
MEASURE THEORY LECTURES

MANJUNATH KRISHNAPUR

1. ABOUT THE SUBJECT AND THE COURSE

1. What would you say is the length of the following subsets of R? [0, 1], [0, 1] ∪ (3, 8], Z,

{0} ∪ { 1n : n ≥ 1},
⋃
n≥1[

1
2n+1 ,

1
2n ], Q ∩ [0, 1], Cantor’s 1

3 -set. Perhaps some are clear, some are not.

2. In high school we learned the areas of square, rectangle, parallelogram, triangle, trapezium,
and many such regular shapes. After learning integral Calculus, we learned how to compute areas
of many more irregular objects. Still, one can ask about other shapes for which the answer may

not be clear. Q2, Sierpinski gasket, Sierpinski carpet, etc.

3. From the theory of Riemann integral in many variables, we are abe to calculate the volumes

of many shapes in R3, and by extension, in Rd. Can do the same on the surface of a sphere Sd−1,
on the torus or more generally on Riemannian manifolds.

4. One extension of this is to ask about volumes of subsets in infinite dimensional spaces such

as `2 and C[0, 1]. For example, what is the volume of the ball of radius r in these spaces (you may
normalize the unit ball to have volume 1)? Does such a notion exist?

5. Another extension is to possibly irregular spaces such as the Cantor set or Sierpinski gasket.

For example, if K is the standard 1
3 -Cantor set, we probably agree that K ∩ [0, 1/3] has half the

length ofK and thatK∩ [2/9, 4/9] has 1/9 of the total length ofK. But what about general subsets
of K? Similarly, can we measure areas within (to be distinguished from the question of the area of
the Sierpinski gasket itself) the Sierpinski gasket?

6. When we learned Riemann integration, we saw that integration of functions is more general
than computation of areas/lengths/volumes, as the latter are just integrals of indicator functions
of subsets. But in another sense, the notion of areas/volumes subsumes integration, since the
integral of a (positive) function is the area under its graph. Thus the problem of measuring areas
and integrating functions are inseparable.

7. In this course, we shall learn about measures, which is the technical name for very general
notions of volume. As in the previous point, it is intimately tied up with an integration theory,
known as Lebesgue integral. These notions of measure and Lebesgue integral are vastly more
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general than the earlier notions of areas and Riemann integral. In fact they are so general that for
almost all of us, it will suffice for a lifetime.

8. Two reasons why this is a core course: For probability and for functional analysis and PDE.

9. When we have a notion of volume of subsets of a set X , if the total volume is 1, we can also
talk about “picking a point at random fromX”, meaning that the chance that the chosen point falls
inside a subset A is vol(A) (e.g., consider the problem of throwing a dart at a dartboard). Thus,
the notion of volume is also relevant to the notion of probability. In fact, measure theory turns out
to provide a framework for probability theory.

10. Consider the set of Riemann integrable functions on [0, 1] with the metric d(f, g) =
∫ 1
0 |f(x)−

g(x)|dx. There is an issue that this is not quite a metric (distance can be zero, for example if f and
g differ at finitely many points) but that can be taken care of by quotienting out the functions at
zero distance from the zero function. The more serious problem is that even then, this space is
not complete. In other words, it has holes that must be filled. Lebesgue’s theory of integration
ends up doing this! Because of that, it turns out to be particularly good for talking about existence
of solutions to various problems on function spaces, e.g., differential equations. This is because
one can usually construct approximate solutions, and completeness allows one to find a limiting

candidate for the solution (analogy: solving for x2 = 2 in rationals versus reals).

2. JORDAN MEASURABLE SETS IN R

11. We investigate the question of assigning a “length” to a subset A ⊆ R. As and when we
define the length, it will be denoted λ(A).

12. We agree that an interval I = [a, b] (or for that matter I = (a, b) or I = [a, b) or I = (a, b])
must be assigned length |I| := b− a. If I1, . . . , Ik are pairwise disjoint intervals, we also agree that
A = I1 t . . . t Ik must be assigned length |I1| + . . . + |Ik|. Actually a little care is needed to see
that this is well-defined, since a given set may have multiple representations as a finite union of
intervals (for example, [0, 2] can also be written as [0, 1) t [1, 2]). For the moment let us assume
that it is not an issue, and proceed.

13. To proceed, we need to be more explicit about what properties we require of any notion of
length. No one will dispute that it must have monotonicity under inclusion: If A ⊆ B, then A

cannot have more length than B. This is satisfied when A,B are elementary sets as above.

14. Now for a general A ⊆ R, taking inspiration from Riemann integration theory (where we
sandwich the region under the graph of a function between graphs of step functions), define

λ#(A) = inf{|I1|+ . . .+ |Ik| : k ≥ 0, Ij are p.w. disjoint intervals such that I1 ∪ . . . ∪ Ik ⊇ A},

λ#(A) = sup{|I1|+ . . .+ |Ik| : k ≥ 0, Ij are p.w. disjoint intervals such that I1 ∪ . . . ∪ Ik ⊆ A}.
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The monotonicity principle tells us that any number we assign as the length ofAmust be between

λ#(A) and λ#(A). Hence, if λ#(A) = λ#(A), we have no ambiguity and call this common number

the length of A and denote it by λ(A). Such sets are said to be Jordan measurable.

15. An equivalent way to state Jordan measurability is: Given ε > 0, there exists elementary sets
(i.e., a set that is a finite union of p.w. disjoint intervals) E1 ⊆ A ⊆ E2 such that λ(E2)−λ(E1) < ε.

16. Intervals are Jordan measurable and λ(I) = |I| (this needs proof!). But Q is not Jordan

measurable, indeed, λ#(Q) = ∞ and λ#(Q) = 0. The Cantor set K is Jordan measurable and

λ(K) = 0. Indeed, the 2n intervals of length 3−n each that form the nth stage of the construction

give a cover for K proving that λ#(K) ≤ 2n3−n. As this is true for all n, we get λ#(K) = 0. Also,
K contains no open interval, showing that λ#(K) = 0. Construct other Cantor-like sets (deleting
a different proportion in the middle of each interval at stage n) and show that there are some that
are Jordan measurable, some that are not.

17. Overall, many sets are not Jordan measurable and we have not assigned a length to such

sets. Can we not simply take λ#(A) to be the definition of the length of a setA? That would define
length for all sets, agrees with λ(A) for Jordan measurable A (in particular for elementary sets),
and clearly has monotonicity under inclusion.

18. But it misses out on another property of lengths that we implicitly carry in our minds, finite
additivity: If A and B are disjoint then λ(AtB) = λ(A)+λ(B) (at least if all three lengths are well-
defined). Observe that this property (together with positivity of lengths) subsumes monotonicity,
since A ⊆ B means that A = B t (A \B).

19. Finite additivity is violated by λ#. Indeed, if A = Q ∩ [0, 1] and B = Qc ∩ [0, 1], then

AtB = [0, 1], but λ#(A) = λ#(B) = λ#([0, 1]) = 1. Hence it appears inevitable that we must give
up the idea of defining length for all sets. Even accepting that, we shall now see a more general
notion by which a much larger class of sets can be assigned lengths. For instance, in this new
notion, Q will have a length, so will all Cantor-like sets, and in fact it will take some effort to show
that there is a set that does not!

3. LEBESGUE OUTER MEASURE

20. Define the Lebesgue outer measure of a set A ⊆ R by

λ∗(A) = inf

{ ∞∑
k=1

|Ik| : Ik is of the form (ak, bk] and
⋃
k

Ik ⊇ A

}
.

21. We allow countable covers in defining λ∗ as opposed to only finite covers in defining λ#.
To see the difference this makes, enumerate rationals as r1, r2, . . ., and use the intervals Ik = (rk −
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ε2−k−2, rk + ε2−k−2) to get λ∗(Q) ≤ ε. Hence λ∗(Q) = 0. Contrast with λ#(Q) = ∞. Countability
is a running theme in the whole subject of measure theory.

22. There are also some unimportant differences, for example Ik need not be pairwise disjoint

(one can remove that condition in the definition of λ# too). Another difference is the use of lorc
(left-open, right-closed) intervals. It makes no difference if we allow all intervals (or restrict to

such intervals in the definition of λ# too). The collection of lorc intervals will be technically more
convenient later, hence we introduced them now.

23. The outer measure does have some desirable properties.

(1) (Monotonicity) λ∗(A) ≤ λ∗(B) if A ⊆ B.

(2) (Countable subadditivity) λ∗(
⋃
nAn) ≤

∑
n λ
∗(An) for any An.

(3) (Outer regularity) Given A ⊆ R and ε > 0, there is an open set U such that λ∗(U) <

λ∗(A) + ε.

Monotonicity is trivial. Countable subadditivity follows from the fact that if {In,j : j ≥ 1} is a

countable cover forAn, then {In,j : n, j ≥ 1} is a countable cover for ∪nAn. To see outer regularity,

get a countable cover {(aj , bj ]} such that
∑

j(bj − aj) < λ∗(A) + ε/2 and then observe that U =

∪j(aj , bj + ε2−j−1)} does the needful.

24. Still, λ∗ does not solve all our problems. For example, there still exists (for now, accept
this without proof) a set A ⊆ [0, 1] such that λ∗(A) = λ∗([0, 1] \ A) = 1, which contradicts finite

additivity since λ∗([0, 1]) ≤ 1 (equality holds as shown later). How is this better than λ# - there
the same violation was achieved by A = Q ∩ [0, 1]? The difference is that the violating set A is so
much harder to construct and so pathological, that we won’t mind not assigning it any length.

25. Construction of A: Regard ([0, 1),+) as a group where “+” denotes addition modulo 1. Let

α = 1/
√

2 (or any irrational number) and consider the cyclic subgroup G = Zα and H = 2Zα and

H ′ = H + α = (2Z + 1)α. Then, G,H,H ′ are all dense in [0, 1) and G = H tH ′.

ButG has uncountable index in [0, 1), and we “construct” (invoke axiom of choice, to be precise)
a set B ⊆ [0, 1) that has exactly one element from each coset of G. Let A = B + H = {b + h : b ∈
B, h ∈ H} so that Ac = B + H ′. We claim that λ∗(A) = λ∗(Ac) = 1. Proof of this claim is
postponed.

26. Note that A and Ac in this example are closely enmeshed. That is actually necessary. In fact,
if A and B are at positive distance (i.e., |x − y| > δ for all x ∈ A and y ∈ B), then λ∗(A t B) =

λ∗(A) + λ∗(B). To see this, observe that in the definition of outer measure, we may restrict to
countable covers by intervals of length less than ε/3 (why?). Then, if {In} is such a cover, we
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can split it into disjoint collections {In : In ∩ A = ∅} and {In : In ∩ B = ∅} that cover B and A,
respectively. From this, deduce that λ∗(A+B) ≥ λ∗(A) + λ∗(B).

27. The upshot of all this is that λ∗ does not behave like “length” should. But it looks really close
to behaving like one. The way out is to restrict the class of subsets for which we define length.

28. We have seen that λ# and λ∗ both fail to assign length to all subsets of R, although we have
asserted that λ∗ is better and acceptable. Instead of taking special candidates like, wouldn’t it be

more logical to ask if there is any λ† : 2R 7→ [0,∞] such that λ†(A t B) = λ†(A) + λ†(B) and

λ†(I) = |I|? In fact we can even ask for translation invariance, λ†(A + x) = λ†(A) for all A ⊆ R
and x ∈ R. The answer is yes, there exists such a function!

29. Why don’t we use it then? The problem is when we go to higher dimensions. Even on

subsets of R2, there is a finitely additive function λ† that has translation and rotation invariance

and assigns area |I1| × |I2| to I2× I2. But for d ≥ 3, there is no such function on subsets of Rd! This
makes it undesirable, for lengths, areas, volumes are not unrelated concepts living in different
dimensions, but very closely connected to one another. For example, we would like the volume of
A× I to be mbarea(A)× length(I).

30. The fact that there is no (non-zero) finitely additive, translation invariant notion of vo-

Carathéodorylume on R3 is due the Banach-Tarski paradox. It asserts that there are setsA1, . . . , A5 ⊆
R3 and Euclidean motions T1, . . . , T5 : R3 7→ R3 (translations and rotations, i.e., T (x) = Ax+ b for

some orthogonal matrixA and b ∈ R3) such that withBi = TI(Ai), we haveA1t . . .tA5 = B(0, 1)

and B1 t . . . t B5 = B(0, 2). If there was translation-invariant, finitely additive notion of volume

λ†, when we would get λ†(B(0, 1)) = λ†(B(0, 2)).

4. LEBESGUE MEASURABLE SETS AND LEBESGUE MEASURE

31. Definition: A set A ⊆ R is said to be Lebesgue measurable if it satisfies the Carathéodory cut
condition: λ∗(A ∩ E) + λ∗(Ac ∩ E) = λ∗(E) for all E ⊆ R. The length (or Lebesgue measure) of a
Lebesgue measurable set is defined to be its outer measure.

32. The definition is not very intuitive. One may think of it as the minimal fix to the problem
that λ∗ is not finitely additive. Here are other equivalent ways of defining Lebesgue measurable
sets (the equivalence is not obvious and we must prove it later, but let us put them out there so
that you can build the right mental picture from the start) that may look better motivated. Here A
is assumed to be bounded.

(1) Say that A is measurable if it satisfies the cut-condition for an intervals E that contains A.

(2) Say that A is measurable if given ε > 0, there is an elementary set Aε (i.e., a finite disjoint
union of intervals) such that λ∗(A∆Aε) < ε.

(3) Say that A is measurable if given ε > 0, there is an open set U ⊇ A such that λ∗(U \A) < ε.
5



A general A is then said to be measurable if A ∩ [−n, n] is measurable for all n

33. It is also to be noted that to show that A is Lebesgue measurable, it suffices to show that
λ∗(A∩E) +λ∗(Ac ∩E) ≤ λ∗(E) for all E ⊆ R. The other way is obvious by subadditivity of outer
measure.

34. Let us analyse the class of all Lebesgue measurable sets, after which various sets of interest
will be easily seen to be included. There is no alternate characterization of Lebesgue measurable
sets. What we can do best is to know that many basic sets like intervals are in this collection and
that the entire collection is closed under many set operations. To state the conclusions, we first
introduce two of the fundamental notions in measure theory: sigma-algebra and measure.

