zi(θ))1Iλ

j
(Z j(θ))ψ

′
i(Zi(θ))ψ

′
j(Z j(θ)) ∏

k 6=i, j
ψk(Zk(θ))

]

= ∑
µ,λ∈{+,−}

∫
Iµ
i

∫
Iλ

j

ψ
′
i(u)ψ

′
j(v)E

[
∏

k 6=i, j
ψk(Zk(θ))

∣∣∣∣∣∣ Zi(θ) = u, Z j(θ) = v

]
ϕ

θ
i, j(u,v) dudv.

We could choose ψi so that ψ′i has constant sign on each Iµ
i (positive if µ =− and negative

if µ =+). Since the integral of ψ′i over such an interval is ±1, the (µ,λ) term above can be

considered an average over Iµ
i × Iλ

j of the function (up to sign)

(u,v) 7→ E

[
∏

k 6=i, j
ψk(Zk(θ))

∣∣∣∣∣∣ Zi(θ) = u, Z j(θ) = v

]
ϕ

θ
i, j(u,v).

This is a continuous function of (u,v) (except at the exceptional θ values referred to ear-

lier), hence as ε ↓ 0, the integral over Iµ
i × Iλ

j converges to

µλE

[
∏

k 6=i, j
1Iε

k
(Zk(θ))

∣∣∣∣∣∣ Zi(θ) = aµ
i , Z j(θ) = aλ

j

]
ϕ

θ
i, j(a

µ
i ,a

λ
j ).

It is obvious that E[ fε(Y )]−E[ fε(X)] is converges to P{Y ∈ A}−P{X ∈ A}. Putting every-

thing together, we get the claim in the statement of the proposition. �

Remark 23. If G is the algebra generated by the collection of left-open, right-closed rect-

angles of the form considered in the proposition above. Any element of G can be written

as a finite, pairwise disjoint union of such rectangles. Hence the result of the proposition

can be added for the rectangles.
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4.7 Going beyond finite vectors

Now that we have stated all the general comparison inequalities that we want, it is worth

stating that while the essence of things is already in finite dimensional Gaussian vectors,

all these comparison inequalities also apply to general Gaussian processes. Let us indicate

how.

Assume that X = (XI)i∈I and Y = (Yi)i∈I are Gaussian processes. If they have sufficient

regularity so that X∗ = supi Xi and Y ∗ = supiYi are measurable, then it shall also be the case

that X∗ = sup{E[X∗F ] : F ⊆ I is finite} where XF = (Xi)i∈F . Similar expression for Y ∗.

Now suppose the means of Xi and Yi agree for all i, and E[(Xi−X j)
2]≤ E[(Yi−Yj)

2] for

all i, j. Then by Sudakov-Fernique inequality, E[X∗F ]≤ E[Y ∗F ] for all finite F ⊆ I. Clearly that

implies that E[X∗]≤ E[Y ∗].
Similar considerations apply to Slepian’s inequality, Gordon’s inequality, positive asso-

ciation, etc. We shall use these inequalities without further comment in future. The only

subtlety one should be aware of (in ‘real examples’ that never arises!) is that without any

conditions on the process, X∗ need not be a random variable (back to the poorness of the

cylinder sigma algebra).

4.8 Application: Mean width of convex bodies

Consider the problem of maximizing or minimizing E[X∗] among all Gaussian vectors

X ∼ Nn(0,Σ) for which σk,k = 1 for all k. Equating the variances to 1 provides the right

normalization so that the comparison makes sense. In this section, let us refer to these as

the admissible Gaussians.

The minimization question: Let Y ∼ Nn(0,Jn) where Jn is the all ones matrix. In other

words, Y1 = . . . = Yn ∼ N(0,1). Clearly, for any admissible Gaussian X , we have E[XiX j] ≤
E[YiYj] for any i, j. And the means and variances of Xi agree with those of Yi, for each i.

Hence, Slepian’s inequality applies and we see that E[X∗] ≥ E[Y ∗]. In fact, there is even a

stochastic comparison. Thus, Y is the solution to the minimization problem.

The maximization problem: By the same logic, to push the expectation of X∗ as high as

possible, we should make the covariances as low as possible. However, we cannot make

all cross-covariances equal to −1, as the resulting matrix is not p.s.d. That leaves us with
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a dilemma - is it better to make some of them very negative or make all of them equally

(but less) negative? It is an unproved conjecture that the latter is better.

Conjecture 24 (Gritzmann–Klee, as reformulated by Kabluchko–Litvak–Zaporozhets). For
any admissible Gaussian, E[X∗] ≤ E[Y ∗] where Y ∼ Nn(0, 1

n−1(nIn− Jn)). That is, E[YiY j] =

− 1
n−1 for all i 6= j.

The original formulation of Gritzmann and Klee concerned the mean width of convex
bodies among all convex bodies. If K is a convex body (a compact convex set with non-

empty interior) in Rn, its mean width is defined as the expected length of the projection

of a convex body in a uniformly chosen random direction. The conjecture was that among

all convex hulls of n points on Sn−1, the one that maximizes the mean width is the regular

simplex centered at the origin.

If Z ∼ γn, then one can show that the mean width is equal to
√

2πE[maxu∈K〈Z,u〉] (Su-

dakov’s formula). Hence the conjecture about mean-width can be transformed to the above

conjecture about Gaussians.

Exercise 25. Prove Sudakov’s formula and derive the equivalence of the two conjectures.

While the conjecture is open, here is an exercise (actually a theorem of Kabluchko–

Litvak–Zaporozhets) that suggests why the dilemma stated earlier is resolved in this way.

Proposition 26. Assume n = 2m is even and let X ,Y be centered Gaussian vectors with unit
variances and (1) E[YiYj] = − 1

2n−1 for all i 6= j, (2) E[X2i−1X2i] = −1 for 1 ≤ i ≤ m and all
other cross-covariances are zero.Then E[X∗]≤ E[Y ∗].

Proof. Let X ,Y be independently constructed on a common probability space and introduce

the usual interpolation Z(θ) = cosθ X + sinθ Y , 0 ≤ θ ≤ π

2 . From (2) in the proof of the

Sudakov-Fernique inequality, we have

d
dθ

E[ fβ(Z(θ))] = sinθ cosθ ∑
i< j

E[PiPj]
(
γ
Y
i j− γ

X
i j
)

where fβ(x) =
1
β

log∑
n
k=1 eβxk and Pi = eβZi(θ)/∑

n
k=1 eβZi(θ) and

γ
Y
i, j− γ

X
i, j = E[(Yi−Yj)

2]−E[(Xi−X j)
2]

=

2− 2
n−1 if {i, j}= {2k,2k−1} for some k ≤ m,

− 2
n−1 otherwise.
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Therefore,

1
sinθ cosθ

d
dθ

E[ fβ(Z(θ))] =−
2

n−1 ∑
i< j

E[PiPj]+2
m

∑
k=1

E[P2k−1P2k]

=− 1
n−1

(1−
n

∑
i=1

E[P2
i ])+2

m

∑
k=1

E[P2k−1P2k]

since ∑i Pi = 1. By symmetry, it is clear that at any θ, the variables Pi are identically

distributed and the variables (P2k−1,P2k) are identically distributed. Therefore,

1
sinθ cosθ

d
dθ

E[ fβ(Z(θ))] =
1

n−1
{
−1+nE[P2

1 ]+n(n−1)E[P1P2]
}
.

Now we wish to claim that E[P1P2] ≤ E[PiPj] for any i 6= j (the idea being that P1,P2 are

more negatively correlated than Pi,Pj). Granting this, the right hand side of the above

expression is bounded by

−1+
n

∑
i=1

E[P2
i ]+2 ∑

i< j
E[PiPj] =−1+E[(∑

i
Pi)

2] = 0.

It remains to show that5 E[P1P2]≤ E[P1P3]. �

4.9 Application: Kahane’s convexity inequality

Here is the only application I know so far, where the extra power of Lemma 1 over Corol-

lary 2 is required. This lemma is crucially used in the theory of Gaussian multiplicative

chaos.

Lemma 27 (Kahane’s convexity inequality). Let X and Y be centered Gaussian vectors in Rn.
Assume that E[XiX j] ≤ E[YiYj] for all i, j. Then, for any p ∈ Rn

+ and any convex f : R+ 7→ R
that grows slowly enough, we have

E

[
f

(
n

∑
k=1

pkeXk− 1
2 E[X2

k ]

)]
≤ E

[
f

(
n

∑
k=1

pkeYk− 1
2 E[Y 2

k ]

)]
5In their paper, Kabluchko-Litvak-Zaporozhets invoke negative association (not clear how, but believable)

to say that E[P1P2]≤E[P1]E[P2]. But then, the desired derivative is negative if and only if E[P2
1 ]≤

1
n2 , whereas

E[P2
1 ]≥

1
n2 , by Cauchy-Schwarz inequality.
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Proof. Define F(x,A) = f
(

∑
n
k=1 pkexk− 1

2 ak,k

)
. As σY

i, j ≥ σX
i, j for all i, j, to apply Lemma 1 to

obtain the desired comparison, we only need to check that for any i 6= j,

(∂i∂ j +∂(i, j))F ≥ 0 and (∂2
i +2∂(i,i))F ≥ 0.

Denoting w = ∑
n
k=1 pkexk− 1

2 ak,k , direct computation gives

∂ jF(x) = f ′(w)p jex j− 1
2 a j, j

∂i∂ jF(x) = f ′′(w)pi p jexi+x j− 1
2 ai,i− 1

2 a j, j +δi, j f ′(w)p jex j− 1
2 a j, j

∂(i, j)F(x) =−δi, j
1
2

f ′(w)p jex j− 1
2 a j, j .

As f ′′ ≥ 0, the first summand in ∂i∂ jF(x) is non-negative for any i, j. That first term is

equal to (∂i∂ j +∂(i, j))F if i 6= j, and equal to (∂2
i +2∂(i,i))F if i = j. Hence the conditions of

Lemma 1 are satisfied and we get the claimed inequality. �

4.10 Application: Eigenvalues of random matrices

Here we present6 few applications of the basic results on Gaussian processes, namely con-

centration of measure and comparison theorems.

Extreme singular values of a rectangular Gaussian matrix: Let Am,n = (ai, j)i≤m, j≤n be a

matrix whose entries are i.i.d. N(0,1). We assume m≤ n and denote the singular values of

A by s1 ≤ s2 ≤ . . . ≤ sm (by definition s2
i are the eigenvalues of AAt). The following result

gives bounds for the smallest and largest singular values.

Theorem 28 (Gordon). With A as above, E[s1]≥
√

n−
√

m and E[sn]≤
√

n+
√

m.

Proof. For (u,v) ∈ T := Sm−1× Sn−1 define X(u,v) = utAv = ∑
m
i=1 ∑

n
j=1 ai, juiv j. It has zero

mean and E[|Xu,v−Xu′,v′|2] = 2−2〈u,u′〉〈v,v′〉 (check!).

Consider a different Gaussian process on the same index set defined by Y (u,v)=∑
m
i=1 uiξi+

∑
n
j=1 viηi where ξi,ηi are i.i.d. N(0,1). Then E[|Yu,v−Yu′,v′|2] = |u− u′|2 + |v− v′|2 = 4−

2〈u,u′〉− 2〈v,v′〉. Both X and Y are continuous on T and hence the comparison theorems

are applicable.

6This material is taken from the paper Local operator theory, random matrices and Banach spaces, by

Davidson and Szarek. Roman Vershynin has several lecture notes that cover this and much more.
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Thus,

E[|Yu,v−Yu′,v′|2]−E[|Xu,v−Xu′,v′|2] = 2(1−〈u,u′〉)(1−〈v,v′〉)

which is non-negative for all (u,v),(u′,v′) ∈ T . Therefore, by the Sudakov-Fernique in-

equality we get E[X∗] ≤ E[Y ∗]. Clearly Y ∗ ≤ ‖ξ‖+ ‖η‖ and E[‖ξ‖] ≤
√

E[‖ξ‖2] =
√

m and

E[‖η‖]≤
√

E[‖η‖2] =
√

n. But X∗ is precisely sm. Therefore E[sm]≤
√

n+
√

m.

Next observe that s1 = minu maxv Xu,v. We have already seen that

E[|Yu,v−Yu′,v′|2]≥ E[|Xu,v−Xu′,v′|2] for all u,v,u′,v′,

E[|Yu,v−Yu,v′|2] = E[|Xu,v−Xu,v′|2] for all u,v,v′.

