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CHAPTER 1

Probability measures and random variables

The goal of the course is to first understand the measure theoretic foundations of probability
theory. Then we study the basic theorems and techniques of probability. Although we shall intro-
duce many interesting probability situations, what we study most in depth are sums of indepen-
dent random variables, essentially devoted to the following single question: Given independent
random variables with known distributions, what can be said about the distribution of the sum?
Here is a brief outline, some of which will not make sense till we go into them in detail.

» Measure theoretic foundations of probability: Borel and Lebesgue founded measure the-
ory, in particular the Lebesgue measure and Lebesgue integral, mainly motivated by the question
of understanding lengths, areas, volumes, in the greatest generality possible. Very soon it was
realized that the same would also give a mathematical foundation to probability. However, be-
yond the basics, the key aspects of probability that make it richer than general measure theory are
the notions of independence and conditional probability. Several analysts had given reasonably
satisfactory measure theoretic foundation to independence (most importantly Daniell) but it was
Kolmogorov who put the entire theory, including conditional probability, on a firm foundation. We
shall see most of this in the first part of the course (though conditional probability will be largely
postponed).

» The second important aspect will be the various techniques. These include the first and
second moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and
Bernstein and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention character-
istic functions or Fourier transforms, a tool of great importance, as well as the less profound but
very common and useful techniques of proofs such as truncation and approximation. It is these
techniques that one must really get comfortable with, to be able to do anything further.

» Thirdly, we introduce a few basic problems/constructs in probability that are of interest in
themselves and that appear in many guises in all sorts of probability problems. These include the

coupon collector problem, branching processes, Pdlya’s urn scheme and Brownian motion. Many



more could have been included if there was more time!. These are also important to introduce, as
techniques cannot be learned in vacuum, but by seeing how they are used in these problems.

» Lastly, some of the fundamental results of probability theory. Laws of large numbers, Cen-
tral limit theorems, Law of iterated logarithm, Sums of heavy tailed random variables, etc. Their

importance cannot be overemphasized.

1. The basic set up for probability

A random experiment is an undefined but intuitively unambiguous term that conveys the idea of
an “experiment” that can have one of multiple outcomes, and which one actually occurs is unpre-
dictable. The first question in making a theory of probability is to give a mathematical definition
that can serve as a model for the real-world notion of a random experiment.

In basic probability class we have already seen how to do this, provided the number of out-

comes is finite or countably infinite. This is how it is done.

Definition 1: Discrete probability space

A discrete probability space is a pair (Q,p), where Q is a non-empty countable set and p :

Q — [0,1] is a function such that > p(w)=1.
we

Then define P: 22 — [0,1] by P(A) = 5 p(w).
WEA

The set Q is called the sample space (the collection of all possible outcomes), p(w) are called
elementary probabilities, subsets of Q) are called events, and P(A) is said to be the probability of the event
A. The way this mathematical notion is supposed to represent a random experiment is familiar.

We just illustrate with a few examples.

Example 1: A coin is tossed n times

Then QO = {0, 1}™ where if w = (wq,...,wn) € Q denotes the outcome where the ith toss

is a head if w; = 1 and a tail if w; = 0. Further, p(w) = p®1t-+®n(] — p)n= @17 Wn

(this assignment incorporates the idea that distinct tosses are independent, a notion to be
introduced later) where p € [0, 1] is a parameter describing the coin. An example of an event
is that of getting exactly k heads, i.e., A = {w: w;j + ... + wn = k}, which has probability
P(A) = (g)p*(L—p)n~

IReferences: Dudley’s book is an excellent source for the first aspect and some of the second but does not have much
of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can touch

upon in this course. Lots of other standard books in probability have various non-negative and non-positive features.
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Example 2: 1 balls are thrown into n bins at random

Then Q = [n]" where [n] = {1,...,n}. Here w = (w1,...,wn) € Q denotes the outcome

where the ith ball goes into the bin numbered w;. Elementary probabilities are defined by

plw) = n~". An example of an event is that the first bin is empty, i.e., A = {w: w; #
1 for all i}, and it has probability P(A) = (n;_})T

But when the number of possible outcomes is uncountable, this framework fails. Examples:

(1) A glass rod falls and breaks into two pieces.
(2) A fair coin is tossed infinitely many times.

(3) A dart is thrown at a dart board.

Sample space. This is the set of all possible outcomes and is denoted” Q. In the above cases it

is easy to see that the sample space must be equal to

(1) [0,1], where we think of the glass rod as the line segment [0, 1] and the outcome denotes

the point in [0, 1] where the breakage occurs,

2) {0,1}%, where w = (w1, wy,...) denotes the outcome where the kth toss turns up wy
p

(always 1 denotes heads and 0 denotes tails),

(3) {(x,y) : x> + y? < 1}, where the point (x,y) denotes the location where the dart hits the
dartboard.

In all three cases Q) is uncountable. We also agree on the probabilities of many events. For example
the events [0.1,0.35] and {w € {0, 1} : w1 =1, wp = 0}and {(x,y) : x > 0 > y}in the three examples
must have probability 1. But where does that come from? If any elementary probabilities are to
be assigned to singletons, it can only be zero, and there is no unambiguous meaning to adding
uncountably many zeros to get 1. So we need a new framework.

The first example is clearly the same as the issue of assigning lengths to subsets of the line, and
in measure theory class we have seen that it can be done satisfactorily by giving up the idea of
assigning length to every subset. As recompense, we get a notion of length that is not just finitely,

but countably additive. This framework exactly fits our need.

2This is universal among probabilists of the world. If you use a different letter for the sample space, you will be

looked at with concern, but if you use Q for anything else in probability context, no one will talk to you.
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Definition 2: Probability space

A probability space is a triple (Q, F,P) where

e () is a non-empty set,

e J is a sigma algebra of subsets of Q. Thatis, F C 2. (i) € F. (ii)) A € T =
AC e F. (iii) An € F = UnAn €T

e PP is a probability measure on F. Thatis P : I — [0,1] satisfies P(QQ) = 1 and
P(UAL) = Y, P(An) for any pairwise disjoint A, € .

Observe that n will always indicate a countable indexing (may start at 0 or 1 or vary over all
integers). For A € F, we say that P(A) is the probability of A. We do not talk of the probability of
sets not in the sigma algebra. This framework will form the basis of all probability.

To return to the modeling of random experiments, what the sample space should be is usually
clear, as we have seen. What should the sigma-algebra be? Except for the trivial sigma-algebras
22 and {0, Q}, there is no sigma-algebra of interest that can be defined by explicitly specifying a
membership criterion for which subsets of QO belong to it. They are almost always defined indirectly

as follows.

Definition 3: Generated sigma-algebra

Let 8 be a collection of subsets of (). The smallest sigma-algebra containing 8, also called the

sigma-algebra generated by §, exists and is defined as
o8)= () 7
F28
where the intersection is over all sigma-algebras that contain 8.

Arbitrary intersection of sigma-algebras is a sigma-algebra, hence o(8) is a sigma-algebra. The
most important example of a generated sigma-algebra is the Borel sigma algebra of a topological
space. This is the sigma-algebra generated by the collection of all open sets.

An important point to keep in mind is that many different collections § generate the same

sigma-algebra as the following exercise shows.

On R, show that the Borel sigma-algebra is generated by any of the following collections

of sets: (1) open sets, (2) closed sets, (3) compact sets, (4) intervals, (5) open intervals,
(6) closed intervals, (7) open intervals with rational end-points, (8) left-open, right-closed

intervals, (9) the collection of intervals (—oo, x] with x € Q.
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Sigma-algebra. Now let us decide the sigma-algebras in the three examples we considered
above. As suggested above, the sigma-algebra is defined by giving a generating set 8. How to de-
cide what 8 to take? Into 8 we put in all subsets for which we definitely wish to define probabilities.
Then take J = o(8) as our sigma-algebra.

In all three examples we take § to be the collection of open sets in (), and so I = B, is the Borel
sigma-algebra. The topology in the first example (O = [0,1]) and third example (Q = {(x,y) :
x? 4+ y% < 1)) are the standard topologies coming from R9. In the second example, we take the
product topology on Q = {0, 1}", which is in fact metrized by

dlw,w) =Y "”“2;“’1’1' for w, w’ € {0, 1}".
n>1
This certainly defines a sigma-algebra in each case, but is it the right one for us? Let us discuss this
point.

For example, in the stick-breaking example, you might either worry that we are asking for too
little (don’t we want closed sets in our sigma-algebra?) or that we are asking for too much (do
we need all open sets?). The first is not a worry because of the earlier exercise that shows that
we would get the same Borel sigma-algebra from many different collections of sets, including the
collection of closed sets. We are not asking for too much either. Indeed, if we ask for open intervals
to be in the sigma-algebra, then all open sets must also be there (as any open set in R% is a countable
union of open balls).

Identical considerations apply to the dart throwing example.

The stick-breaking example looks a bit different. Introducing a metric out of the blue and taking
its Borel sigma-algebra looks unnatural. More natural would have been to take 8 to be the collection
of sets of the form {w : wi, = ¢€1,...,w;,, = em}wherel <1i; <... <iny and g; € {0,1}. Observe
that these sets specify the outcome of finitely many tosses. These are called (finite-dimensional)
cylinder sets. If & denotes the collection of cylinders, then the generated sigma-algebra o(8) is the
same as the Borel sigma algebra of the product topology on {0, 1} (can you see why?). Thus, we

did take the right sigma-algebra.

The probability measure. Now that we are clear how the sigma-algebra associated to a ran-
dom experiment is obtained, the question remains of the probability measure. We have Q, a col-
lection of subsets 8, and the sigma-algebra o(S). By symmetry considerations or experiments or
something else, let us say that we know what probability of events in 8 ought to be (or to be pen-
dantically clear, we include in 8 those events for which we do know what the probabilities ought to
be, and then define the sigma-algebra). So the primary question of designing a probability space
reduces to this:

13



Question 1: Extension of probability

Given P : § — [0, 1], does there exist a probability measure PP on o(8) such that P(A) = P(A)

for A € 8. If so, is it unique?

1.1. The uniqueness question. The uniqueness part is easier. But it is not true in general!

Let Q ={1,2,3,4}and 8 = {{1,2},{2,3},{3,4}}. Then o(8) =22. Letp(i) = 411 for all i and let
q(i) = 1 fori =1,3 and q(i) = 0 for i = 2,4. Use these as elementary probabilities to define
probability measures P, Q on 2. Then P(A) = % =Q(A) for allA € Sbut P # Q.

Uniqueness is true if we assume more structure on 8, for example if it is a m-system (closed
under intersections®). The proof is a good illustration of one of the standard tricks of measure

theory.

PrOOF FOR 7-sysTEMS. Indeed, suppose § is a r-system and that P, Q are two probability mea-
sures on 0(8) such that P(A) = Q(A) for A € 8. Then the collection G :={A € o(8) : P(A) = Q(A)}
contains 8. If A, € Gand A, T A, then A € § because

P(A) =limP(A,) =limQ(A,) = Q(A).
Further, if A,B € Gand A C B, then B\ A € G because
P(B\A)=P(B) —P(A) =Q(B) —Q(A) =Q(B\ A).

As G contains the empty set and ), this shows that it is a A-system. It contains the 7t-system 8. The

7-A theorem asserts that then G contains ¢(§), which means that P = Q on ¢(8). |

The standard trick referred to above is in the consideration of G, the collection of all sets with
the property that we wish to show for all sets of o(§8). In fact, there is no other way, as the only
definition of o(8) is as the smallest sigma-algebra containing § (there is no way to write elements

of 0(8) using countable operations on elements of §).

1.2. The existence question. The existence of a measure is the harder question. But it has a

clean and efficient answer!

3For measure theory terms and facts not explained in detail here, see my other notes.
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Theorem 1: Carathéodory’s extension theorem

Let A be an algebra of subsets of Q and let 7 = o(A). Let P : A — [0, 1] satisfy (i) P(AUB) =
P(A) + P(B) if A,B € A are disjoint, (ii) if A,,A € A and A, T A, then P(A;,,) T P(A),
(iii) P(Q) = 1. Then, there exists a probability measure P on J such that P = P on A.

Observe that the assumed conditions are obviously necessary. It is amazing that they are suf-
ficient! In practise, the hardest part of the checking is the countable additivity on A (second con-
dition). But it can be done in many situations of interest including that of Lebesgue measure. The
proof of Carathéodory’s extension theorem can be found in every book on measure theory. A

one-paragraph summary: One defines the outer measure P* : 2 — [0,1] by
P*(A) := inf {Z P(An): An € A, UpnAy D A} .
n

It turns out that P* = P on A and P* is countably sub-additive on 20 (ie, P*(UnAn) < > 2 PH(AR).
However, there is a sigma-algebra F (defined by the “Carathéodory cut condition”) that contains

J and on which P, is countably additive. The restriction of P to J is the P we want.

In the uniqueness part, we only needed the generating set to be a 7-system whereas in the

existence part we needed it to be an algebra. It would have been more convenient to just
start with a 7-system (much less structure than an algebra). This can be done occasionally
by finding m-systems § with the property that the complement of any set in § is a finite
disjoint union of elements of §. The reason this helps is that for such 8, the collection A of
finite disjoint unions of elements of § becomes an algebra. And given P : § — [0, 1], itis clear
that for A = S; U... U Sy € A, we must take P(A) to be P(S1) + ... + P(Sx). Thus we first

extend P to A, and then check the conditions of Carathéodory’s extension theorem.

The existence of Lebesgue measure is a special case of paramount importance.

Theorem 2: Existence of Lebesgue measure

There exists a unique probability measure A on the Borel sigma-algebra B of [0, 1] such that
Ala, b]) = b — a whenever [a, b] C (0,1].

Proor. Observe that § = {(a,b]:0 < a < b < 1}is a 7-system. It has the special property
mentioned in the above remark: (a,b]® = (0,al Ul (b, 1] is a disjoint union of two elements of 8.
Hence A ={I;U...UIx : k >0, I; = (aj,bj], bj < aj41 for all j}is an algebra. For A = I; U... U Iy
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with [ = (aj, b;] pairwise disjoint, we define
k

P(A) =) (bj—qj).

j=1
The finite additivity of P on A is easy to check and left as exercise. To apply Carathéodory’s exten-
sion theorem, it only remains to check thatif A,,, A € Aand A, T A, then P(A,,) 1 P(A), or equiva-
lently that P(A\A,,) | 0. Let A = J;L...UJ,, where J; = (aj, bil. Then P(A\A,) < Y+, PUi\Ani)
where A, i = A, NJi € A

Thus, it suffices to show that P(J\By,) | Oforany ] = (a, bl and B, € AsuchthatB, 1 ]. Replace
] by the smaller compact interval ] = [a + ¢, b] and replace the intervals in B, =T, 1 U... U Ly x,,
by slightly larger open intervals (say the intervals are enlarged by ¢/k,, each) to get an open set
B;.. Then ]’ \ B] are compact sets that decrease to empty set, hence equal to empty set for some

large n. But then
P(J) <P(J)+e <P(By)+e<P(Bn)+2e.

As ¢ is arbitrary, lim inf P(By, ) > P(]). The other inequality lim sup P(By ) < P(]) is clear as B, C J.
|

Do not forget to check the finite additivity of P on A. In general, when you start with a

special m-system, it is important to check that P satisfies finite and countable additivity on
the generated algebra A. For example, can we get measures on ([0, 1], B) such that P(a, b] =
(b—a)’foralla <borP(a,bl=+vb—aforalla<b?

2. Probability measures

One can imagine that by a similar method Carathéodory extension theorem, one can define
probability spaces to capture other random experiments such as “throwing a dart” and “tossing a
coin infinitely many times”. For example, in the coin-tossing case, we can start with the 7-system
of cylinders for which we know what probabilities to assign, and proceed from there.

However, we emphasize a different point of view here. Once we have the stick-breaking prob-
ability space ([0, 1], B, A), every other probability space of interest can be constructed from it! First

we introduce a fundamental notion of probability theory.

Definition 4: Random variable or Measurable function

Let J be a sigma-algebra on X and let § be a sigma-algebraon Y. Amap T : X — Y is said to
be measurable if T~1(A) € F for all A € G. We also say that T is a (Y-valued) random variable.
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When we just say random variable, we usually mean an R-valued random variable or preferably
R-valued random variable, where R = RU{—o00, 0o} is the extended real line whose topology is got

by identifying it with [-1,1] via the map x > 177 (or if you prefer metric spaces, the metric on R

isd(x,y) =7 — ﬁlﬁD' When the target space is R¢, we talk of random vectors and depending

on the target space, we may have random sets, random graphs, random measures, etc.