35. Sigma algebra: A collection F of subsets of a non-empty set X is said to be a sigma-algebra
if it contains the empty set, is closed under complements and countable unions.

36. Measure: Let (X,F) be a measurable space (i.e., F is a sigma-algebra of subsets of X). Then
µ : F 7→ [0,∞] is called a measure if it is countably additive: µ(

⋃
nAn) =

∑
n µ(An) whenever An

are pairwise disjoint elements of F .

37. Simple examples of sigma-algebas: Let X be any non-empty set and let F = {∅, X} and

G = 2X . Both F and G are sigma-algebras. Another one is H = {A ⊆ X : A or Ac is countable}.
Of course, if X is countableH = G, but not so if X is uncountable.

38. Examples of measures (on the above three sigma-algebras): Any µ : F 7→ [0,∞] is a mea-
sure on F . On G it is hard to define any interesting measure, but here is a class of them: Let
{x1, x2, . . .} ⊆ X be a countable set and let α : N 7→ [0,∞] be any function. Set µ(A) =

∑
k:xk∈A αk.

On H, there is a measure that gives 0 to all countable sets and 1 to all sets whose complement is
countable.

39. The examples of sigma-algebras given above are either too small (F and H) or too big (G).
Real examples that actually are used fall in between and are almost never very explicit. And
measures on these sigma-algebras are not given - they have to be constructed with some effort.

40. Since sigma-algebras are defined by closure properties, arbitrary intersections of sigma-

algebras are sigma-algebras. Therefore, for any S ⊆ 2X , there is a smallest sigma-algebra that
contains S (namely the intersection of all sigma-algebras containing it). It is denotes σ(S) and is
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called the sigma-algebra generated by S. Caution: There is no simple way to write an element in
σ(S) in terms of elements of S using countable set operations.

41. If X is a metric space, the sigma-algebra generated by the collection of open sets is called
the Borel sigma-algebra of X and denoted BX . On R, check that the sigma-algebra generated by all
lorc intervals is the same as BR.

42. Theorem (Lebesgue). The collection L of Lebesgue measurable sets in R forms a sigma-
algebra that contains the Borel sigma-algebra B. The outer measure λ∗ is a measure when re-
stricted to L.

43. The restriction of λ∗ to L (or to B) will be denoted λ and it is called Lebesgue measure. Later

when we construct it on Rd, we include a subscript d when there is danger of ambiguity. The
existence of Lebesgue measure is the starting point of measure theory.

44. Why did we ask for countable additivity of measures? Would it not have been sufficient
and natural to ask for finite additivity? Indeed, there is no motivation I can give now to justify the
demand (it is not intuitive to me at all). But we shall give a sort of justification later. For now, let us
only say that a rich theory is obtained by asking for countable additivity. Many mathematicians
have tried to stay with finite additivity, but a century of experience has not turned up anything
that is comparable in richness to the theory with countable additivity.

5. PROOF OF THE EXISTENCE OF LEBESGUE MEASURE

45. The proof of Lebesgue’s theorem is carried out in several steps, with the proofs of the two
claims (that L is a sigma algebra and that λ∗ is a measure on L) closely intertwined.

46. L is closed under complements: From the symmetry of A and Ac in the cut condition.

47. L is closed under finite intersections: Indeed, if A,B ∈ L and E ⊆ R, then

λ∗(E) ≥ λ∗(E ∩A) + λ∗(E ∩Ac) ≥ λ∗(E ∩A ∩B) + λ∗(E ∩A ∩Bc) + λ∗(E ∩Ac).

By subadditivity, the last two add to at least λ∗(E ∩ (A ∩ B)c)), since (A ∩ Bc) ∪ Ac = (A ∩ B)c.
Therefore, λ∗(E) ≥ λ∗(E ∩ (A ∩B)) + λ∗(E ∩ (A ∩B)c). Thus A ∩B ∈ L.

48. L is closed under finite unions: A ∪B = (Ac ∩Bc)c.

49. λ∗ is finitely additive on L: If A,B ∈ L are disjoint and E ⊆ R, then thet cut condition
for E ∩ (A t B) shows that λ∗(E ∩ (A t B)) = λ∗(E ∩ A) + λ∗(E ∩ B). When E = ∅, this says
λ∗(A tB) = λ∗(B), which is finite additivity on L. But the statement with general E (which need
not be in L) is stronger and used below.

50. Suppose A1, A2, . . . ∈ L and Bn = A1 ∪ . . . ∪ An. Then Bn ∈ L and Bn ↑ B = ∪nAn. If
E ⊆ R, then λ∗(E) ≥ λ∗(E ∩ Bn) + λ∗(E ∩ Bc

n) for every n. As Bc
n ⊇ Bc, we have λ∗(E) ≥

λ∗(E ∩ Bc) + λ∗(E ∩ Bn). Thus it suffices to show that limn→∞ λ
∗(E ∩ Bn) ≥ λ∗(E ∩ B). By
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monotonicity, the limit on the left exists and does not exceed the right side. But the stronger form

of finite additivity shown above implies that λ∗(E∩Bn) =
∑n

k=1 λ
∗(E∩(Ak\Ak−1)) whereA0 = ∅.

Therefore limn→∞ λ
∗(E ∩ Bn) ≥

∑
k≥1 λ

∗(E ∩ (Ak \ Ak−1)). But countable subadditivity shows

that the right hand side is at least λ∗(E ∩B). Thus, B ∈ L.

51. If Ak ∈ L are pairwise disjoint and A = tAk, the previous step shows (as Ak \ Ak−1 = Ak)
that λ∗(E) = λ∗(E ∩ Ac) +

∑
k≥1 λ

∗(E ∩ Ak) for any E ⊆ R. In particular, take E = A to get

countable additivity of λ∗ on L.

52. To summarize, we have shown that L is a sigma-algebra and that λ∗ is a measure on it. For
all we know, L could be the trivial sigma algebra {∅,R}! We next show that L contains intervals,
and hence it is at least as large as the Borel sigma algebra.

53. L contains intervals: For definiteness, let I = [a, b] (all other cases are similar) and let
Iδ = [a− δ, b+ δ] for δ > 0. If E ⊆ R, then E ∩ I and E ∩ Icδ are at positive distance from each other,

hence withEδ = (E∩I)∪(E∩Icδ ), we have λ∗(Eδ) = λ∗(E∩I)+λ∗(E∩Icδ ). ButE∆Eδ is contained

inside [a−δ, a]∪ [b, b+δ] and hence λ∗(E) ≥ λ∗(Eδ)−2δ and similarly λ∗(E∩Icδ ) ≥ λ∗(E∩Ic)−2δ.

Therefore, λ∗(E) ≥ λ∗(E ∩ I) + λ∗(E ∩ Ic)− 4δ. As δ is arbitrary, I ∈ L.

54. λ∗(I) = |I|: Again, let us take a closed interval I = [a, b], for definiteness. If {In} is an open

cover by lorc intervals so that
∑

n |In| < λ∗(I)+ε, then enlarge In by ε2−n−1 to an open interval Jn.

By compactness of I , choose a finite subcover J1, . . . , Jm, where Ji = (ai, bi) are ordered without
loss of generality so that a1 < a2 < . . . < am. Then bi < ai+1 and hence

λ∗(I) ≥
m∑
k=1

|Jk| − 3ε ≥ bm − am +
m−1∑
k=1

(ak+1 − ak)− 3ε = bm − a1 − 3ε

which is more than |I|− 3ε (since a1 ≤ a and bm ≥ b). Thus λ∗(I) ≥ b−a, the other way inequality
being obvious (take the cover with I1 = I and In = ∅ for n ≥ 2).
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6. EXTENSION OF MEASURE FROM ALGEBRA TO SIGMA-ALGEBRA

55. We try to understand the structure of the proof of existence of Lebesgue measure and trans-
fer it to a more abstract setting without distracting features.

56. Question. Let X be a non-empty set and let S be a collection of subsets of X that generates
the sigma-algebra F . Given a function µ : S 7→ [0,∞], does it extend to a measure on F? Is the
extension unique?

57. Clearly, this is the prototype of the problem of Lebesgue measure - where we knew what
the length of intervals must be, and we extended it to the Lebesgue sigma-algebra.

58. In general, one may expect that extension requires some consistency conditions. For exam-
ple., if there are A,B ∈ S such that A ∩ B = ∅ and A ∪ B ∈ S, but µ(A ∪ B) 6= µ(A) + µ(B), then
there is no way to extend µ as a measure to F .

59. Perhaps surprisingly, even uniqueness is false! Let X = {1, 2, 3} and S = {{1, 2}, {2, 3}}
and µ({1, 2}) = µ({2, 3}) = 1. There are two measures ν and θ that extend µ to F = 2X defined by
ν(A) = 1A31 + 1A33 and θ(A) = 1A32.

Contrast this with the fact that if two linear functionals on a vector space agree on a generat-
ing set, then must be equal. The difference is another reminder that the word ‘generated sigma-
algebra’ has only an external definition, not an internal one (Note: If S is a collection of vectors in
a vector space V , then span(S) can be described externally as the intersection of all subspaces that
contain S or internally as the collection of all finite linear combinations of elements of S).

60. To understand this and answer the question positively, various kinds of collections of sub-
sets of X are used. We shall probably only use the following (in addition to sigma algebras,
which are more restrictive than all these): (I) Algebra: Closed under complements, finite unions.
(II) Monotone class: Closed under increasing unions and decreasing intersections. (III) π-system:
Closed under intersections. (IV) λ-system: Closed under increasing unions, proper differences.

61. Algebras, monotone classes, π and λ systems, rings, etc., are defined by closure properties,
and hence arbitrary intersections of these are collections of the same kind. Hence, we can talk
about the algebra (or monotone class or . . . ) generated by a collection of subsets of X .

62. Monotone class theorem. The monotone class generated by an algebra is a sigma-algebra.
Hence σ(A) =M(A) for any algebra A.

63. Proof of the monotone class theorem: Let M be the monotone class generated by an algebra
A. LetM0 = {A ∈ M : Ac ∈ M}. ThenM0 is a monotone class (ifM0 3 An ↑ A then A ∈ M
andM0 3 Acn ↓ Ac, hence A ∈ M0, similarly for decreasing limits). AlsoM0 ⊇ A (as A is closed
under complements), henceM =M0 showing thatM is closed under complements.

Now fix A ∈ A and letMA = {B ∈ M : A ∪B ∈ M}. Argue thatMA is a monotone class that
contains A, hence equal toM. Thus if A ∈ A and B ∈ M, then A ∪ B ∈ M. Next fix A ∈ M and
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considerMA defined exactly the same way. By what we have shown,MA contains A and by the
same proof as before,MA is a monotone class. Thus,MA = M for A ∈ M, implying thatM is
closed under finite unions.

IfAn ∈M, thenBn = A1∪ . . .∪An are inM and increase to ∪nAn. By monotone class property,
∪nAn ∈ M. Thus M is closed under countable unions. This completes the proof that M is a
sigma-algebra.

64. The point of monotone classes is that measures behave well under monotone limits, but
not under arbitrary countable unions/intersections. Indeed, if (X,F , µ) is a measure space, then
countable additivity is equivalent to the statement that if An ↑ A (all in F), then µ(An) ↑ µ(A).

Measures also behave well under decreasing intersections, but with a caveat. If An ↓ A and
µ(An) <∞ for some n, then µ(An) ↓ µ(A). To see the necessity of the condition of finiteness, let µ
be counting measure on Z and An = {n, n+ 1, . . .} ↓ ∅. Then µ(An) =∞ for all n and µ(A) = 0.

65. As an application, we prove that if µ, ν are finite measures on a sigma-algebra F generated
by an algebra A, then µ = ν.

Indeed, the collection {A ∈ F : µ(A) = ν(A)} is easily seen to be a monotone class (finiteness of
the measures is used to get closure under decreasing intersections) and containsA by assumption,
hence equal to σ(A) = F .

66. As in this example, finite measures often have special properties. Quite often they can be
extended to sigma-finite measures. µ on (X,F) is said to be sigma-finite if there existXn ∈ F such
that tnXn = X and µ(Xn) <∞ for all n.

67. As an exercise, show that if µ, ν are two sigma-finite measures on F = σ(A) where A is an
algebra, then if µ, ν agree onA, they agree on F (Caution: It is not given that the sets Xn are inA).

68. Instead of algebras and monotone classes, one can work with π and λ systems. In this course
you may entirely avoid the latter.

69. Sierpinski-Dynkin π − λ theorem. The λ-system generated by a π-system is the same as
the sigma-algebra generated by the π-system.

70. Corollary. If S is an π-system and generates the sigma-agebra F , then any two measures on
F that agree on S, are equal. In particular, this is true if S is an algebra.

71. We omit the proofs as exercises (arguments similar to the proof of monotone class theorem).

72. Now we come to the existence question. Suppose µ : S 7→ [0,∞] is given. To be able to
extend it as a measure to F = σ(S), clearly it must be countably additive on S . That is, if An ∈ S
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are pairwise disjoint and it so happens that tnAn ∈ S, then µ(tnAn) =
∑

n µ(An). It turns out
that when S is an algebra, this consistency condition is also sufficient to guarantee extension!

73. Carathéodory’s extension theorem. LetF be a sigma-algebra that is generated by an algebra
A. If µ : A 7→ [0,∞] is countably additive onA, then it extends to a measure on F in a unique way.

74. The earlier extension theorem that we gave is a special case of this, where A = {I1 t . . . t
Ik : k ≥ 0, Ir are lorc intervals} and λ : A 7→ [0,∞] is defiined by λ(I1t. . .tIk) = λ(I1)+. . .+λ(Ik).
In the earlier proof, we did not explicitly check countable additivity of λ on A, but what we did
can be rephrased that way (and we shall do this checking later).

75. One might notice that in that extension theorem, the measure extended to L, a larger sigma-
algebra than F = σ(A) (in that example F = B(R)). In fact the proof given next shows that it
is also true in general. But we are often happy enough to restrict the measure to F . It has the
advantage that F depends only on A, but the larger sigma algebra depends on µ too.