For the second, observe that 〈u,u′〉= 1 when u = u′. Gordon’s inequality applies to give

E[s1] ≥ E[minu maxvYu,v]. As the last step in the proof, observe that picking v = η/‖η‖ and

u =−ξ/‖ξ‖ achieves the minu maxvYu,v and gives E[minu maxvYu,v] = E[‖η‖]−E[‖ξ‖]. Since

‖η‖2 ∼ χ2
n−1,

E[‖η‖] = 1
2n/2Γ(n/2)

∞∫
0

√
xe−xx

n
2−1dx =

√
2Γ(n+1

2 )

Γ(n
2)

and similarly E[‖ξ‖] =
√

2Γ(m+1
2 )

Γ(m
2 )

. Thus the theorem is proved if we show that E[‖η‖]−
E[‖ξ‖]≥

√
n−
√

m. Deduce this from Exercise 29. �

Exercise 29. Show that ν→
√

2Γ( ν+1
2 )

Γ( ν

2 )
−
√

ν is increasing for ν≥ 1.

Location of individual singular values of a Gaussian matrix: Let Am,n be a real sym-

metric matrix such that ai, j, i ≤ j are i.i.d. N(0,1) (it is okay to allow the diagonals to

have variance 2 to make it exactly a GOE matrix). Let λn,1 < .. . < λn,n be the eigenvalues

of An/
√

n (normalized so that the empirical distribution of eigenvalues converges to the

semicircle distribution as n tends to infinity)

Theorem 30. There exist deterministic numbers tn,k such that P{|λn,k− tn,k| ≥ u} ≤ Ce−cnu2

for all k ≤ n.

Proof. Recall the min-max representation

λn,n−k+1 =
1√
n

min
v1,...,vk−1

max
u:u⊥v j

utAu.
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From this (since A→ utAu is linear for each u) it follows that the function (ai, j)i≤ j≤n →
λn,n−k+1 is Lip(2/

√
n). By the Gaussian concentration inequality, if tn,n−k+1 is a median of

λn,n−k+1 then P{|λn,n−k+1− tn,n−k+1| ≥ u} ≤ 2Φ̄(u/2
√

n)≤ 2e−nu2/8. �

Remark 31. The well-known Wigner’s semicircle law says that the histogram of eigen-

values is close to the semi-circle density 1
2π

√
4− x2. This does not imply a quantitative

estimate for the location of individual eigenvalues. In contrast, the above theorem shows

that each eigenvalue is concentrated in a window of length essentially 1/
√

n. However

the actual facts (proved by harder methods specific to the problem) are that eigenvalues

are concentrated in even smaller windows (of length 1/n if k is away from 1 and n and of

length n−2/3 if k is close to 1 or n).

4.11 Application: Persistence probability

Let X = (Xn)n∈Z be a stationary Gaussian process. Define the persistence probability

HX(n) = P{X1 > 0, . . . ,Xn > 0}.

This is the probability that the process persists above level zero. It is a quantity that has

been studied considerably. Here we get a lower bound for positively correlated processes.

Claim 32. Assume that E[Xn] = 0 and E[XnXm]≥ 0 for all m,n. Then HX(n)≥ 2−n.

Proof. Fix m,n ≥ 0 and let X ,Y be two i.i.d. copies of the process. Observe that U =

(X1, . . . ,Xm+n) and V = (X1, . . . ,Xm,Ym+1, . . . ,Ym+n) have equal means and variances, and

E[UiU j] ≥ E[ViVj] for all i, j. Therefore, by Slepian’s inequality, we see that P{U∗ < 0} ≥
P{V ∗ < 0}, which is the same as HX(m+n)≥HX(m)HX(n). In particular, HX(n)≥HX(1)n =

2−n. �

In fact, by Fekete’s lemma, 1
n logHX(n) exists and is equal to κ := supn

1
nHX(n). Con-

sequently, if one can calculate HX(p) for a specific p, then one can get the better bound
1
p logHX(p) for κ.

The positivity of correlations used here is necessary (in general; we do not mean that

it is always needed).

Example 33. Let Zn be i.i.d. standard Gaussians and let Xn = Zn− Zn−1. Then X is a

stationary Gaussian process and HX(n) = P{Z0 < Z1 < .. . < Zn} = 1
n! , which decays faster

than exponentially. In this example, E[XnXn−1] =−1, not positive.
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4.12 Application: Mixing

Let X = (Xn)n∈Z be a centered stationary Gaussian process with κ(n) =E[Xm,Xm+n]. Without

loss of generality, assume that κ(0) = 1. If the covariance decays fast, we expect the process

at far off times to be approximately independent. To make a precise definition, introduce

the sigma-algebras Ft = σ{Xk : k ≤ t} and F t = σ{Xk : k ≥ t}. These are generated by the

corresponding algebras At and A t that are generated by left-open, right closed cylinders.

More precisely, At consists of finite unions of disjoint cylinder sets of the form ∩p
i=1{a j <

Xt j ≤ b j} where p ≥ 1, t j ≤ t, a j,b j ∈ R. The algebra A t is similar, except that we require

t j ≥ t.

The mixing coefficient is defined as

α(T ) := sup{|P(A∩B)−P(A)P(B) : A ∈ F0, B ∈ F T}

= sup{|P(A∩B)−P(A)P(B) : A ∈ A0, B ∈ AT}.

The equality comes from the general fact that if P is a probability measure on a sigma-

algebra F generated by an algebra A , then for any A ∈ F and ε > 0, there is a B ∈ A such

that P(A∆B)< ε.

A sufficient condition for mixing in stationary Gaussian sequences: We need to bound

P{X−i ≤ ai,1≤ i≤ m, XT+ j ≤ b j,1≤ j ≤ n}−P{X−i ≤ ai,1≤ i≤ m}P{XT+ j ≤ b j,1≤ j ≤ n}

We apply Piterbarg’s identity to U = ((X−i)i≤m,(XT+i)i≤n) and V = ((X−i)i≤m,(YT+i)i≤n),

where Y is an independent copy of X . The left hand side of the identity is exactly the

difference in probabilities that we want. On the right, many terms vanish and we are left

with (here ϕi, j is the density of (X−i,XT+ j))

m

∑
i=1

n

∑
j=1

(κ(T + j+ i)−1)
∫

π/2

0
ϕ

θ
i, j(ai,b j)P{?

∣∣Zi(θ) = ai,ZT+ j(θ) = b j} sinθcosθ dθ

which can be bounded by

C ∑
i, j≥1
|κ(T + i+ j)|

where C = supi, j≥1 ‖ϕθ
i, j‖sup. Observe that ϕθ

i, j is bounded by 1
2π

√
1−κ(T+ j+i)2

. Hence, if

κ(t)→ 0 as t→ ∞, then for large enough t, this can be bounded by 2. Thus,

α(T )≤C ∑
i, j≥1
|κ(T + i+ j)| ≤C ∑

`≥1
` |κ(T + `)|.
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If ∑ j j|κ( j)|< ∞, then this quantity goes to zero as T → ∞. Hence we arrive at

Proposition 34. Let X be a a centered stationary Gaussian process with correlation function
κ(t) = E[X0Xt ]. If ∑ j≥1 j|κ( j)|< ∞, then α(T )→ 0 as T → ∞.

4.13 Application: LLN for maximum

For the i.i.d. sequence Zn, we have seen that with Mn = max{Z1, . . . ,Zn}, then,

Mn√
2logn

P→ 1.

In fact we proved the stronger statement Mn−
√

2logn P→ 0. To what extend these asymp-

totics extend to approximately independent Gaussian sequences? Berman found pleasantly

simple and mild conditions.

Let X0,X1, . . . be jointly Gaussian random variables with zero means and unit variances.

Let K(m,n) = E[XmXn] and let r(n) = supm K(m,m+ n). If X is a stationary sequence, then

K(m,n) = r(n−m) for all m,n. Let MX
n = max{X0, . . . ,Xn−1}.

Theorem 35 (Berman). If r(n)→ 0 as n→ ∞, then MX
n√

2logn
P→ 1.

One side of this is trivial. If MX
n > (1+ ε)

√
2logn, then Xi > (1+ ε)

√
2logn for some

0≤ i≤ n−1. Union bound shows that

P{MX
n > (1+ ε)

√
2logn} ≤ ne−(1+ε)2 logn ≤ 1

n2ε
. (3)

What remains is to show that P{MX
n > (1−ε)

√
2logn}→ 1 for any ε > 0. We shall need the

following claim.

Exercise 36. Let Y1, . . . ,Yn be jointly Gaussian with E[Yi] = 0, E[Y 2
i ] = 1 and E[YiYj] = ρ > 0

for all i 6= j. Show that for any ε > 0, there is a sequence δn(ε)→ 0 such that

P{MY
n ≥

√
2(1−ρ− ε) logn} ≥ 1−δn(ε).

Proof of Berman’s theorem. Fix ρ > 0 and find m such that Since |r(k)| < ρ for all k ≥ m.

Consider the vector (X0,Xm,X2m, . . . ,X(`−1)m) and compare it to the vector Y in the exercise

above. The means and variances are the same, and Yis are more positively correlated,

hence by Slepian’s inequality,

P{ max
0≤ j≤`−1

X jm ≥
√

2(1−2ρ) log`} ≥ 1−δ`
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for some δ`→ 0. Consequently, taking `n = bn/mc as a function of n, we have

P{MX
n ≥

√
2(1−2ρ) logn} ≥ 1−δ`n.

since MX
n ≥ max{X jm : 0 ≤ j ≤ `n−1}. As δ`n → 0 and ρ is arbitrary, together with (3) this

completes the proof. �

Remark 37. Berman also shows that under the stronger assumption (say for stationary

Gaussian sequence) that nr(n)→ 0, the stronger conclusion Mn−
√

2logn P→ 0 holds.

Remark 38. What happens in continuous time? If X = (Xt)t∈R is a stationary Gaussian

process, then so is Xa := (Xan)n∈Z, for any a > 0. Consequently MX(T ) = sup{Xt : 0≤ t ≤ T}
is at least as large as MXa(T ). Hence, under the condition Cov(X0,Xt)→ 0 as t → ∞, the

lower bound of
√

2logT remains valid in continuous time.

Without regularity of paths, one can have MX(T ) = ∞ a.s. for all T > 0. Hence, to get

an upper bound, some regularity is required. After that, the upper bound of
√

2logT can

be deduced.
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Chapter 5

Boundedness and continuity of a

Gaussian process

5.1 The questions

Let X = (Xt)t∈T be a centered Gaussian process on a probability space (Ω,F ,P). Two

important questions that we shall address in this chapter: Can the Gaussian process be

constructed so that for a.e. ω ∈Ω, the sample paths are (1) bounded? (2) continuous? For

the second question to make sense, T must be assumed to have a topology. The continuity

question is natural, but why boundedness? It is really the study of X∗ := supt∈T Xt and

‖X‖= supt∈T |Xt |, which we have studied in specific situations earlier. Even the continuity

question, which is about the study of the (uniform) modulus of continuity

ωX(ε) := sup{Xt−Xs : t,s ∈ T, d(t,s)≤ ε}

as ε ↓ 0, is about the supremum of the Gaussian process Xt−Xs on the set {(t,s) : d(t,s)≤ ε}.
Irrespective of whether T comes with a metric or not, a big role will be played by the

metric τ(s, t) = ‖Xs−Xt‖L2(P) that comes by pulling back the metric under the curve t 7→ Xt

in the Hilbert space L2(P). Observe that τ may be a pseudo-metric, but this will not cause

any problems. Eg., If Xt = Z for all t, then K(t,s) = 1 for all t,s and τ(t,s) = 0 for all t,s.

We make a few preliminary observations.

1. As a standing convention, assume that X∗ is measurable so that quantities such as

P{X∗ > u} and E[X∗] make sense. Alternately, simply assume that T is countable, in

which case X∗ is indeed measurable. In all cases of interest (e.g., T = R), one can
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work with a countable dense set and then extend the conclusions to the full space in

the end.

2. Firstly, bounds on tail of X∗ and bounds on the expected value of X∗ imply each other.

• By Markov’s inequality, P{X∗ ≥ u} ≤ E[(X∗)+]/u.

• We have E[(X∗)+] =
∫

∞

0 P{X∗ > u}du. The lower side never poses a problem

since X∗ ≥ Xt0 for any t0 ∈ T and hence E[(X∗)−]≤ E[(Xt0)−] =
√

K(t0, t0)/
√

2π.