Push-forward to get new measures from old. The existence of Lebesgue measure A on ([0, 1], B)

solves our search for a mathematical framework for the “breaking a stick” random experiment.

Lemma 1: Push-forward measure

Let (Q, F, P) be a probability space and let G be a sigma-algebra on A. Suppose T: Q — G
is a A-valued random variable. Then, Q : § — [0,1] defined by Q(A) = P(T~1(A)) is a

probability measure on (A, §). It is called the distribution of the random variable T.

Proor. If A,, € § are pairwise disjoint, then so are By, := T-1(A) which are in F. Further,
T 1 (UnAn) = UnBn, hence

Q(UnAn) = P(Til(UnAn)) = ZP(BH) = Z Q(An)-
Of course T} (A) = Q, hence Q(A) =P(Q) = 1. [ ]

We say that Q is the push-forward of P under T, and sometimes denote itas Q = Po T~1.

2.1. Tossing a coin infinitely many times. Here Q = {0, 1}" and J is the Borel sigma-algebra

(generated by finite dimensional cyinder sets). For a cylinder set

en =1W = (W1, wy,...) €Q:wy =¢€1,...,Wn = En},

/////

we know that we want the probability to be 27 ™.

Define T : [0,1] — {0, 1} by T(x) = (x1,x2,...) where x = ) xn2~ ™ is the binary expansion
n>1
of x. To avoid ambiguity, for dyadic rational x = k/2™ (these are the ones that have more than

one binary expansion), we take the expansion that has infinitely many ones. We claim that T is
left end-point @ = 27! + ... + £,27™). Clearly, if B is a cylinder set specified by a subset of
co-ordinates i; < ... < ix < n, then B is a union of 2"~k pairwise disjoint sets of the form A¢,, ¢, .
Therefore T~ !B is a union of finitely many (pairwise disjoint) intervals, and hence a Borel subset
of [0,1]. Thus, T is measurable.

As T is measurable, we can define P = Ao T!

as a probability measure on JF. Is this the
probability measure we want? As we saw above, if B = {w : wi, = €1,..., w;i, = €}, then T-1(B)
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is a union of 2" ~* intervals, each of length 2™, hence P(B) = A(T 1(A)) = 2" x 27 ™ = 27K,
Thus, this measure agrees with the probabilities we wanted for cylinder sets.
Observe that all the hard work that was done in constructing Lebesgue measure did not have

to be repeated here.

2.2. Picking a point at random from the Cantor set. Let K be the standard %—Cantor set. Recall
that K = NK,, where Ky = [0, 1], K; = [0, %] U [%, 1], K, = [0, %] U [%, %] U [%, %] U [%, 1] and so on. Itis
also the set of x € [0, 1] whose base-3 expansion has no digit equal to 1. As a compact set, the Borel
sigma-algebra of K is nothing but the collection of AN K, A € Bg.

A natural map from [0, 1] to K is given by T(x) = Zn>1 2;‘—““ where x = Zn>1 ’2‘—,’1‘ Clearly T
maps [0, 1] into K. Why is it measurable? Accepting that, we get a measure p = Ao T~ on K (with
its Borel sigma-algebra). It is easy to see that each of the intervals comprising K,, get a measure
of 27 ™. That justifies calling it “uniform measure on the Cantor set”. It is also known as Cantor
measure.

As an aside, one can think of i as a measure on (K, By ), but one can also think of it as a measure
on (R, Br) by setting v(A) = u(A NK) for A € Bg. Then v(K) =1.

2.3. All Borel probability measures on R. What are all the probability measures on the Borel
sigma-algebra of R? In principle, the Carathéodory extension gives the way: Propose a candidate
P : 8 — [0,1], where § consists of all left open, right closed intervals. Extend it to the algebra of
finite disjoint unions of such intervals, and check the conditions of finite and countable adiditivity.
If the conditions are satisfied, you get a measure, otherwise not. This is not satisfactory as it is not
explicit enough - how do know which function P work before hand?

To give the answer, recall that a cumulative distribution function (CDF) is any function F: R —
[0,]1 that is increasing (s <t = F(s) < F(t)), right-continuous (F(t + h) | F(t) as h | 0) and
converges to 0 at —oo and to 1 at +oo.

Let P(R) denote the set of all Borel probability measures on R. For any p € P(R), the function

Fu.(t) := pu(—oo, ] is a CDF. This is easy to check. Interestingly, the converse is true.

Let F be a CDF. Then, there is a unique pu € P(R) such that F(t) = p(—oo, t].

This gives a complete characterization of Borel probability measures on R in terms of much
easier to understand objects, namely CDFs. One approach to the above theorem would be to
define p(a,b] = F(b) — F(a) for a < b, and extend it to the algebra of finite disjoint unions of
left-open, right-closed intervals (including (—oo, al and (b, o)) and check the conditions for the
Carathéodory’s extension theorem. A simpler way is below.
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Proor. Given a CDF F, define T : (0,1) — R by T(u) = inf{x € R: F(x) > u} (well-defined
as F(x) — 1asx — 4o00). Itis a kind of “generalized inverse” in the sense that T(u) < x if and
only if F(x) > u. Further, T is increasing, right-continuous and hence Borel measurable. Therefore

it :=A o T~!is a probability measure. Further
w(—oo,x] =AMu:T(u) < x}=Mu:F(x) > ul=A0,F(x)] = F(x).

Thus p has CDEF F. If v was another probability measure on Br with the same CDF, then p(a, b] =
v(a,b] for all a < b. As they agree on a n-system that generates By, it follows that u = v. |

As it is much easier to understand CDFs than to understand measures, this parameterization
of P(R) by CDFs is very useful. At the very least, it allows us to write down many probability

measures on R. Two particular classes are useful to keep in mind.

(1) Measures with pmf (probability mass function): Give a real sequence (xi,x2,...) and
(p1,p2,...) such that p; > 0and } ; pi = 1. Then define F(x) = thigx pi. This is a CDF
that increases only by jumps, and the corresponding probability measure is said to have
pmf given by (x;) and (p1).

Binomial, Poisson, Hypergeometric, Geometric, Negative-Binomial are important classes

of examples of probability measures having pmf.

(2) Measures with pdf (probability density function): Give a Borel measurable f : R — R
such that [ f(x)dx = 1 (this integral is Lebesgue integral). Then F(x) = ffoo f(u)du =
& f(w) 1 <xdu defines a CDF. The corresponding probability measure is said to have den-

sity F.
Normal, Exponential, Gamma, Uniform, Beta, Cauchy, are important classes of prob-

ability measures having pdf.

2.4. Higher dimensions. A CDF on R4 is a function F : R4 — [0,1] that is increasing in
each co-ordinate, is right continuous, and F(t) — 0 if min{t;,...,tq} = —oo and F(t) — 1 if
min{tl, - ,td} — +o00.

For a Borel probability measure 1 on R¢, one can associate a CDF by
F(ty, ..., ta) = (o0, t1] x ... x (—oo, tal).

The converse is also true. For any CDF F, there is a unique probability measure p on Bra whose
CDFis F.

Unlike in one dimension, it is not easy to prove this by giving a measurable function T : [0, 1] —
R4 such that Ao T~! = . Instead it is better to take the way out using the Carathéodory extension
theorem as follows.
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For a left-open, right-closed rectangle R = (a;, af] X ... x (ag, ag] define
P(R) = Z €1...eqF(ajl, ..., aq").
ee{—+}d
The idea behind this definition is the inclusion-exclusion principle (if F was the CDF of a measure
u, then p(R) would be precisely given by the above formula). For a finite, disjoint union of such
rectangles, A = Ry U...U Ry, define P(A) = P(Ry) +...+ P(Ry). Observe that the collection of all
finite, disjoint unions of such rectangles forms an algebra A. Further, 0(A) = Bpa.

Thus, to extend P to a probability measure on Bya, we must check the conditions of the Carathéodory
extension theorem. The finite additivity is easy. Checking the second condition (continuity under
increasing limits) can be reduced to the following (see the proof of existence of Lebesgue measure):
If A, = Rpq U...U Ry, increase to a rectangle R, then P(R\ Ay ) | 0. This can be done exactly
as in the case of Lebesgue measure (slightly decrease R to a compact set and slightly increase the

Ry, ; to open sets and so on).

2.5. Polish spaces. More generally, every probabilty space of interest to probabilists can be got
this way by pushing forward Lebesgue measure on [0, 1] by a measurable mapping. A Polish space
is a complete, separable metric space (more precisely, a separable metric space whose topology
can be induced by a complete metric, e.g., (—7, 7) carries the complete metric d(x,y) = | tan~ ! x —

tan~!y).

Theorem 4: Borel isomorphism theorem

Let (X, d) be a Polish space and let u be a probability measure on Bx. Then there is a mea-
surable T : [0,1] — X such that Ao T~ = .

We shall not prove this theorem, but what we primarily need is a very important case of interest,
when X = RY and p is an infinite product of measures on R. This is intimately connected to one
of the most important notions in probability, namely independence. Instead of repeating, we refer
the reader to sections 28-30 (also 27 if not familiar with finite product measures and 31-32 to go
a little beyond the bare minimum needed) of Part-1 of these lecture notes. In section 24 there is
a brief introduction to conditional probability. In the next section, a very short introduction to

Expectation is given, but for the construction and details, refer to Part-1.

3. Random variables

Let (Q, F,P) be a probability space. Let RV denote the set of all random variables and let RV,
denote the set of all non-negative random variables on this probability space. Recall that random
variables take values in the extended real numbers R. Random variables are measurements in
a random experiment (e.g., number of heads in a sequence of coin tosses, the distance from the
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center at which a dart hits a dartboard, etc.). For every event A € F, one can associate the random
variable 15 (indicator of A). Thus random variables are a generalization of events, from 2-valued

measurements to multi-valued measurements.

3.1. Distributions of random variables. When one is interested in one single random variable
X, all probability questions about it can be answered by finding its distribution, which is the push-
forward measure it := P o X~ ! on R. For example, P(X < t} = p(—oo, t] is the CDF of pu. Here and
in future, we just write {X € A} to mean {w € Q : X(w) € A}.

When considering several random variables, say Xj, ..., Xy, then one is interested in events
such as {X; < t1,...,Xn < tn}. The probability of such an event cannot be computed from the
individual distributions of Xys, but can be calculated from their joint distribution, which is just the

probability measure v := P o X~ on (RY, Bra), where X = (Xy,...,Xn) : Q — R™. For example,
P{Xl < tl/' . -/Xn < tﬂ.} = V((_Oo,tl] X X (_Ooltn])

When considering a sequence of random variables Xj, Xy, ..., we can again form a single func-
tion X = (X1, X,...) : Q — RN, Ttis easy to check that X is measurable (when RN is endowed with
the cylinder sigma-algebra) and hence we can define its distribution 8 = P o X!, a probability
measure on RY. But a probability measure on the cylinder sigma-algebra is determined by its val-
ues on finite dimensional cylinders. In other words, the distribution of the sequence is completely
determined by the collection of finite dimensional joint distributions of (Xy, ..., Xy, ) for each n.

One can recast some of what we have discussed in the language of random variables. For
example, given a CDF F : R — [0, 1], instead of asking for a probability measure u with CDF F, we
could ask for a random variable X (on a probability space of your choice) such that P{X < t} = F(t)
for all t. Indeed, if the measure p exists, then we can take the probability space (R, B, ) and define
X(t) = t. Then X has distribution p. Conversely, if there is some probability space (Q,J,P) and a
random variable X : Q — R satisfying P{X < t} = F(t), we can construct the measure p =P o X~1.
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Remark 3: A matter of language

Probabilists universally use the language of random variables and leave the probability space
unidentified in the background. Statisticians and engineers do the same, but this tends to
confuse other mathematicians who prefer the language of measures.

For example, a probabilist will say, “If X has Exp(1) distribution, then P{(X > 2} = 1/e?”
while an analyst might say “In the measure space (R, B, p = Exp(1)), we have pu[2,00) =
1/e2”. Observe that the probabilist did not specify the probability space (and the underlying
probability measure is almost always denoted IP!) and the analyst did not specify a random
variable (as in this example, if the probability space is chosen minimally, the random variable
will be the identity function).

The convenience of the probabilists” way becomes more apparent when we have many ran-
dom variables and start doing operations on random variables (adding/multiplying and
later, conditioning). It also has the advantage of being closer to the way we think when
applying probability to real-world situations”.

“See this blog post by Timothy Gowers, paragraphs 3-11, for a discussion akin to this. In it is a though-provoking

remark of David Aldous that a random variable is like a cake whereas a measure is like a recipe for a cake.

4. User’s guide to expectation

For an indicator random variable 14, its distribution is completely described by giving one
number, P(A). For a general random variable, the distribution is a complicated object, but if one
wants a single-number summary, we give its expectation (but it does not always exist). Here are

the fundamental facts about expectation:

Fact: There is a unique function E : RV — [0, oc0] satisfying
(1) Linearity: E[X + Y] = E[X] + E[Y] and E[cX] = cE[X] for all X,Y € RV, and for all ¢ > 0.
(2) Positivity: E[X] > 0 with equality if and only if X = 0 a.s.
(3) MCT (Monotone convergence theorem): If X;,, X € RV and X, 1 X a.s., then E[X,] 1 E[X].
(4) Ela]l =P(A) forall A € .

We did not say how E[] is defined. But accepting the above fact, one has the following explicit
form: For any X € RV,

® - g L e (e,

n2iol oy {k k+1}
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This is got by observing that X, = nziil =1 k <x<lky increase to X pointwise, and hence E[X] =
T}gréo E[Xn] by the MCT. And E[X,,] ca];:lge got from linearity and the fact that E[15] = P(A), leading
to (1).

One may also take (1) as the definition of E[X] for X € RV .. It is not hard to see that the limit
exists, and one must then prove that it satisfies the four properties stated above. But the point we
emphasize is that how expectation is defined rarely needs to be used, it is how it behaves (the fours
properties listed above) that matters.

For general X € RV, we write itas X = X, —X_ where X; = XV0and X_ = (—X); = —(XA0).
If E[X] and E[X_] are both finite, then we say that X has expectation (or that X is integrable) and
define E[X] = E[X;] — E[X_]. Observe that X, 4+ X_ = [X|, hence integrability is equivalent to
E[IX]] < oco. We also write X € L! if X is integrable. More generally, if [X|P is integrable, we write
X € LP (or LP(P) or LP(Q, F, P) if we must). We did not actually say what is L! or LP, usually they
are defined as a collection of equivalence classes got by identifying random variables that are equal
as., ie. X~YifPX=Y}=1.

In conclusion, on the space of integrable random variables !, expectation is a positive linear
functional that maps 14 to P(A). The notation fQ X(w)dP(w) or just [ XdP is also used for E[X],

and it is also called Lebesgue integral.

For a random vector X = (X1,..., Xy ), we define E[X] to be (E[X1],...,E[X]), if each X; is

integrable. Similarly, for a complex valued random variable X = X; + iX;, we write E[X] =

E[X1] +iE[X,], if X1, X5 have expectation. We cannot in general talk of Expectation of X if X is
a measurable function into some arbitrary space A. The least we need is that A has a vector
space structure (or at least A should be a convex set in a vector space). Indeed, whatever
be the general notion of expectation, for the random variable X taking 2 values a,b € A
(assume singletons are measurable) with equal probability, we would want the expectation
tobe (a+b)/2.

4.1. Lebesgue spaces. Fix (Q,F,P) and for p > 0 let LP(Q, F,P) (or LP(P) or LP in short)
denote the set of all X € RV such that E[|X|P] < co. For p; < p, we have [x[P1 < [x[P2 + 1 for all
x € R, hence it is clear that the spaces LP are decreasing in p (i.e., if X € LP2 then X € LP?). For any

p, the space L? is a vector space because

IX[P 4 [Y|P if0<p<l,
X +YP <
2P L(XP +|YP) forp > 1.

23



The case p < 1 is obvious and the case p > 1 follows by convexity of x — xP for p > 1. In
many ways the latter case is special, and one defines the p-norm ||X||, = E[IXIP]%. While the
homogeneity ||aX||, = |«|||X]||, holds for any p > 0, the triangle inequality holds only for p > 1
(this is Minkowski’s inequality, discussed later). For p > 1, the space LP is a normed linear space.
Often it is extended to p = oo by defining L* as the set of all bounded random variables (we say
that X € RV is bounded if P{|X| < M} =1 for some M < o0). The most important of the LP spaces
are L', [2 and L.

Some remarks.