7. PROOF OF THE CARATHÉODORY EXTENSION THEOREM

76. Let A ⊆ 2X and µ : A 7→ [0,∞] and F = σ(A). At the moment, no assumptions on A or µ.

77. Define the outer measure µ∗ : 2X 7→ [0,∞] by

µ∗(A) = inf

{ ∞∑
n=1

µ(An) : An ∈ A, ∪nAn ⊇ A

}
.

It satisfies (1) Monotonicity: µ∗(A) ≤ µ∗(B) if A ⊆ B, (2) Countable subadditivity: µ∗(∪nAn) ≤∑
n µ
∗(An), (3) µ∗(∅) = 0. In general, an outer measure is a non-negative function on 2X satisfying

these three properties. It need not arise from a µ as here.

78. The key step is Carathéodory’s cut condition: Let Lµ∗ be the collection of all A ⊆ X for

which µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E) for all E ⊆ X . Sets in Lµ∗ are said to be µ∗-measurable.

The non-trivial part of the cut condition is µ∗(E) ≥ µ∗(E∩A)+µ∗(E∩Ac), the other way inequality
follows from subadditivity.

79. The proof of Carathéodory’s extension theorem can be broken into two parts.

(1) If µ∗ is any outer measure, then Lµ∗ is a sigma algebra and µ∗ is a measure on it.

(2) If µ∗ arises from a countably additive µ on an algebra A, then µ∗ = µ on A and Lµ∗ ⊇ A.

80. For a proof of the first statement, Paragraphs 46-51 can be copied verbatim, withLµ∗ in place
of L and µ∗ in place of λ∗. Steps 46-49 show that L is an algebra on which µ is finitely additive, and
the next two steps upgrade algebra to sigma-algebra and finite additivity to countably additivity.

81. To prove the second statement, we fist prove that µ∗ = µ on A. Let A ∈ A. Clearly
µ∗(A) ≤ µ(A) as the singleton {A} is a cover for A. To see equality, consider any countable cover
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{An} for A with An ∈ A. Let Bn := (An ∩ A) \ ∪n−1k=1(Ak ∩ A). Then Bn are pairwise disjoint,

Bn ∈ A and tnBn = A. Hence
∑n

k=1 µ(Bk) = µ(B1 t . . . t Bn) ↑ µ(A) by countable additivity

of µ on A. Therefore µ(A) =
∑

n µ(Bn). But µ(Bn) ≤ µ(An) for all n, from which it follows that∑
n µ(An) ≥ µ(A). As this is true for any cover, µ∗(A) ≥ µ(A).

82. It only remains to show that A ⊆ Lµ∗ . Let A ∈ A and E ⊆ X . Let {Bn} ⊆ A be a

cover for E satisfying
∑

n µ(Bn) ≤ µ∗(E) + ε. As µ is finitely additive on A, we see that µ(Bn) =

µ(Bn ∩A) + µ(Bn ∩Ac). When summed over n, the left side is bounded above by µ∗(E) + ε while
countable subaditivity implies that the two sums on the right side are bounded below by µ∗(E∩A)

and µ∗(E ∩Ac), respectively. Thus, µ∗(E) + ε ≥ µ∗(E ∩A) +µ∗(E ∩Ac). As ε is arbitrary, A ∈ Lµ∗ .

8. CHECKING COUNTABLE ADDITIVITY ON AN ALGEBRA

83. If µ : A 7→ [0,∞] is finitely additive and finite (µ(X) < ∞), then the condition of countable
additivity is equivalent to showing that µ(An) ↓ 0 if An ∈ A and An ↓ ∅.

If µ is sigma-finite in the sense that there are Xn ∈ A such that X = tnXn and µ(Xn) < ∞,

then we can restrict to any Xn with An = {A ∩Xn : A ∈ A} and µn = µ
∣∣
An and apply the above

criterion. It may also be noted that σ(A) = {A = tnAn : An ∈ σ(An)}.

84. Even this appears complicated to check. For example, in the standard example of the algebra
generated by lorc intervals in R, we need to take An = In,1 t . . . t In,mn that decreases to ∅ (as

R is sigma finite, as explained earlier, we may assume An ⊆ [−M,M ] for some M for all n). The
number of intervals (mn) can increase without bound. A more convenient way to check countable
additivity would be nice.

85. Claim: Let A be an algebra of subsets of a metric space X . Let µ : A 7→ [0,∞] be finitely
additive. Assume: (1) For any A ∈ A and ε > 0, there exists C ∈ A and compact K such that
C ⊆ K ⊆ A and µ(C) > µ(A)− ε. (2) For A ∈ Awith µ(A) =∞, there exist A 3 Cn ⊆ A such that
∞ > µ(Cn) ↑ ∞. Then µ is countably additive on A.

86. It would have been simpler to say that there must be a compact K ⊆ A such that µ(K) >

µ(A) − ε, but in standard examples like the algebra of lorc intervals on R, compact sets are not in
the algebra.

Those who care about generalities may observe that the proof below works just as well if the
class of compact sets is replaced by a compact class (recall: K is a compact class if An ∈ K and
∩nAn = ∅, then ∩n≤NAn = ∅ for some N ).

87. Proof of the claim: Let An, A ∈ A and An ↑ A. Let Bn = A \An so that A 3 Bn ↓ ∅.

If µ(A) < ∞, find compact Kn and Cn ∈ A such that Cn ⊆ Kn ⊆ Bn and µ(Cn) ≥ µ(Bn) − ε
2n .

Let K ′n = K1 ∩ . . . ∩ Kn and C ′n = C1 ∩ . . . ∩ Cn, so that we still have K ′n compact, C ′n ∈ A and

C ′n ⊆ K ′n ⊆ Bn. Further, µ(Bn \ C ′n) ≤
∑n

j=1 µ(Bn \ Cj) ≤
∑n

j=1 µ(Bj \ Cj) ≤ ε, which means
12



that µ(Bn) ≤ µ(C ′n) + ε. But Bn ↓ ∅, hence K ′n ↓ ∅ and by finite intersection property, K ′n = ∅ for

large n which also forces C ′n = ∅ for large n. Thus, lim supµ(Bn) ≤ ε, i.e., µ(Bn) ↓ 0. Equivalently,
µ(An) ↑ µ(A).

If µ(A) =∞, then findA 3 Ck ⊆ A such that µ(Ck) <∞ and µ(Ck) ↑ ∞. Then An ∩Ck ↑ Ck for
any k, as n→∞. Therefore, µ(An ∩Ck) ↑ µ(Ck) as n→∞. This shows that lim inf µ(An) ≥ µ(Ck)

for any k, which implies that µ(An) ↑ ∞.

88. Recall that from any outer measure µ∗ one gets a measure on Lµ∗ . The whole point of the
countable additivity of µ on an algebra A was to ensure that Lµ∗ is not too small (and that µ∗

equals µ on A). Here is another way to ensure this. Observe that the condition is on µ∗.

89. Claim: Suppose (X, d) is a metric space and let µ∗ be an outer measure on 2X . Suppose we
have the additivity property µ∗(A t B) = µ∗(A) + µ∗(B) whenever d(A,B) := inf{d(x, y) : x ∈
A, y ∈ B} > 0. Then, Lµ∗ ⊇ B(X).

90. To prove the claim, it suffices to show that any closed A ⊆ X satisfies the cut condition.
For fixed E ⊆ X we wish to check that µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac). Assume µ∗(E) < ∞,
otherwise this is trivially true.

The idea is to write Ac = tn≥0Bn, where Bn = {x ∈ X : 1
n+1 ≤ d(x,A) < 1

n} (an “annulus”).

Let Cn = B0 t . . . t Bn−1. Then d(Cn, A) ≥ 1
n , hence µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Cn). If we can

argue that µ∗(E ∩ Cn) ↑ µ∗(E ∩Ac), then the cut condition is verified.

By subadditivity, µ∗(E∩Ac)−µ∗(E∩Cn) is bounded from above by µ∗(E∩(BntBn+1t . . .)) ≤∑
j≥n µ

∗(E ∩ Bj). The tail of a convergent series converges to 0, hence it suffices to show that∑
j µ
∗(E ∩ Bj) < ∞. Now, d(Bj , Bj+2) ≥ 1

j+1 −
1
j+2 > 0 (this does not work for Bj and Bj+1).

Hence, by the metric property of µ∗, for any m ≥ 1 we have

m∑
j=1

µ∗(E ∩B2j) = µ∗(E ∩ (B2 tB4 t . . . tB2m)) ≤ µ∗(E)

which is finite. Therefore,
∑

j µ
∗(E ∩B2j) <∞. Similarly,

∑
j≥1 µ

∗(E ∩B2j−1) <∞.

91. The metric condition of an outer measure is often quite easy to check, and quickly gives a
Borel measure. Two books that take this approach are of Stein and Shakarchi and of Wheeden and
Zygmund. Bogachev’s book has the criterion with compact classes and much more.

9. LEBESGUE MEASURE ON Rd

92. Now consider Rd with the π-system S of lorc rectangles R = I1 × . . . × Id where Iq are lorc

intervals in R and set |R| = |I1| × . . .× |Id|, which agrees with our usual notion of volume.

93. The algebra generated by S is A = {R1 t . . . tRk : k ≥ 0, Ri ∈ S} and we naturally extend
the notion of volume to A by defining λ(R1 t . . . t Rk) = λ(R1) + . . . + λ(Rk). One must check

13



that this is a legitimate definition, since there are multiple ways to write a set as a union of disjoint
rectangles. For example, (0, 1]× (0, 2] = (0, 1]× (0, 1] t (0, 1]× (1, 2].

94. IfA = R′1t . . .tR′m andA = R1t . . .tRn, thenR′i = tnj=1(R
′
i∩Rj) for any i ≤ m. Therefore

to show that
∑m

i=1 |R′i| =
∑n

j=1 |Rj |, it suffices to show that |R′i| =
∑n

j=1 |R′i ∩ Rj |. In words, if

an lorc rectangle is a union of disjoint lorc rectangles, then its area is the sum of the areas of the
smaller rectangles. We refer to Stein and Shakarchi, Lemma 1.1 for a proof.

95. Finite additivity of λ on A follows easily: If A = R1 t . . . t Rn and B = R′1 t . . . t R′m and

A ∩B = ∅, then A tB = R1 t . . . tRn tR′1 t . . . tR′m.

96. Thus, to check countable additivity on the algebra, we only need to check the conditions

in the previous section. Let R = ×dq=1(aq, bq]. If R has an infinite side, then we may take Cn =

R∩(−n, n]d ∈ A to get∞ > µ(Cn) ↑ ∞. IfR has finite sides, we may take C = ×dq=1(aq+δ, bq] ∈ A

and K = ×dq=1[aq + δ, bq] compact. Then C ⊆ K ⊆ A and if δ is small enough, we also have

λ(C) ≥ λ(A) − ε. This verifies the conditions for a single rectangle. For a general element in the
algebra, write it as a finite union of rectangles and do the same inside each component rectangle.

97. Conclusion: There exists a sigma-algebra Ld ⊇ B(Rd) on Rd on which there is a measure λd
that satisfies λd(R) = |R| for any rectangle R. This is known as the Lebesgue measure on Rd and
elements of Ld are said to be Lebesgue measurable.

10. REGULARITY OF LEBESGUE MEASURE AND RELATED MATTERS

98. Let λd (we drop the subscript often) denote the Lebesgue measure on the Lebesgue sigma-

algebra Ld that is larger than the Borel sigma-algebra B(Rd). What are the relationships between
these sigma-algebras? How do we understand the sets in them if they are not explicitly described?

99. Outer regularity: λd(A) = inf{λd(G) : A ⊆ G open} for any A ∈ Ld.

Trivially λd(A) ≤ λd(G) for any G ⊇ A. To see the inequality the other way, if λd(A) < ∞
(otherwise take G = R), find a countable covering of A by lorc rectangles so that

∑
n |Rn| ≤

λd(A) + ε. Enlarge each Rn to an open rectangle R̃n so that |R̃n| ≤ |Rn|+ ε2−n. Then G := ∪R̃n is

open, contains A and λd(G) ≤
∑

n |R̃n| <
∑

n |Rn|+ ε ≤ λd(A) + 2ε.

100. Inner regularity: λd(A) = sup{λd(K) : A ⊇ K compact} for any A ∈ Ld.

Let Qn = [−n, n]d. As λd(A ∩ Qn) ↑ λd(A), we only need to show this for bounded A. If
A ⊆ QN , use outer regularity to find an open set G ⊇ QN \ A such that λd(G) < λd(QN \ A) + ε
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which is λd(QN ) − λd(A) + ε. Then K := QN \ G is a compact set contained inside A. Further,
λd(K) = λd(QN )− λd(G) ≥ λd(A)− ε.

101. The cardinality of B(Rd) is the same as R while the cardinality of Ld is that of 2R. We do
not justify the first statement here, but the second one easily follows from the next point. For now,
note the consequence, Bd is strictly smaller than Ld.

102. If λ∗(A) = 0, we claim that A ∈ Ld. As a consequence, all subsets of A are also measurable.
If A is the standard Cantor set (which has zero measure), then A has the same cardinality as R and

hence the collection of subsets of A is itself equinumerous with 2R. Of course Ld ⊆ 2R, hence the

other way is clear. This shows that Ld has the same cardinality as 2R.

To justify the claim, letE ⊆ Rd. Then λ∗(A∩E) = 0 while λ∗(Ac∩E) ≤ λ∗(E), by monotonicity.
Therefore, λ∗(A ∩ E) + λ∗(Ac ∩ E) ≤ λ∗(E), showing that A satisfies the cut-condition.

103. Relationship between Lebesgue and Borel sigma-algebras: Let A ⊆ Rd. Then A ∈ Ld if and

only if there are B,C ∈ B(Rd) such that B ⊆ A ⊆ C and λd(B) = λd(C).

If there are such Borel sets B,C, then λ(C \ B) = λ(C) − λ(B) = 0. Hence, A \ B (a subset of
C \B) is also measurable and so is A = B t (A \B).