3. Obviously (X∗)+ ≤ ‖X‖. For a bound the other way, observe that for any t0 ∈ T ,

‖X‖ ≤ |Xt0|+ sup
t∈T

(Xt−Xt0)+ sup
t∈T

(Xt0−Xt).

Hence it suffices to study X∗, for example, E[‖X‖]≤ 2E[X∗]+E[|Xt0|] which is 2E[X∗]+√
K(t0, t0)

√
2
π
.

4. For boundedness, a necessary condition is that σ2
T := supt E[X2

t ] be finite. Indeed, for

any fixed t ∈ T

P{X∗ ≥ σt} ≥ P{Xt ≥ σt}= Φ(1)

is a fixed constant. Hence by taking t such that σt approaches σT , we see that P{X∗ ≥
σT} ≥ Φ(1). In particular, if σT = ∞, then X∗ = ∞ with positive probability (you can

make that probability equal to 1/2, or P{‖X‖= ∞}= 1).

5. For continuity, a necessary condition for continuity of X (when T is a metric space)

is that the mean function and covariance kernel be continuous. Other ways to say

this are that the curve t 7→ Xt in L2(P) must be continuous or that d must be stronger

than τ.

To see this, fix t,s∈ T and sequences tn→ t and sn→ s. From almost sure convergence

follows the convergence in distribution of (Xtn ,Xsn) to (Xt ,Xs), and as everything is

Gaussian, E[XtnXsn]→ E[XtXs]. That is, K(tn,sn)→ K(t,s), showing that K : T ×T 7→ R
is continuous. Similarly, the mean function has to be continuous. Thus, continuity of

the mean and covariance kernel are necessary for the continuity of sample paths.

That this condition is not sufficient is perhaps surprising at first, but that is the precise

topic of the chapter - to work out additional conditions that ensure continuity.
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6. When d is stronger than τ (i.e., if the covariance is continuous), then id : (T,d) 7→
(T,τ) is continuous. Thus if X has continuous sample paths w.r.t. τ, then it has

continuous sample paths w.r.t. d.

Now suppose (T,d) is compact. Then id : (T,d) 7→ (T,τ) is actually a homeomorphism

(being continuous, it maps compact sets to compact sets, and hence open sets to

open sets, proving the continuity in the reverse direction).

Thus, for compact metric spaces, continuity of the Gaussian process in the original

metric is equivalent to its continuity in the τ-metric. The restriction to compact

spaces is not a restriction - our spaces will be σ-compact, and in any case one does

not expect processes to be bounded or uniformly continuous on non-compact spaces.

7. We claim that whenever E[X∗] is finite, X∗ has Gaussian tails above its mean (with

exponent given by the maximal variance).

Consider the case of finite T = {1,2, . . . ,n}. The mapping (x1, . . . ,xn) 7→ x∗ = maxi xi

is a Lipschitz function with Lipschitz constant 1. If X ∼ Nn(0,Σ), we represent it as

X = BZ where Z ∼ γn and BBt = Σ. For any z,w ∈ Rn,

|(Bz)∗− (Bw)∗|=
∣∣max

i≤n

n

∑
j=1

bi, j(z j−w j)
∣∣

≤ ‖z−w‖2 max
i≤n

√
n

∑
j=1

b2
i, j =

(
max

i
σi,i

)
‖z−w‖2.

Thus, the mapping is Lipschitz with constant σT . By the Gaussian isoperimetric in-

equality (see the form in Theorem 21), it follows that

P{X∗ ≥ E[X∗]+σT x} ≤Ce−cx2

for universal constants C,c. In all cases of interest, it will be the case that X∗ is ap-

proximable by finite subsets of T , and hence (why?) we have the above concentration

bound for the upper tail of X∗.

With all these comments, let us not forget that we have not actually calculated the max-

imum except in the i.i.d. case and a weakly dependent case (Berman’s theorem). But

we have already built essential tools, such as the isoperimetric inequality that gave us the

concentration results above and comparison inequalities that will come in handy below.
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5.2 A lower bound for the expectation of the maximum

For a metric space T , let N(ε) denote the smallest size of an ε-net for T in the metric τ (i.e.,

the smallest m for which there are points t1, . . . , tm ∈ T such that B(t1,ε)∪ . . .∪B(tm,ε) = T ).

A closely related quantity if N′(ε), defined as the maximum size of an ε-separated set (i.e.,

the maximum m for which there are points t1, . . . , tm such that τ(ti, t j) ≥ ε for all i 6= j). It

is also called ε/2-packing number, since it is the maximum number of pairwise disjoint

ε/2-radius balls that one can pack into T . The two quantities N and N′ are comparable,

and can be used interchangeably.

Claim 1. N(ε)≤ N′(ε)≤ N(ε/2).

Proof. Let t1, . . . , tm be a maximal-cardinality ε-separated set in T so that m = N′(ε). The the

balls B(t j,ε/2) are pairwise disjoint, showing that any ε/2-net of T must contain a point

in each of these balls. Hence N(ε/2) ≥ m. Further, B(t j,ε), 1 ≤ j ≤ m, cover T , or else we

could add one more point to {t1, . . . , tm} maintaining ε-separation. Hence N(ε)≤ N′(ε). �

The quantity logN(ε) is called the metric entropy of (T,τ). If one uses logarithm to base

2, the metric entropy can be interpreted as the number of bits needed to identify any point

of T to an accuracy of ε. Because of the following inequalities, the same interpretation

applies to logN′(ε) and the same. The metric entropy function measures the size of the

metric space.

Theorem 2 (Fernique/Sudakov minoration). Let X be a centered Gaussian process on T . Let
τ be the associated metric on T . Then, if X∗ is measurable, then E[X∗]≥ κε

√
logN(ε) for any

ε > 0 (where κ is a universal cosntant). In particular, if T is not totally bounded in the metric
τ, then X must be unbounded w.p.1.

Proof. Let t1, . . . , tN be a minimal ε-net for T . Then τ(ti, t j) ≥ 1
2ε Then E[|X(ti)−X(t j)|2] ≥

1
2ε2E[|Zi−Z j|2], where Zi are i.i.d. standard Gaussians. By Sudakov-Fernique inequality,

X∗≥maxi≤N X(ti) has greater expectation than maxi≤N εZi. But we know that E[maxi≤n Zi]∼√
2logn as n→ ∞, hence E[maxi≤n Zi] ≥ κ

√
logn for some κ > 0. Consequently, E[X∗] ≥

κε
√

logN(ε).

To say that T is not totally bounded is the same as saying that N(ε) = ∞ for some ε > 0,

hence the second statement in the theorem. �

This theorem shows the relevance of the metric entropy to the problems of boundedness

of a Gaussian process. The following exercise shows the same for the continuity question.
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However, although entropy bounds are very powerful and sufficient for most purposes,

we shall see that the precise geometric feature of the metric space (T,τ) that controls the

boundedness/continuity is a different one.

Exercise 3. With the notation as in Fernique’s theorem, show that E[ωX(ε)]≥ κε
√

logN(ε).

5.3 The generic chaining upper bound

As we have remarked earlier, the lower tail of X∗ poses no difficulty, it is only the upper tail

that we need to control. Hence we can either write our bounds for E[(X∗)+] and P{X∗≥ u},
or define Y (t) = X(t)−X(t0) for some fixed t0 ∈ T and study Y ∗ (the convenience being that

Y ∗ ≥ 0 necessarily). The approaches are equivalent since X∗ =Y ∗−X(t0). Here is the basic

lemma by the method of generic chaining1.

Setting: Let X = (Xt)t∈T be a stochastic process with zero mean random variables indexed

by a metric space (T,τ) such that P{|Xt −Xs| ≥ uτ(t,s)} ≤ 2exp{−1
2u2} for all u > 0 and

for all t,s ∈ T . The case of interest for us is that of a centered Gaussian process with

τ(s, t) :=
√

E[|Xt−Xs|2].

Lemma 4 (The generic chaining bound). Let T be finite or countable. Fix t0 ∈ T and numbers
uk ≥ 1. Choose any finite subsets Tk ⊆ T with T0 = {t0} and such that each t ∈ T is contained
in Tk for all large k. Then for any x > 0 we have

P{X∗−Xt0 ≥ A} ≤ Q.

where A = 2sup
t∈T

∞

∑
k=1

ukτ(t,Tk) and Q = 2
∞

∑
k=1
|Tk| · |Tk−1|e−u2

k/2.

Proof. First take x = 0. Let πk(t) be any point of Tk closest to t, i.e., τ(t,πk(t)) = τ(t,Tk).

Then Xt −Xt0 = ∑
∞
k=1 Xπk(t)−Xπk−1(t) (the sum is finite by the assumption that πk(t) = t for

large enough k). If Xt −Xt0 > 2∑k ukτ(t,Tk), then there must be at least one k such that

Xπk(t)−Xπk−1(t) > uk(τ(t,Tk)+ τ(t,Tk−1)). For any t,s ∈ T and u≥ 1,

P{|Xt−Xs| ≥ u τ(t,s)} ≤ 2e−
1
2 u2

.

1This topic is beautifully explained in the book Upper and lower bounds for stochastic processes by Tala-

grand, who was after all the discoverer of many of these things. The older book Generic chaining by Talagrand

is also sufficient for our purposes (although strongly discouraged by Talagrand!).
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Hence, as τ(πk(t),πk−1(t))≤ τ(t,Tk)+ τ(t,Tk−1), it follows that

P{|Xπk(t)−Xπk−1(t)|> uk(τ(t,Tk)+ τ(t,Tk−1))} ≤ 2e−
1
2 u2

k .

There are |Tk| possibilities for πk(t), hence the union bound gives

P{sup
t
|Xt−Xt0| ≥ A} ≤ 2 ∑

k≥1
|Tk|× |Tk−1| e−

1
2 u2

k .

The right side is exactly Q. �

What is the right choice of uks and Tks? That is what we investigate next.

5.4 Dudley’s integral

For any choice of uks, to reduce the bound A, it is important that τ(t,Tk) be small. Hence

it seems natural to take Tk to be a minimal εk-net for some sequence εk ↓ 0. Then the

kth summand is like N(εk)N(εk−1)e−
1
2 u2

k . But then to get a finite Q, we must take uk &

C
√

logN(εk).

Let us make the following choices: Let εk = 2−k, let Tk be a minimal cardinality εk-net

and uk = u(1+4
√

log(Nk + k)) where u≥ 1 and Nk = N(εk). Then,

Q≤ ∑
k≥0

N2
k e−

1
2 u2(1+16log(Nk+k))

≤ e−
1
2 u2

∑
k≥0

N2
k

(Nk + k)8

≤ e−
1
2 u2

.

In the last line we used the fact that (Nk + k)8 ≥ 8N2
k k6 to bound the series in the previous

line by ∑k(8k6)−1, which is safely bounded by 1. Further, since supt τ(t,Tk)≤ εk,

A≤ 2
∞

∑
k=1

uk sup
t∈T

τ(t,Tk)

≤ 2u
∞

∑
k=1

εk(1+4
√

log(Nk + k)).

Now write
√

log(x+ y)≤
√

logx+
√

logy to bound the right hand side by

2u

(
∞

∑
k=1

2−k(1+4
√

logk) + 4
∞

∑
k=1

2−k
√

logNk

)
≤Cu(1+ J′(T ))
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where C is a constant (it can be easily bounded by 10) and J′(T ) = ∑
∞
k=1 2−k√logNk. By the

fact that ε 7→ N(ε) is decreasing, we see that

2−k−1
√

logNk ≤
∫ 2−k

2−k−1

√
logN(ε)dε ≤ 2−k−1

√
logNk+1.

and hence J′(T )� J(T ) where the Dudley integral J(T ) is defined as

J(T ) :=
∫

∞

0

√
logN(ε)dε.

The conclusion is summarized in the theorem below.

Theorem 5 (Dudley’s integral for boundedness). Let T be countable and fix t0 ∈ T . With
the notations above, for any u≥ 1, we have

P{X∗−Xt0 ≥Cu(1+ J(T ))} ≤ e−
1
2 u2

.

Further, E[(X∗)+]≤CJ(T ). Here C is a pure number. In particular, the finiteness of the Dudley
integral is a sufficient condition for the almost sure boundedness of the Gaussian process.

The extra additive term 1 is irrelevant and may be removed to write P{X∗ − Xt0 ≥
CuJ(T )} ≤ e−

1
2 u2

. We leave it as an exercise.