(1) Lebesgue showed that LP space endowed with the LP norm is complete (all Cauchy
sequences converge). Surprisingly, this fundamental result will not play a role in this

course, and we shall not discuss it.

(2) Another fact is that the p-norm is not quite a norm because || X||, = 0if and only if X =0
a.s.[P]. One can get a genuine norm by quotienting the space by the equivalence rela-
tion identifying X and Y if X = Y a.s.[P]. But we don’t need this irritating language of

equivalence classes and avoid it. For us, elements of LP are in fact random variables.

(3) Although X € LP means that E[[X|P] < oo, observe that unless X € RV or p is a positive
integer, we cannot talk of XP (and hence E[XP] does not make sense). For positive integers

p, we can talk of E[XP] (if it exists) and we call it the pth moment of X.

4.2. Inequalities. Cauchy-Schwarz, Holder’s and Minkowski’s and Jensen’s inequalities are

important and repeatedly used. Fundamental to these is the notion of convexity.

Definition 5: Convex functions
A function ¢ : RY — R U{+o0} is said to be convex if @ (tx + (1 —t)y) < te(x) + (1 —t)e(y)

forall x,y € RYand all t € (0,1) and Dom(¢) :={@ < oo} is not empty.

Why did we allow +oc0 as a value? Observe that Dom(¢) is a convex set (if @(x) < oo and
9(y) < oo then @(tx + (1 —t)y) < oo for t € (0,1)). Conversely, if K C R9 is a convex set and
@ : K — R is convex, then so is the extended function ® : R — R U {+oo} defined by ® = ¢ in K
and @ = +o0 on K€. Thus, by allowing the value +co, we can assume that the domain is all of R4,
The following is a fundamental fact.

Supporting hyperplane theorem: Let ¢ : R® — R U {+o0o} be convex. Assume that xg €
Dom( ). Then there exists b € R¢ such that @(xg) + (b,x —xo) < @(x) for all x € R¢.

The reason for the name is that the graph of x — @(xg) + (b, x — o) is an affine hyperplane that
lies below the graph of ¢, but touches it at (xg, @(xg)).
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Lemma 2: Jensen’s inequality

Let @ : RY — Rbe a convex function. Let X be a random variable such that P{X € Dom(¢)} =
1. Assume that E[X] exists. Then @ (E[X]) < E[¢(X)].

Proor. Let xg = E[X] and find b € R9 such that @(xg) + (b,x — xg) < @(x) for all x € R4,
Then @(xg) + (b, X —xo) < @(X) a.s., and taking expectations we see that ¢(xg) < E[¢@(X)], since
E[X —xq] = 0. [ |

Next we prove the triangle inequality for p-norms, p > 1.

Lemma 3: Minkowski’s inequality

Forany p > 1, we have [X+ Y[, < [X]lp + [Vl]p-

The important special cases of p = 1, 2, oo can be checked easily. The general case is non-trivial!

Proor. Take 1 < p < oo and assume that [|X||, > 0 and [|Y|, > 0. Let X" = X/||X]||, and

Y =Y/||Y|lp. Convexity of x — xP yields [aX’ + bY'[P < a|X’|[P + b[Y'|P where a = Wﬁ”fm

Y . E[IX+Y]P] ;
and b = m. Take expectations and observe that E[[aX’ + bY/[P] = W while
ElalX'|[P + b|Y'|P] =1 since E[X'[P] = E[|Y'[P] = 1. Thus we get

P
E[X + Y[P] <1
UIX[lp + 1Y[lp)P
which is precisely Minkowski’s inequality. [ |

Lastly, we prove Holder’s inequality of which the most important special case is the Cauchy-

Schwarz inequality.

Lemma 4: Cauchy-Schwarz and Hoélder inequalities

(1) If X, Y are L? random variables on a probability space, then XY is integrable and
E[XY]? < E[X?]E[Y?].

(2) IfX,Yare LP r.v.s on a probability space, then forany p, q > 1satisfyingp '+q ! =
1, we have XY € L' and || XY||1 < [IX[[p Y]l q-

Proor. Cauchy-Schwarz is a special case of Holder with p = q = 2, but one can also give a

direct proof. First observe that 2|XY| < X? + Y2 showing the integrability of XY. For any t € R
0 < E[X + YP’] = EIX]* + 2tE[XY] + t’E[Y?]

hence the discriminant of this quadratic expression must be negative, i.e., E[XY]*> < E[X?]E[Y?].
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Holder’s inequality follows by applying the inequality aP /p +b9/q > ab valid for a,b > 0, to
a = [X|/||IX|lp and b = [Y|/]|Y||q and taking expectations.

The inequality aP /p 4+ b9/q > ab is evident by noticing that the rectangle [0, a] x [0, b] (with
area ab) is contained in the union of the region{(x,y) : 0 < x < @, 0 < y < xP !} (with area aP /p)
and the region {(x,y):0 <y < b, 0 < x < y9~1} (with area b9/q). This is because the latter
regions are the regions between the x and y axes (resp.) and curve y = xP~! which is also the

curve x =y9 'since (p —1)(q —1) = 1. |

To see the role of convexity, here is another way to prove that a?/p +b9/q > ab. Set a’ =
ploga and b’ = qlogb and observe that the desired inequality is equivalent to %ea/ +
%eb, > e% a/+%bl, which follows from the convexity of x — e*.

In the study of LP spaces, there is a close relationship between LP and L9 where % + % =1
In the proof of Holder’s inequality, we see one elementary way in which it arises (the inverse of

y=xPlisx =y971).

4.3. Limit properties. Apart from MCT we also have the following very important facts.

(1) Fatou’s lemma: If X, € RV, then liminf E[X,,] > E[lim inf X, ].

(2) DCT (Dominated convergence theorem): If X, — X a.s., if [X,| < Y for some integrable Y,
then X, X are integrable and E[X,] — E[X]. In fact, E[[X;, — X|]] — 0.

Fatou’s lemma follows directly from MCT by observing that Y;, := infy>, Xy increase to Y :=
liminf X, and that 0 < Y, < Xp,.

DCT follows by applying Fatou’s lemma to Y — X, and to Y + X,,, both of which are sequences
of positive random variables converging respectively to Y — X and Y + X a.s. Then, Fatou’s lemma

then gives
E[Y] + E[X] = E[Y 4+ X] < liminf E[Y + Xy ] = liminf E[Y] + E[X,,] = E[Y] + lim inf E[X,,],
E[Y] — E[X] = E[Y — X] < liminf E[Y — X,| = liminf E[Y] — E[X,,] = E[Y] — lim sup E[X;].
Thus, E[X] < liminf E[X,] < limsup E[X,,] < E[X] showing that E[X,,] — E[X].
Apply this conclusion to the sequence [X;, — X| that is dominated by 2Y and converges almost

surely to 0 to get E[[X;, — X|]] = 0.

4.4. Change of variables. Suppose (Qi, 3, P;), i =1,2,3 are probability spaces. Assume that
P, = P; o T™! for some measurable function T : Q; — Q, and that P; = P, o S~! for some
measurable function S : Q, — Q3. Itis trivial to check that U = So T : Q; — Q3 is measurable and
thatP; =Py o UL,
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This easy observation will be used throughout. Here are some ways.

» Let X be a real-valued random variable on (Q, J, P) having distribution p. Then for any
Borel measurable ¢ : R — R, the distribution of f(X) is py = po f~1. This is got by taking
(Q1,F,P1) = (Q,F,P) and (Qy,F5,Pr) = (R, Bg, 1) and (Q3,F3,P3) = (R, Bg, 1) and T = X and
S=o.

E.g., if X has CDF F, then X3 has CDF x + F(x!/?) and eX has CDF x + F(log x).

» The same is true if X = (X1,...,Xq) is R%-valued (or even RN-valued) and ¢ : R — R (or
f : RN — R). The distribution of @(X) is po @ ! where p is the distribution of X (a probability
measure on R¢ or RY). In particular, as Xy = TTyoX, whereTTy (1, ...,%q) = Xk is the kth projection,
the marginal distribution of Xy is determined by the distribution of X.

E.g., if (X1, X2) has density 1 on [0, 1]2 and zero outside, then X; — X, has the density (1 — [x|)
on [—1,1].

» It is useful to remember the change of variables formula for densities. Let X be an R¢-
valued random variable and assume that it has density g that is positive on an open set U and zero
outside. Let T : U — V be a bijection to another open set V C R4 (same dimension) such that T~!
is differentiable. Then the density of Y := g(X) is h(y) = g(T YT (y) on V.

The point above is that if we know the distribution of X, to compute the distribution of f(X),
we need no further information (in particular the original probability space is irrelevant). Then
the same must be true for expectation of f(X). First we state the general point.

Suppose (Qi,F;,P;), i = 1,2 be probability spaces. Assume that P, = P; o T~! for some
measurable function T : Q; — Q,. If Y : Q, — R, is a random variable on Q,, then Yo T is a
random variable on Q1 and Ep,[Y] = Ep, [Y o T]. In other notation,

J Y(w')dPp(w') = J Y(T(w))dPy (w).
Q Oy
For general random variable, (Y o T)+ = (Y1) o T, hence the same conclusion holds, except that
we must make the more cautious statement: “Y has expectation w.r.t. IP; if and only if Y o T has

expectation w.r.t. P, and in that case the two quantities are equal”.

Proor. If Y = 1p for some B € 7, the identity follows from the definition of push-forward
measure. By linearity, it holds for simple random variables (linear combinations of indicators).
ForY: 0O, — R4, wecan find Y, : Q; — R, that are simple and increase to Y pointwise. Then
YnoT 1 YoT pointwise too. By applying MCT to both sequences, we get the conclusion for positive
random variables. The reduction from general (integrable) random variables to positive ones is
straightforward. [ ]
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» As a particular case, if X has distribution 1 on R4 and ¢ : RY — R is Borel measurable and
bounded, then E[@(X)] which is fQ @ (X(w))dP(w) can also be written as fRd @(x)du(x). Bound-
edness was assumed only to ensure that the expectations exist.

» In particular, if X has density g on R¢, then E[¢@(X)] = Jra ©(x)g(x)dx (which is easier than
trying to find the distribution of ¢(X) and then integrating x w.r.t. that).

Example 4

Let X ~ N(0,1), i.e., X has density ﬁe_xz/z on R. Then E[X™] = 0 for odd n and

EX?™ = (2n —1)(2n —3)...(3)(1).
To see this, we don’t need to know what the original probability space is. Just compute

1 I —x2/2 2 ro el
— | xe dx = — 2u 2¢ “du
V21 JR V27 Jo (2u)

on 1
— ~ _TI'(n

_271( 2)

on 1 3 n—1
-~ _Ir(1/2)z x>
_271(/)2 5 X X —

which is the claim (recall that I'(1/2) = /7).

4.5. Reweighting a measure to get new measures. On (Q, F,P), let X be a positive random
variable with E[X] = 1. Define Q : ¥ — R by Q(A) = E[X1]. Then, Q is a probability measure.

Proor. Finite additivity of Q follows from the linearity of expectation (if A, B € F are disjoint,
1aus = 1A + 1g). Further, if Ay € Fand A, 1 A, then X14, T X1, hence MCT shows that
Q(An) TQ(A). |

One can think of Q as got by reweighting points of Q according to the value of X. If we use
the integral notation for expectation, then [ 1 (w)dQ(w) = [, 1a(w)X(w)dP(w). Hence we also
write this relationship as dQ = XdP. We also say that say that X is the Radon-Nikodym derivative or
the density of Q w.r.t. P.

The reason for this name is in the Radon-Nikodym theorem to be discussed elsewhere. That
theorem answers the converse question: Given P and Q (or even infinite measures), how can we
tell if Q can be got from P by reweighting by some X € RV_?

28



5. Independence

Definition 6: Independence

Let (Q, F, P) be a probability space.
» Let Gy,..., Gk be sub-sigma algebras of F. We say that G; are independent if for every
A1€G,...,Ax € G, wehave P(A1NAN...NAL) =P(A7)...P(Ax).
» Random variables Xj,..., X, on J are said to be independent if o(X1),...,0(Xy)
are independent.
» An arbitrary collection of o-algebras G;, i € I, (each G; contained in ¥) is said to
be independent if every finite sub-collection of them is independent. Same applies

for random variables.

How does this compare with the definitions we have seen in basic probability class?

e Since o(X) = {X"1(A) : A € By} for a real-valued random variable X, the definition above
is equivalent to saying that P (X; € A;i < k) = ]_[]f:1 P(X; € Ay) for any A; € B(R). The
same definition can be made for random variables X; taking values in some metric space
(A4, di), but then A; must be a Borel subset of A;.

e Events Ay,..., Ay are said to be independent if 14,,...,14, are independent. This is
equivalent to either of the following sets of 2™ conditions:

(1) P(Aj, N...NA;j) =P(A;))...P(Aj,) forany 1 <j1 <jp < ... <je < k.
(2) I[”(AfE OAE—LQ. LNAL) = ﬁ }P’(Af) where we use the notation A" = Aand A~ = A°.
The second is clear, since G(Akk:)1: {0,Q, Ay, AL} The equivalence of the first and second

is an exercise.
Some remarks are in order.

(1) Independence is defined with respect to a fixed probability measure P.

(2) It would be convenient if we need check the condition in the definition only for a suffi-
ciently large class of sets. However, if §; = 0(8;), and for every A; € 81,..., Ay € Sy if we
have P(A;NA;N...NAL) =P(A1)...P(Ax), we cannot conclude that G; are independent!

If §; are m-systems, then it is indeed true that §; are independent (proof below).

(3) Checking pairwise independence is insufficient to guarantee independence. For example,
suppose X1, Xp, X3 are independent and P(X; = +1) = P(X; = —1) =1/2. Let Y1 = X3X3,
Y, = X1 X3 and Y3 = X1 X,. Then, Y; are pairwise independent but not independent.
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Let (Q, F,P) be a probability space. Assume that §; = o(S;) C J, that S; is a m-system and
that Q € S; foreachi < k. If forevery A € Sy,..., Ay € Sy if wehave P(A1NA;N...NAK) =
P(A1)...P(Ax), then G; are independent.

Proor. Fix A, € S,,..., Ak € S¢ and set
F1={BeG:P(BNAN...NAx) =P(B)P(Ay)...P(Ax)}

Then J; O S; by assumption. We claim that J; is a A-system. Assuming that, by the 7-A theorem,
it follows that 1 = §; and we get the assumptions of the lemma for G, Sy, ..., Sk. Repeating the
argument for Sy, S3 etc., we get independence of Gy, ..., Gx.

To prove that J; is a A system is straightforward. If B, T B and B, € Jj, then B € J and
P(BnNA2N...NA) T P(BNAyN...NAy) and P(B,) [}, P(Aj) 1 P(B) [T{_, P(A;). Hence
B € 7. Similarly, check that if By C B, and both are in J3, then B, \ By € J7. Lastly, Q € §; C J4
by assumption. Thus, J7 is a A-system. [

If Ay,...,Ax are events, then §; = {0, A;, A, Q} is generated by the m-system S; = {A;}.

However, checking the independence condition for the generating set (which is just one
equation P(A; N...NAy) = 1_[};1 P(A;)) does not imply independence of Ay, ..., Aj. This

shows that the condition that S; should contain Q is not redundant in the above Lemmal!

Corollary 1

(1) Random variables Xj, ..., Xy are independent if and only if for every t;,...tx € R
we have P (X1 < tq,..., Xk < t) = H;(:1 P(Xj < tj).

(2) Suppose G, x € I are independent. Let Iy, ..., Iy be pairwise disjoint subsets of 1.

Then, the o-algebras J5 = o (U“elj Sa) are independent.

3) If Xii,1 < n,j < ny, are independent, then for any Borel measurable f; : R™t — R,
3) j j p y

the r.v.s fi(Xi1,..., Xin,) are also independent.

Proor. (1) Pulling back the familiar 7-system of left-closed, right-open intervals on the
line, we get the m-system S; := {X{" (—00,t] : t € R}on Q. Further S; generates o(Xj).
(2) Forj < k, let S; be the collection of finite intersections of sets A;, i € I;. Then S; are
m-systems and o(S;) = Jj.
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(3) Infer (3) from (2) by considering Gi; = o(Xj;) and observing that f;(Xi1,...,Xix) €

0(9i1U...UGin,).

So far, we stated conditions for independence in terms of probabilities of events. As usual, they

generalize to conditions in terms of expectations of random variables.

(1) Sigma algebras 9y, ..., Gk are independent if and only if for every Gi-measurable,

bounded random variable X;, for 1 < i < k, we have E[X; ... Xy] = ]_[]f:1 E[X;].