Conversely, if A ∈ Ld, then using regularity, find Kn ⊆ A ⊆ Gn such that Gn is open, Kn is
compact and λ(Gn) ↓ λ(A) and λ(Kn) ↑ λ(A). Now set B = ∪nKn and C = ∩nGn. Clearly
B ⊆ A ⊆ C and B,C are Borel sets. Further, λ(Kn) ≤ λ(B) ≤ λ(A) ≤ λ(C) ≤ λ(Cn) for all n. Let
n→∞ to see that λ(C) = λ(B).

104. Another way to say this is that given a measurable set A, there is a Borel set B such that
λ(A∆B) = 0. In that sense, there is no big loss in working with Borel sets than measurable sets.

105. Ultimately one only understands intervals/rectangles. To understand Borel sets, one must
relate them to rectangles. Here are three connections that are useful in different ways.

(1) If A ∈ Ld and λd(A) <∞, then for any ε > 0 there is an elementary set Bε = R1 t . . . tRn
such that λ(A∆Bε) < ε.

(2) If A ∈ Ld and λd(A) > 0, then for any ε > 0 there is a rectangle R such that λd(A ∩ R) ≥
(1− ε)λd(R).

(3) If A ∈ Ld and λd(A) > 0, then A−A contains a neighbourhood of the origin.

106. To prove the first statement, find a covering of A by lorc rectangles {Rn} so that
∑

n |Rn| ≤
λ(A)+ε. Find large enoughN so that

∑
n>N |Rn| < ε and setB = R1∪. . .∪RN . Then λ(A∆B) < 2ε
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and B is an elementary set (even if the Ri are not disjoint, we can find a different set of pairwise
disjoint rectangles by taking intersections).

107. For the second statement, again find a covering {Rn} forA so that
∑

n |Rn| ≤ (1−ε)−1λ(A)

(valid even if λ(A) =∞). But then λ(A) =
∑

n λ(A ∩Rn), which forces that there must be at least

one n for which |Rn| ≤ (1− ε)−1λ(A ∩Rn).

108. The third statement is known as Steinhaus’ lemma. Observe that x ∈ A − A if and only
if A ∩ (A + x) 6= ∅. A set cannot be empty if it has positive measure. To show that A ∩ A + x

has positive emasure (if x is close enough to the origin), find R as in the second step so that

λ(A′) ≥ 0.9|R|where A′ = A∩R. But then λ(A′ ∩ (A′+ x)) ≥ λ(A′) + λ(A′+ x)− λ(A′ ∪ (A′+ x))

which is at least 1.8|R| − |R ∪ (R + x)|. But if R has sides `1, . . . `d, then R ∪ (R + x) is contained
in a rectangle of lengths `i + xi. Hence if x is small enough, |R ∪ (R + x)| ≤ 1.1 × |R|. Therefore,

for such x, λ(A′ ∩ (A′ + x)) > 0, showing that A ∩ (A+ x) 6= ∅.

11. NON-MEASURABLE SETS

109. For the purposes of the course, it suffices to read the first construction.

110. Non-measurable set: Consider the group G = [0, 1) with addition modulo 1 (thus 0.3 +

0.8 = 0.1). Consider the subgroup H = Q∩ [0, 1) and create a set A having one element from each
coset of H in G. This is possible if one assumes the axiom of choice, as we do.

111. We claim that tr∈H(A+ r) = [0, 1).

If x ∈ (A+ r)∩ (A+ s), then x− r ∈ A and x− s ∈ A, but x− r and x− s are in the same coset of
H (since their difference is r− s which is in H). Hence we must have x− r = x− s or equivalently
that r = s. This shows that (A+ r) ∩ (A+ s) = ∅ for r 6= s.

Next, if x ∈ [0, 1), there is some a ∈ A in the same coset of H as x, which means that x = a + r

for some r ∈ H . Thus, the union of A+ r, r ∈ H , is the whole of [0, 1).

112. Now if A is measurable, then so is A + r and λ(A + r) = λ(A) (observe that this is true
despite the meaning of ‘+’ as addition modulo 1). But then either λ(A) > 0 or λ(A) = 0. In either
case, countable additivity requirement λ([0, 1)) =

∑
r∈H λ(A + r) is violated. The contradiction

shows that A cannot be measurable.

113. We now show the stronger statement that there is some A,B such that A t B = [0, 1) and
such that λ∗(A) = λ∗(B) = 1. This of course shows that A and B must be non-measurable, but
more strongly it shows that λ∗ is not even finitely additive (a claim we had made but not justified
so far).

114. The proof is similar to the previous one, except that we change the sub-group to H =

{nα : n ∈ Z}, where α is a fixed irrational, e.g., α = 1/
√

2. Here again nα is interpreted modulo
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1. We leave it as an exercise to check that H is dense in [0, 1), and that nα 6= nβ (mod 1) if n 6= m.
Because of this, the map n 7→ nα is an isomorphism from Z onto H .

115. The difference from rationals is that this subgroup has finite index subgroups. In particular,

letH ′ = {2nα : n ∈ Z}. ThenH ′ is a subgroup ofH with two cosets,H ′ andH ′′ = H ′+α. Observe

that both H ′ and H ′′ are dense in [0, 1) (for similar reasons why H is).

116. As before, create a set A by picking one element from each coset of H in G. Then [0, 1) =

tr∈H(A + r) = B t C where B = tr∈H′(A + r) and C = tr∈H′′(A + r). We claim that λ∗(B) =

λ∗(C) = 1, which finishes the proof.

117. Any element of B − B is of the form z = a + r − a′ − s where a, a′ ∈ A and r, s ∈ H ′. If

a = a′, then this element is r − s which is in H ′ (as H ′) is a subgroup and in particular, z 6∈ H ′′.
But if a 6= a′, then a − a′ 6∈ H and r − s ∈ H ′, hence again z 6∈ H ′′ (in fact z 6∈ H). In short, we

have proved that (B −B) ∩H ′′ = ∅. As H ′” is dense, this shows that B −B does not contain any
interval. Similarly C − C also does not contain any interval.

118. Now if λ∗(B) < 1, then find intervals {In} such that ∪nIn ⊇ B and
∑

n |In| < 1. Then

X = (∪nIn)c (complement inside [0, 1)) is a measurable set of positive measure and further, X ⊆
C. But then C − C ⊇ X − X , and by Steinhaus’ lemma the latter contains an interval around
0, contradicting that C − C does not contain any interval. Thus we must have λ∗(B) = 1 and
similarly λ∗(C) = 1.

119. A third construction of a nonmeasurable set due to Sierpinski is outlined in the problem
set. There, the idea is to (a) regard R as a vector space over Q, (b) pick a basis B that is contained
inside the standard Cantor set, (c) define E0 = B t (−B) t {0} and En = En−1 − En−1 for n ≥ 1.

Then argue that there is a first n for which λ∗(En) > 0 and show that this particular En is not
measurable (again using Steinhaus’ lemma).

12. RADON MEASURES ON Rd

120. What about other Borel measures on R? For simplicity let us consider a finite measure µ on

(Rd,B(Rd)). Then we can associate to µ a function Fµ : Rd 7→ R by defining Fµ(x) = µ(Rx) where

Rx = (−∞, x1]× . . .× (−∞, xd]. It is called the cumulative distribution function of µ.

121. Fµ is (A) increasing in each co-ordinate, (B) is right-continuous, (C) Fµ(x) → µ(Rd) if

min{x1, . . . , xd} → ∞ and Fµ(x)→ 0 if min{x1, . . . , xd} → −∞.

These properties follow from the definition of a measure. For example, if xn → x from the
right (meaning that each co-ordinate of xn decreases to the corresponding co-ordinate of x), then
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Rxn ↓ Rx. Therefore, µ(Rxn) ↓ µ(Rx) (as we assumed that µ is a finite measure). This shows that
Fµ is continuous from the right. Other properties are similar and left as exercise.

122. Conversely let F : Rd 7→ [0,∞) be any function that is increasing in each co-ordinate, is
right-continuous, Fµ(x)→ 0 if min{x1, . . . , xd} → −∞ and limFµ(x) <∞ as min{x1, . . . , xd} ↑ ∞.

Then we claim that F = Fµ for a unique finite Borel measure µ on Rd.

123. The uniqueness is clear from the fact that rectangles form a π-system that generates the
Borel sigma-algebra, hence two measures that agree on rectangles must be equal. For existence,
start by defining the measure of any lorc rectangle using F (explained below) and extend it natu-
rally to the algebra A. This function has countable additivity (needs checking, the compact class
criterion that we gave earlier helps in reducing the work involved in checking), and therefore

extends to a measure µ on B(Rd). Of course F is the cumulative distribution function of µ.

124. How to define µ on rectangles? In one dimension, if R = (a, b], then we define µ(R) =

F (b)−F (a). In d = 2, if R = (a1, b1]× (a2, b2], we define µ(R) = F (b1, b2)−F (a1, b2)−F (b1, a2) +

F (a1, a2). Similarly, in higher dimensions, the formula (coming from inclusion-exclusion) isF (R) =∑
±F (a±1 , . . . a

±
d ) where R = (a−1 , a

+
1 ]× . . .× (a−d , a

+
d ] and the sum is over all 2d choices of ±, and

the sign in front of F (aε11 , . . . a
εd
d ) is negative is the product of ε1, . . . , εd.

125. Thus finite Borel measures on Rd and cumulative distribution functions are in one-one
correspondence with each other. As CDFs are easier to understand, this gives us a good under-

standing of the collection of all finite Borel measures on Rd. One can extend the notion of CDF to
infinite measures too, provided they are Radon (i.e., µ(K) <∞ for all compact K), but we do not
bother about that here (just as one example, we can take the function F (x) = x on R as the CDF of
Lebesgue measure, since µ(a, b] = F (b)− F (a) for all a < b). Instead let us see a few examples.

126. Suppose F (x) = 0 for x ≤ 0, F (x) = x for 0 ≤ x ≤ 1 and F (x) = 1 for x ≥ 1. It is easy to

see that the corresponding measure is µ = λ
∣∣
[0,1]

, Lebesgue measure restricted to [0, 1]. By this we

just mean that µ(A) = λ(A ∩ [0, 1]) for A ∈ BR.

127. Let S = {a1, a2, . . .} be any countable set and let pi > 0 be such that
∑

i pi < ∞. Define

F (x) =
∑

i:ai≤x pi. This is the CDF of the “discrete measure” µ =
∑

i piδai . That is, µ(A) =∑
i:A3ai pi. Observe that the CDF here has jumps of magnitude pi at location ai. It is not left

continuous at these points.

128. Let f : R 7→ [0,∞) be a continuous (or even piecewise continuous) function such that∫∞
−∞ f(x)dx < ∞. One example is f(x) = e−x

2/2. Then define F (x) =
∫ x
−∞ f(t)dt. Here we are

using that (improper?) Riemann integral. It is easy to see that F is increasing (because f > 0) and

continuous (in fact, by the fundamental theorem of Calculus, F is differentiable and F ′ = f ). Also

F (x) → 0 as x → −∞ and F (x) →
∫∞
−∞ f(t)dt as x → +∞. Thus F is a continuous CDF, and

corresponds to a finite Borel measure µ.
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This gives us innumerable examples of measures on R.

129. Let K be the standard Cantor set and let Kn be the n-th level (consisting of a union of

2n intervals of length 3−n each). Let µn = (3/2)nλ
∣∣
Kn

(the Lebesgue measure on Kn rescaled to

have total mass 1). Write down the first few Fµn and show that they converge uniformly (this was

done in detail in class) by checking the Cauchy criterion (for example, check that supx∈R |Fµn(x)−
Fµn+1(x)| ≤ 2−n). Let F denote the limiting function. Clearly F is non-decreasing and continuous,

and further, F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1. Thus, there is a finite Borel measure µ
with CDF F . The measure µ with distribution function F is called the Cantor measure.

130. The Cantor measure is a somewhat curious object that bears thinking about. Observe that
as F is continuous, µ has no atoms. We now claim that µ(Kc) = 0, i.e., µ “sits on” the Cantor

set. To see this, observe that Kc = ∪nKc
n is a disjoint union of the intervals (−∞, 0), (1,∞), (13 ,

2
3),

(19 ,
2
9), (79 ,

8
9),. . . Take any one of these intervals, say J = ((2k− 1)3−n, 2k3−n). Then Fm is constant

on J form ≥ n, hence F is constant on J . This shows that µ(J) = 0. Thus, µ(Kc) = 0 by countable
additivity.

Thus, µ allows us to measure the relative sizes of sets inside the Cantor set.

131. A remark may clarify some of the above examples. If (X,F , µ) is any measure space and
B ∈ F , then we can define a new measure space (B,G, ν) by defining G = {A ∈ F : A ⊆ B} (we
may also write G = {A ∩ B : A ∈ F}) and ν(A) = µ(A) for A ∈ G. We leave it as a simple thing
to check that this is indeed a measure space. However, ν is a non-trivial measure if and only if

µ(B) > 0. In that case, we say that ν is the restriction of µ to B and write ν = µ
∣∣
B

.

This is what we did to construct Lebesgue measure on [0, 1] and also to define the measures µn
in the construction of Cantor measure (µn was just a rescaling of λ

∣∣
Kn

). However, we cannot define

Cantor measure directly like this, as λ(K) = 0, hence the more indirect approach via appropriate
limits. For those with inclination towards probability, this is akin to the difficulty of conditioning
on zero probability events.

13. MEASURABLE FUNCTIONS

132. Let (X,F) and (Y,G) be measurable spaces. A function T : X 7→ Y is said to be measur-
able (w.r.t. F and G, although the sigma algebras will be usually not explicitly mentioned unless

necessary) if T−1B := {x ∈ X : T (x) ∈ B} ∈ F for any B ∈ G.

133. Observe that T−1 need not exist as a function. The meaning of T−1(B) for B ⊆ Y is that

of the inverse-image of B. It is easy to check that T−1(Bc) = (T−1(B))c (the complements are in
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Y and X , respectively), T−1(
⋃
nBn) =

⋃
n T
−1(Bn). The last point is valid even for uncountable

unions.