Compare the upper bound from Dudley integral to the lower bound due to Fernique

that we have seen before:
E[X∗]≥ κsup

ε

ε
√

logN(ε).

Dudley’s upper bound and Fernique’s lower bound are almost enough to answer the bound-

edness question decisively, but not quite. The ambiguity remains when the Dudley integral

is finite but Fernique’s lower bound is finite.

• If N(ε) ≤ exp{−ε−c} for c < 2, then the Dudley integral is finite, showing bounded-

ness.

• If N(ε) ≥ exp{−ε−c} for some c > 2, then the lower bound of Fernique is inifinite,

showing that the process is not bounded.

• If N(ε) � exp{ε−2}, then the lower bound is finite and the upper bound is infinite,

and hence the boundedness question remains unanswered.

As it happens, both Dudley’s and Fernique’s bounds are loose, and the right quantity that

determines boundedness is a different one, given in the next section. However, we shall

also see later that for stationary Gaussian processes, convergence of Dudley’s integral is

necessary for boundedness.
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5.5 Talagrand’s γ2-functional

We define two fundamental quantities.

Definition 6. For a metric space (T,τ), define the following by taking infima over all

choices of the sets {Tk} subject to the condition |Tk|= 22k
.

1. Talagrand’s γ2-functional: γ2(T ) := inf
{Tk}

sup
t

∞

∑
k=0

2k/2τ(t,Tk).

2. Dudley’s integral: J ′(T ) := inf
{Tk}

∞

∑
k=0

2k/2 sup
t

τ(t,Tk).

Observe that the choice uk = 2k/2 is consistent with the need that uk &
√

log |Tk|. The

name Dudley integral is justified by the following exercise.

Exercise 7. Show that J ′(T ) is (up to constants) the same as J(T ) defined earlier.

The difference between D(T ) and γ2(T ) is that in the former, the supremum is taken

inside the sum. The extra flexibility of γ2 comes from the fact that the sequence of sets {Tk}
an be chosen adapted to the point t. It gives both an upper and lower bound, and thus

settles the problem of finding the right condition for boundedness of a Gaussian process!

Theorem 8 (Talagrand). E[supt Xt−Xt0]� γ2(T ).

We have already proved the upper bound E[X∗−Xt0]. γ2(T ) (the first genereic chaining

bound!). The lower bound was conjectured by Fernique (in a different form) and proved

by Talagrand. We shall not prove this theorem here.

5.6 Dudley integral criterion for continuity

Recall that the modulus of continuity of a function f : X 7→ R on a metric space (X ,d) is

defined as ω f (δ) := sup{| f (x)− f (y)| : x,y ∈ T, d(x,y) < δ}. The uniform continuity of f is

equivalent to ω f (δ) ↓ 0 as δ ↓ 0. If ω f (δ)≤C f δα for some α ∈ (0,1] and C f < ∞, we say that

f is Hölder(α). When α = 1, we say that f is Lipschitz with Lipschitz constant C f .

We now want to investigate the modulus of continuity of a Gaussian process X on a

set T . We assume that T is countable as before. Let K be the covariance kernel and let

τ be the associated metric. The analysis is parallel to the generic chaining bound for the

supremum, and we constantly refer to the reasoning there for details.
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As in the generic chaining bound, let {t0}= T0 ⊆ T1 ⊆ T2 ⊆ . . . that increase to T , and let

πk(t) be the “projection” of t to Tk as defined there. For t,s ∈ T , write the telescoping sum

as before:

Xt−Xt0 =
∞

∑
k=1

Xπk(t)−Xπk−1(t), Xs−Xt0 =
∞

∑
k=1

Xπk(s)−Xπk−1(s).

Now suppose πk(t) = πk(s) for k ≤ m(t,s). The idea being that if t and s are close, then

m(t,s) is large (one must choose Tks reasonably, of course). Then,

|Xt−Xs| ≤ ∑
k>m(t,s)

|Xπk(t)−Xπk−1(t)|+ ∑
k>m(t,s)

|Xπk(s)−Xπk−1(s)|

≤ 4 ∑
k≥m(t,s)

max
u∈Tk,v∈Tk−1

|Xu−Xv|.

Hence if we write Am = 4sup
t∈T

∑
k>m

ukτ(t,Tk) and Qm = 2 ∑
k>m
|Tk| · |Tk−1|e−u2

k/2 (for some choice

of uks), then we see that for fixed δ > 0, writing m(δ) = min{m(t,s) : τ(t,s)≤ δ},

P{ωX(δ)> Am(δ)} ≤ Qm(δ).

Now let us make the choice of uks and Tks, as in the Dudley integral bound earlier. That

is, fix εk = 2−k and let Tk be a maximal cardinality εk-separated set in T (earlier we chose

it to be a minimal cardinality εk-net) and set uk = 1+ 5
√

log(Nk + k). Then, with similar

analysis as before,

Qm ≤ ∑
k≥m

N2
k

(Nk + k)5

≤ ∑
k≥m

1
1+ k3

≤ 1
m2

and
Am ≤C ∑

k≥m
2−k
√

logNk

where Nk = N(2−k).

For this choice of Tks, if τ(t,s)≤ 2−r−2, then

τ(πk(t),πk(s))≤ τ(πk(t), t)+ τ(πk(s),s)+ τ(s, t)≤ 32−r,
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for k ≤ r and hence πk(t) = πk(s) for k ≤ r (otherwise τ(u,v) ≥ 2−r for u,v ∈ Tr). Thus,

m(δ)≥ c log(1/δ). Putting this together with the previous bounds, we arrive at

P
{

ωX(2−r)≥C
∫ 2−r

0

√
logN(ε)dε

}
≤ 1

r2 .

As this is summable, we see that with probability one, ωX(2−r)≤C
∫ 2−r

0

√
logN(ε)dε for all

large enough r, or equivalently

ωX(δ)≤ K
∫

δ

0

√
logN(ε)dε

for all δ ∈ (0,1], for some random constant K. This shows that whenever the Dudley inte-

gral is finite, the process X is uniformly continuous on T . We summarize the conclusions.

Theorem 9. Let T be a countable set and let X be a centered Gaussian process on T with the
associated pseudo-metric τ(t,s) := ‖Xt −Xs‖L2. If the Dudley integral J(T ) =

∫
∞

0

√
logN(ε)dε

converges, then the process X is uniformly continuous on T and has (w.r.t. τ) the modulus of
continuity ωX(δ) ≤ K

∫
δ

0

√
logN(ε)dε for all δ for a random variable K that is finite almost

surely.

In the remaining sections, we apply these general theorems based on Dudley’s bound

in many examples of interest.

5.7 Example: Independent Gaussians

Let Xk ∼N(0,σ2
k) be independent. Assume that σ2

k decreases to 0. Then τ(m,n) =
√

σ2
n +σ2

m.

Note that for m< n we have σm≤ τ(m,n)≤σm
√

2. For simplicity let us pretend that τ(m,n)=

σm∧n (we leave it as an exercise to make appropriate modifications).

If 0 < ε < σ1, then there is a unique n such that σn ≤ ε < σn−1. Then {1,2, . . . ,n} is an

ε-net whence N(ε) ≤ n. Since τ(i, j) > σn−1 > ε for i, j ≤ n−1, it is clear that N(ε) ≥ n−1.

Thus the Dudley integral is (as always ignoring constant factors) J =∑
∞
k=2(σk−1−σk)

√
logk.

On the other hand, we may write Xn = σnξn where ξn are i.i.d. N(0,1) variables. Recall

that limsup
n→∞

ξn√
2logn = 1 a.s. (if not clear, provide a proof!). Thus, supn Xn < ∞ a.s. whenever

limsupσn
√

logn < ∞.

Thus, by choosing, for example, σn =
1√

logn log logn , we see that the Dudley integral may

diverge but the supremum is finite.

Exercise 10. Compute γ2 or at lease verify that it is finite for this choice of σns.
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5.8 Example: Brownian motion

Suppose X is a Gaussian process on [0,1] satisfying E[|Xt −Xs|2] ≤C|t− s|α for some α > 0

and constant C. We restrict to a coutnable dense subset such as dyadic rationals to apply

the theorem above.

Then τ(t,s) ≤ C|t − s|α and N(ε) ≤ Cε−1/α and hence the Dudley integral converges.

Thus X is almost surely uniformly continuous on dyadic rationals, and hence extends con-

tinuously to [0,1] almost surely. Further, the modulus of continuity of X on [0,1] is the

same as on the dense subset. It is

ωX(δ)≤
K√
α

∫
δ

0

√
log

1
ε

dε ≤ K′δ

√
log

1
δ
.

Observe that this is with respect to the metric τ. If |t− s| ≤ δ, then τ(t,s)≤Cδα and hence

with respect to the Euclidean metric ωX(δ) ≤ K′′δα

√
log 1

δ
. In particular, the sample paths

of X are almost surely Hölder(β) for any β < α.

In the special case of Brownian motion, K(t,s) = t ∧ s and hence τ(t,s) =
√
|t− s|. This

corresponds to the case α = 1
2 . Therefore, the modulus of continuity is O(

√
δ log 1

δ
) and the

paths are Hölder(1
2 − ε) for any ε > 0.

5.9 Example: Processes on the boundary of spherically

symmetric trees

Let T be a rooted locally finite tree. Fix λ > 1 and recall the Gaussian process on the

boundary ∂T defined by 2.

Xξ :=
∞

∑
k=0

Zvkλ
−k/2

for ξ = (v0,v1, . . .) ∈ ∂T . We have fixed λ > 1 and chosen Zv i.i.d. standard Gaussians. We

have seen that the associated metric τ is (up to some constant multiple that we ignore)

given by τ(ξ,η) = λ−|ξ∧η|.

2The lower bounds here are all due to Fernique. Our presentation is essentially from Kahane’s book

Some random series of functions. He does not mention trees but what we call spherically symmetric trees are

referred to as generalized Cantor sets there. But the essence is the same. We have simplified some proofs,

perhaps correctly.
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The goal: We wish to say that for a class of such processes, convergence of the Dudley

integral is necessary for the boundedness of the process.

With this goal in mind, we need an upper bound for the Dudley integral and a lower

bound for the expectation of the supremum. We restrict to a class of trees known as

spherically symmetric trees. By definition, this means that there are numbers mk ≥ 1 such

that all vertices in the kth generation have exactly mk children.

Upper bound for the Dudley integral: Given ε > 0, choose m such that λ−n ≤ ε < λ−n+1.

If we take a collection of |Tn| paths from the root, one passing through each vertex in the

n-th generation, then that gives an ε-net for ∂T (since any path from the root has to pass

through one of these vertices). Therefore, N(ε)≤ |Tn|. Hence the Dudley integral

J(∂T )≤Cλ ∑
k≥0

λ
−k/2

√
log |Tk|.

Under the assumption of spherical symmetry, |Tk|=m0m1 . . .mk−1. Therefore, using
√

log(x+ y)≤
√

logx+
√

logy, we see that

J(∂T )≤Cλ ∑
k≥0

λ
−k/2

k−1

∑
j=0

√
logm j

=Cλ

∞

∑
j=0

√
logm j

∞

∑
k= j+1

λ
−k/2

≤C′
λ

∞

∑
j=0

λ
− j/2√logm j. (1)

Lower bound for the expected supremum: One way to get a lower bound for X∗ is to use

a greedy algorithm. We define u0 = 0 (the root) and having chosen u0, . . . ,uk, we choose

uk+1 as the child of uk for which Zu is maximized. That is, Zuk+1 ≥ Zv for uk  v. Let the

resulting path be ξ = (u0,u1, . . .) ∈ ∂T . Then

X∗ ≥ Xξ = ∑
k≥0

λ
−k/2M(uk)

where M(u) = max{Zv : u v}.
Recall that the expectation of the maximum of n i.i.d. standard Gaussians is at least

κ
√

logn for some κ > 0. Therefore, if Fk = σ{Zv : |v| ≤ k}, then E[M(uk)
∣∣∣∣∣∣ Fk] ≥ κ

√
logmk
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and the same lower bound must hold for the unconditional expectation. Consequently,

E[X∗]≥ κ ∑
k≥0

λ
−k/2

√
logmk. (2)

By comparing (2) with (1),and the general upper bound E[X∗] . J, we arrive at the fol-

lowing theorem.