(2) In particular, random variables 73, ..., Zy (Z; is an n; dimensional random vector)

are independent if and only if ]E[]_[]f:1 fi(Z;)] = ]_[]f:1 E[f;(Z)] for any bounded

Borel measurable functions f; : R™ — R.

We say ‘bounded measurable’ just to ensure that expectations exist. The proof goes inductively

by fixing Xy, ..., X and then letting X; be a simple r.v., a non-negative r.v. and a general bounded

measurable r.v.

PrOOF. (1) Suppose G; are independent. By the linearity of Expectation, we see that

(2)

(X1,...,Xx) = E[X;g...Xk] is linear in each co-ordinate if the others are fixed. The same
is true of (Xq,..., Xy ) — H]f:l E[Xi].

If X; = 14, for some A; € G, then the claimed equality holds by definition of inde-
pendence. By the multi-linearity observed above, the claim also holds for simple random
variables X;. Further, if 0 < Xy, T Xk and Xy ,, are simple, then applying MCT on both
sides, we get the equality for positive random variables. For general Xy, write it is as the
difference of its positive and negative parts and expand the products on both sides. We
get 2X summands and the claimed equality easily.

Conversely, if E[X; ... Xy] = ]_[]f:1 E[Xi] for all §i-measurable functions X;js, then ap-

plying to indicators of events A; € §; we see the independence of the o-algebras G;.

The second claim follows from the first by setting §; := o(Z;) and observing thata random
variable X; is 0(Z;)-measurable if and only if (see remark following the proof) X = fo Z;

for some Borel measurable f: R™ — R. [ |
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We stated a fact that if X is a real-valued random variable and Y € o(X), then Y = f(X) for

some f : R — R that is Borel measurable. Why is that so?

If X(w) = X(w'), then it is clear that any set A € o(X) either contains both w, w’ or ex-
cludes both (this was an exercise). Consequently, we must have Y(w) = Y(w’) (otherwise,
if Y(w) < a < Y(w’) for some a € R, then the set Y < a could not be in ¢(X), as it contains w
butnot w’). This shows that Y = f(X) for some function f : R — R. But why is f measurable?
Indeed, one should worry a little, because the correct statement is not that f is measurable,
but that f may be chosen to be measurable. For example, if X is the constant 0 and Y is the
constant 1, then all we know is f(0) = 1. We shall have Y = f(X) however we define f on
R\ {0} (in particular, we may make f non-measurable!).

One way out is to use the fact that the claim is true for simple random variables and that
every random variable can be written as a pointwise limit of simple random variables (see
exercise below). Consequently, Y = lim Y;,, where Yy, is a (X)-measurable simple random
variable and hence Y,, = fy(X) for some Borel measurable f,, : R — R. Let f = limsup fn,,

also Borel measurable. But Y = f(X).

5.1. Existence of independent random variables. Now we come to the question of existence
of independent random variables with given distributions. The following is the starting point of

probability theory.

Proposition 1: [Daniell, Kolmogorov |

Letpu; € P(R),i > 1,be Borel p.m on R. Then, there exist a probability space with independent

random variables X1, Xy, ... such that X; ~ ;.

Proor. We arrive at the construction in three stages.

(1) Independent Bernoullis: On the probability space ((0,1),B,A), consider the random
variables Xy : (0,1) — R, where Xy (w) is defined to be the Kth digit in the binary ex-
pansion of w (see Section ?? for convention regarding binary expansion). We have seen
that X1, Xy, ... are independent Bernoulli(1/2) random variables.
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(2) Independent uniforms: Note that as a consequence*

i.i.d. Ber(1/2) variables, then U := } 7 ; 27 ™Y,, has uniform distribution on [0, 1]. Con-
sider again the canonical probability space and the r.v. Xj, and set Uy := X;/2 + X3/ 22 4
X5/234..., Up := Xp/24+Xe/2%+..., Uz = X4/2+X12/2%+. .. etc. (inshort,letg: NxN — N
be an injection and define Yy = Z;’il Xg(krj)2_j ). Clearly, U; are i.i.d. Unif{0, 1].

, on any probability space, if Y; are

(3) Arbitrary distributions: For a p.m. p, recall the left-continuous inverse G,, that had
the property that G, (U) ~ pif U ~ U[0,1]. Suppose we are given p.m.s py, Hy,.... On
the canonical probability space, let U; be i.i.d uniforms constructed as before. Define
Xi = Gy, (Ui). Then, X; are independent and X; ~ p;. Thus we have constructed an

independent sequence of random variables having the specified distributions. n

The same proof works for a countable product of (Q;, Ji, i), provided each i is a pushfor-
ward of Lebesgue measure, thatis, p1; = PoT,” L forsomeT; : [0,1] — Q;. The only change needed is
toset X; = T;(U;) (instead of G, (U;)) in the last step. As we know, all Borel probability measures
on R4 are push-forwards of Lebesgue measure and hence, the above proof works if p; € P(R4Y),
i > 1, and gives a sequence of independent random vectors Xy such that Xy ~ py.

One may ask whether one can construct uncountably many independent random variables
with specified distributions. It is possible, but entirely useless. There is no situation in probability
that requires or can benefit from the existence of uncountably many independent random variables.

Hence we do not concern ourselves with that.

6. Product measures

Suppose X1, Xy, ... are real-valued random variables on (Q,F,P). Let X : O — RN be defined
by X = (X1,Xy,...). Then X is measurable (on RY we have the Borel sigma-algebra which is the
same as the cylinder sigma-algebra). Therefore, 1 = P o X~! is a probability measure on RY, and
ty := P o X! is a Borel probability measure on R. If Ty : RY — R is the projection on the kth
co-ordinate, then Xy, =TTy o X, hence py = poTT, ! (change of variables). We say that j is the joint

“Let us be pedantic and show this: Suppose Y; are independent Bernoullis on (Q,F,P)and V =}, ., Y« /2. For
any dyadic interval I = [p2™™, (p + 1)27 "] with p + 1 < 2™, we see that V € I if and only if Y;,..., Y, take on specific
values, hence P{V € I} =27 ™. From this, we see that Fy(t) = t for any dyadic rational t € [0, 1], and by right-continuity
that Fy(t) =t forall t € [0,1]. Thus V ~ Unif[0, 1].

Again, we emphasize the unimportance of the original probability space, what matters is the joint distribution of the
random variables that we are interested in. In other words, the mapping Y = (Y1, Y,,...) : Q — {0, 13N pushes forward
P to the fair-coin-tossing measure that we had constructed earlier, and hence the distribution of any function of Y, such
as V, is the same regardless of the original probability space. Since the claim is true for the binary digits Xy on [0, 1], it

is true for any independent Bernoullis.
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distribution of X1, Xy, ... (or simply the distribution of X) and that py is the marginal distribution
of Xx. We also say that py is the kth marginal of .
Now suppose Xy are independent. Then one can recover u from (py )i, because for any finite

dimensional cylinder set A = Ay x ... x Ap x R x R... with Ay € Bp«, we have
H(A) = ]P){Xl € Al/ .. ~/XTL € ATL}

=P{X; € A1}...P{Xn € An} = wi(A1) ... un(An).
Thus, if we know the marginal distributions ., then we can recover the joint distribution p on the
m-system of finite dimensional cylinders, and hence on the Borel sigma-algebra of RY. Conversely,
if for some X = (X1, Xy, ...), the above relationship between p and the () on cylinder sets holds,
then the random variables Xy are independent. This is easy to see and left as exercise.
In other words, we have found a formulation of independence in terms of measures. Let us

make a definition in greater generality.

Definition 7: Product measure

Let (Q4,J3,Pi), i € 1, be probability spaces indexed by an arbitrary set I. Let Q = X104

and let I (usually denoted ®;c1J;) be the sigma-algebra generated by all finite dimensional
cylinders (equivalently, the smallest sigma-algebra on Q for which all the projections TT; :
O — Q; are measurable). If j1 is a probability measure on (Q, F) such that for any cylinder
set A = ﬂal(Ail) N...N T[i_kl(Aik) for some A, € J;,,

k
w(A) =] [ri(Ag),
r=1

then we say that p is the product of p;, i € I, and write p = ®icyp.

The existence of independent random variables and the discussion at the beginning of this
subsection show that if u; € P(R) (or even pu; € P(R%) for i € N, then the product measure
L=H ® U ®...onRY exists.

For arbitrary probability measures on arbitrary spaces and arbitrary (even uncountable) in-
dex sets, does product measure exist? Yes, irrespective of the cardinality of I, one can use the
Carathéodory construction, starting from the desired probabilities for finite dimensional cylin-
ders. The algebra generated by cylinder sets consists of finite disjoin unions of cylinder sets, and
the measure is naturally defined on that. The key point is to check that p is finitely and countably
additive on the algebra. Then it extends to a measure on the sigma-algebra. We do not discuss any

further as uncountable products are not needed”.

51f interested, consult Dudley’s Real analysis and probability for example.
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6.1. Fubini’s theorem. One of the important and useful facts about product measures is that
the integral w.r.t the product measure can be computed by integrating over each variable one after

another.

Theorem 5: Fubini-Tonelli theorem

Let (Qi,3:,Pi), i = 1,2, be probability spaces and let O = Q; x Oy, F = F; ® I, and
P =Py ®P,. Let Y: QO — R be a random variable that is either positive or integrable w.r.t. P.

Then, Y(w1,-) : Qy — Ris a random variable on Q; for each w; € Q4, and is either positive
or integrable (w.r.t. P;) for a.e. wj [IP;]. Further, the function w; fﬂz Y(wq, wy)dP,(w;)

is a random variable on 4, and is either positive or integrable. Finally,

J |:J Y((,Ul, (,Uz)d]P’z(wz):| dIP’l(wl) =J YdP.
0O VO, Q

Two remarks:

(1) The order of iterated integrals can be interchanged, so we also have

Jo ] viwnwnapion] apaes) = | var,
Q, o, Q
In particular, the two iterated integrals are equal.

(2) Bothiterated integrals may exist but still not be equal! This is a common mistake in apply-

ing Fubini’s theorem, forgetting to check that Y is integrable w.r.t. the product measure.

The essential idea is to prove the statements for indicator random variables, and hence for simple
random variables Y by linearity. From there use MCT to prove it for positive random variables and
take differences to prove it for integrable random variables. The key step is the first one, proving it
for indicator random variables. That step is obvious for rectangles A = A; x A, but not so obvious

for general A € J. We just sketch how to go about this part and leave the rest as exercise.

ProoF OF FUBINI-TONELLI THEOREM FOR INDICATORS. Let A € J. We must show that (a) for any
w1 € Qy, the section Ay, ={wy € Oy : (w1, wy) € A}isin Iy, (b) wy — Pr(A,) is F1-measurable,
(©) [ o, P2(Aw,)dP1(w1) = P(A).

Let g ={A € F: (a), (b), (c) hold}. Then § contains the 7-system of rectangles. If we show
that G is a A-system, the 7t — A theorem then implies that § = J.

Suppose A,B € Gand A C B. Then (B \ A)w, = Bw, \ Aw, (also a proper difference) and
hence in ¥, for any w; € Q1. Hence, p((B\ A)w,) = m2(Bw,) — H2(Aw,), a difference of two
JF1-measurable functions, hence F1-measurable. By the linearity of expectations,

Lll w2 ((B\ A)w,)dP; (w1) :J

2 (B, )Py (1) — J i2(Aw, )P (1)
(0}

(0}
= u(B) —p(A) = pn(B\A).
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Thus G is closed under proper differences.

Suppose A € Gand A, T A. Of course A € Fand (An)w, T Aw, foreach wy € Q. Therefore,
W ((An)w,) T H2(Aw,) pointwise on Q;. As a limit of measurable functions, w; — Hy(Ay,) is
measurable, and MCT tells us that

J uz(Awl)dpl(wl):hmj 2 ((An) o, ) APy (1)
O, (O]

n—o0

= lim p(Ay,)

= u(A).

Thus G is closed under increasing limits, completing the proof that G is a A-system. u

6.2. Probability measures are special. Infinite products of measures only makes sense for
probability measures. For example, suppose Ay denotes Lebesgue measure on [0, a] with total
mass a. Can we construct the product measure Ay ® Aq ® ...? What does it even mean? If we ask

for a non [0, alN such that
(AL X Ag x ...) = p(A)u(Az) ...,

then all finite dimensional cylinders get infinite measure if a # 1 (as we A, = [0, a] for all large n,
we get a product of a infinitely many times). One might try to salvage the situation by asking for
the cylinder set A = Ay x ... x A, x [0,a] x [0, a] x ... to have measure equal measure p such that
w(A) = nw(Aq) ... u(Ay). Butwe canalsowrite Aas A; X ... x Apy1x[0,a] x...withA, 1 =10,4d],
and the requirement then would be that u(A) = u(A;)... w(Ant1) = ap(Aq) ... u(An). The two
requirements are inconsistent if a # 1. The case a = 1 is fine, as we have already constructed
infinite product of probability measures. Thus, infinite products are a special feature of probability
measures, and it is at this point that probability theory diverges from general measure theory and
becomes a much richer subject!

However, finite products do make sense for sigma-finite measures. It is usually done in mea-
sure theory class (by the Caratheodory construction, what else?), but one can easily deduce it
from the existence of products of probability measures. Indeed, if p; are finite nonzero measures
on (Qi, i), 1 =1,2, then we can write iy = a;[P;, where a; = 1/p;(Q4) are positive numbers and
Pi(-) = ni(-)/ai are probability measures. Then we may simply define |1y ® pp as ajaz(P; ® P,).

For sigma-finite measures i, we partition Q; = Li>10;x where p;i(Qix) < oo. Then we
can define the finite measures pi () = pi(- N Q) (note that it is supported on Q; i) so that
M = ) i Hik. We can then define

B= Z Z M1k & H2,e-
k>10>1
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To check that this has the defining property of product measure, let A; € F;, and write A; = LA;

where A = AN Q. Then A = L (A1 X Age, and py 1 @ g e/ (Aq e X Age) = i (Aq ) ma(Aze)

if k =k’ and { = ¢’ and zero otherwise. From this it follows that w(A; x As) = w1 (A7) ua(As).
Finally, the Fubini-Tonelli theorem continues to hold, and in fact follows from the correspond-

ing theorem for probability measures.

7. Kolmogorov’s consistency theorem

A generalization of the theorem on the existence of product measures is to go beyond inde-
pendence. To motivate it, consider the following question. Given three Borel probability measures
H1, M2, u3 € P(R), i < 3, does there exist a probability space and three random variables Xj, X3, X3
such that X; ~ u;? The answer is trivially yes, for example we can take three independent random
variables X1, X3, X3 such that X; ~ ;. There are other ways, for example, take one uniform random
variable and set X; = G, (U) (then X; won’t be independent).

Having disposed of that easy question, what if we specify three Borel probability measures
v1,v2,v3 € P(R?) and want X1, Xy, X3 such that (X1, X2) ~ v1, (X2, X3) ~ v and (X1, X3) ~ v3? Is it
possible to find such random variables? If the first marginal of v; and the first marginal of v3 do not
agree, then it is not possible (because then we have two distinct specifications for the distribution
of Xi!). This is because our specifications were internally inconsistent. The following theorem of
Kolmogorov asserts that this is the only obstacle in constructing random variables with specified

finite dimensional distributions.

Theorem 6: Consistency theorem (Daniell, Kolmogorov)

Let Q; = R4 forsome d; > 1. Foreachn > landeach1 <i; <ip <... < in, let Ui, o

a Borel p.m on Q;, x ... x Q;, . Then the following are equivalent.

(1) There exists a unique Borel probability measure p on x;Q; such that po ni_l,l...,in =

Hi,,.. i, forany i <ip <...<ipandanyn > 1.
(2) The given family of probability measures satisfy the consistency condition

Miy,in (B % Qi) = 1y, 1, ,(B)

forany B € B(Qy, x ... x Q4 ,)andforanyn > landany i) <i, <... <in.

We have stated the consistency theorem for Q; that are Euclidean spaces. It can be generalized,
but some metric structure on Qs is needed. This is in contrast to the situation of product measures,
which exist even if Q; have no structure.

37



Alternate form of the consistency condition: Suppose foreachn > 1, we have a probability measure
vponQqx...xQy. Assume that vy, 1 (A1 X... XA X Q1) = V(A1 X...xAp) foralln > 1and

—1
11041k

all A; € Ji. Then, forany 1 < i; < ... < ix and any n > iy, the probability measure v, o TT
on Qi X ... x Qg is the same. If we define this to be u;,, ;,, then we get a consistent family of
probability measures as required in the theorem.