134. If (X,F), (Y,G) and (Z,H) are measurable spaces and T : X 7→ Y and S : Y 7→ Z are

measurable, then so is S ◦ T : X 7→ Z. This is because (S ◦ T )−1(C) = T−1(S−1C).

135. Making F larger makes it easier for T to be measurable. In particular, if F = 2X , then
every function T : X 7→ Y is measurable. Similarly, making G smaller helps T to be measurable.
In particular, if G = {∅, Y }, then every T : X 7→ Y is measurable.

136. Let σ(T ) := {T−1B : B ∈ G}. Then σ(T ) is a sigma-algebra on X (from the earlier observa-
tion about inverse-images of complements and unions) and is called the sigma algebra generated by
T . In terms of this sigma-algebra, T is measurable w.r.t. F and G if and only if σ(T ) ⊆ F . In other
words, σ(T ) is the smallest sigma-algebra on X that makes T a measurable function.

137. The collection G0 := {B ⊆ Y : T−1B ∈ F} is a sigma-algebra (easy to check) and hence so

is G0 ∩ G = {B ∈ G : T−1B ∈ F}. Therefore, if S is a collection (of subsets of Y ) that generates G,

and T−1B ∈ F for B ∈ S, then G0 ⊇ S and hence G0 ⊇ G. In other words, to check measurability

of T , it suffices to check the condition T−1B ∈ F only for B ∈ S. This is helpful in practise.

138. Most important for us will be measurable functions into R, in which case the latter is
always assumed to be endowed with the Borel sigma-algebra. In short, T : X 7→ R is measurable

if T−1B ∈ F for any B ∈ BR. Observe that if X itself is R, we may take F to be either the Borel or
the Lebesgue sigma-algebra, but on the target space it is always the Borel sigma-algebra.

139. ForA ⊆ X , its indicator function is 1A : X 7→ R defined as 1A(x) = 1 if x ∈ A and 1A(x) = 0

if x 6∈ A. Then, 1A is a measurable function if and only if A is a measurable set (i.e., A ∈ F). Thus,
if we identify sets with their indicator functions, then measurable functions are a generalization
of measurable sets. Another way to say the same is that an indicator function is a binary measure-
ment (an answer to a yes-no question) while a general function is a finer measurement.

140. If T : R 7→ R is continuous, then T−1G is open if G is open. As open sets generate the
Borel sigma-algebra, it follows that T : R 7→ R is measurable (w.r.t. Borel sigma algebra on both
the domain and co-domain). Same if T : X 7→ R if X is a metric space endowed with the Borel
sigma-algebra.

141. Of course, we can take a larger sigma-algebra such as the Lebesgue sigma-algebra on the
domain without losing measurability. However, if we take Lebesgue sigma-algebra on both the
domain and co-domain, then there are continuous functions that are not measurable! This is not
obvious, but an example is the inverse of the strictly increasing function x 7→ (x + F (x))/2 from
[0, 1] 7→ [0, 1] (one can extend it to R, but the essence of the matter is the same), where F is the CDF
of the Cantor measure. We relegate the details to the problem set.

142. As {(−∞, t] : t ∈ R} generates BR, we see that T : X 7→ R is measurable if and only if {T ≤
t} ∈ F for all t ∈ R. Here {T ≤ t} is a short-form for {x ∈ X : T (x) ≤ t}. For exactly analogous
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reasons, each of the following conditions is equivalent to measurability of T : (a) {T < t} ∈ F for
any t ∈ R, (b) {T ≥ t} ∈ F for any t ∈ R, (c) {T > t} ∈ F for any t ∈ R.

143. It follows immediately from this that if T : R 7→ R is increasing, then it is measurable
(with Borel sigma algebra on both domain and co-domain). This is because {T ≤ t} is necessarily
an interval (of the form (−∞, t] or (−∞, t) or ∅ or R). Of course, decreasing functions are also
measurable.

144. We leave it as an exercise to check that if T : R 7→ R is left-continuous, then it is mea-
surable (same for right-continuous, of course). Similarly, upper semi-continuous and lower semi-
continuous functions are measurable.

145. If A ⊆ R is a non-measurable set, then 1A : R 7→ R is not a measurable function (even
if we take the Lebesgue sigma algebra on the domain). But as the difficulty of constructing
non-measurable sets suggests, it is not easy to construct non-measurable functions. This is fur-
ther demonstrated by the fact that the collection of measurable functions is closed under various
(countable) operations.

146. Let (X,F) be a measurable space. If Tn : X 7→ R are measurable, then so are

sup
n
Tn, inf

n
Tn, lim sup

n
Tn, lim inf Tn, lim

n
Tn,

∑
n

anTn (where an ∈ R)

provided they exist and are finite (otherwise, they are not functions from X to R). Countable
operations include finite ones, hence max{T1, T2}, min{T1, T2}, a1T1 + a2T2, are measurable.

147. Proofs of the claim: If T = supn Tn is finite, then {T ≤ t} = ∩n{Tn ≤ t} is in F . Thus
supn Tn is measurable. Similarly {infn Tn ≥ t} = ∩n{Tn ≥ t}. If T = lim supn Tn, then {T <

t} = ∩j≥1 ∪n≥1 ∩k≥n{Tk < t − 1
j } (pay attention to the strict inequality - the equality is false

if we write ≤ t instead of < t) showing that lim supn Tn is measurable. Similarly lim infn Tn is
measurable. If limn Tn exists, it is same as lim supn Tn, so it is measurable. We can write

∑
n anTn

as a limit of finite sums, hence it suffices to show that T1 + T2 is measurable. To see that, we write
{T1 + T2 < t} =

⋂
s∈Q{T1 < s} ∩ {T2 < t− s} (again, the strict inequality is crucial).

148. So far we have not had to bring in measure in discussing measurable functions. When we
are working in a measure space (X,F , µ), we shall see that it often does not matter what happens
on a set of zero measure. For example, if supn Tn(x) <∞ for x ∈ X \ A where µ(A) = 0, then it is
just as good as if supn Tn(x) <∞ for all x.

149. In fact it is so common that most of our statements look like “Property P holds for a.e. x”
or “P holds for x a.s. [µ]”, where a.e (almost every) and a.s. (almost surely) indicate that the given
property is true for all x outside of a set of zero measure w.r.t. µ. For example, f = g a.e. means
that µ{f 6= g} = 0; fn → f a.s. means that µ{x : fn(x) 6→ f(x) as n→∞} = 0 and so on.

150. Returning to the fact that we don’t mind if one of our functions takes infinite values on
zero measure sets, and that does occur often when taking limits or supremum etc., it is convenient
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to consider measurable functions taking values in R = R ∪ {−∞,+∞}. But what is the Borel

sigma-algebra on R? The metric on R is d(x, y) = |x − y|/(1 + |x − y|) where |x − ∞| = ∞ if
x 6= +∞ and |x − (−∞)| = ∞ if x 6= −∞ and the convention is the∞/∞ = 1. Another way to

say this is that R is homeomorphic to [−1, 1] with the usual metric (for homeomorphism we have

many choices, e.g., x 7→ x/(1 + |x|) or x 7→ 2
π arctan(x) with the obvious definitions for x = ±∞).

151. The open intervals in R include all open intervals in R as well as the sets [−∞, t) and (t,∞]

and [−∞,∞]. These open intervals generate the Borel sigma-algebra of R. Hence, to check that

T : X 7→ R is measurable, it suffices to check that {T < t} ∈ F for any t ∈ R. Then {T = −∞} =

∩n{T < −n} and {T = +∞} = (∪n{T < n})c are also measurable, and then it is easy to see that
the pre-images of other open sets are measurable too (e.g., {−∞ < T < t} = {T < t}\{T = −∞}).

Just as with R-valued functions, instead of {T < t} ∈ F for t ∈ R, one can instead check that
{T ≤ t} ∈ F or that {T ≥ t} ∈ F or that {T > t} ∈ F .

152. A function taking values in R can also be viewed as taking values in R, and whether or
not it is measurable does not change which view point we take. Henceforth, whenever we say

real-valued measurable function, we shall mean R-valued measurable function, unless we say
otherwise.

14. PUSH-FORWARD OF MEASURES BY MEASURABLE FUNCTIONS

153. Let T : X 7→ Y be a measurable function. For this section, the sigma algebra on X,Y, Z

will be F ,G,H respectively, and if any of them is a metric space (in particular a subset of Rd), then
the corresponding sigma-algebra will be the Borel sigma algebra. So far measures did not enter
the picture.

154. Let µ be a measure on (X,F). Then define ν : G 7→ [0,∞] by ν(B) = µ(T−1B). If Bn
are pairwise disjoint elements of G, then T−1Bn are pairwise disjoint and elements of F (as T is

measurable), hence ν(tnBn) = µ(tnT−1Bn) =
∑

n µ(T−1Bn) =
∑

n ν(Bn), showing that ν is a

measure on (Y,G).

155. ν is called the push-forward of µ under T , and denoted ν = µ ◦ T−1. In general, there is no
such thing as a pull-back measure. Convince yourself why. If we construct one measure, we can
get many more by pushing it forward under various measurable mappings into various spaces. In
fact, it turns out that pretty much every measure of interest is push-forward of Lebesgue measure
on R.

156. That would mean that there is no need to go through the Carathéodory extension again
and again, it is enough to have done it once to construct Lebesgue measure. This is not entirely
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correct, as it is sometimes not easy to find the measurable function with which to push-forward
λ1 to get a specified target measure.

157. Here is an example that may seem surprising. Define Bn : [0, 1] 7→ [0, 1] by Bn(x) =

b2nxc (this is the nth digit in the binary expansion of x, i.e., x =
∑

nBn(x)2−n). Then define

T1(x) =
∑

n≥1B2n(x)2−n and T2(x) =
∑

n≥1B2n−1(x)2−n and set T (x) = (T1(x), T2(x)). Then

T : [0, 1] 7→ [0, 1]2 and we claim that λ1 ◦ T−1 = λ2 (here λd denotes Lebesgue measure restricted

to [0, 1]d). In a very similar way, T : [0, 1] 7→ [0, 1]d defined by T (x) = (T1(x), . . . , Td(x)) where

Ti(x) =
∑

n≥0Bnd+i(x)2−n, is measurable and λ1 ◦ T−1 = λd.

158. The point of this example is that dimension is irrelevant in measure theory. All the measure

spaces ([0, 1]d,B([0, 1]d), λd) are isomorphic in the sense that there are measurable transformations

from [0, 1]k to [0, 1]` that pushes forward λk to λ`. It is no surprise to anyone for k ≥ `, but that it
is true for k < ` is. Contrast it with theorems in Topology/Geometry class that assert that R is not

homeomorphic/diffeomorphic to R2 or with the fact that R and R2 are not isomorphic as vector
spaces.

159. The proof of the claim above is not difficult. Let us restrict to d = 2. Let B = (k2−n, (k +

1)2−n]× (`2−n, (`+ 1)2−n] for some 0 ≤ k, ` ≤ 2n − 1. What is T−1(B)?

15. LEBESGUE INTEGRATION

160. Let (X,F , µ) be a measure space. The goal is to define a notion of integral for a large class
of functions f : X 7→ R. For the measure space (R,L, λ), it will turn out to be a generalisation of
the Riemann integral (i.e., Riemann integrable functions will turn out to be Lebesgue integrable
and the values of the integral in the two notions agree). The Lebesgue integral will turn out to be
good in the sense that we shall never need any more general notion.

161. What are the requirements out of the integral that we are about to construct? The integral
of a I(f) of a real-valued function f (if defined) will be a real number. The association of integral to
a function must be linear (I(αf + βg) = αI(f) + βI(g)) and positive (I(f) ≥ 0 if f ≥ 0 pointwise).
The dependence of the integral on the measure is captured in the requirement that I(1A) = µ(A)

for A ∈ F .

162. We do not make any effort to justify these requirements but mention them to keep the
end-goal in sight. However, note that the Riemann integral also has linearity and positivity. Later
we shall see that in fact any linear and postive functional on a large class of functions is an integral
with respect to a measure!

163. A function f : X 7→ R is said to be simple if it has finite range. If a1, . . . , an are the

distinct elements in the range, and Ak = f−1{ak}, then {A1, . . . , An} is a partition of X (i.e.,
X = A1 tA2 t . . . tAn) and f = a11A1 + . . .+ an1An . Observe that f is measurable if and only if
Ak ∈ F for each k.
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It is worth noting that any finite linear combination of indicators, g = b11B1 + . . . + bm1Bm is
a simple function. Its canonical form as above is g =

∑
S aS1AS where the sum is over subsets of

{1, 2, . . . ,m} and aS =
∑

i∈S bi and AS = ∩i∈SBi ∩i 6∈S Bc
i . The empty sum is 0, and the terms with

AS = ∅ are to be dropped from the sum. For example, if m = 2, then the canonical form of g is
b11B1∩Bc2 + b21Bc1∩B2 + (b1 + b2)1B1∩B2 + 01Bc1∩Bc2 .

164. The definition of integral will proceed in three steps.

(1) If f : X 7→ R+ is non-negative, simple and measurable with canonical representation
f = a11A1 +. . .+an1An , then define I1(f) := a1µ(A1)+. . .+anµ(An). Then I1(f) ∈ [0,+∞].
Note that measures of sets can be infinite, which is why we don’t define for general simple
functions (we may encounter∞−∞).

(2) If f : X 7→ R+ is non-negative and measurable, define I2(f) = sup{I1(ϕ) : 0 ≤ ϕ ≤
f, ϕ simple, measurable}.

(3) If f : X 7→ R is measurable, let f+ = f ∨ 0 and f− = (−f)+ = −(f ∧ 0). Both f+ and f−

and non-negative and measurable, f+ − f− = f and f+ + f− = |f |. If I2(f+) < ∞ and
I2(f−) <∞, then we say that f is integrable and define I3(f) = I2(f+)− I2(f−).

If exactly one of I2(f+) and I2(f−) is equal to +∞, then we define I3(f) to be ±∞ ac-
cordingly, but we do not say that f is integrable.