Theorem 11. Let T be a locally finite, infinite, rooted, spherically symmetric tree. Let Zv be
i.i.d. standard Gaussian variables indexed by the vertices of T and let λ > 1. Let X be the
Gaussian process on ∂T defined by X(ξ) = ∑k≥0 Zξk

λ−k/2. Then, E[X∗]� J(∂T ). In particular,
the process is bounded if and only if the Dudley integral is finite.

Exercise 12. Under the same conditions, is it true that the process is continuous on ∂T if

and only if the Dudley integral is finite?

Exercise 13. Exact homogeneity is not needed. Let mk be as above and suppose each vertex

in generation k has between m0.01
k and m100

k children. The tree need no longer be spherically

symmetric, but show Dudley integral is a lower bound for the expected supremum.

5.10 Example: Stationary processes

If G is a group and X is a centered Gaussian process indexed by G, then recall that X is

said to be left-stationary if (Xhg)g
d
= (Xg)g∈G for any h ∈ G. For Gaussian processes, this just

means that τ(hg,hg′) = τ(g,g′) for all g,g′,h.

Theorem 14 (Fernique). Let G be a locally compact group and let X be a centered stationary
Gaussian process on G. For any compact K ⊆G, let J(K) denote the Dudley integral of (K,τX).
Then, for any g0 ∈K, we have E[supg∈K Xg−Xg0]≥ κJ(K) for some constant κ > 0 (which may
depend on the group).

Proof. Let τ = τX . Without loss of generality, assume that diaτ(K) = 1. Let S0 = {1} and

for k ≥ 1 let Sk be a maximal 2−k-separated set in Bτ(1,2−k+1) (open ball centered at the

identity). If gi ∈ Si for all i≥ 1, then

τ(g1 . . .gm,g1 . . .gm−1) = τ(1,gm)≤ 2−m+1
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as Sm forms a 2−m-net for Bτ(1,2−m+1). From this, just as in binary expansion of numbers,

it follows that all finite products of the form g1g2 . . .gm where m≥ 1 and gi ∈ Si, are distinct.

The set of all such elements are dense in Bτ(1,1) and hence in K. To see this, start with

g ∈ Bτ(1,1), find g1 ∈ S1 so that τ(g,g1)≤ 2−1. Then g−1
1 g ∈ Bτ(1,2−1) and hence within 2−2

distance of some g2 ∈ S2, which means that g−1
2 g−1

1 g ∈ Bτ(1,2−2), and so on, showing that

g1 . . .gm converges to g.

Now let T be the tree whose vertex set is the collection of all such finite products

g1 . . .gm with m≥ 1 and gi ∈ Si, where g1 . . .gm+1 is a child of g1 . . .gm. Then T is a spherically

symmetric tree in which all vertices in the kth generation have mk+1 = |Sk+1| children. From

the earlier discussion, it is clear that the each element of ξ=(u0,u1, . . .)∈ T may be mapped

to the group element of gξ = limun. It is possible that gξ = gη for distinct ξ,η. In fact, in

terms of the metric τ4(ξ,η) = 4−|ξ∧η|, we have

τ̃(ξ,η) := τ(gξ,gη)≤ 3τ4(ξ,η) for all ξ,η ∈ ∂T ,

but no such inequality holds in the other direction. However, the reverse inequality can

hold on appropriate subsets of ∂T . For example, consider the subsets ∂0T and ∂1T defined

by

∂rT = {ξ = (u0,u1, . . .) ∈ ∂T : uk+1 is the first child of uk if k 6= r(mod 2)}

If ξ = (u0,u1, . . .) and η = (v0,v1, . . .) are in ∂rT , then u j 6= v j for |ξ∧η|+1≤ j ≤ |ξ∧η|+9,

which implies that

τ(ξ,η)≥ 4−|ξ∧η|

(
1+

1
4
−3

∞

∑
j=2

4− j

)
≥ τ4(ξ,η) (3)

as the sum in the brackets on the previous line is equal to 1. This is the reverse inequality

we wanted.

Now we have two processes on ∂T : The process X (or more precisely the process

ξ 7→ X(gξ) from the Gaussian process on G and the process Yξ = ∑k 4−k/2Zuk for ξ = (1 =

u0,u1,u2, . . .), where Zv are i.i.d. standard Gaussians. The metrics on ∂T associated to X

and Y are τ̃ and τ4, respectively. Therefore, it is clear that

Jτ̃(∂T )≤ 3Jτ4(∂T ).

In particular, if Jτ̃(∂T ) is infinite, then so is Jτ4(∂T ). We also know that E[Y ∗]� Jτ4(T ).
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The Sudakov-Fernique inequality gives E[X∗]≤ 3E[Y ∗], but we need an inequality in the

other direction (something that gives a lower bound for E[X∗]). For that purpose, consider

the subtrees ∂rT , r = 0,1. Indeed, from the inequality (3), we see that E[X∗
∂rT ] ≤ E[Y ∗

∂rT ]

for r = 0,1.

Now, we leave it as an exercise to check that E[Y ∗
∂T ]� J(∂rT ) for r = 0,1. And also that

Jτ4(∂T )≤ Jτ4(∂0T )+ Jτ4(∂1T ).

Combining all these, we arrive at E[X∗K]� J(τK). �

Exercise 15. Let X be a stationary Gaussian process on a locally compact group G. If X is

continuous a.s., then is it true that the Dudley integral must converge?

5.11 Example: GFF on a domain

Recall that the Gaussian free field on a domain U having Green’s function G was defined to

be a Gaussian process on the space M of signed-measures having finite logarithmic energy

(i.e.,
∫∫

G(x,y)d|µ|(x)d|µ|(y) is finite).

Question: Is this process continuous on M ? Bounded on compact subsets of M ?

5.12 A lemma of Garsia, Rodemich and Rumsey

Around the same time as Dudley’s criterion, a different approach was found to generalize

Dudley’s criterion. The relationship between the two, their relative strengths etc.,?. The

key to this approach is a real-variable lemma that has no randomness in it.

Lemma 16 (Garsia, Rodemich, Rumsey). Let f ∈ [0,1] 7→ R be a continuous function. Let
Ψ, p : R+ 7→ R+ be strictly increasing continuous functions such that Ψ(0) = 0, p(0) = 0,
ψ(x)→ ∞ as x→ ∞. Suppose

I :=
∫ 1

0

∫ 1

0
Ψ

(
| f (t)− f (s)|

p(t− s)

)
dt ds < ∞.

Then, ω f (δ)≤ 8
∫

δ

0 Ψ−1(4I/u2) d p(u) for any δ > 0.

For now, we skip the proof3. Let us see how this is useful to the question of continuity

of Gaussian processes.
3It is explained in good detail in several lecture notes of S. R. S. Varadhan, this one for example.
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Remark 17. One may worry that the hypothesis of the lemma already has continuity in it.

It can be rephrased for a measurable function f satisfying I < ∞ that

| f (x)− f (y)| ≤ 8
∫

δ

0
Ψ
−1(4I/u2) d p(u) for a.e. x,y ∈ [0,1].

Then of course, one may consider the restriction of f to this set of full measure and extend

it continuously to [0,1] preserving the same modulus of continuity.

Let X = (Xt)t∈[0,1] be a stochastic process (not necessarily Gaussian) on [0,1]. Assume,

like in the Kolmogorov-Centsov theorem, that E[|Xt −Xs|b] ≤ C|t− s|1+a for all t,s ∈ [0,1],

for some a,b > 0 and C < ∞. Then let p(u) = uc for some c > 0 and let Ψ(u) = uβ. These

functions are as in the Lemma above, and further,

E[I] =
∫ 1

0

∫ 1

0
E
[
|Xt−Xs|b

|t− s|cb

]
dt ds

≤C
∫ 1

0

∫ 1

0
|t− s|1+a−cb dt ds

< ∞ if 1+a− cb >−1.

Thus for c < a+2
b , almost every sample path satisfies the conditions of the lemma, and we

conclude that the modulus of continuity is

ωX(δ)≤ 8
∫

δ

0
(4I/u2)1/b cuc−1du =CI

1
b δ

c− 2
b .

Thus, we get Hölder continuity with any exponent less that a
b . Note that the constant I is

random, as one would expect, but it is finite almost surely, as its expectation is finite. This

may be the point to note in applying the GRR lemma to random processes. To show that

I < ∞ w.p.1., one can work on its expectation, and that only requires knowledge of the

bivariate distributions (Xt ,Xs).

Exercise 18. Assume that the process X is Gaussian. Choose Ψ and p differently to prove

that ωX(δ)≤Cδ
a
b

√
log 1

δ
for all δ > 0, for a random finite constant C.

5.13 Remark on sigma-algebras when T is not countable

Recall that the main lemmas using chaining were stated for countable index sets. What

about in general? For definiteness, let us take T = [0,1], the general situation being similar.
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As defined, a stochastic process is a random variable X on some (Ω,F ,P), taking values

in (RT ,CT ), where CT :=⊗t∈T BR is the cylinder sigma-algebra. Any event measurable with

respect to CT depends only on countably many co-ordinates. Hence, natural subsets of RT

such as C(T ), C1(T ), C∞(T ), etc., are not measurable. The question: “Does X(ω) belong to

C(T ) for almost all ω?” does not make literal sense. There are two ways in which we make

sense of this and similar questions.

First, let use say that Y (on a possibly different probability space) is a version of X if

Y d
= X . As CT is generated by finite dimensional cylinder sets, this is the same as saying

that the finite dimensional distributions agree: (Y (t1), . . . ,Y (tk))
d
= (X(t1), . . . ,X(tk)) for all

k ≥ 1 and t1, . . . , tk ∈ T . The question, “Is X continuous a.s.” is then interpreted as “Is there

a version of X that has continuous sample paths a.s.”. This distinction is necessary because

even if one version is continuous, other versions need not be. For example, when T = [0,1]

and X is a continuous stochastic process, if we pick U ∼ uniform[0,1] independent of X , and

set Yt = Xt1t 6=U , then then Y is not continuous (in general). Similar considerations apply

to questions such as “Does X have smooth sample paths?”. Since there is no reason to

use versions that are not the best possible in sample path behaviour, one simply says “X is

continuous/smooth”, implying that one is considering a version that is continuous/smooth.

A second way, which is just as good for everything of interest, is to consider a count-

able dense set D ⊆ T , such as the set of dyadic rationals. For the restricted stochastic

process XD = (Xt)t∈D, the cylinder sigma-algebra has all the events one wants. For exam-

ple, {X is uniformly continuous on D} is an event in CD, as it can be written as

⋂
n≥1

⋃
k≥1

⋂
t,s∈D:|t−s|≤ 1

k

{
Xt−Xs ≤

1
n

}
.

Similarly, {XD extends to T as a smooth function} is also an event in CD (why?). Now, the

original question “Is X continuous on T a.s.?” may be interpreted as “Is XD uniformly

continuous on D?”. Similarly, “Does X have smooth sample paths?” is interpreted as “Does

the event {XD extends to T as a smooth function} have probability 1?”. The only point one

should check in this approach is that the answers do not depend on the chosen countable

dense set, which we leave as an exercise.
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5.14 Smooth Gaussian processes

So far we have been worried about whether the process is good enough to be continuous

or bounded. What about asking for more? It turns out to be easier, in a way.

Proposition 19. Let X be a Gaussian process on a open subset T of Rd with covariance
function K. The sample paths of X are C∞(T ) almost surely if and only if K is C∞(T ×T ).

One can also write counterparts of this theorem for C(p) paths, which is roughly (but

not exactly) equivalent to the covariance being C(2p).

Proof. For simplicity of notation we assume d = 1. And we assume the process is centered

as always.

Suppose that X has smooth sample paths almost surely. Let Xh(t) = (X(t +h)−X(t))/h

for h > 0. For each h, the process Xh is a Gaussian process, in fact, X and Xh are jointly

Gaussian and

E[Xh(t)X(s)] =
1
h
(K(t +h,s)−K(t,s)).

As Xh(t)→X ′(t) a.s. as h→ 0, and for Gaussians this implies convergence of the parameters,

the left hand side converges to E[X ′(t)X(s)]. This shows that K(·,s) is differentiable and

has derivative ∂1K(t,s) = E[X ′(t)X(s)]. Now play the same game to see that

∂1K(t,s+h)−∂1K(t,s)
h

= E[X ′(t)Xh(s)]→ E[X ′(t)X ′(s)]

to see that ∂1∂2K(t,s)=E[X ′(t)X ′(s)]. More generally, inductively one can see that ∂
p
1∂

q
2K(t,s)=

E[X (p)(t)X (q)(s)] for any p,q≥ 1.