The importance of the consistency theorem comes from having to construct dependent random
variables such as Markov chains with given transition probabilities (see the next section). It also
serves as a starting point for even more subtle questions such as constructing stochastic processes

such as Brownian motion.

7.1. A more general consistency question. It clears things up if we take a more abstract view-

point.

Question 2: A general consistency question

Let Fj, 1 € I be sigma-algebras on a set QO and let ¥ = 0 (Ujc1JF;). Suppose p; are probability
measures on (Q, F;). Does there exist a probability measure pon (Q, ) such that u| g = Wi?

If so, is it unique?

Some remarks.

(1) It does not make sense to take J to be larger than o (Uje1Fi). In general, a measure cannot
be extended from a smaller sigma-algebra to a larger one (otherwise we would extend all

measures to the power set!).

(2) An obvious necessary condition for the existence of w is that p; and p; agree on §; N G

fori,j el

(3) f O =[] Qk and Fy,, 1, = o(ITy,,..., T, ) gives the setting of the Kolmogorov consis-
tency theorem.
How would we try to prove the existence of such a u? We make one extra assumption (which is
clearly satisfied in the setting of the Kolmogorov consistency theorem) in addition to the consis-
tency conditioned mentioned earlier.

Assumptions:
(1) A €GN 9]', then pi(A) = LLj(A).
(2) Forany i,j € I, there is some k € Isuch that §; U G; C Gy.

Under the second assumption, A := U;§; is an algebra that generates the sigma-algebra F. We
must define u: § — [0,1] by u(A) = ui(A) if A € G for any i € I, or what is the same, y;, (B) | 0.
Because of the first assumption, this is a valid definition.
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In view of the Caratheodory extension theorem, there is a unique extension of p to ¥ if and only
if p is countably additive on A. As finite additivity is clear, this means checking thatif A,,,A € A
and A, T A, then u(An) T u(A). If A, € F;, and A € T3, we can find j,, such that F5, 2 F; U J;
so that B;, := A\ A, € Jj,,. What we need to check is that (B ) | 0. We write this as a conclusion.

Conclusion: Under the above assumptions, there is a unique probability measure n on J that

extends each y; if and only if whenever By, € F;, and By, | () we have p; (By) | 0.

PrOOF OF THE DANIELL-KOLMOGOROV CONSISTENCY THEOREM. By the conclusion reached above in
the general consistency theorem, the only point to check (a little reindexing may be needed first)
isthatif By = Apg X ... X A X Qniq1 X Qnio X ... for some A, ; € B(Qi) and By, | 0, then
Vn(Ani X ... X Apn) {0, where vy = py n.

Case-1: Assume that each u,, is supported on a compact subset K;; € Q..

To check the condition above, assume to the contrary that v, (An1 X ... X Ay n) > p for some
p > 0, for all n, where A, ; C K; for all j,n. By the regularity of v, we can find compact C,, C
Ani X ... X Apn such that v (Cy) > p/2. As continuous images of compact sets are compact, it
follows that TT;(Cy,) € K;j is compact for each j. By a diagonal argument, we can get a subsequence
n, such that

Set Dy = N1 (Cx X Oy 41 x ... x Qp). Then Dy, € Cy, is also compact and
n
Vn(Dn) P Vn(An,l X.ooo X An,n) - Z Vk(Ak,l XX Ak,k)
k=1

Observe that i (T11(Cn)) = va(Ch) = (1 — %)p. Thus, TT;(Cy,) is a sequence of compact subsets
of R, and the

compact Cy, ; C Ay, i for i < n such that
Vn(Cna X ... X Crumn) 2 05vn(An1 X ... X Apn).

As Ay ; | 0 for each j (because By, | 0), it follows that Cy, ; | 0 for each j. By compactness, there is
anj such that Cy, j = () for n > n;. This is not good enough. We want an N such that C,, ; = () for

n > N. This follows by a diagonal argument. Complete the details n

Remark 8
The proof of the consistency theorem does require some topology. The existence of product

measure does not.
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8. Applications of the consistency theorem

8.1. Markov chains. Consider (R9, B(R9)) and let uy € P(R9) and let k : R4 x B(RY) — R,
be a transition kernel. This means thaty — «(x, -) is a Borel probability measure function for each
x € R4 and x — k(x,A) is Borel measurable for each A € B(RY). Then, define for eachn > 1, a

probability measure on (R4)™ by

Va(Ag X A1 X ... X Ap_1) = JJ .. J K(Xn—2, dXn_1)K(xn_3, dxn_2) ... K(xq, dx1)du(xg).
AAT  Ang
for any A; € B(R9). It may be easier to parse this expression if we assume that all the measures
uo and k(x, -) are absolutely continuous to one measure 0. In this case, write dpy(x) = p(x)do(x)

and k(x, dy) = p(x,y)dO(y) and then
Vn(AO X Al X ... X An—l)

= J J o J P(xn—2,Xn-1)p(Xn-3,Xn—2J) ... P(x0,x1)p(x0) dO(xn_1)...dB(x0).
AAT  An
That is, v has density p(xo)p(xo,x1) ... P(Xn_2, Xn—1) with respect to 6°™.
It is easy to check that v,, defines a probability measure on (R%)™ and also that v, 1(Ag X
X An_1 x RY) = v, (Ag X ... x A,,_1). Consequently, by the alternate form of the consistency
condition stated above, we see that there is a probability measure 1 on (R9)N (endowed with the
Borel/cylinder sigma algebra) such that po ”0,1,.A.,n—1 = v,,. This measure p on RY is what is called

a Markov chain with state space R, transition kernel p and initial distribution .
P P

8.2. Gaussian processes. Suppose m : Z — Rand o : Z x Z — R. A Gaussian process
with mean p(-) and covariance o = (0} )i jez is a collection of jointly Gaussian random variables
(Xn)nez such that E[X;,] = u(n) and Cov(Xy, X ) = o(m, n).

Question: Does it exist?

First let us note some necessary conditions. If we could construct a Gaussian process Y with
mean 0 and we set X = m+Y (i.e.,, Xn, = m(n) + Yy ) has mean m(-) and the same covariance as Y.
Hence the mean poses no challenge and we assume that it is zero henceforth.

The covariance is more subtle. For example, o(n,n) = E[X?] cannot be negative. More gener-

ally, foranyn > 0and i) < ... < iy and anycy,...,cn € R, we must have

n
0 <E[(c1Xy, +...+cnX Z cpeqEIXq, Xi,] = Z cpCqo(ip, iq)-
Thus, every principal finite sub-matrix of 0 must be positive semi-definite. We now claim that this

is also sufficient.
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Assume that o is positive definite in the above sense. Then foranyn > landany i; < ... < i,
the measure yy,, i, = Nn(0,(0(ip,iq))p,q,<n) is well-defined. This is because positive definite-

ness allows us to write
(O—(ip/ iq))p,qén = BB'

for a n x n matrix B. Taking Z;,...,Zy iid. N(0,1), the distribution of the random vector BZ,
where Z = (Z4,...,Zn)"t is the desired Gaussian distribution.

From basic properties of Gaussian distributions (marginals of Gaussians are Gaussian) it fol-
lows that the family of distributions {y,,. i, }is consistent. Hence by the consistency theorem, the

Gaussian process with covariance o exists.

8.3. Did we really need the consistency theorem? Actually no! We could have constructed
Markov chains and Gaussian processes from the simpler fact that i.i.d. uniform random variables
Vo, V1, Vs, ... exist. For Markov chains, to take the kth step, we can use Vi to generate a random
variable from the required step distribution (depending on the current location). For Gaussian
process, one can first convert Vi to Zy ~ N(0,1). Then the Gaussian process can be generated in
the form X = BZ, where Z = (Z;,Z,,...)" and B is an infinite, lower triangular matrix such that
BB' = o (here the indexing set is N instead of Z which of course makes no difference). As B is
lower triangular, observe that in defining any entry of BZ or BB*, only finite sums and products
are needed, so there is no convergence issue.

In fact, every situation of interest to probabilists can be generated from a sequence of inde-
pendent random variables, and hence on the probability space ([0, 1], B,A). The idea is that we
construct i.i.d. uniforms Uy, Uy, ... and then set X, = fi, (Uy, Xq,..., X5 1) (for n = 1 this means
X1 = f1(Uy)) where f;, is the inverse of the cumulative distribution function of the conditional
distribution of Xy ;1 given o{Xy,...,Xn}. We have not yet defined what conditional distribution
means, but in the situations where you know what it means, it should be clear that the above pro-

cedure works.
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Let S = [n] and let Py xn = (pi,j)i<ij<n be a stochastic matrix (i.e., all entries are positive

and row sums are 1). Show the existence of a Markov chain with transition matrix P by
completing the following steps.
(1) Construct independent random variables &; ¢, 1 < i < n,t > 0 (here t is also an
integer) such that &; + ~ pi,101 + ...+ Pindn (the probability vector defined by the
ith row of P).

(2) Define the “random mappings” F¢ : S — Sby F¢(i) = &; . Then define Xy = ip and
Xt41 = FroF_10...0Fy(Xp) for t > 0. Show that (X, X1, ...) is a Markov chain

with transition matrix P and initial state 1.

9. The Radon-Nikodym theorem and conditional probability

9.1. Absolute continuity and singularity. Consider a probability space (Q,F,P). Let X: QO —
R be a non-negative random variable with E[X] = 1. Define Q(A) = E[X14] for A € F. Then, Q is
a probability measure on (Q, J). Finite additivity is clear, by linearity of expectation. MCT shows
thatif A,,A € Fand A,, 1 A then Q(A,,) T Q(A).

All this clearly remains valid even if P was an infinite measure and X was a general non-negative
measurable function, except that Q is possibly an infinite measure too. One can think of Q as got
from P by re-weighting the space according to the values of X. We say that Q has density X with

respect to P.

Question: Given two measures p,v on (Q, ), does v have a density with respect to p and is it
unique?

The uniqueness part is easy.

Proor oF UNIQUENEss. If f and g are two densities, then v(A) = | A fdu = | A gdu for some f, g,
then h := f — g satisfies [, hdp = 0 for all A € F. Take A = {h > 0} to get [ h1p-odu = 0. But
h1p - is a non-negative measurable function, hence it must be that h1p-¢ = 0 a.s.[p]. This implies
that p{h > 0} = 0. Similarly p{h < 0} = 0 and we see that h = 0 a.s.[p] or equivalently f = g a.s[u].
The density is unique up to sets of p-measure zero. More than that cannot be asked because, if f is
a density and g = f a.s.[y], then it follows that [, gdpu = [, fdu and hence g is also a density of v
with respect to . [ ]

Existence of density is a more subtle question. First let us see some examples.
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Example 5

On ([0,1], B, A) let v be the measure with distribution Fy (x) = x?. Then v has density f(x) =
2x1,¢(0,1) With respect to A. Indeed, if we set 8(A) = [ 4 fdA, then 0 and v are two measures
on [0,1] that agree on all intervals, since [ (a,b] fdA = b2 — a? for any [a,b] C [0,1]. By the
71— A theorem, 6 = v.

Note that the same logic works whenever v € P(R) and F, has a continuous (or piecewise
continuous) derivative. If f = F{, by the fundamental theorem of Calculus, f[a,b] fdA =
Fy(b) — Fy(a) and hence by the same reasoning as above, v has density f with respect to

Lebesgue measure.

Example 6

Let Q be some set and let a, ..., a, be distinct elements in Q. Let v =Y |\ ; pxdq, and let

=) _qqkda, Where p;i, q; are non-negative numbers such that } ;pi =) ;qi =1.
Assume that q; > 0 for all i < n. Then define f(x) = % for x = ai and in an arbitrary
fashion for all other x € Q). Then, f is the density of v with respect to . The key point is that
[ g ydu = flai)uf{ai} = pi = v{ai}.

On the other hand, if q; = 0 < p; for some i, then v cannot have a density with respect to
(why?).

Let us return to the general question of existence of density of a measure v with respect to a
measure | (both measures are defined on (Q,J)). As in the last example, there is one necessary
condition for the existence of density. If v(A) = [fladp for all A, then if p(A) = 0 we must
have v(A) = 0 (since f1o = 0 a.s[u]). In other words, if there is even one set A € F such that
v(A) > 0 = p(A), then v cannot have a density with respect to p. Let us make a definition.

Two measures 1 and v on the same (Q, F) are said to be mutually singular and write p L v if

there is a set A € J such that u(A) =0 and v(A¢) = 0. We say that w is absolutely continuous
to v and write p < v if u(A) = 0 whenever v(A) = 0.

(1) Singularity is a symmetric relation, absolute continuity is not. If © < v and v < u, then

we say that p and v are mutually absolutely continuous. (2) If p L v, then we cannot also
have p < v (unless u = 0). (3) Given p and v, it is not necessary that they be singular or
absolutely continuous to one another. (4) Singularity is not reflexive but absolute continuity

is. That is, p < pbut p is never singular to itself (unless p is the zero measure).
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Example 7

Uniform ([0, 1]) and Uniform([1, 2]) are singular. Uniform([1, 3]) is neither absolutely contin-
uous nor singular to Uniform([2,4]). Uniform([1,2]) is absolutely continuous with respect to
Uniform([0, 4]) but not conversely. All these uniforms are absolutely continuous to Lebesgue
measure. Any measure on the line that has an atom (eg., 8y) is not absolutely continuous to
Lebesgue measure. A measure that is purely discrete is singular with respect to Lebesgue
measure. A probability measure on the line with density (eg., N(0,1)) is absolutely con-
tinuous to A. In fact N(0, 1) and A are mutually absolutely continuous. However, the expo-
nential distribution is absolutely continuous to Lebesgue measure, but not conversely (since
(—00,0), has zero probability under the exponential distribution but has positive Lebesgue

measure).

Returning to the existence of density, we saw that for v to have a density with respect to , it is

necessary that v < p. This condition is also sufficient!

Theorem 7: Radon Nikodym theorem

Suppose p and v are two finite measures on (Q,J). If v < p, then dv = fdp for some
fell(p).

The function f in the statement is called the Radon-Nikodym derivative of v w.r.t. n. When both
v is a probability measure, we also call it the density of v w.r.t. p. Of particular importance is the

case when v is a probability measure on R¢ and p is the Lebesgue measure on R¢.

A first attempt at proof: Let H = L2(p) and define L : H — R by Lf = [fdv. Suppose we could
show that L is well-defined (then it is clearly linear) and bounded, i.e., [Lf| < C||f||}; for all f € H.
Then, by the Riesz representation theorem for linear functionals on a Hilbert space, it follows that
Lf = (f, ) for some P € H. Take f = 15 with A € F to see that v(A) = fA U dp. This is what we
want to show.

The problem is that L need not be bounded. Indeed, it it were true, the above argument would
have shown that the Radon -Nikodym derivative of v w.r.t. pis in [%(p), which is false in general!
For example, let v(A) = [ AUx L —dA(x), where A is the Lebesgue measure on [0, 1]. Then the Radon-
Nikodym derivatwe is1/ \f X, whose square is not integrable w.r.t. u. The proof below overcomes
this issue by a small trick.
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Proor oF THE RapoN Nikopym THEOREM. Let @ = p+ v and let H = L2(Q, 7, 0). Define L : H
R by Lf = [ fdv. Since (note that [ gdv < [ gd® for any g > 0)

}dev\ < Jfldv < Jlflde < m(JmZde)%,

it follows that L is well-defined and |Lf| < C||f||i with C = /0(Q).Therefore, L is bounded and
Lf = [fe do for some ¢ € H. Rewrite this as

(2) Jf(l—(p)deJf(pdp forall f € H.

From this identity, it is clear that 0 < ¢ < 1 a.s.[u] (hence also a.s.[v]). Further, setting f = 1,1,
we see that the left hand side is zero while the right hand side is p{¢ = 1}. Thus, @ < 1 a.s.[u]
(hence also a.s.[v]).

Now forany A € Fand & > 0, setting f = ﬁ1A1@<1,5 (which is bounded above by 1/(1—5)
and hence in H), we get that v(A N{p < 1—3}) = fA Plyci—sdu, wherep = /(1 — @). Set
§ =1/nand letn 1 co. We get v(AN{p < 1}) = [Ply-1dp. Since ¢ < 1 almost surely with

respect to both measures, it is redundant to write that, and we get v(A) = [ A bdu. |

Exercise 3: Lebesgue decomposition

Let w, v be two finite measures on (Q, F). Show that we can write v = v; + v,, where v1, v,
are measures on ¥ and v; < pand v, L p. This decomposition is unique. [Hint: Follow the

steps in the proof of Radon-Nikodym theorem and consider theset {¢ = 1} carefully!]