If f is non-negative, simple, measurable, then I1(f) = I2(f) = I3(f) and if f is non-negative and
measurable, then I2(f) = I3(f) (this needs justification which will be provided later). Hence it is

legitimate to use a common notation for I1, I2, I3. The standard notation is
∫
X fdµ (also written as∫

X f(t)dµ(t) with a dummy variable t that has no meaning) and read as the (Lebesgue) integral of

f w.r.t. µ. Our first goal is the following theorem.

165. Theorem: The space of integrable functions is a vector space. Further, (1)
∫
X(αf +βg)dµ =

α
∫
X fdµ+ β

∫
X gdµ for any f, g integrable and α, β ∈ R. (2)

∫
X fdµ ≥ 0 if f ≥ 0 pointwise and is

measurable, and the inequality is strict unless f = 0 a.s.[µ].

Further, f is integrable if and only if |f | is integrable and then
∣∣ ∫
X fdµ

∣∣ ≤ ∫X |f |dµ.

In words, the integral is linear and positive. A consequence of these is monotonicity:
∫
X fdµ ≤∫

X gdµ if f ≤ g pointwise and both are integrable.

166. To prove this theorem, we must prove similar properties at each step - for I1, then for I2
and then for I3. The part that is most non-trivial is the additivity f I2: If f, g are non-negative mea-
surable, so if h = f+g. From the definition of I2 it is easy to deduce that I2(h) ≥ I2(f)+I2(g). The
other way inequality is what requires work and will also lead us to one of the appealing features
of Lebesgue integration theory, namely the clean limit theorems that allow easy interchange of
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limits and integrals (which leads to similar theorems about interchange of two integrals, of a sum
with an integral, of differentiation under an integral and so on).

167. Proposition 1: Let f, g be non-negative, simple, measurable. Then so is αf+βg for α, β ≥ 0,
and I1(αf +βg) = αI1(f) +βI1(g). If f ≤ g pointwise then I1(f) ≤ I1(g) with equality if and only
if f = g a.s.[µ].

168. Before proving the proposition, it is worth observing that if g = b11B1 + . . . + bm1Bm

is a simple function (not necessarily in canonical form), then it is true that I1(g) = b1µ(B1) +

. . . + bmµ(Bm). Indeed, we have seen that the canonical form of g is
∑

S

(∑
i∈S bi

)
1AS where

AS = ∩i∈SBi ∩i 6∈S Bc
i . Hence,

I1(g) =
∑
S

(∑
i∈S

bi

)
µ(AS) =

m∑
k=1

bk
∑
S:S3k

µ(AS) =
m∑
k=1

bkµ(Bk)

since tS:S3kAS = Bk.

169. Proof of Proposition 1: Therefore, if f = a11A1+. . .+an1An and g = b11B1+. . .+bm1Bm where
Ai, Bj ∈ F and ai, bj ≥ 0, then αf + βg = αa11A1 + . . .+ αan1An + βb11B1 + . . .+ βbm1Bm . From

the previous step, we can write I1(f), I1(g), I1(h) without having to worry about their canonical
forms and see that I1(h) = αI1(f) + βI1(g).

Next, if f ≤ g, then we can find a common partition and represent them as f = α11C1 + . . . +

αk1Ck and g = β11C1 + . . . + βk1Ck . Then f ≤ g imples that αj ≤ βj for each j. Consequently

I1(f) =
∑

i αiµ(Ci) ≤
∑

i βiµ(Bi) = I1(g). Equality holds if and only if αi = βi for all i for which

µ(Ci) > 0. This is the same as f = g a.s.[µ].

170. MCT for simple functions: Suppose ϕ,ϕn, n ≥ 1, are non-negative simple measurable
functions on (X,F , µ) such that ϕn ↑ ϕ pointwise. Then I1(ϕn) ↑ I1(ϕ).

171. Proof: By monotonicity we see that I1(ϕn) is increasing in n and I1(ϕn) ≤ I1(ϕ) for all n.
Therefore limn I1(ϕn) exists and is at most I1(ϕ). Let ϕ = a01A0 + a11A1 + . . . + am1Am where
{Ak} form a measurable partition and aj > 0 for j ≥ 1. Let An,k = {ϕn > (1− ε)ak} for 1 ≤ k ≤ n.

As ϕn ↑ ϕ, it follows that An,k ↑ Ak for each 1 ≤ k ≤ m and hence µ(An,k) ↑ µ(Ak). Then

ϕn ≥ ψn := (1 − ε)[a11An,1 + . . . + am1An,m ]. Both ϕn, ψn are non-negative simple functions,

hence by monotonicity I1(ϕn) ≥ I1(ψn) = (1 − ε)[a1µ(An1 + . . . amµ(An,m)] and the right hand
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quantity increases to (1− ε)I1(ϕ) as n→∞. Thus limn I1(ϕn) ≥ (1− ε)I1(ϕ) for any ε > 0, hence
limn I1(ϕn) ≥ I1(ϕ). �

172. Proposition 2: Let f, g be non-negative, simple, measurable. Then so is αf+βg for α, β ≥ 0,
and I2(αf + βg) = αI2(f) + βI2(g). If f ≤ g point wise then I2(f) ≤ I2(g) with equality if and
only if f = g a.s.[µ]. Further, I2(f) = I1(f) if f is simple, non-negative and measurable.

173. The last part is a direct consequence of monotonicity of I1. Indeed, if f is simple, and
0 ≤ ϕ ≤ f , then I1(ϕ) ≤ I1(f), which shows that I2(f) ≤ I1(f). Further, the set of simple
functions over which we take supremum contains f too, hence I1(f) ≤ I2(f). Thus, I2(f) = I1(f).

174. The second part is easy. If f ≤ g, then the supremum in the definition of I2(g) is over a
larger class of non-negative simple measurable functions than the supremum in the definition of
I2(f), hence I2(g) ≥ I2(f). If Aδ = {g > f + δ} has µ(Aδ) > 0, then take any simple, non-negative
measurable ϕ ≤ f and observe that ψ = ϕ + δ1Aδ ≤ g, hence I2(g) ≥ I1(ϕ) + δµ(Aδ) > I2(f).
Thus, to have I2(f) = I2(g), we must have µ(Aδ) = 0 for all δ > 0. Take intersection over δ = 1/j,
j ≥ 1, to get µ{g > f} = 0.-

175. To prove the first part, it is obvious that h = αf + βg is non-negative and measurable. Let
0 ≤ ϕ ≤ f and 0 ≤ ψ ≤ g be simple and measurable such that I1(ϕ) ≥ I2(g) − ε and I1(ψ) ≥
I2(g) − ε. Then, 0 ≤ αϕ + βψ ≤ h is also simple and measurable, hence I2(h) ≥ I1(αϕ + βψ) =

αI1(ϕ) + βI1(ψ) ≥ αI1(f) + βI1(g)− 2ε (by Proposition 1). Thus I2(h) ≥ αI1(f) + βI1(g).

To prove the other way inequality suppose we can find simple, non-negative, measurable ϕn

(respectively ψn) that increase to f (respectively g) point wise and set ϕ̂n = ϕn∧ϕ and ψ̂n = ψn∧ψ

(both are again simple and measurable). Then ϕ̂n ↑ ϕ and ψ̂n ↑ ψ point wise. By the MCT

for simple functions, I1(ϕ̂n) ↑ I1(ϕ) and I1(ψ̂n) ↑ I1(ψ) and I1(αϕ̂n + βψ̂n) ↑ I1(αϕ + βψ) ≥

(1 − ε)[I2(f) + βI2(g)]. But αϕ̂n + βψ̂n ≤ h, hence I2(h) ≥ (1 − ε)[αI1(f) + βI1(g)] for any ε > 0.
This proves the first part.

176. It still remains to show that for a given measurable f ≥ 0, there exists simple, measurable

ϕn ≥ 0 such that ϕn ↑ f point wise. An explicit example is ϕn =
∑n2n−1

k=0
k
2n1 k

2n
≤f< k+1

2n
+ n1f≥n.

In words, we partition [0,∞) into [0, 2−n), [2−n, 2 × 2−n), . . . [n − 2−n, n) and [n,∞), and if the
value of f falls in an interval, ϕn will take value equal to the lower end-point of that interval.
Observe that each partition is a refinement of the previous one, which ensures that ϕn ≤ ϕn+1.
This works even if f takes the value +∞.

177. Theorem: The space of integrable functions is a vector space. Further, (1) I3(αf + βg) =

αI3(f) + βI3(g) for any f, g integrable and α, β ∈ R. (2) I3(f) ≥ 0 if f ≥ 0 point wise and is
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measurable, and the inequality is strict unless f = 0 a.s.[µ]. Further, I3(f) = I2(f) if f is non-
negative and measurable.

178. Proof: The last part is again obvious, since f ≥ 0 implies that f+ = f and f− = 0. The
second part is a restatement of the last part of Proposition 2 (after we know that I3(f) = I2(f) for
f ≥ 0).

For the remaining part, since |f | = f+ + f−, we see that a measurable f is integrable if and only
if |f | (a non-negative measurable function) has I2(|f |) < ∞. Since |αf + βg| ≤ |α||f | + |β||g|, this
shows that if f and g are integrable, so is αf + βg.

For the first part, let us first consider scalar multiplication. If α ≥ 0, then (αf)± = αf± while
if α < 0 then (αf)± = −αf∓. From this, it is easy to see that I3(αf) = αI3(f). Now consider
h = f + g. Write I3(f) = I2(f+)− I2(f−) and I3(g) = I2(g+)− I2(g−) and I3(h) = I2(h+)− I2(h−).
Rearrange h = f + g as h+ + f− + g− = h− + f+ + g+ and use Proposition 2 to deduce that
I2(h+) + I2(f−) + I2(g−) = I2(h−) + I2(f+) + I2(g+). Rearrange again to get I3(h) = I3(f) + I3(g).
This proves the linearity. �

179. This completes the construction and the most basic properties of Lebesgue integral. Hence-

forth we shall use the notation
∫
X f(t)dµ(t) or

∫
X fdµ. One more property that we have not men-

tioned is that for integrable f , ∣∣ ∫
X
fdµ

∣∣ ≤ ∫
X
|f |dµ.

The proof is that the right side quantity is the sum of two non-negative numbers
∫
X f+dµ and∫

X f−dµ, while the left side quantity is the absolute value of the difference between the same

numbers.

16. SOME REMARKS ON LEBESGUE INTEGRAL

180. So far our measurable functions were taking values in R. What if they take values in R.
As remarked already, if f is takes values in [0,∞], then I2(f) can be defined exactly as before.

But if µ{f = +∞} > 0, then necessarily
∫
X fdµ = +∞ (the converse is not true). If we want a

measurable function to be integrable, then we shall need µ{f+ = ∞} = 0 and µ{f− = ∞} = 0

or equivalently, µ{f = ±∞} = 0. This is why, even though we allow the values ±∞, in most
situations we only allow that on a set of zero measure. The convenience is that when we take
limits of functions, we may get infinite values on sets of zero measure.

181. Turning it around, we can say that if a non-negative measurable function is integrable, then
it is finite almost surely. This looks trivial but is useful in situations like the following: Suppose

fn ≥ 0 are measurable and
∑

n

∫
X fndµ < ∞. Then

∑
n fn converges to a finite value a.s.[µ].

This is because f :=
∑

n fn is a non-negative measurable function taking values in [0,+∞] whose
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integral is finite. Hence the sum is finite a.s. (convergence of the series is easy as partial sums are
increasing, finiteness is the question).

In particular, if
∑

k µ(Ak) < ∞, then
∑

k 1Ak < ∞ a.s.[µ]. But
∑

k 1k(x) < ∞ if and only if x

belongs to only finitely many of theAks. Hence, µ(lim supAk) = 0, where lim supAk = ∩k∪n≥kAn
is the set of x that belong to infinitely many of the Ans. This is known as first Borel-Cantelli lemma.

182. A quantitative extension of the previous remark is the simple but useful Markov inequality:

If f ≥ 0 is measurable, then
∫
X fdµ ≥ tµ{f ≥ t} for any t > 0. This follows by monotonicity of

the integral applied to f ≥ t1f≥t.

183. Extending the previous point, if f, g are two measurable functions such that f = g a.s.[µ],

then
∫
X |f−g|dµ = 0 and in particular, if one is integrable then so is the other and their integrals are

equal. For all intents and purposes, they are the same function. This is made precise by declaring
an equivalence relationship f ∼ g if f = g a.s.[µ]. That it is reflexive (f ∼ f ) and symmetric
(f ∼ g =⇒ g ∼ f ) is clear. Transitivity follows because µ{f 6= h} ≤ µ{f 6= g} + µ{g 6= h}. The
equivalence classes are often denoted [f ], where f is any representative of the class.

184. The operations of addition, scalar multiplication, product and almost-sure limits along
sequences carry over to the equivalence classes. For this all one needs to check is that if fn ∼ gn

then limn fn = limn gn a.s.[µ] (if the limits exist almost everywhere), that αf1 + βf2 ∼ αg1 + βg2

a.s.[µ] and that f1f2 = g1g2 a.s.[µ]. Thus, one can write [f ] + [g] (same as [f + g]), [f ] × [g] (same
as [fg]) and lim supn[fn] and lim inf[fn] (same as [lim sup fn] and [lim inf fn]). But after a while one
gets tired of writing brackets (we tell ourselves that we are picturing them mentally) and we refer
to equivalence classes as functions, choose representatives at abandon and so on.

185. We have only integrated functions over the whole space. If A ∈ F , we define the integral

over A as
∫
A fdµ =

∫
X f1Adµ. It is a good exercise to check that this is the same as integrating

g = f
∣∣
A

over the whole set in the measure space (A,G, ν) where G = {B∩A : B ∈ F} and ν = µ
∣∣
A

.

186. An interesting property is that if f ≥ 0, then µf (A) =
∫
A fdµ defines a new measure on

(X,F). All one needs to check is countable additivity. But if An are pairwise disjoint and their

union is A, then 1A =
∑

n 1An and by MCT (applied to the sequence of partial sums),
∫
X f1Adµ =∑

n

∫
X f1Andµ. This is another way to generate new measures from old. In terminology that we

shall introduce later, µf is absolutely continuous to µ with Radon-Nikodym derivative f .