Conversely, suppose K is smooth. Without loss of generality, let us assume that X(0) = 0

a.s. (otherwise we work with the process X(t)−X(0)). From the calculations above, we

see that

E[Xh(t)Xh(s)] =
K(t +h,s+h)−K(t +h,s)−K(t,s+h)+K(t,s)

h2 → ∂1∂2K(t,s).

This shows that ∂1∂2K(t,s) is a limit of covariance functions and hence positive semi-

definite. Let Y be a Gaussian process with covariance ∂1∂2K. As the covariance is smooth,

it is clear from the Dudley integral that Y is continuous (i.e., we may choose Y to be

continuous) a.s. Define X̂(t) =
∫ t

0 Y (s)ds. Since we assumed that X(0) = 0, it follows that
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K(t,0) = 0 = K(0,s) for all t,s, from which it is easy to see that (this is for the second line

below)

E[X̂(t)X̂(s)] =
∫ t

0

∫ s

0
∂1∂2K(u,v) dv du (by linearity)

= K(t,s).

Thus, X̂ is a version of X . But X̂ is C1 with derivative equal to Y . Continuing this way, we

see that for any p, the process X has a version that is C(p).

To conclude that X has an infinitely smooth version, fix a countable dense subset D⊆R
as in the previous section. Let Ap be the even that XD = (Xt)t∈D extends as a C(p) function

to all of R. By the proof so far, P{Ap} = 1 for all p ≥ 1, hence P{∩pAp} = 1. That means

that there is an infinitely smooth version. �

Another way to prove this proposition is to express X as a random series (which is

possible as we shall see later). The following exercise is a simpler illustration of this idea.

Exercise 20. Show that X has a real-analytic version on Rd if and only if K is real-analytic

on Rd×Rd.

Stationary processes

From Fourier analysis, we know that if µ is a finite measure on R, then µ̂ is infinitely

smooth if and only if µ has moments of all orders. Therefore, a stationary Gaussian pro-

cess has smooth sample paths if and only if its spectral measure has moments of all orders.

Similarly, real-analyticity of the sample paths (and hence of the covariance function) cor-

responds to existence of moment generation function (in a neighbourhood of the origin)

of the spectral measure.
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Chapter 6

Stationary Gaussian processes

Let T = Rd or Zd. For some parts of this chapter we stick to one or the other, or d = 1,

while other parts may be generalizable to other groups.

6.1 Parameterizing stationary Gaussian processes

Let T be Zd or Rd and let X = (Xt)t∈T be a stationary Gaussian process on T . Its distribution

is determined by the covariance function, which is of the form E[XtXs] = K(t− s), where

K : T 7→ R is a positive semi-definite function. Assuming continuity, we have seem that

such a function is necessarily the Fourier transform of a finite symmetric measure µ on

T̂ (where T̂ = [−π,π]d if T = Zd and T̂ = Rd if T = Rd), which is known as its spectral

measure. Sometimes it gets annoying and restrictive to impose symmetry on the spectral

measure, hence some authors consider complex-valued Gaussian processes (meaning X +

iY , where X ,Y are jointly Gaussian processes), in which case, the spectral measure is any

finite measure on T̂ . But we stick to real-valued processes.

In this sense, stationary Gaussian processes on T are parameterized by either the class

of positive semi-definite functions or by the class of finite symmetric measures. There are

other parametrizations that are possible and sometimes convenient. We introduce one of

them now1.

Case T =Z: Let µ be any finite measure on S1 = [−π,π]. One can apply Gram-Schmidt pro-

1The parts about Verblunsky coefficients and OPUC are taken from Barry Simon’s book Orthogonal poly-
nomials on the unit circle Part 1: Classical theory and Bingham’s paper Szegö’s theorem and its probabilistic
descendents.
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cedure to ek(z) = zk, k≥ 0, in L2(S1,µ), to get an orthonormal basis {ϕ0(z),ϕ1(z),ϕ2(z), . . .}.
Then ϕk is a polynomial of degree k, and we write ϕn(z) = κnΦn, where Φn is a monic

polynomial and κ−2
n = ‖Φn‖2

L2(µ). If µ is not finitely supported, these polynomial sequences

are infinite. Let P∗(z) = znP(1/z). If P(z) = a0 + a1z+ . . .+ anzn, then P∗(z) = an + an−1z+

. . .+ a1zn−1 + a0zn. Observe that Φ∗0, . . . ,Φ
∗
n also span the space of degree n polynomials.

The key point is that Φk is orthogonal to e0, . . . ,ek−1 while Φ∗k is orthogonal to e1, . . . ,ek.

The polynomial e1Φk−Φk+1 has degree k and hence (e1 = e−1 on S1)

〈e1Φk−Φk+1,e j〉= 〈Φk,e j−1〉−〈Φk+1,e j〉 = 0

for 1 ≤ j ≤ k− 1. Therefore, we must have e1Φk−Φk+1 = αkΦ∗k for some αk ∈ C. By the

orthogonality,

‖e1Φk‖2 = ‖Φk+1‖2 + |α|2‖Φ∗k‖2

= ‖Φk+1‖2 + |α|2‖Φk‖2

showing that |αk|< 1 and κ
−2
n+1 = κ−2

n (1−|αn|2). Hence, κ−2
n = (1−|α0|2) . . .(1−|αn−1|2) for

all n (the right side is interpreted as 1 when n = 0). The numbers αk are called Verblunsky
coefficients. We summarize the Szegö recursions

Φn+1(z) = zΦn(z)−αnΦ
∗
n(z),

Φ
∗
n+1(z) =−αnzΦn(z)+Φ

∗
n(z).

The second equation can be got by applying the ∗ operation to the first equation. It is a

fact that we do not justify here, that the correspondence between measures µ on S1 with

infinite support and sequences α = (αn)n≥0 ∈ DN, is in fact a bijection. The measure µ is

symmetric if and only if αn is real for each n (why?).

Remark 1. It is often useful to write this in matrix form[
Φn+1(z)

Φ∗n+1(z)

]
=

[
z −αn

−αnz 1

][
Φn(z)

Φ∗n(z)

]
.

This suggests that the linear fractional transformation z 7→ z−αn
1−αnz is lurking in the back-

ground.

The upshot of all this is that centered Gaussian processes (on Z may also be parameter-

ized by IN where I =(−1,1)(strictly speaking, by INt{−1,1}tI×{−1,1}tI2×{−1,1}t. . .,
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if you allow spectral measures with finite support) via the Verblunsky coefficients of the

spectral measure. This is in some ways better than the original parameterization by the

correlation function K = (K(n))n≥0, because the correlation coefficients satisfy complicated

positivity inequalities, while the Verblunsky coefficients are unrestricted! On the other

hand, the probabilistic interpretation of the Verblunsky coefficients is less obvious.

Exercise 2. Let P[ j,k] denote the projection operator in L2(µ) onto span{eq : j≤ q≤ k}. Then

αn = 〈(I−P[0,n])en,(I−P[−n,−1])e0〉. By the isomorphism, this is the same as the correlation

between Xn−E[Xn

∣∣∣X0, . . . ,Xn−1] and X0−E[X0|X−1, . . . ,X−n]. In Statistics, it is known as the

partial autocorrelation function of n.

Remark 3. If µ was supported on n points, then Φn = 0, which shows that |αn−1|2 = 1.

Thus, in the finite support case, we have (α0, . . . ,αn) ∈ Dn−1×S1. This is in fact a one-one

parameterization of measures supported on exactly n points.

6.2 The one sided prediction problem

Consider a stationary Gaussian process on Z or R. The one-dimensionality is important

here (there may be analogues in higher dimension). For definiteness, let us consider X =

(Xn)n∈Z, a centered Gaussian process with spectral measure µ on [−π,π]. Let Ft = σ{Xs : s≤
t}. The best predictor in L2-sense for X0 given F−1 is E[X0

∣∣∣∣∣∣ F−1] and the prediction error is

E
[
|X0−E[X0

∣∣∣∣∣∣ F−1]|2
]
= Var(X0

∣∣∣∣∣∣ F−1).

On the right one should say E[Var(X0
∣∣∣∣∣∣ F−1)] in general, but we know that for Gaussians,

the conditional variance does not depend on the conditioned values of the random vari-

ables.

Here is a characterisation of the situations in which the prediction is perfect!

Theorem 4. [Szegö]Let dµ(x) = w(x) dx
2π

+ dµs(x) where µs is singular to Lebesgue measure
and w is the density of the absolutely continuous part. Then, the prediction error is zero if and
only if

∫
[−π,π] logw(x)dx >−∞. Further,

1. The prediction error is precisely exp
{

1
2π

∫
[−π,π] logw(x)dx

}
.

2. In case where the prediction error is zero, Var(Xn
∣∣∣∣∣∣ Fm) = 0 for any m < n.
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First we make some preparations. Let Σn = (µ̂( j−k))1≤ j,k≤n and let vt
n = (µ̂(1), . . . , µ̂(n)).

Let σ2
n = Var(X0

∣∣∣∣∣∣ X−1, . . . ,X−n) which is the same as ‖(I−P[−n,−1])e0‖2
L2(µ) by the isomor-

phism theorem. Clearly σ2
n is decreasing, its limit σ2 exists. By the interpretation as norms

of projections onto decreasing subspaces, it is also clear that σ2 = Var(X0
∣∣∣∣∣∣ F−1) which is

the same as ‖(I−P(−∞,−1])e0‖2
L2(µ). Therefore

σ
2
n = min

{∫
|U |2dµ : U = e0 + c1e−1 + . . .+ cne−n, ck ∈ R

}
. (1)

For U as above, Uen is a monic polynomial, and has the same L2(µ) norm, hence the above

infimum may also be taken over monic polynomials of degree n in one complex variable.

This is the form that we shall use, but it is worth noting that there are several other

forms that one could write. For instance, by the formulas for conditional distribution of

Gaussians,

σ
2
n =

det(Σn+1)

det(Σn)
= µ̂(0)− vt

nΣ
−1
n v. (2)

Yet another formula is in terms of the Verblunsky coefficients:

σ
2
n =

n−1

∏
k=0

(1−|αk|2). (3)

Therefore, the following quantities are all equal.

1. Var(X0
∣∣∣∣∣∣ F−1).

2. inf{‖U‖L2(µ) : U is a monic polynomial in one variable}.

3. exp
{

1
2π

∫
−[π,π] logw(x)dx

}
.

4. lim
n→∞

det(Σn+1)
det(Σn)

and lim
n→∞

det(Σn)
1/n.

5.
∞

∏
n=0

(1−|αn|2).

Even if one forgets the probabilistic interpretation, the equality of the other quantities is

non-trivial and interesting! For example, the equality of the third and fourth expressions

above gives asymptotics of Toeplitz determinants (a Toeplitz matrix is one whose (i, j)
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entry depends only on j− i). There is a more refined theorem on this asymptotics due to

Ibragimov and Golinskii which we do not go into here2.

First half of the proof of Theorem 4. For any U as in (1),∫
|U |2dµ≥

∫
|U(eix)|2w(x)

dx
2π

≥ exp
{∫

log(|U(eix)|2w(x))
dx
2π

}
= exp

{∫
log |U(eix)|2 dx

2π

}
exp
{∫

logw(x)
dx
2π

}
.

But U(z) = cnzn + . . .+ c1z+1 is holomorphic, hence log |U |2 is subharmonic3, and hence∫
log |U(x)|2 dx

2π
. ≥ log |U(0)|2 = 0.

Thus, we have shown that for all n,

σ
2
n ≥ exp

{∫
logw(x)

dx
2π

}
and hence σ2 ≥ exp

{∫
logw(x) dx

2π

}
. �

It remains to prove that σ2 ≤ exp
{∫

logw(x) dx
2π

}
. Looking back to where the inequality

appeared in the lower bound, there are three places:(1) When we replaced µ by its abso-

lutely continuous part w(x)dx. (2) When we applied Jensen’s inequality to |U |2w. (3) When

we used subharmonicity of log |U |2. According to Remark 6 below, |U |2 can never have

roots in the unit disk, hence log |U |2 is actually harmonic, showing that the third circum-

stance was in fact spurious. In addition, this allows us to rewrite (1) with the infimum over

non-negative trigonometric polynomials and by approximation, over continuous functions

satisfying
∫

logh(x)dx = 0.