9.2. Some singular probability measures. This section is not directly needed for what comes
next in the course. But these are some natural directions suggested by the previous discussion of
absolute continuity and singularity of measures.

Is there any u € P(R) that is singular to Lebesgue measure on R? Of course, any discrete
probability measure is singular, since it gives probability one to a countable set while Lebesgue
measure gives probability zero to that set. The interesting question is whether there is a singular
u that has no atoms. For this, we must spread our set on some uncountable set of zero Lebesgue
measure. The first example that comes to mind is the standard Cantor set.

Recall that the middle-thirds Cantor set is defined as the decreasing intersection K of K, s where
Ko =10,1], Ky = [0, %} U [%, 1], Kz = [0, %] U [%, g] U [g, %] U [%, 1], and so on. In general, Ky, is a union
of 2™ intervals each of length 37, and K, ;1 is got from K, by deleting the middle third open
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subinterval of each of these intervals. An alternate description of the Cantor set is

31’1

n=1

K= {xe 0,1] : x = Z X—nforsomexn 6{0,2}}.

In other words, it consists of those numbers that have a ternary (base-3) expansion without using
the digit 1.

Example 8: Cantor measure

Let K be the middle-thirds Cantor set. Consider the canonical probability space ([0, 1], B,A)
2By (w)
3k

(e, w=3 4 B“z(kw) ). Then X is measurable (we saw this before). Let p := A o X~! be the

pushforward measure.

and the random variable X(w) = Y 7, , where By (w) is the kth binary digit of w

Then, u(K) = 1, because X takes values in numbers whose ternary expansion has no ones.
Further, for any t € K, X~ 1{t} is a set with atmost two points and hence p{t} = 0. Thus i has
no atoms and must have a continuous CDF. Since u(K) = 1 but A(K) = 0, we also see that
w LA

Exercise 4: Alternate construction of Cantor measure

Write K = NK,;, as in the definition of the Cantor set. Let p,, be the uniform probability

measure on K, i.e., pun(A) = (3/2)"A(ANKy) forall A € Bg. Show that F,,, s converge uni-
formly to a CDF F and that the measure having this CDF is the Cantor measure constructed

above.
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Example 9: Bernoulli convolutions - a fun digression (omit if unclear!)

We generalize the previous example. For any o« > 1, define X : [0,1] — R by Xy(w) =
> v ®By(w). Let py = Ao X;l (did you check that X is measurable?). These measures
are called Bernoulli convolutions. For o = 3, this is almost the same as 1/3-Cantor measure,
except that we have left out the irrelevant factor of 2 (so u3 is a probability measure on
%K :={x/2 : x € K}) and hence is singular. For o = 2, the map X is identity, and hence p, is
the Lebesgue measure on [0, 1], certainly absolutely continuous to Lebsegue measure. What

about the singularity and absolute continuity of p for other values of «?

For any o > 2, show that 4 is singular w.r.t. Lebesgue measure.

Hence, one might expect that 1 is absolutely continuous to Lebesgue measure for 1 < o« <
2. This is false! Paul Erdés showed that 11 is singular to Lebesgue measure whenever « is a
Pisot-Vijayaraghavan number, i.e., if o is an algebraic number all of whose conjugates have

modulus less than one!! It is an open question as to whether these are the only exceptions.

9.3. Hausdorff measures. Consider two Cantor type sets: A consisting of those numbers who
decimal expansion does not have the disgit 5 and B consisting of those numbers who decimal ex-
pansion does not have any odd digit. Both have Lebesgue measure zero. Is there another measure
that can measure the sizes of these sets (one might feel that B is somehow smaller than A, but in
what sense?).

Let (X, d) be a compact metric space. Fix « > 0 and define for any A C X,
H% (A) = inf {Z dia(Bn)* : By, are open balls whose union covers A} .
n=1

It is easy to check that H} (A) < H%(B) if A C B and H} (UnAn) < > ,, Hy(An). Thus HY is
an outer measure H, and can be used to construct a measure on (X, Bx) (one must check many
things, for example that the Caratheodary construction gives a sigma algebra containing all Borel
sets). As it happens, for most &, the measure Hy turns out to be trivial. For example, if X = [0, 1],
then for any interval I, one can check that Hy(I) = 0if @ > 1 and Hy(I) = coif @« < 1. For « =1,
we get the Lebesgue measure.

For a general X, again there is always a value &g such that for any openball Bwe have Hy(B) =0
if « > g and Hy (B) = o0 if o < oxp. At & = otg, we may or may not get a meaningful measure. If
we do, then Hg, is called the Hausdorff measure on X. Whether H, is trivial or not, the number o
is called the Hausdorff dimension of X.
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Example 10

Let X = K, the middle-thirds Cantor set. Then oy = log2/log3 and H, is precisely the

Cantor measure that we constructed earlier.

9.4. Conditional probability and expectation - a first view. So far (and for a few lectures
next), we have seen how a rigorous framework for probability theory is provided by measure the-
ory. We have not yet touched the two most important concepts in probability, independence and
conditional probability. We shall see independence very shortly but may not have time to study
conditional probability in detail in this course. But one of the important aspects of Kolmogorov’s
axiomatization of probability using measure theory was to define conditional probability using the
Radon-Nikodym theorem. Here is a teaser for that story.

Let (Q, J,P) be a probability space. Let X be a random variable that takes finitely many values
ai, ..., an with P{X = ay} > 0 for each k. Then, the law of total probability says that forany A € 7,

P(A) =) PA|X=aPX=ay}
k=1

where P(A | X =ax) = %. Now suppose X takes uncountably many values, for eg., X

has density fx. Then, we would like to write
P(A) = J]P(A | X =t)fx(t)dt

where fx is the density of X and perhaps even generalize it to the case when X does not have density
asP(A) = [P(A | X =t)dux(t). The question is, what is P(A | X = 1)? The usual definition makes
no sense since P{X =t} = 0.

The way around is this. Fix A € F and set va (I) = P{A N{X € I}} for I € Bgr. Then v is a Borel
probability measure on as a measure on R. If ux is the distribution of X, then clearly va < px (if
ux (I) = 0 then P{X € I} = 0 which clearly implies that v (I) = 0). Hence, by the Radon-Nikodym

theorem, v has a density fa (t) with respect to px. In other words,

P(AN{X € 1)) = L fa(t)duix ()

and in particular, P(A) = fR fa(t)dux(t). Then, we may define f A (t) as the conditional probability
of A given X = t! Note that fa is defined only almost everywhere, hence P(A | X = t) should
also be interpreted as being defined for almost every t (w.r.t. px). This way, the intuitive notion
of conditional probability is brought into the ambit of measure theoretical probability. We now
elaborate on this a bit.
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Let P, Q be probability measures on (Q, F). Assume that Q < P. Then thereisa X € L}(Q,F,P)
such that

Q(A) = J XdP forall A e 7.
A

Now suppose § C ¥ is a sub-sigma algebra. Let P/,Q’ be the restrictions of P,Q to §. It is
trivially the case that Q' < P’. Hence, again by the Radon-Nikodym theorem, there is some
X’ e 11(Q,§,P") such that Q’(A) = | A X'dP’ for all A € §. The last statement can also be written

as
Q(A) :J X'dP forall A € G.
A

This X’ is not the same as X, because the latter need not be G-measurable.

Now start with any integrable random variable Y on (Q, J, P). Writing as Y, —Y_ and applying
the above steps to find Y/, Y’ (these are §-measurable and give the same integrals as Y., Y_ over
sets in §). Writing Y’ = Y/ — Y’ , we have shown that there is a §-measurable random variable Y’
such that

J Yd}P’:J Y dP forall A € 6.
A A

This Y’ is called the conditional expectation of Y w.r.t. § and denoted E[Y | G].

Example 11

Again consider (Q,F,P) and a measurable partition {A1, ..., Ay} with P(A;) > 0 for all i.
Let § = o{A4,...,Ax}. If Yis an integrable random variable (§-measurable), we compute
Y’ =E[Y]g]. Since Y’ is §-measurable, we can write Y/ = &;1a, + ...+ o 14, . Equating its

integral over A; with that of Y, we arrive at (;P(A;) = [ A YdP. Thus,

oy (L
Y= 1Z:1 (P(Ai) JAi YdP) TAv

The value of «; is what you would have seen in basic probability class as the expected value

of Y given A; (just restrict the probability measure to A; and renormalize by dividing by

P(Ai). Then take expectation of Y w.r.t this new measure).
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Example 12

Let X, Y be random variables on (Q, F, P), having a joint density f(x,y) on R. We want to talk
of E[Y | X = x]. For this, we take § = o(X), the sigma-algebra generated by X and compute
E[Y | §]. What are G-measurable random variables? They are precisely those of the form
@(X) for some Borel measurable ¢ : R — R (why?). Let us simply write down the formula

and check that it works: Y’ = ¢ (X) where

e [pyf(x,y)dy if [ f(x,y)dy >0
T fxy)dy rYTIX, Yy)ay r X, Yy)ay

0 if [ f(x,y)dy =0.

Clearly Y’ is §-measurable (since it is a function of X). Check that E[Y'1a] = E[Y1A] if
A ={Z € B} for some B € Bg. That shows that Y/ = E[Y | G].

e(x) =

It may be confusing for the first time that what we call conditional expectation is a random vari-
able and not a number. But that is indeed the point. First we conceptualize an experiment which
tells us for each element of G, whether or not it has occurred. Then depending on the outcome of
the experiment, we update our probabilities of event or expectations of random variables. In other

words, the update is a function of the outcome of the experiment, hence a random variable.
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CHAPTER 2

Convergence of probability measures and random variables

So far, we have looked at individual probability measures and random variables. Now we look
at what properties they have as a collection, in particular, in particular the sense in which they can
be close to one other. Some of the main theorems we shall prove later, the weak and strong laws of
large numbers and the central limit theorem are statements about such closeness. This language is
helpful for all future discussions.

First we discuss the important notion of convergence of probability measures on Euclidean
spaces. Then we discuss multiple modes of convergence of a sequence of random variables to

another random variable.

1. A metric on the space of probability measures on R¢

What kind of space is P(R¢), the space of Borel on R9? It is clearly a convex set (this is true for
the space of probability measures on any measurable space (Q, F)). We want to measure closeness

of two probability distributions. Two natural definitions come to mind.

(1) For u,v € P(RY), define

Di(w,v) = sup [u(A)—v(A)l
A€By

Since p and v are functions on the Borel o-algebra, this is just their supremum distance,
usually called the total variation distance. It is easy to see that D; is indeed a metric on
P(RY) (check the triangle inequality).

One shortcoming of this metric is that D1 is too strong. If pis a discrete measure and v
is a measure with density, then D¢ (p, v) = 1. But if p is uniform distribution on [0, 1] and
Hn, is uniform distribution on the finite set {j/m : 1 < j < n}, then for large n we would like
to think that p and p,, are close (after all, if we want a sample from p, a random number
generator will in fact give us a sample from v for some large n, and we accept that). But
in the metric Dy, they remain far apart.
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(2) We can restrict the class of sets over which we take the supremum. In fact, if we take

any measure-determining class! of sets @ C Bra, then De(p, v) = sup [u(A) —v(A)lisa
A€l
metric on P(R9).

For instance, taking the class of all semi-infinite rectangles Ry := (—o0,x1] x ... X
(—00,xq] with x € R? gives us the Kolmogorov-Smirnov distance

Da(w, v) = sup [Fu(x) — Fy(x)].
x€Rd

If two CDFs are equal, the corresponding measures are equal. Hence D5 is also a genuine
metric on P(R4).

Clearly Dy (p, v) < D1(n, v), hence D, is weaker than D;. Unlike with Dy, itis possible
to have discrete measures converging in D; to a continuous one. For example, if if u is
uniform distribution on [0, 1] and u,, is uniform distribution on the finite set {% :1<j<
n}, then Dy (p, un) < % But it is still too strong.

For example, if a # b are points in R™, then it is easy to see that D1(04,0p) =
D5(84,08,) = 1. Thus, even when a,, — a in R4, we do not get convergence of 0, to
dq in these metrics. This is an undesirable feature as we must accept errors in measure-
ment, for example, a 10 digit number as an approximation to a real number. Alternately,
let us just say that we would like the embedding R — P(R) defined by a — 64 to be

continuous.

Thus, we would like a weaker metric, where more sequences converge. The problem with the
earlier two definitions is that they compare closeness of u(A) with v(A). But we must allow for
finite precision of measurement, meaning that we cannot be too sure if a number belongs to A or

is close to it. The next definition allows for this imprecision.

For p, v € P(RY), define the Lévy distance between them as (here1 = (1,1,...,1))

d(p,v) =influ > 0: Fu(x +ul) +u > Fy(x), Fy(x +ul) +u > F,(x) Vx € R4}

If d(pun, n) — 0, we say that p,, converges in distribution or converges weakly to 1 and write

Kn 4 . [...breathe slowly and meditate on this definition for a few minutes...]

lwe say that C is measure-determining if u(A) = v(A) for all A € € implies that p = v. We have seen that any

mi-system that generates the Borel sigma-algebra is measure-determining.

52



Remark 10

Although we shall not use it, in the same way one can define a metric on P(X) for a metric

space X (it is called Lévy-Prohorov distance). For u, v € P(X)
d(p,v) :=inf{t > 0: w(AM) +t > v(A) and v(AY)) + t > p(A) for all closed A C X}.

Here At is the set of all points in X that are within distance t of A. This makes it clear
that we do not directly compare the measures of a given set, but if d(u, v) < t, it means that
whenever u gives a certain measure to a set, then v should give nearly that much (nearly

means, allow t amount less) measure to a t-neighbourhood of A.

As an example, if a,b € R4, then check that d(84, 8p) < (max; |b; —ai|) A 1. Hence, if a, — a,

then d(d4,,08q) — 0. Recall that 84, does not converge to 8, in D; or D».

Let u, = % > g 8% /n- Show directly by definition that d(un,,A) — 0. Show also that
D> (pn,A) = 0 but Dy (pn,A) does not go to 0.

The definition is rather unwieldy in checking convergence. The following proposition gives

the criterion for convergence in distribution in terms of distribution functions.

Proposition 2

Let uy, n € P(RY). Then, pn, 4 pif and only if F,,, (x) — Fy.(x) for all continuity points x of
Fiu.

Proor. Suppose pun A . Let x € R4 and fix u > 0. Then for large enough n, we have F (x +
ul) +u > Fy (x), hence limsup Fy, (x) < F(x +ul) 4 u for all u > 0. By right continuity of F,,
we getlimsup F,, (x) < Fi(x). Further, F, (x)+u > F(x—ul) for large n, hence liminf F,  (x) >
Fu.(x —u) for all u. If x is a continuity point of F,, we can let u — 0 and get liminf F, (x) > Fy(x).
Thus Fy,, (x) = Fu(x).

For the converse, for simplicity let d = 1. Suppose F,, — T at all continuity points of F. Fix any
u > 0. Find x; < x2 < ... < X, continuity points of F, such that xi11 < x; + u and such that
F(x1) < wand 1 — F(x;m) < u. This can be done because continuity points are dense. Now use
the hypothesis to fix N so that [Fy,(xi) — F(xi)| < u for each i < m and for n > N. Henceforth, let
n > N.

If x € R, then either x € [x;_1, x;] for some j or else x < x; orx > x;. First suppose x € [x;_1, x;].
Then

Fx +u) = F(x;) = Falxj) —u > Fu(x) —u, Fr(x+u) > Fnlxj) > Flxj) —u > F(x) —w.
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If x < x1, then F(x +u) +u > u > F(x1) > Fn(x1) —u. Similarly the other requisite inequalities,

and we finally have
Fr(x 4+ 2u) 4+ 2u > F(x) and F(x 4+ 2u) + 2u > Fy(x).

Thus d(pn, 1) < 2u. Hence d(pn, 1) — 0. |

Example 13

Again, let a;, — ainR. ThenFs,_(t) =1ift > an and 0 otherwise while F5_(t) =1ift > a

and 0 otherwise. Thus, Fs, (t) — Fs(t) for all t # a (just consider the two cases t < a and
t > a). This example also shows the need for excluding discontinuity points of the limiting

distribution function. Indeed, Fs, (a) =0 (if an # a) butFs (a) = 1.