17. LIMIT THEOREMS

187. As remarked earlier, a striking and convenient feature of Lebesgue integration theory is
the ease with which limits and integrals can be interchanged. There are three primary theorems
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that we shall have occasion to use repeatedly. Throughout, we fix a measure space (X,F , µ) and

R-valued functions on it.

188. Monotone convergence theorem (MCT): Suppose fn, f are non-negative measurable func-

tions such that fn ↑ f a.s.[µ]. Then
∫
X fndµ ↑

∫
X fdµ (valid also when

∫
X fdµ = +∞).

189. Fatou’s lemma: Suppose fn are non-negative measurable functions. Then
∫
X(lim inf fn)dµ ≤

lim infn
∫
X fndµ.

190. Dominated convergence theorem (DCT): Suppose fn → f a.s.[µ] and |fn| ≤ g a.s. for all

n for an integrable g. Then
∫
X |fn − f |dµ→ 0 and

∫
X fndµ→

∫
X fdµ.

191. Is non-negativity necessary in MCT? As fn ↑ f . If fn ↑ f , then gn = fn−f1 are non-negative

and increase to g = f − f1. Applying MCT, we get
∫

(fn − f1)dµ ↑
∫

(f − f1)dµ. Using linearity,∫
fndµ −

∫
f1dµ ↑

∫
fdµ −

∫
f1dµ, which implies that

∫
fndµ ↑

∫
fdµ. Where is the flaw in this

argument?

There is none, provided
∫
f1dµ > −∞, or

∫
fNdµ > −∞ for some N (then we can start the

sequence at fN ). Consider fn = −1[n,∞) which increases to 0 as n → ∞, but
∫
fndλ = −∞ for all

n and
∫
fdλ = 0. This shows that MCT can be violated.

192. Is the domination condition necessary in DCT? The example of fn = n1[0, 1
n
] on (R,L, λ)

(clearly fn → 0 a.s.[λ]) shows that some condition is needed along with almost sure convergence
to conclude convergence of integrals. This example also helps to avoid the most common mistake
I have seen in applying DCT. All too often someone states that if fn → f a.s.[µ] and f is integrable,

then
∫
fndµ→

∫
fdµ. False!

However, the domination condition is not necessary. In fact, there is a necessary and suf-
ficient condition (finiteness of µ needed?) which, together with fn → f a.s.[µ] implies that∫
fndµ→

∫
fdµ. That condition is uniform integrability: Given ε > 0, there exists M <∞ such that∫

X |fn|1|fn|>Mdµ < ε for all n. Check that the domination condition implies uniform integrability.

Domination is one of the most easily checkable sufficient conditions for uniform integrability.

193. Is non-negativity required in Fatou’s lemma? Again the example of −1[n,∞) on (R,L, λ)

shows that we cannot just omit it. Another point is that strict inequality can hold in the lemma.
The example fn = n1[0, 1

n
] shows this.

194. Proof of MCT: We already know this when fn and f are simple and convergence happens at
all x. Let us relax this one by one.

First suppose that fn are simple and convergence happens at all points of X . Then for any non-
negative, simple, measurable ϕ such that 0 ≤ ϕ ≤ f , we have (ϕ ∧ fn) ↑ ϕ pointwise and hence∫
X ϕ = limn→∞

∫
X(ϕ ∧ fn)dµ ≤ lim inf

∫
X fndµ. Take supremum over
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Next suppose that convergence happens at all points of X but no assumption that fn or f are
simple. Find non-negative simple measurable ϕn,k that increase to fn as k ↑ ∞. Set ψn = ϕn,1 ∨
. . .∨ϕn,n. Then ψn are simple and increase to f point wise (why?). Hence,

∫
X f = limn→∞

∫
X(ϕ∧

fn)dµ ≤ lim inf
∫
X fndµ

195. Proof of Fatou’s lemma: Let gk = infn≥k fn. Then gk are non-negative measurable func-

tions that increase to g = lim inf fn. By MCT,
∫
gkdµ ↑∈ gdµ. But gk ≤ fk for each k, hence

lim infk
∫
fkdµ ≥

∫
gdµ. �

196. Proof of DCT: g − fn ≥ 0 and g − fn → g − f a.s.[µ]. By Fatou’s lemma lim inf
∫

(g −
fn)dµ ≥

∫
(g − f)dµ. Cancel

∫
gdµ on both sides (since it is finite by integrability of g) to get

lim sup
∫
fndµ ≤

∫
fdµ. Similarly from g + fn (which are non-negative and converge to g + f a.s.)

conclude that lim inf
∫
fndµ ≤

∫
fdµ. Together these show that

∫
fndµ→

∫
fdµ.

To get the apparently stronger conclusion that
∫
|fn − f |dµ → 0, apply what we have already

proved to the sequence |fn−f |which converges to 0 a.s.[µ] and is dominated by 2g (since |fn−f | ≤
|fn|+ |f | and fn → f a.s.[µ] implies that |f | ≤ g too). �

18. COMPLETENESS OF LEBESGUE SPACES

197. Let (X,F , µ) be a measure space. Recall the equivalence relationship f = g a.s.[µ] intro-
duced earlier. If f ∼ g, then f is integrable if and only if g is, and then their integrals are equal.
Hence we can define an equivalence class to be integrable if one (and hence all) element in it is

integrable. The space of equivalence classes of integrable functions is denoted L1(X,F , µ) - it is

the first Lebesgue space. We may simply write L1(µ) or L1 if the setting is clear.

198. As noted earlier, the operations of addition, scalar multiplication, products, almost sure

limits can be naturally defined on the collection of equivalence classes. In particular, L1(µ) is a

vector space with theL1-norm ‖[f ]‖1 :=
∫
X |f |dµ (well-defined as the choice of representative does

not change the value of the integral). It is a norm because of homogeneity
∫
|αf |dµ = |α|

∫
|f |dµ

and triangle inequality
∫
|f + g|dµ ≤

∫
(|f | + |g|)dµ =

∫
|f |dµ +

∫
|g|dµ. Also,

∫
|f |dµ = 0 if and

only if f = 0 a.s.[µ], which means that [f ] = 0 (this is the reason why we moved to equivalence
classes, otherwise we would only get a pseudo-norm).

199. Completeness of L1: The space L1(X,F , µ) is complete under the L1 norm.

200. Proof: Pick a Cauchy sequence in L1(µ) and representatives fn in them. The Cauchy prop-

erty says that
∫
X |fn − fm|dµ → 0 as m,n → ∞. In particular, we can find N1 < N2 < . . .

such that
∫
X |fn − fm|dµ ≤ 2−k if m,n ≥ Nk. As 2−k is summable, it follows that the series

fN1 + (fN2 − fN1) + (fN3 − fN2) + . . . converges absolutely almost surely. Thus, fNk → f a.s.[µ]

for some finite f that is integrable. Further,
∫
X |fNk − f |dµ ≤

∑
j≥k

∫
X |fNj − fNj+1 |dµ ≤ 2−k+1.
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Therefore, ‖[fNk ] − [f ]‖1 → 0. In a Cauchy sequence, if a subsequence converges then the entire

sequence does, thus ‖[fn]− [f ]‖1 → 0. This shows the completeness of L1(µ). �

201. Other Lebesgue spaces. For 1 ≤ p < ∞, define ‖f‖p =
(∫
X |f |

pdµ
)1/p and for p = ∞ we

define ‖f‖∞ = inf{t ≥ 0 : µ{f > t} = 0}. Then, for 1 ≤ p ≤ ∞, the vector space Lp(X,F , µ) :=

{[f ] : ‖f‖p <∞}. It is endowed with the Lp norm ‖[f ]‖p = ‖f‖p (the choice of representative does

not matter). It is clear that ‖α[f ]‖p = |α|‖[f ]‖p and that ‖[f ]‖p = 0 if and only if [f ] = 0. Triangle
inequality is not obvious and will be proved later (Minkowski’s inequality). That is where p ≥ 1 is
required. One example that may already be familiar is whenX = N and µ is the counting measure
(F is the power set), in which case Lp(µ) = `p = {x = (x1, x2, . . .) : xn ∈ R,

∑
n |xn|p <∞}.

202. Lp spaces are important, but the most important and intuitive of them are L1, L2 and L∞.

We have already seen L1.

203. The space L∞ is easy to work with. The elements are equivalence classes of measurable
that contain a bounded function, with the norm being the smallest of the sup-norms of elements
in the equivalence class. Triangle inequality and completeness of L∞ are easy to prove (similar to
the way one proves that sup-norm is a complete norm on C[0, 1]).

204. The space L2 is the most special of all. Observe that ‖f‖22 = 〈f, f〉 where 〈f, g〉 :=
∫
X fgdµ.

This is a (pseudo) inner product, which becomes a genuine inner product at the level of equiva-
lence classes. It is also complete, which makes it a Hilbert space.

205. Assuming that the Lp-norm is a norm, let us prove the completeness. Take a Cauchy
sequence of equivalence classes in Lp(µ) and representatives fn in them. Then find a subsequence

{Nk} such that ‖fn − fm‖p < 2−2k for m,n ≥ Nk. Then the set Ak := {|fNk − fNk+1
| ≥ 2−k} has

measure µ(Ak)2
−kp ≤

∫
X |fNk − fNk+1

|pdµ ≤ 2−2kp, whence µ(Ak) ≤ 2−kp. As this is summable,

we see that |fNk − fNk+1
| ≥ 2−k for all large k, for a.e. x [µ]. Therefore, fN1 +

∑
k≥1(fNk+1

− fNk)

converges absolutely, a.s.[µ]. Call the limit f (at points where the limit does not exist, define
f(x) = 0) so that fNk → f a.s.[µ]. Further, ‖f − fNk‖p ≤

∑
j≥k ‖fNj+1 − fNj‖, which shows that

fNk → f in Lp. As the whole sequence is Cauchy in Lp, this implies that the sequence converges
in Lp to f (more precisely that [fn] converges to [f ] in Lp).

206. We are yet to prove Minkowski’s inequality. We first prove Hölder’s inequality.

207. Hölder’s inequality: Let f, g ≥ 0 be measurable functions on (X,F , µ). Then for any

1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1, we have
∫
fgdµ ≤

(∫
fpdµ

)1/p (∫
gqdµ

)1/q, with equality iff fp = gq

a.s.[µ]. As a corollary1, if f ∈ Lp and g ∈ Lq, then fg ∈ L1 and ‖fg‖1 ≤ ‖f‖p‖g‖q.

208. The key inequality is that a
p

p + bq

q ≥ ab for a, b ≥ 0. Apply this with a = f(x), b = g(x) and

integrate over x w.r.t. µ to get 1
p‖f‖

p
p + 1

q‖g‖
q
q ≥ ‖fg‖1. Replace f by f/‖f‖p and g by g/‖g‖q (if

1Strictly speaking one should write [f ], [g], [fg] in this statement, but it is usual to be loose with language and say

that a function is in Lp etc.
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one of ‖f‖p or ‖g‖q is 0 or∞, the statement is obvious) to get ‖fg‖1
‖f‖p‖g‖q ≤

1
p + 1

q = 1. This proves

the first statement. Applying it to |f | and |g| gives the second.

To prove the inequality used, consider the graph y = xp−1, which is the same as x = yq−1,

where x, y > 0. Observe that a
p

p is the area of {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ xp−1} and bq

q is the area

of {(x, y) : 0 ≤ y ≤ b, 0 ≤ x ≤ yq−1}. The union of these regions covers the rectangle 0 ≤ x ≤ a,
0 ≤ y ≤ b, which has area ab.

It is clear that equality holds if and only if b = ap−1 or equivalently a = bq−1 or equivalently
ap = bq. Thus, in Hölder’s inequality for non-negative functions, equality holds if and only if
fp = gq a.s.[µ]. For general f, g, equality holds if and only if |f |p = |g|q and fg has a constant sign,
a.s.[µ]. �

209. Minkowski’s inequality: Let f, g ≥ 0 are measurable, then for any 1 ≤ p ≤ ∞, we have
‖f + g‖p ≤ ‖f‖p + ‖g‖p. In particular, ‖ · ‖p defines a norm on Lp(µ).

210. Proof: The cases p = 1 and p =∞ are easy to verify directly. Hence assume 1 < p <∞ and

let 1 < q <∞ be the conjugate exponent satisfying 1
p+ 1

q = 1. Write
∫

(f+g)pdµ as
∫
f(f+g)p−1dµ+∫

g(f + g)p−1dµ. Apply Hölder’s inequality with exponents p and q to the first integral to get∫
f(f+g)p−1dµ ≤ (

∫
fpdµ)

1
p (
∫

(f+g)pdµ)
1
q . Similarly

∫
g(f+g)p−1dµ ≤ (

∫
gpdµ)

1
p (
∫

(f+g)pdµ)
1
q .

Adding the two, we get
∫

(f + g)pdµ ≤ (
∫

(f + g)pdµ)
1
q ((
∫
fpdµ)

1
p + (

∫
gpdµ)

1
p ). As 1− 1

q = 1, we

get (
∫

(f + g)pdµ)
1
p ≤ (

∫
fpdµ)

1
p + (

∫
gpdµ)

1
p ). Equality holds if and onlu if fp = (f + g)(p−1)q and

gp = (f + g)(p−1)q a.s.[µ], which is the same as f = g a.s.[µ].

All this holds even if the integrals are infinite. Now if f, g ∈ Lp, then apply the obtained
inequality to |f | and |g| to get the second statement of the theorem. Equality holds if and only if
|f | = |g| and |f + g| = |f |+ |g| a.s.[µ], which is the same as saying that f and g are collinear. �

19. MEASURE FROM INTEGRAL

211. Sticking to R, we constructed Lebesgue measure and then Lebesgue integral. It is also
possible to go in the other direction - start with a notion of integral on a large enough class of
functions and then construct the measure. What class of functions? The notion of measurability
depends on the sigma algebra we take, but we probably agree that any notion of integral must
apply to compactly supported continuous functions. Hence let us start with an integral on this
class. But what is an integral? We ask only fo linearity and positivity.