σ
2 = inf

{∫
hdµ : h ∈C(S1), h≥ 0,

∫
logh(x)dx = 0

}
2A comprehensive reference for the Szegö theorems are Barry Simon’s two books Orthogonal polynomials

on the unit circle, Part-1 and Part-2. In particular Part 1 contains at least five proof of Szegö’s theorem and

the stronger form mentioned here. However, our presentation of the proof is taken from the older book of

Grenander and Szegö Toeplitz forms and their applications.
3If subharmonicity is not familiar, here is the point: Write en(z)U(z) = (z− ζ1) . . .(z− ζn) to see that∫

log |U |2 dx
2π

= 2∑
n
k=1

∫
π

−π
log |eix−ζk| dx

2π
. We leave it as an exercise to show that

∫
log |eix−ζ| dx

2π
= 1|ζ|≥1 log |ζ|.

Then it follows that
∫

log |U(x)|2 dx
2π

= 2∑k:|ζk|≥1 log |ζk| which is no less than log |U(0)|2 = 2∑k log |ζk|.
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We need to deal with the first two.

For the second one, we can achieve equality in Jensen’s if we can choose U so that

|U |2w is a constant. That is not possible, hence we must proceed by approximation. We do

this first assuming that µ is absolutely continuous and in the end take care of the singular

part if it exists.

Proof of the second half of Theorem 4 for absolutely continuous µ. First assume that w(x) ≥
δ > 0 for a.e. x. Then 1/w is integrable, hence by Lemma 5 and the density of continuous

functions in L1(S1), there exist Un having no roots inside the disk such that |Un|2→ 1
w in

L1(S1). �

To give a very quick idea of what works, consider the restricted case where dµ(x) =

w(x) dx
2π

where w is continuous on S1 and w ≥ δ for some δ > 0. In this case, 1√
w is a

continuous function and can be approximated uniformly by trigonometric polynomials Un.

Then |Un|2→ 1
w and wU2

n → 1 and log(w|Un|2)→ 0, all uniformly on S1. By Lemma 5, w e

can also arrange it so that Un has no roots inside the unit disk, in which case
∫

log |Un|2 = 0.

Consequently,

First suppose that 1
w ∈ L1, i.e., h := 1√

w ∈ L2. Then the partial sums of the Fourier series of

h (which are just h∗Dn, where Dn is the Dirichlet kernel) converge to h in L2. Hence, h∗Kn

also converge to h in L2, where Kn is the Fejer kernel. Recall that Kn =
1

n+1(D0 + . . .+Dn),

and that Kn is in fact a probability density on S1.

To avoid problems of taking reciprocals, fix δ > 0 and let wδ = w+δ, which is bounded

below. By the density of trigonometric polynomials in L1, we can find some U such that

‖U− 1√
wδ
‖L1 ≤ ε. Here L1 is with respect to uniform measure on S1. Then, ‖U2wδ−1‖L1 ≤.

Trigonometric polynomials and approximation

By the Stone-Weierstrass theorem, trigonometric polynomials (which are, by definition,

finite linear combinations of en, n ∈ Z) are dense in C(S1) (with the sup-norm metric).

Hence they are are also dense in Lp(S1) for 1≤ p<∞. Here is a more refined approximation

statement that we used above.

Lemma 5 (Fejér-Riesz). Suppose f ∈C(S1) and f ≥ δ. Then there are trigonometric polyno-
mials Tn such that (a) Tn ≥ δ and (b) Tn has no roots inside the open unit disk and (c) Tn→ f

uniformly on S1.
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In this statement and elsewhere, we freely extend trigonometric polynomials holomor-

phically outside S1, since they are all of the form P(z)/zn for a polynomial P.

Proof. One can add δ at the end to f and Tn, hence we assume that δ = 0.

Suppose f ∈C(S1) and f ≥ 0. Take trigonometric polynomials Tn converging uniformly

to
√

f . Then {Tn} and f are uniformly bounded in absolute value by some number M.

Hence ‖ f −T 2
n ‖sup ≤ 2

√
M‖
√

f −Tn‖sup also goes to zero. Of course T 2
n is a non-negative

trigonometric polynomial.

To satisfy the condition about roots, suppose Tn has roots α1, . . . ,αk in the unit disk. Let

T̃n(z) = Tn(z)
k

∏
j=1

1−α jz
z−α j

.

Then T̃n has no roots inside the disk. As |T̃n| = |Tn| on S1 it follows that |T̃n|2 is a trigono-

metric polynomial (even if Tn is not) and that |T̃n|2→ f uniformly on S1. �

Remark 6. The proof in fact shows that |T |2 cannot have zeros in the open unit disk. This

is because it is equal to |T̃ |2 on S1, and hence everywhere. As we show below, every non-

negative trigonometric polynomial is of the form |T |2 for a trigonometric polynomial T ,

hence no non-negative trigonometric polynomial has zeros in the open unit disk.

Let us justify the claim that any non-negative trigonometric polynomial S are of the

form |T |2 for some trigonometric polynomial T (we are allowing complex coefficients

here). To see this, write S(z) = P(z)/zn for some polynomial P. Since z = 1/z on S1 and S is

real-valued there, S(z) = S(1/z) for all z ∈C\{0} and consequently z2nP(1/z) = P(z). Thus,

if ζ is a root of P, then so is 1/ζ (what about ζ = 0?). The roots that are on the unit circle

must occur with even multiplicity (or else on one side of S1 of such a root, S must take

negative values). Conclude that S = |T |2 for some trigonometric polynomial T .

6.3 Ergodicity and mixing: Statements of the results

Everywhere T will denote Rd or Zd. When writing proofs we often stick to d = 1 for

simplicity of notation. Let Q be a probability measure on (RT ,C ), where C denotes the

cylinder sigma-algebra on RT . The group T acts on RT by translations: τsω(·) = ω(·+ s).

We say that Q is stationary (for shifts) if Q ◦ τ−1
s = Q for all s ∈ T . We also say that shifts

are measure preserving on (RT ,C ,Q).
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If X = (Xt)t∈T is a stationary stochastic process on some (Ω,F ,P), then its distribution

Q = P ◦X−1 on (RT ,C ) is stationary in the above sense. Conversely, for any stationary

Q, the projections Π = (Πt)t∈T form a stationary stochastic process in the sense defined

earlier. In short, we may assume that the probability space on which our stochastic process

is defined is (RT ,C ,Q).

Below T will denote Rd or Zd. What is special about these index sets is that they are

(abelian) groups. If X = (Xt)t∈T is a stochastic process, then its translate Xτ is another

stochastic process on T defined as Xτ(t) = X(t− τ). The process X is called stationary (or

translation invariant) if Xτ d
= X for all τ ∈ T .

Ergodicity: An event A ∈ C is said to be invariant if τ−1
s (A) = A for all s ∈ T . The measure

Q is said to be ergodic if any invariant event A has Q(A) = 0 or Q(A) = 1. Observe that the

set of all invariant events I forms a sigma-algebra. Hence ergodicity is the statement that

Q is trivial on I.

Mixing: Q is said to be mixing if Q(A∩ τ−1
s B)→Q(A)Q(B) for all A,B ∈ C .

As always, we say that a stationary process is ergodic or mixing, if its distribution Q on

(RT ,C ) is ergodic or mixing, respectively. The two main theorems that we wish to prove

are as follows.

Theorem 7 (Maruyama, Grenander, Fomin). A stationary Gaussian process on Rd or Zd is
ergodic if and only if its spectral measure has no atoms.

Theorem 8. A stationary Gaussian process on Rd or Zd with covariance K(t− s) is mixing if
and only if K(t)→ 0 as |t| → ∞.

There are multiple notions of mixing. Here are a few others, in increasing order of

strength.

1. The Cesaro average of |Q(A∩ τ−1
s B)−Q(A)Q(B)| converges to 0 as s→ ∞, for any

A,B ∈ C .

2. |Q(A∩ τ−1
s B)−Q(A)Q(B)| converges to 0 as s→ ∞, for any A,B ∈ C . This was what

we called mixing above.

3. supB∈C |Q(A∩ τ−1
s B)−Q(A)Q(B)| → 0 for all A ∈ C as s→ ∞.

4. supA,B∈C |Q(A∩ τ−1
s B)−Q(A)Q(B)| → 0 as s→ ∞.
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5. supA∈C |Q(τ−1
s B

∣∣∣∣∣∣ A)−Q(B)| → 0 as s→ ∞.

What for Gaussian processes?

6.4 Proof of the mixing theorem

Here we prove Theorem 8.

Since K(t) = E[X0Xt ], it is clear that it must go to zero to have mixing. But since the

definition of mixing was for events and not unbounded random variables, let us elaborate

on this point. assume K(0) = 1 without loss of generality and observe that

P{X0 > 0,Xt > 0}= 1
4
− 1

2π
arccosK(t).

For mixing to hold, this must converge to P{X0 > 0}2 = 1
4 , as t → ∞. That happens if and

only if K(t)→ 0 as t→ ∞.

To prove the other way implication, assume that K(t)→ 0. Consider any two cylinder

sets A = Π
−1
t1,...,tn(C) and B = Π−1

s1,...,sm
(D) where C ∈ BRn and D ∈ BRm. We may and shall

assume that (X(t1), . . . ,X(tn)) and (X(s1), . . . ,X(sm)) have non-singular covariance matrices.

For, if say X(t1), . . . ,X(tn) satisfy some linear relationship among themselves, we can choose

a subset {X(ti1), . . . ,X(tip)} of them that forms a basis for span{X(t1), . . . ,X(tn)} and express

A as Π
−1
ti1 ,...,tip

(C′) for some C′ ∈ BRp.

Then Q(A∩ τ−1
s B) is the probability that the vector (Xt1, . . . ,Xtn,Xs1+s, . . . ,Xsm+s) belongs

to C×D. As the covariance matrix is[
(K(ti− t j))i, j≤n (K(ti− s j− s))i≤n, j≤m

(K(t j− si− s))i≤n, j≤m (K(si− s j))i, j≤m

]

we see that as s→ ∞, it converges to block-diagonal form. By our assumption, the two di-

agonal blocks are non-singular, hence for large s the above matrix is also non-singular, and

the Gaussian density of the above covariance converges to that of (Xt1, . . . ,Xtn,Ys1, . . . ,Ysm),

where Y is an independent copy of X . From the convergence of densities, it follows that

for any Borel C,D, as s→ ∞,

P{(Xt1, . . . ,Xtn,Xs1+s, . . . ,Xsm+s) ∈C×D}→ P{(Xt1, . . . ,Xtn,Xs1+s, . . . ,Xsm+s) ∈C×D}

= P{(Xt1, . . . ,Xtn) ∈C}×P{(Xs1, . . . ,Xsm) ∈ D}.
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which is the same as Q(A∩ τ−1
s B)→Q(A)Q(B). This completes the proof for cylinder sets.

If A,B ∈ C , then for any ε > 0, there are cylinder sets A1,B1 such that Q(A∆A1)< ε and

Q(B∆B1)< ε. Hence

|Q(A∩ τ
−1
s B)−Q(A)Q(B)| ≤ |Q(A1∩ τ

−1
s B1)−Q(A1)Q(B1)|

+ |Q(A∩ τ
−1
s B)−Q(A∩ τ

−1
s B)|+ |Q(A)Q(B)−Q(A1)Q(B1)|.

The second and third summands are bounded by 2ε and the first goes to zero as s→ ∞. As

ε is arbitrary, this shows that Q(A∩ τ−1
s B)→Q(A)Q(B). �

6.5 Proof of the ergodicity theorem

Now we prove Theorem 7.

First suppose the spectral measure µ has an atom. Then there is some a ∈ T such

that µ{a} = µ{−a} = p > 0. Consider the isomorphism between H = span{Πt : t ∈ T} (a

closed subspace of L2(RT ,C ,Q)) with L2(µ) given by Xt ↔ et , where et : T 7→ C is given by

et(x) = ei〈t,x〉. The definition of the spectral measure is that E[XtXs] = µ̂(t− s) = 〈et ,es〉L2(µ),

hence this is an isomorphism. Now let ξ ∈H correspond to 1a. Then E[ξ2] = µ{a}> 0 and

E[ξ] = 0 (all random variables in H have zero mean, as we assume that X is centered).

Hence ξ is not a constant. Further, we claim that ξ is invariant.

To see this, observe that in the case T = Z, we have

1
2T

T

∑
k=−T

ek(x−a)→ 1a(x)

pointwise and in L2(µ), therefore, ξ is the limit in H of

1
2T

T

∑
k=−T

e−ika
Πk.