Observe how much easier it is to check the condition in the theorem rather than the original
definition! Many books use the convergence at all continuity points of the limit CDF as the defini-
tion of convergence in distribution. But we defined it via the Lévy metric because we are familiar
with convergence in metric spaces and this definition shows that convergence in distribution in
not anything more exotic. On the other hand, giving the metric first is also misleading unless one
understands that there are several alternate definitions that we could have given (see exercise at
the end of the section), all of which give the same topology on P(R). The point to keep in mind
is that the topology, however you define it, is metrizable. This is helpful, for example we can check

continuity of a function on the space or compactness of a subset, using sequential criteria.

If a, — 0and b% — 1, show that N(an,b?) 4N (0,1) (recall that N(a, b?) is the Normal
distribution with parameters a € R and b? > 0).

Question: In class, Milind Hegde raised the following question. If we define (write in one dimen-

sion for notational simplicity)
d’'(p,v) =inf{t > 0: F(x +t) > Fy(x) and Fy (x + t) > F,(x) for all x},

how different is the resulting metric from the Lévy metric? In other words, is it necessary to allow
an extra additive t to F (x + t)?

It does make a difference! Suppose p, v are two probability measures on R such that p(Kg) =1
for some compact set Kg and v(K) < 1 for all compact sets K. Then, if x is large enough so that x >y
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forally € Ko, then Fy (x+t) < 1 = Fy(x) for any t > 0. Hence, d’(p, v) > t for any t implying that
d’(w,v) = oo.

Now, it is not a serious problem if a metric takes the value co. We can replace d’ by d”(p, v) =
d’(w,v) Alord”(w,v) = d(w,v)/(1+ d(p,v)) which gives metrics that are finite everywhere
but are such that convergent sequences are the same as in d’ (i.e., d’(pn, ) — 0 if and only if
d”(pun, u) = 0).

But the issue is that measures with compact support can never converge to a measure without
compact support. For example, if X has exponential distribution and Xy = X /A k, then the distri-
bution of Xy does not converge to the distribution of X in the metric d’. However, it is indeed the

case that the convergence happens in the metric d. Thus the two metrics are not equivalent 2.

In the exercise below, we give other ways we could have defined the Lévy metric. There is no
natural way to choose between these definitions, underlining the point made earlier that the value
of the Lévy distance is itself of no great significance, what matters is the topology, or which se-
quences of probability measures converge to which probability measure. In fact, the Kolmogorov-
Smirnov and total variation distances are more meaningful (and actually used!) when one really
wants to measure distances, but in restricted settings.

Exercise 8

Show that each of the following is a metric that is equivalent to the Lévy metric (in the sense

that i, — p in one metric if and only if in the others).
(1) influ > 0: F,(x + aul) + bu > Fy(x), Fy(x + aul) + bu > Fy(x) ¥x € R4} where
a,b > 0 are fixed.

(2) influ+v:u,v>0and F,(x +ul) +v > Fy(x), Fy(x +ul) +v > Fy(x) ¥x € R4}

Equivalent forms of convergence in distribution. We have given two equivalent definitions

of convergence in distribution. There are several others.

%In class I wrongly claimed that for probability measures on a compact set in place of the whole real line, eg.,
P([—1,1]), convergence in d’ and in d are equivalent. Chirag Igoor showed me the following counter-example. Let
p = &; and for each n define

0 ifx <0,

Fa(x) =<x/n if0<x<1,

1 ifx > 1.
Then, F,, (x) = F, (x) for each x and hence the corresponding measures converge to (. in Lévy metric. But the convergence
fails in d’. To see this, take any x > 0 and observe that if F, (0.5 +t) > F,, (0.5), then we must have t > 0.5. As this is
true for every n, it follows that p,, does not converge to p in d’. Another such example is u, = (1 —n"1)8, + n18; and
= dg.
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Let iy, 1t € P(RY). The following statements are equivalent.

(1) Bn S .
(2) Fu,.(x) = Fu(x) for all x where F,, is continuous.
(3) linl)inf tn(G) = p(G) for all open G C R4.

n o

(4) limsup p, (C) < p(C) for all closed C C R4,

n—o00

(5) [fdun — [ fdu for all bounded continuous f : R — R.

We have proved the equivalence of (1) and (2). It is also clear that (3) and (4) are equivalent
(just take complements). Hence it suffices to show that (2) = (3) = (5) = (2). For

simplicity, we present the proof in one-dimension.

Proor For d = 1. Assume (2). Let G C R be an open set. Then write it as G = Ui (ay, by).
Choose intervals (a;, b;) C (ay, by) such that a;, b are continuity points of F, and p(a;, b)) >

i(ak, byx) — €27 (possible as there are at most countably many discontinuity points). Then
tn(ayx, by) > Fun(blz) - Fun(alz) — Fu(blz) - Fu(alz) = H(a{g b]é)
Hence lim inf p,, (ay, by) > p(ax, bx) — e27*. By Fatou’s lemma applied to sums, we see that

liminf ) pn(ak,bi) > ) nlawbi) —e27° > u(G) —«.
k k

The left side is lim inf pun (G) and ¢ > 0 is arbitrary, hence lim inf p, (G) > p(G). This proves (3).
Assume (3) holds. Let f € Cy(R). Then {f > t}is an open set for any t € R and hence
liminf pn {f > t} > p{f > t} by assumption. By Fatou’s lemma,

(e ¢] o0

lim ian un{f > t}dt > J u{f > t}dt.
0 0

If f > 0, then this is the same as saying lim inf f fdu, > jf du. For general bounded continuous f
with M = ||f||sup, apply this to the positive functions M — f and M + f to conclude that [ fdu, —

[ fdp.
Assume (5) holds. If x <y, let @,y : R — [0, 1] be a continuous function such that @y y(u) =1

foru < xand @y (u) =0 foru > y. Then
Fpn(x) < J(Px,y dpn < Fp.n (y)/ Fu(x) < J@x,y dp < Fu(y)
As [ @xydpun — [ @xydp by assumption, we see that

limsup Fy, (x) < Fuly), liminf Fy (y) > Fu(x).
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This is true for all x < y. Lety | x in the first inequality to get limsup F,., (x) < Fu(x) for all x. Let
x Ty in the second inequality to get liminf F,, (y) > F,(y—) for all y. Hence if x is a continuity

point of F,, we have lim F, (x) = Fy(x). |

As we have seen, i, 4 n does not imply that pn (A) — p(A) in general. Sometimes it does,

for example if A = (—o0, x] where p{x} = 0. Here is a generalization.

Let A € B(R). If pun 4 pwand n(0A) = 0, then show that p, (A) — p(A).

All these conditions may be thought of as convergence of certain integrals (as u(A) = [1adp).
When the objective is to show that p, 4 i, then we would like the collection of integrals to check
to be as small as possible. From this point of view, in condition 5 of Theorem 8, can we replace
Cp(RY) by Cc(RY) (compactly supported continuous functions) or even C(R?) (smooth ones)?

If p is not assumed to be a probability measure, then it need not be true, as the example of
Un = %60 + %fm and p = %60 shows. On the other hand, if we already assume that p is a probability
measure, then the statement is true. This is because the sequence is tight and we can find a compact
set K = [-M, M]¢ such that pun (K) > 1 — ¢ for all n and p(K) > 1 —e. Given any f € Cy(RY),
replace it by g € C.(R) such that f = g on K. Then

|del.1.n —J'gdun| < Hf”supp-n(KC) < €Hstup

and a similar inequality for n. As [ gdp, — [ gdp (by assumption as g € C.(R?4)) and as ¢ is
arbitrary, we get [ fdu, — [fdu forall f € Cy (RY). As C.(R%) functions can be approximated
uniformly by C®(RY), it also suffices to check the convergence for smooth compactly supported
functions (the details are left as exercise).
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Remark 11

The dual of C(R) is the space of all signed measures on R with finite total variation. These

are basically of the form 6 = p — v where p, v are mutually singular finite measures and
0 acts on f by f — [fdu — [fdv. The dual norm is ||6]| = p(R) + v(R). Convergence in
weak-* sense in the dual space is defined by 6,, — 0 if 0,,(f) — 6(f) for all f (i.e., pointwise
convergence of linear functionals), though we are being a little loose in talking in terms
of sequences (the dual space with weak-* topology is generally not a metric space). That
is essentially the definition of weak convergence of probability measures (point (5) in the
theorem proved above), except that in this sense probability measures can converge to a sub-
probability measure. But if we ask for 0, (f) — 6(f) forall f € Cy (R), alarger space, then this
leakage of mass to infinity cannot happen. Modulo this point, convergence in distribution is

just weak-* convergence.

2. Ways to prove convergence in distribution

We end the chapter by outlining different ways in which to prove convergence in distribution.

Suppose we need to show that pu, 4 HL.

(1)

(2)

(3)

The most elegant of all ways is to find random variables X;,, X on some probability space
such that X,, ~ pn and X ~ pand Xn %3 X. This will follow from later sections in this
chapter.

In fact, Skorohod’s principle tells us that this can always be done, although it is not

always clear how to find such random variables.

Go by the book and show that [fdp, — [fdu for all f € C,(R) or any of the other
equivalent conditions that were mentioned before. In practise, the smaller the class of
functions for which we need to check this convergence, the better it is for us.

For example, if we know that p,, u € P(R), then it suffices to show that convergence
for f € CZ(R). To see this, go back to the proof of (5) = (2) in the proof of Theorem 8.
Observe that we can choose @y to be smooth, even with bounded derivatives. The rest

of the proof remains the same.

We shall later see that a surprisingly small class of functions suffices! Let e((x) = e'** for
t € R.If [eqdun — [erdpforall t € R, then pp 4 . We shall prove this when we
discuss characteristic functions.
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3. Compact subsets in the space of probability measure on Euclidean spaces

Often we face problems like the following. A functional L : P(R4) — R is given, and we
would like to find the probability measure p that minimizes L(1). By definition, we can find nearly
L < infy L(v). Then we might expect that if

the sequence i, (or a subsequence of it) converged to a probability measure p, then u might be the

optimal probability measures p, satisfying L(pn) —

optimal solution we are searching for. This motivates us to characterize compact subsets of P(R4),

so that existence of convergent subsequences can be asserted.

Looking for a convergent subsequence: Let 1, be a sequence in P(R%). We would like to see if a
convergent subsequence can be extracted. Towards this direction, we prove the following lemma.

We emphasize the idea of proof (a diagonal argument) which recurs in many contexts.

Lemma 7: Helly’s selection principle

Let Fr, be a sequence distribution functions on R4. Then, there exists a subsequence {n,} and
a non-decreasing, right continuous functon F : R — [0, 1] such that F,,(x) — F(x) if xis a

continuity point of F.

As before, we present the proof in one-dimension (just for notational simplicity).

Proor. Step-1: Getting the subsequence {n;}. Fix a dense subset S = {x1,x2,...} of R. Then,
{Fn(x1)} is a sequence in [0, 1]. Hence, we can find a subsequence {nj }x such that F, , (x1) con-
verges to some number «; € [0, 1]. Then, extract a further subsequence {nx}x C {ny ki« such that
Fn,, (x2) = &y, another number in [0, 1]. Of course, we also have Fn,, (x1) = o. Continuing this
way, we get numbers o € [0, 1] and subsequences {ny 1} D {nox} O ...{n¢x}... such that for each
£, as k — oo, we have Fy,, (xj) — o for each j < L.

The diagonal subsequence {n¢ ¢} is ultimately the subsequence of each of the above obtained sub-
sequences and therefore, F,,,(x;) — & as { — oo, for each j. Henceforth, write n instead of
Mg .

Step-2: Getting the function F. Define
F(x) := inf{e; : j for which x; > x}.

F is well defined, takes values in [0,1] and is increasing. It is also right-continuous, because if
Yn |y, then for any j for which x; > vy, it is also true that x; > y,, for sufficiently large n. Thus
limp o Flyn) < ;. Take infimum over all j such that x; > y to get limn o F(yn) < F(y). Of
course F(y) < lim F(yn ) as F is increasing. This shows that lim F(y,) = F(y) and hence F is right
continuous.
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Step-3: Proving the convergence. Lastly, we claim that if y is any continuity point of F, then
Fn,(y) — F(y) as £ — oo. To see this, fix & > 0. Find i,j such thaty — 6 < x; <y <x; <y +20.
Therefore

liminf F,(y) > lim Fpy, (xi) = «; > F(y — )
lim sup Fp,(y) < IimFy, (x5) = o5 < F(y + ).
In each line, the first inequalities are by the increasing nature of CDFs, and the second inequalities

are by the definition of F. Thus
Fy—) < liminf F,, (y) < limsup Fn, (y) < F(y)

for ally € R. If F(y—) = F(y), then it follows that lim F,,, (y) exists and equals F(y). |

The Lemma does not say that F is a CDF, because in general it is not!

Example 14

Consider &;,. Clearly Fs, (x) — 0 for all x if n = +oo and Fs, (x) = 1 for all x if n — —oo0.

Even if we pass to subsequences, the limiting function is identically zero or identically one,
and neither of these is a CDF of a probability measure The problem is that mass escapes to
infinity. To get weak convergence to a probability measure, we need to impose a condition

to avoid this sort of situation.

Definition 10

A family of probability measure A C P(RY) is said to be tight if for any ¢ > 0, there is a
compact set K. C R9 such that pu(K.) > 1— ¢ forall u € A.

Example 15
] d

Suppose the family has only one probability measure p. Since [-n, n

increase to R4, given
¢ > 0, for a large enough n, we have p([-n, nj 4) > 1 — e. Hence {u} is tight. If the family is
finite, tightness is again clear.

Take d = 1 and let u, be probability measures with Fy, (x) = F(x—n) (where Fis a fixed CDF),
then {p } is not tight. This is because given any [—M, M], if n is large enough, pun ([—M, M])

can be made arbitrarily small. Similarly {6,,} is not tight.

We now characterize compact subsets of P(R%) in the following theorem. As P(R¢) is a metric
space, compactness is equivalent to sequential compactness and we phrase the theorem in terms
of sequential compactness.
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Let A C P(RY). Then, the following are equivalent.

(1) Every sequence in A has a convergent subsequence in P(R%).

(2) Ais tight.

Proor. Let us take d =1 for simplicity of notation.

(1) Assume that A is tight. Then any sequence (pn ), in A is also tight. By Lemma 7, there
is a subsequence {n,} and a non-decreasing right continuous function F (taking values in
[0,1]) such that Fy,(x) — F(x) for all continuity points x of F.

Fix A > Osuch that pu,,[—A, A] > 1—¢ and such that A is a continuity point of F. Then,
Fn,(—A) < eand F, (A) > 1 — ¢ for every n and by taking limits we see that F(—A) < ¢
and F(A) > 1—c¢. Thus F(+o0) = 1 and F(—o0) = 0. This shows that F is a CDF and hence
F =T, for some pu € P(R4). By Proposition 2 it also follows that ji,,, 4 L.

(2) Assume that A is not tight. Then, there exists ¢ > 0 such that for any k, there is some
Hx € A such that u([—k,k]) < 1 —2¢. In particular, either F,, (k) < 1 — ¢ or/and
Fu, (—k) > . We claim that no subsequence of (i )« can have a convergent subsequence.

To avoid complicating the notation, let us show that the whole sequence does not
converge and leave you to rewrite the same for any subsequence. There are infinitely
many k for which F,, (—k) > ¢ or there are infinitely many k for which F,, (k) > 1 —e.
Suppose the former is true. Then, for any x € R, since —k < x for large enough k, we see
that F,, (x) > Fy, (—k) > ¢ for large enough k. This means that if F,,, converge to some F
(at continuity points of F), then F(x) > ¢ for all x. Thus, F cannot be a CDF and hence py

does not have a limit. [

Adapt this proof to higher dimensions.

4. Modes of convergence of random variables

One of the primary objects of study will be the sample averages (X; + ... + X;;)/n, where Xy
are ii.d. random variables. Laws of large numbers state that these sample averages are close to the
mean of Xi, but there are multiple ways this could be made precise. Here we try to understand the
different senses in which random variables can converge to other random variables.
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Definition 11

Let X;,, X be real-valued random variables on a common probability space.

> X, X (Xn converges to X almost surely) if P{w : lim X;, (w) = X(w)} = 1.

> Xn Pox (Xn converges to X in probability) if P{|X;, —X| > 8} — 0 asn — oo for
any 0 > 0.

> Xn 5 X (Xn converges to X in LP) if || X, — X||p — 0 (i.e., E[IX;; — X|P] — 0. This
makes sense for any 0 < p < oo although || - ||, is @a norm only for p > 1. Usually it
is assumed that E[|X,,|?] and E[|X|P] are finite, although the definition makes sense
without that.