212. The considerations extend to any locally compact Hausdorff space. If not familiar with
general topology, assume that it is a metric space where closed balls are compact. All open sets in
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Rd are examples. But C[0, 1] is not a locally compact space (why?). Let Cc(X) denote the space of
continuous f : X 7→ R such that f = 0 outside a compact set.

213. Riesz’s representation theorem: Let X be a locally compact Hausdorff space. Let L :

Cc(X) 7→ R be a functional that is linear (L(αf + βg) = αL(f) + βL(g) for α, β ∈ R and f, g ∈
Cc(X)) and positive (L(f) ≥ 0 if f ≥ 0 point wise). Then, there exists a unique regular Borel

measure µ on (X,BX) such that L(f) =
∫
X fdµ for all f ∈ Cc(X).

214. Recall that a Borel measure µ is regular if it is Radon (µ(K) < ∞ for all compact K),
outer regular (µ(A) = inf{µ(G) : G ⊇ A is open} for all A ∈ BX ) and inner regular (µ(A) =

sup{µ(K) : K ⊆ A is compact} for all A ∈ BX with µ(A) < ∞). If X is sigma-compact, then we
may drop the condition of µ(A) <∞ in inner regularity.

215. Riesz’s representation theorem says that an integral is nothing except a positive, linear
functional on Cc(X). If X is compact, then Cc(X) is just C(X).

216. When we defined measure as a countably additive function on a sigma-algebra, we never
justified the requirement of countable additivity. Even our intuitive notion of volumes would ask
only for finite additivity. Indeed, countable additivity was initially not universally accepted as the
right framework, especially in probability. However, the theory with countably additivity is far
richer than just finite additivity, and has gradually become the norm.

Riesz’s representation theorem can be seen as a justification for countable additivity. The ques-
tion of what linear functions on Cc(R) are positive, has no countability in it. But the answer turns
out to be integration w.r.t. (countably additive) measures. Thus it brings out countable additivity
without secretly putting it into the question itself!

217. Some examples: Let X = R and L1(f) =
∫
R f(x)dx (Riemann integral, say), L2(f) = f(1),

L3(f) =
∑

n∈Zwnf(n) wherewn > 0 for all n. It is clear that all three are positive linear functionals.

The measure corresponding to them (as per Riesz’s representation theorem) are µ1 = λ1 (Lebesgue
measure on R), µ2 = δ1 and µ3 =

∑
n∈Zwnδn.

218. Let us discuss the approach to Riesz’s representation theorem in the context of X = I =

[0, 1] and L(f) =
∫ 1
0 f(x)dx for f ∈ C(I) (here we may take Riemann integral, to make the point

that this could have been defined before Lebesgue integration theory). The one way to construct
measures that we have seen is to construct an outer measure then use the Carathéodory cut condi-
tion. For Lebesgue measure, we constructed the outer measure starting with lengths of intervals;
now we must do that using integrals of continuous functions.

219. A first thought would be to define µ#(A) := inf{L(f) : f ∈ C(I), f ≥ 1A} for A ⊆ I .

But then µ#(Q ∩ [0, 1]) = 1, as f ≥ 1 on Q ∩ [0, 1] and continuity of f force that f ≥ 1 on [0, 1].
But we know that we must get µ to be the Lebesgue measure, hence there is a problem with this
approach. This is reminiscent of the problem with Jordan measurable sets. Indeed, it is not hard
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to show that µ#(A) = λ#(A) where the outer Jordan measure λ#(A) = inf
∑k

j=1 |Ij |, where the

infimum is over all finite covers of A by intervals.

220. Proof that µ# = λ#: Given an interval cover I1, . . . , Im of A, pick fi ∈ C(I) such that
fi = 1 on Ii and fi = 0 outside an ε-neigbourhood of Ii and 0 ≤ fi ≤ 1 everywhere. Then
f := f1 + . . . + fm ≥ 1A and L(f) = L(f1) + . . . + L(fm) ≤ |I1| + . . . + |Im| + mε. Taking infima,

we see that µ#(A) ≤ λ#(A).

Conversely, given f ∈ C(I) such that f ≥ 1A, observe that {f > 1−ε} is a finite union of finitely

many open intervals I1, . . . , Im (why?). Then |I1|+ . . .+ |Im| ≤ (1− δ)−1
∫ 1
0 f(x)dx. Again taking

infima, we see that λ#(A) ≤ µ#(A).

221. We now move back to a more general situation but more restricted than in the statement
of Riesz’s theorem. Henceforth, assume that X is a compact metric space. Given L is a positive
linear functional on C(X), define for A ⊆ X .

µ∗(A) = inf

{ ∞∑
i=1

L(fi) : fi ∈ C(X),

∞∑
i=1

fi ≥ 1A

}
.

The choice f1 = 1 and fi = 0 for i ≥ 2 shows that the infimum is over a non-empty set.

222. Proof that µ∗ is an outer measure: Clearly 0 ≤ µ∗(A) ≤ L(1). Monotonicity is also obvious:
If A ⊆ B then µ∗(A) ≤ µ∗(B). To check countable subadditivity, let An be subsets and A = ∪nAn.

Find fn,k, k ≥ 1, such that
∑

n L(fn,k) ≤ µ∗(An)+ε2−n and then the whole collection fn,k, n, k ≥ 1,

satisfies
∑

n,k L(fn,k) ≤
∑

n µ
∗(An) + ε and

∑
n,k fn,k ≥ 1A. Hence, µ∗(A) ≤ ε +

∑
n µ
∗(An),

showing subadditivity of µ∗.

223. Metric property of µ∗: LetA,B ⊆ X with d(A,B) > 0. Consider ϕA,ε(x) := 1−(1εd(A, x)∧1),

a continuous function that is 1 on A and 0 outside the ε-neighbouhood of A and between 0 and
1 everywhere. Given any f ≥ 1AtB , let g = fϕA and h = fϕB where 2ε < d(A,B). Then
g, h ∈ C(X), have disjoint supports, g ≥ 1A and h ≥ 1B . Disjointness of supports shows that
f ≥ g+h, hence L(f) = L(g) +L(h) ≥ µ∗(A) +µ∗(B). Taking infimum over f we get µ∗(AtB) ≥
µ∗(A) + µ∗(B). The other way inequality follows from subadditivity. Thus µ∗ is a metric outer
measure.

224.

225. Recall that a metric outer measure is a measure when restricted to the Borel sigma algebra.
Let this measure be denoted µ. All that remains is to prove the regularity of µ. To see the outer
regularity, letA ⊆ X and find f ∈ C(X) such that µ(A) > L(f)−ε. LetG = {f > 1−δ}, an open set

that containsA. Observe that (1−δ)−1f ≥ 1G and hence µ(G) ≤ (1−δ)−1L(f) < (1−δ)−1(µ(A)+ε).
As ε and δ are arbitrary positive numbers this shows that inf{µ(G) : G ⊇ A is open} ≤ µ(A). The
other way inequality is trivially true. Thus µ is outer regular. In case of compact space X , by
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going to complements, this also gives inner regularity. This completes the existence part of Riesz’s
representation theorem.

To prove the uniqueness, observe that if A is closed, then the sequence of functions ϕn = 1 −
(1εd(A, x)∧1) decrease to 1A. Hence, by monotone convergence theorem, µ(A) = limL(ϕn). Thus,

two measures that represent L must agree on all closed sets. Since they form a π-system that
generates the Borel sigma algebra, the measures must be equal. �

226. This completes the proof for compact metric spaces. The metric condition is not too restric-

tive for actual applications, but compactness is. For example, the case of Rd is not covered. Where
did we use the compactness ofX in the proof above? SupposeX is a locally compact metric space,
we may define µ∗ exactly as above, except that the infimum may be over an empty set (which is
defined to be +∞). The proof that µ∗ is an outer measure goes through. When it comes to the

metric property of µ∗, the function ϕA is in Cc(X) only if A is compact. Thus, the metric property
µ∗(A t B) = µ∗(A) + µ∗(B) holds when A and B are separated and their closures are compact.
It must be possible to extend this to all sets or may be this suffices to show that µ∗ is a measure
when restricted to BX . I’ll think about this at some point of time and update the notes, but for the
course, we just stay with the proof for the compact metric case.

20. RADON-NIKODYM THEOREM

227. Let (X,F , µ) be a measure space. If f is a non-negative measurable function on X , then

νf : F 7→ [0,∞] defined by νf (A) =
∫
A fdµ, defines another measure on F (this was an exercise - a

simple application of MCT). When this is the case, we say that f is the Radon-Nikodym derivative
of ν with respect to µ. The uniqueness is clear, hence we say “the” derivative. It is customary to
write dν = fdµ.

228. Now we address the converse question: Given a measure ν on F , does ν have a Radon-
Nikodym derivative w.r.t. µ, i.e., is there a function f such that ν = νf?

229. A necessary condition: If µ(A) = 0 then νf (A) = 0, because f1A = 0 a.s.[µ], which implies

that
∫
A fdµ = 0. Hence, if there is even a single A ∈ F such that ν(A) > 0 = µ(A), then ν cannot

have a RN-derivative w.r.t. µ.

230. Definition: Let µ, ν be measures on (X,F). We say that ν is absolutely continuous to µ and
write ν � µ if ν(A) = 0 whenever µ(A) = 0. If ν � µ and µ� ν, we say that µ and ν are mutually
absolutely continuous. We say that ν and µ are singular and write µ ⊥ ν if there exists a set A ∈ F
such that µ(A) = 0 and ν(Ac) = 0. Singularity is a symmetric relationship.

231. Examples: If ν is a measure on Rd that has an atom then it is not absolutely continuous

to λd. Lebesgue measure on a proper subspace of Rd is singular to Lebesgue measure on Rd.
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The Cantor measure and Lebesgue measure on the line are singular to each other. On (R,B), if

µ = λ
∣∣
[0,1]

, then µ� λ but λ is not absolutely continuous to µ.

232. The discussion earlier says that if ν has a Radon-Nikodym derivative w.r.t. µ, then it is
necessary that ν � µ. It turns out that this is the only obstacle! Well, we must restrict to sigma-
finite measures though.

233. Radon-Nikodym theorem: Let µ, ν be σ-finite measures on (X,F). If ν � µ, then it has a
Radon-Nikodym derivative w.r.t. µ.

234. If we prove the theorem for finite measures µ, ν, then the result for the sigma-finite case
can be deduced as follows: Find a measurable partition {Xn} of X such that µ(Xn) < ∞ and

ν(Xn) < ∞. Consider the finite measures µn = µ
∣∣
Xn

and νn = ν
∣∣
Xn

on (Xn,Fn), where Fn =

{B ∈ F : B ⊆ Xn}. Then νn � µn, write dνn = fndµn, where fn ∈ L1(Xn,Fn, µn). Then define
f : X 7→ R as f =

∑
n fn1Xn . For any A ∈ F , write A = tn(A ∩Xn) and hence

ν(A) =
∑
n

νn(A ∩Xn) =
∑
n

∫
Xn

fndµn =

∫
X
fdµ,

showing that dν = fdµ.

235. Proof of RN theorem for finite measures: Consider S := {f : X 7→ R+ : measurable ,
∫
A fdµ ≤

ν(A) ∀A ∈ F}. As S contains the zero function, it is non-empty. Let J(f) :=
∫
X fdµ for f ∈ S. We

wish to show that J attains its supremum on S. Assuming this, let g ∈ S be a maximiser of J over

S. We claim that g is the RN-derivative of ν w.r.t. µ. If not, then
∫
X gdµ < (1 − ε)ν(X) for some

ε > 0. We make the claim (and this is the one that uses the hypothesis of absolute continuity) that

there exists A ∈ F such that µ(A) > 0 and
∫
C gdµ ≤ (1 − ε)ν(C) for all measurable C ⊆ A. Once

this claim is granted, h = g + ε1A ∈ S and J(h) > J(g), giving a contradiction. Modulo the two
claims, the proof is complete. �

236. Proof that J attains its supremum on S: First we observe that S is closed under taking finite
maxima. Indeed, if f1, f2 ∈ S, then partition X into X1 = {f1 ≥ f2} and X2 = {f2 > f1}, so

that
∫
A(f1 ∨ f2)dµ =

∫
A∩X1

f1dµ +
∫
A∩X2

f2dµ. The summands are bounded by ν(A ∩ X1) and

ν(A ∩X2), because fi ∈ S. Adding up, we see that
∫
A gdµ ≤ ν(A), for any A ∈ F . That is, g ∈ S.

Now find fn ∈ S such that J(fn) ↑ supS J . Then gn := f1∨f2∨ . . .∨fn ∈ S and gn are point-wise
increasing, say to g. By MCT, it follows that g ∈ S and also that J(g) = lim J(gn) = supS J . �

237. Proof of the existence of the set A: To remove distracting features, define the measures dθ =

gdµ and τ = (1 − ε)ν. Now define a1 = sup{θ(B) − τ(B) : B ⊆ X} and observe that a1 > 0

since θ(X) > τ(X) by assumption. Find A1 ⊆ X such that θ(A1) − τ(A1) ≥ 0.9a1. Then define
a2 = sup{θ(B) − τ(B) : B ⊆ A1} and find A2 ⊆ A such that θ(A2) − τ(A2) ≥ 0.9a2. Continue
to define an and An (if an = 0 then set Ak = 0 for k ≥ n). Then An are pairwise disjoint and
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tnAn ⊆ A, hence 0.9
∑

n an ≤
∑

n θ(An) ≤ 1, showing that an → 0. Therefore, if B = A \ tnAn,

then for any C ⊆ B, we must have θ(C) ≤ τ(C), otherwise, θ(C) > τ(C) + a for some a > 0 and
then an would have been more than a for all n. If µ(B) = 0, then by absolute continuity we also
have ν(B) = 0, which means that θ(B) = τ(B) = 0. �

238. Second proof of Radon-Nikodym theorem: Again we assume that µ and ν are finite measures.

Let θ = µ + ν. Then µ(A) ≤ θ(A) for all A, hence L2(θ) ⊆ L2(µ). Further, the linear functional

L(f) =
∫
X fdµ defined on L2(θ) is continuous. Hence, there exists g ∈ L2(θ) such that

∫
X fdµ =∫

X fgdθ or equivalently,
∫
X f(1− g)dµ =

∫
X fgdν.
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