But then τmξ is the limit in H of

1
2T

T

∑
k=−T

e−ika
Πk+m = eima 1

2T

T

∑
k=−T

e−i(k+m)
Πk+m

which differs from
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Chapter 7

Karhunen Loeve expansion

Reproducing kernel Hilbert spaces: A Hilbert space (we take the scalar field to be reals)

H of functions on a set T is called a reproducing kernel Hilbert space (rkhs) if for each

t, the functional Λt( f ) = f (t) defines a bounded linear functional Λt on H. Then, there

must exist an element Kt ∈ H such that Λt( f ) = 〈 f ,Kt〉. We shall write K(s, t) for Kt(s) and

consequently K(·, t) for Kt(·). Some observations.

1. By symmetry of inner product 〈Ks,Kt〉= 〈Kt ,Ks〉. Therefore K(s, t) = K(t,s).

2. For any f ∈ H we have 〈 f ,K(·, t)〉= f (t), in particular,

Let X be a centered Gaussian process on T with covariance kernel K. We define two

Hilbert spaces.

1. For each t,s ∈ T , define the inner product between the functions K(·, t) and K(·,s) to

be K(t,s). This is a valid definition of a (pseudo) inner product because K is p.s.d. In

other words, on span{K(·, t) : t ∈ T} we get a well-defined inner product by setting

〈
n

∑
i=1

aiK(·, ti),
m

∑
j=1

b jK(·,s j)〉 := ∑
i, j

aib jK(ti,s j).

2.
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Chapter 8

Zeros of smooth Gaussian processes

Let X be a smooth Gaussian process on a subset of Rn. The random set X−1{u} is called

the level set of level u. We are interested in studying the properties of this random set. In

particular, in measuring its size. More generally, one may be interested in simultaneous

zeros of several jointly Gaussian processes X1, . . . ,Xm. Before going into that, one must

know what kind of a set it is.

By dimension considerations, one would expect that generically, X−1
1 {u1}∩. . .∩X−1

m {um}
must be a manifold of dimension n−m if n ≥ m. When n = m the zero-dimensional set is

perhaps a discrete set. When n < m, we expect the set to be empty.

First we show that these expectations are indeed correct. Once that is done, one may

measure the size of the set by the appropriate Hausdoff measure. Of course, one may

choose other measures, such as counting the number of connected components of the set.

8.1 Bulinskaya’s lemma

Let us show that generically n+1 functions on Rn will not have a common zero. Here and

in general, we do not aim for optimal conditions under which theorems hold, but only

for sufficiently powerful theorems that cover examples of interest to us (which are usually

very “nice”).

Lemma 1 (Bulinskaya). Let U be an open set in Rn and let g : U 7→ Rn+1 be a random
function. Assume that (A) g ∈C1(U) a.s. and (B) The vector g(x) has a density on Rn+1 that
is bounded uniformly over x in compact subsets of U . Then g−1{0} is almost surely empty.

Proof. It suffices to assume that g = (g0,g1, . . . ,gn) is defined on a neighbourhood of In+1 =
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[0,1]n+1 and show that g−1{0} ∩ In+1 = /0 a.s. If not, there is a point x ∈ In+1 such that

g j(x) = 0 for all 0≤ j ≤ n.

Fix q ≥ 1 and let Dq = {k2−q : 1 ≤ k ≤ 2q}. Then there is a point t ∈ Dn+1
q such that

‖x− t‖∞ ≤ 2−q. Writing ‖Dg‖∞ := sup{‖∇g j(y)‖ : 0≤ j≤ n, y∈ In+1}, it follows that |g j(t)| ≤
‖Dg‖∞2−q for 0≤ j ≤ n. This implies that for any M < ∞,

P{g−1{0}∩ In+1 6= /0} ≤ ∑
t∈Dn+1

q

P{‖g(t)‖∞ ≤M2−q}+P{‖Dg‖∞ > M}

≤ 2qnC0(2M2−q)n+1 +P{‖Dg‖∞ ≥M}

≤C02−q+n+1 +P{‖Dg‖∞ ≥M}.

As q→∞, the first term goes to zero. As M→∞, the second term goes to zero since ‖Dg‖∞

is a finite random variable. Thus, P{g−1{0}∩ In+1 6= /0}= 0. �

As a corollary, we deduce that under mild (but not optimal) conditions, zero sets of

random functions are smooth manifolds.

Corollary 2. Let U be an open subset of Rn and let f : U 7→Rm be a random function. Assume
that m ≤ n and that f ∈ C1(U) a.s. and also that ( f (x),∇ f (x)) has a density ρ(x) on Rn+1

and that ρ is uniformly bounded on compact subsets of U .

1. If m = n, then f−1{0} is almost surely discrete.

2. If m < n, then f−1{0} is almost surely an n−m dimensional manifold.

Proof. Let g0 = f and g j = ∂ j f for 1 ≤ j ≤ n. The assumptions of Bulinskaya’s lemma are

satisfied and hence there is almost surely no point where f (x) = 0 and ∇ f (x) = 0.

If m = n and f−1{0} 3 x( j) → x ∈ U , then f (x) = 0, then ∇ f (x) = 0, contradicting the

conclusion above. Hence the zero set of f can have no accumulation points in U .

If m < n, then since ∇ f (x) 6= 0 for any x ∈ f−1{0} (almost surely), it follows from the

implicit function theorem that all points of f−1{0} are regular and hence f−1{0} is a

manifold of dimension n−m. �

Remark 3. These conclusions can be drawn in greater generality. For example, in the book

of Cramer and Leadbetter, they show this (or rather, some equivalent reformulations) even

without assuming smoothness of f .

110



8.2 Kac-Rice formula in one dimension

Let f : U 7→R be a smooth random function on an open interval U ⊆R. By Corollary 2, the

level set Z f := f−1{0} is almost surely discrete. We wish to calculate E[|Z f ∩ I|] for I ⊆U .

Lemma 4 (Kac-Rice). Let f : U 7→ R be a random function that is almost surely C1. Assume
that ( f (x), f ′(x)) has a density ρ(x;u,v) on R2 that is continuous in (x;u,v) that is bounded
over (x;u,v) ∈ I×R×R for any compact I ⊆U . Then,

E[|Z f ∩ I|] =
∫

I

∫
R
|v|ρ(x;0,v) dv dx.

Let X be a smooth centered Gaussian process on Rd with covariance K and spectral

measure µ. The random closed set Z := {t ∈Rd : X(t) = 0} is called the nodal set of X . One

can also consider other level lines Za := {t ∈Rd : X(t) = a} for a ∈R. Of interest is to study

the statistical properties of Z (or Za).

Here is a quick discussion.

� In d = 1, under mild conditions on K, the random sets Za are discrete w.p.1. That is,

almost surely, there are only finitely many zeros of X in any bounded interval, and in

fact these zeros are simple.

� In d = 2, again under mild conditions on K, the random sets Za consist of simple

closed loops and simple bi-infinite paths (the bi-infinite paths, if they exist, converge

to infinity on both sides)

� In d = 1, the primary object of study are the random variables Z(I) := #(Z ∩ I), the

number of zeros in I. More generally one can consider the linear statistics Z[ϕ] :=

∑t∈Z ϕ(t) for a compactly supported test function ϕ. When ϕ = 1I we recover the

particle counts Z(I).

� There exist formulas for the joint intensities of Z. That is, there exist function pk :

Rk → R such that the kth moment of Z(I) can be expressed in terms of
∫

Ir pr(·) for

1≤ r ≤ k. The formula for pk is given by

Kac-Rice formula: Under some conditions on the process X , we have

pk(t1, . . . , tk) = E

[
k

∏
j=1
|X ′(t j)| ; X(t1) = . . .= X(tk) = 0

]
.
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� In d = 2, the counting function of zeros can be generalized in two different directions.

1. `Z(A), the length of the nodal set intersected with a bounded set A⊆ R2.

2. NZ(A), the number of components of the nodal set contained entirely inside A.

While `Z is a local quantity, NZ is a not (and hence much harder to study). In partic-

ular, there exist formulas (again called Kac-Rice formulas) that give the joint intensi-

ties of Z in terms of the process X , namely

pk(t1, . . . , tk) := E

[
k

∏
j=1
|∇X ′(t j)| ; X(t1) = . . .= X(tk) = 0

]
.

And moments of `Z(A) can be expressed in terms of
∫
Ar

pr(t1, . . . , tr) for 1 ≤ r ≤ k.

Although the formulas get complicated quickly, the mean is always easy, the variance

is sometimes calculable and even asymptotic normality (as the region gets larger and

larger) can be proved sometimes.

� No such formulas can be expected for NZ(A) as it is not a local quantity! Nevertheless

the following result is known (if you include some closely related results, it is one of

the main advances in recent times in the subject).

Theorem 5 (Malevich, Nazarov-Sodin). Let QT = [−T,T ]2. Under some mild condi-
tions on the process X , we have E[NZ(QT )]∼CT 2 where C is a constant that depends on

the covariance kernel only. Further, T−2NZ(QT )
P→C as T → ∞.

In contrast to `Z, it is an entirely open problem to say anything about Var(NZ(QT )),

even in special Gaussian processes (eg., the random plane wave)!
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Chapter 9

Hypercontractivity - lecture by Nanda

Kishore Reddy, Kartick Adhikari and

Tulasi Ram Reddy

For a Gaussian Hilbert space H ⊆ L2(Ω,F ,P) we define H :n: = Pn ∩P⊥n−1 where Pn is the

closed span of the products ξ1 . . .ξn with ξi ∈ H.

Theorem 1 (Wiener’s chaos decomposition). Let FH be the sigma-algebra generated by H.
Then L2(Ω,FH ,P) = H :0:⊕H :1:⊕H :2:⊕ . . . (direct sum, by definition includes closure).

Here is the prime example.

Example 2. Let H = Rξ be a one dimensional GHS where ξ∼ N(0,1). Then H :n: = Rhn(ξ)

where hn is the nth (monic) Hermite polynomial. L2(Ω,FH ,P) is naturally isomorphic to

L2(R,γ1) (under that isomorphism ξ maps to the identity function). The theorem above is

just the assertion that hn(·)/
√

n! is an ONB for L2(R,γ1).

Let πn : L2(Ω,FH ,P)→ H :n: be the orthogonal projection. Let A : H → H be a linear

operator. We define A : H :n:→ H :n: by setting

A:n:(πn[ξ1 . . .ξn]) = πn[(Aξ1) . . .(Aξn)].

For this definition to make sense, prove the following exercise.

Exercise 3. If ξi,ηi ∈ H and πn[ξ1 . . .ξn] = πn[η1 . . .ηn] then show that (Aξ1) . . .(Aξn)−
(Aη1) . . .(Aηn) ∈ Pn−1. Conclude that A:n: is well defined and ‖A:n:‖ ≤ ‖A‖n.
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Definition 4. If A : H→ H and ‖A‖ ≤ 1, then define the operator Γ[A] from L2(Ω,FH ,P) to

itself by Γ[A](X) = ∑n≥0 A:n:(πn[X ]).

Exercise 5. Check that Γ[A] does map L2(P) into itself and ‖Γ[A]‖ ≤ 1.

Example 6. If A = rI with r ≤ 1 then Γ[rI](X) = ∑n rnπn[X ].

Observe that H and hence (by Hölder’s inequality) Pn and H :n: are contained in Lp(Ω,P)
for all p≥ 1. In H all variables are centered Gaussian, hence ‖ξ‖p≤ cp‖ξ‖

p/2
2 for a universal

constant cp. How the different norms compare on H :n: is less clear. The following results

are asserted.

Theorem 7. Let A≤ 1 and let Γ[A] be defined as above,

1. If X ∈
⋂

p Lp then Γ[A](X) ∈
⋂

p Lp and further ‖Γ[A]X‖p ≤ ‖X‖p.

2. By the density of
⋂

Lp in any Lp, it follows that Γ[A] extends as a contraction to all of
Lp.

3. Γ[AB] = Γ[A]Γ[B].

Theorem 8 (The Hypercontractivity theorem). If ‖A‖ ≤ r ≤ 1, then ‖Γ[A]X‖q ≤ ‖X‖p for
every 1≤ p≤ q≤ (p−1)r−2 +1.

Example 9. Consider the basic case H = Rξ with A = rI. The hypercontractivity theorem

says in this case that

‖∑
n

anrnhn‖Lq(γ1) ≤ ‖∑
n

anhn‖Lp(γ1)

whenever r ≤
√

q−1
p−1 and any coefficients an.
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