> X, 4 x (Xn converges to X in distribution) if the distribution of x,, 4 ux where

wx is the distribution of X. This definition (but not the others) makes sense even if

the random variables X;,, X are all defined on different probability spaces.

Now, we study the inter-relationships between these modes of convergence.

4.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli
random variables elucidates the matter.

Example 16

Suppose A, are events in a probability space. Then one can see that

(1) 1a, 5 0« lim P(A,) =0,

n—o0

(2) 14, ¥ 0 <= P(limsup A,,) = 0.
By Fatou’s lemma, P(limsup A) > limsup P(A,), and hence we see that a.s convergence
of 14, to zero implies convergence in probability. The converse is clearly false. For instance,
if A, are independent events with P(A,,) = n~!, then P(A,) goes to zero but, by the sec-
ond Borel-Cantelli lemma P(limsup A,,) = 1. This example has all the ingredients for the

following two implications.

Suppose Xy, X are random variables on the same probability space. Then,

(1) If Xn &3 X, then Xn 5 X.

(2) If X P X “fast enough” so that } ,, P([Xn —X| > §) < oo for every & > 0, then

X5 X

Proor. Note that analogous to the example, in general
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(1) Xn 5 X <= V5 >0, lim P(Xn —X| >8) =0,
n o0
(2) Xn & X <= V5 > 0, P(lim sup{|Xy, — X| > 8}) = 0.

Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For
the second part, observe that by the first Borel Cantelli lemma, if } ., P(|Xn — X| > 8) < oo, then
P([Xn — X| > 81i.0) = 0 and hence limsup [X;, — X| < & a.s. Apply this to all rational  and take

countable intersection to get lim sup [X;, — X| = 0. Thus we get a.s. convergence. u

The second statement is useful for the following reason. Almost sure convergence X, 3" 0
is a statement about the joint distribution of the entire sequence (Xj, X, ...) while convergence in
probability Xy % 01s a statement about the marginal distributions of Xy,s. As such, convergence
in probability is often easier to check. If it is fast enough, we also get almost sure convergence for
free, without having to worry about the joint distribution of X;s.

Note that the converse is not true in the second statement. On the probability space ([0, 1], B, A),

as

let X = 1jp1/n). Then Xy =" 0 but P(|X,,[ > 8) is not summable for any & > 0. Almost sure

convergence implies convergence in probability, but no rate of convergence is assured.

(1) If X % X, show that Xn, =3 X for some subsequence.

(2) Show that X, % Xif and only if every subsequence of {X,} has a further subse-

quence that converges a.s.

(3) If Xun " X and Vi Py (all r.v.s on the same probability space), show that aX;, +
bYy & aX + bY and Xp Yn - XY.

4.2. In distribution and in probability. We say that X, 4 X if the distributions of Xy, con-
verges to the distribution of X. This is a matter of language, but note that X;, and X need not be on
the same probability space for this to make sense. In comparing it to convergence in probability,
however, we must take them to be defined on a common probability space.

Suppose Xy, X are random variables on the same probability space. Then,

(1) If Xn = X, then Xy > X.

(2) If Xn 4 X and X is a constant a.s., then X, X

Prooer.
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(1) Suppose Xy, % X. Since for any 6 >0
P(Xn <t) <PX<t+08) +P(X— Xy >9)

and P(X<t—0) <P(Xn <t)+P(Xn —X>3),
we see that limsup P(X,, < t) < P(X < t+9) and iminf P(X, < t) > P(X < t — ) for
any & > 0. Let t be a continuity point of the distribution function ofX and let 5 | 0. We
immediately get limn oo P(Xyy < t) =P(X < t). Thus, Xy, 4 x

(2) If X =D a.s. (bis a constant), then the cdf of X is Fx(t) = 1¢>p. Hence, P(X, <b—0) = 0
and P(X, < b+06) — 1forany d > 0as b =+ 6 are continuity points of Fx. Therefore
P(IXn —b[ >8) < (1 —Fx,(b+0)) + Fx, (b—23) converges to 0 as n — oco. Thus, Xy, Pob.
|

If X, =1—Uand X = U, then X;, > X but of course X;, does not converge to X in probability!
Thus the condition of X being constant is essential in the second statement. In fact, if X is any non-
degnerate random variable, we can find X, that converge to X in distribution but not in probability.
For this, fix T : [0,1] — R such that T(U) 4 X. Then define Xn = T(1 —U). For all n the random
variable X;, has the same distribution as X and hence X, 4 X. But Xn does not converge in
probability to X (unless X is degenerate).

(1) Suppose that X, is independent of Yy, for each n (no assumptions about indepen-
dence across n). If Xy, 4 X and Vi 4 Y, then (X;1, Yn) 4 (U, V) where U 0 X,

V<vyand U, V are independent. Further, aX;, + bYy 4 au + bV.

(2) If Xn B (a constant) and Yn, 4y (all on the same probability space), then show
d
that X, Yn — cV.

4.3. In probability and in LP. How do convergence in LP and convergence in probability com-
pare? Suppose Xy, B x (actually we don’t need p > 1 here, but only p > 0 and E[[X,, — X|P] — 0).
Then, for any & > 0, by Markov’s inequality

P(Xn =X > 8) < 0" PE[Xn —X[P] =0

and thus X;, > X. The converse is not true. In fact, even almost sure convergence does not imply

convergence in LP, as the following example shows.

a.s

On ([0,1],B,A), define X, = 2"1j; /). Then, X;; = 0 but E[XR] = n~12™P for all n, and

hence X;, does not go to zero in LP (for any p > 0).

64



As always, the fruitful question is to ask for additional conditions to convergence in probability
that would ensure convergence in LP. Let us stick to p = 1. Is there a reason to expect a (weaker)

converse? Indeed, suppose X, 5 X. Write

E[Xn —X]] = J:O P(|Xn — X| > t)dt.

For each t the integrand goes to zero because X, 5 X. Will the integral go to zero? The example of
Xn =nly 1/ and X =0on ([0,1], B,A) shows that it need not. What goes wrong in that example
is that with a small probability X, can take a very very large value and hence the expected value
stays away from zero. This observation makes the next definition more palatable. We put the new

concept in a separate section to give it the due respect that it deserves. This will

5. Uniform integrability

Definition 12: Uniform integrability

A family {X; }ic1 of random variables is said to be uniformly integrable if given any ¢ > 0, there

exists A large enough so that E[[X;[1jx,|~a] < e foralli € L

Two remarks on the definition.

(1) If X is integrable and P{|X| > M} = 9, then for any set A € F with P(A) < 9, we have
(exercise!) E[[X[1a] < E[IX[1x;>m].
Therefore, the uniform integrability of {X; }ic1 may be rephrased as: Given ¢ > 0, there
isa d > Osuchthat E[|X;|1a] < eforalli € I and forall A €¢ Fwith P(A) < 6.

(2) If pis the distribution of X, then E[|X[1jxj~=m] = f[—M,M}c Ix|du(x) = v([—M, M]€) where
dv(x) = [x|du(x) (observe that v is also the push-forward of [X(w)|dP(w) by the mapping
X).
Therefore, the uniform integrability of {Xi}ic1 is equivalent to the tigh’mess3 of the
family {vi}ic1, where vi = P; o X;l and dP;(w) = |X;(w)|dP(w).
Next we discuss conditions that ensure uniform integrability. This also gives us many examples.

e If X is integrable, then by DCT, E[|X[1x/>nm] — 0 as M — co. Therefore, any finite set of
random variables is uniformly integrable. It is when we have an infinite family that the
uniformity constraint starts to be felt.

e A family dominated by one integrable random variable (the condition in DCT) is uni-

formly integrable. Indeed, if [X;| < [Y|a.s. foreach1i € I, then find M such that E[[Y[1jyj-m] <

3We defined tightness for probability measures but here v; are general (but finite) measures. By tightness, we

naturally mean that given & > 0 there is some M such that v;([-M,M]¢) < e foralli € 1.
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¢ and observe that [Xi[1;x,|=m < [Y[1}y|>m. Hence the same M works for the whole fam-
ily.
e An [P-bounded family for p > 1is u.i. For, if sup; .; E[[X;[P] < B for some B < oo, then

E[Xi| 1jx;>¢t] <E M Mp—1

X\ P 1 B
( - Xil Ix>m | < WEHXHPJ S oo

which goes to zeroas M — co. Thus, given ¢ > 0, one can choose M so that sup; _; ElXil1x,>m! <

€.

e The previous conclusion fails for p = 1. For example, let X, = nly, i on ([0,1], B, M).

n

ThenE[Xn|] = 1, so {Xn }is L'-bounded. However, for any M, ifn > M, then E[[X,,[1)x =m] =

1, hence the family is not uniformly integrable.
e But L! boundedness is necessary for uniform integrability. To see this find M > 0 so that
E[Xil1jx,|=m] < 1for all i. Then, for any i € I, we get
E[Xill = E[Xi1jx,j<m] + ElXi[1jx>m] < M + 1.

Domination by an integrable random variable and LP boundedness (for some p > 1) are sufficient

for uniform integrability, not necessary.

Produce examples of uniformly integrable families that are neither dominated by an inte-

grable random variable nor bounded in LP for some p > 1.

The union of two uniformly integrable families is obviously uniformly integrable. The follow-

ing is less obvious.

If {Xi}ic1 and {Yj}jcj are both w.i, then {Xi + Yj}(i j)e1xy is w.i.

Proor. Forany x,y € Rand M > 0, observe that [x +y[1jxy|>m < 2X[1xj>m2 + Yy 1=m 2

Substitute X; and Yj for x and y and take expectations to get
ElXi + YjLx, 1 vy =Ml < 2E[Xi[11x; 1> m] + 2E[Yj[1)v; > ml-

By the uniformly integrability of {X;}ic1 and {Yj}j¢j, this can be made arbitrarily small by choosing
M sufficiently large. Thus {X; +Yj : i € I, j € J}is uniformly integrable. |

Now we come to the main reason why we started discussing uniform integrability.
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Suppose Xy, X are integrable random variables on the same probability space. Then, the

following are equivalent.
1) Xn 5 X.

(2) Xn % Xand {Xn}is ui.

Proor. If Yy = Xy — X, then Xn 5 X iff Yn 5> 0, while Xn, > X iff Yy = 0 and by Claim 10,
{Xn}is uiif and only if {Y;, } is. Hence we may work with Y;, instead (i.e., we may assume that the
limiting r.v. is 0 a.s).

First suppose Yy, L0, we already showed that Y, 50, If {Yn} were not uniformly inte-
grable, then there exists 5 > 0 such that for any positive integer k, there is some ny such that
E[lYnkll\Ynklgk] > 5. This in turn implies that E[|Yy,, |] > 6. But this contradicts Yy, Ll> 0.

Next suppose Yn, P 0and that {Yn}tisu.i. Then, fixe > Oand find A > 0so that E[[Yy[1jy, = Al <
¢ for all k. Then,

ElVil] < ElYVi[L)v, <Al + ENYi[1y, > A
A
< Jo P(Yx| > t)dt + e.
Since Y, . 0 we see that P(|Yx| > t) — O for all t > 0. Further, P([Yx] > t) < 1forall kand 1 is
integrable on [0, A]. Hence, by DCT the first term goes to 0 as k — oco. Thus lim sup E[|Y|] < ¢ for
any ¢ and it follows that Yy E) 0. |

Suppose X;,, X are integrable random variables and X;, 23 X. Then, X, E) X if and only if

{Xn} is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT. The
domination condition is sufficient. But as Lemma 10 and corollary 2 show, uniform integrability
is the sharp condition, both necessary and sufficient. This is consistent with what we saw earlier,
that a dominated family is u.i., while the converse is false. However, it is worth keeping in mind
that uniform integrability is difficult to check from the definition. One does it by verifying either

the domination condition or boundedness in 12.

5.1. Relationship to compactness*. Uniform integrability is reminiscent of tightness, and in
fact we rephrased it terms of tightness. Recall that tightness is the necessary and sufficient condi-
tion for a subset of P(R) to be precompact. Similarly, uniform integrability is also a criterion for
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precompactness of a subset of L' (Q, F, P), but not in the usual topology, but what is called the weak
topology.

Weak and Weak-* topologies: Let (X, || - ||) be a Banach space over R and let X* be its dual, i.e., the
space of all continuous linear functionals from X to R. It is well-known that X* is itself a Banach
space when endowed with the norm |||« = sup{|L(x): ||x|| < 1}

Weak topology on X is the smallest topology on X that makes all elements of X* continuous
functions on X. Of course, the weak topology is weaker than the norm topology. For all infinite
dimensional X, it is strictly weaker.

The weak-* topology on X* is the smallest topology for which L — L(x) is continuous for each
x e X

If it so happens that X is reflexive, i.e., (X*)* = X, i.e., the only continuous linear functionals on
X* are the evaluations at elements of X (i.e., L — L(x) for some x € X), then the weak topology on
X* is identical to the weak-* topology on X*.

It is a celebrated theorem of Riesz that for 1 < p < oo, the dual (LP(PP))* is equal to L9, where
5+

Ly(f) = [ fgdP and every continuous linear functional on LP (P) is of this form. As1 < p < oo, we

= 1. What does that mean? Any g € L9(PP) defines a linear functional Ly on LP(PP) by

get co > q > 1. In particular, all LP for 1 < p < oo are reflexive. The two odd cases are L! and L*.
While L® = (L1)*, the dual of L is generally much larger than L.

One of the famous theorems of functional analysis is that of Banach and Alaoglu that asserts
that in X* with its weak topology, precompact sets are precisely bounded sets . But if X = X*, as
for LP with 1 < p < o0, this tells us that for weak topology on LP, the precompact sets are precisely
bounded sets. In particular, any LP? bounded sequence (for 1 < p < 00) is precompact (in fact has
a convergent subsequence).

This argument fails for L!, since it is not the dual of a Banach space. The Dunford-Pettis theorem
asserts that pre-compact subsets of L! () in its weak topology are precisely uniformly integrable
subsets of L (p)!
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CHAPTER 3

Some basic tools in probability

We collect several basic tools in this section. Their usefulness cannot be overstated.

1. First moment method

In popular language, average value is often mistaken for typical value. This is not always cor-
rect, for example, in many populations, a typical person has much lower income than the average
(because a few people have a large fraction of the total wealth). For a mathematical example, sup-
pose X takes the values 0 and 10° with probabilities 0.999 and 0.001 respectively. Then E[X] = 1000
although with a probability 0.999 its value is zero. Thus the typical value of 0 and the average value
of 1000 are far from each other.

It is often easier to calculate expectations and variances (for example, expectation of a sum
is the sum of expectations) than to calculate probabilities (example, tail probability of a sum of
random variables). Therefore, inequalities that bound probabilities in terms of moments may be

expected to be somewhat useful. In fact, they are extremely useful!

Lemma 11: First moment method or Markov’s inequality

Let X > 0 be ar.v. For any t > 0, we have P(X > t} < %.

Proor. For any t > 0, clearly t1x> < X. Positivity of expectations gives the inequality. u

Thus, a positive random variable is unlikely to be more than a few multiples of its mean, e.g.
there is less than 10% chance of it being more than 10 times the mean. Trivial though it seems,
Markov’s inequality is very useful, particularly as it can be applied to various functions of the
random variable of interest. Observe that in the following instances X is not assumed to be positive,

but Markov’s inequality is applied to positive functions of X.

(1) Markov’s inequality asserts that the tail of a random variable with finite expectation must

decay at least as fast as 1/t. In fact, the proof shows that if X is integrable then

P{IX] = t} < “ElX[1x;>¢d = o(1/1)

|

since E[|X[1x|>¢] — 0 by DCT.
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(2) If X has finite variance, applying Markov’s inequality to (X — E[X])? gives
P{X —EX]| > t} = P{X — EX]* > t*} < t~*Var(X),

which is called Chebyshev’s inequality. Higher the moments that exist, better the asymptotic
tail bounds that we get, for example, P{|X — E[X]| > t} <t PE[X — E[X][?P].

(3) If E[eM] < oo for some A > 0, we get P{X > t} = P{e™ > e} < e ME[eMX]. This is an

even better bound as it decays exponentially as t — oo.

2. Second moment method

The first moment method says that a positive random variable is likely to be less than a few
multiples of the mean. Can we say the converse, i.e., a random variable is likely to be larger than
a fraction of its mean? If the expectation is large, is the random variable likely to be large? This is
not true, for example, if! Yo ~ (1— %)60 + %Snz, then E[Y,] — oo but P{Y,, > 0} = % — 0.

What more information about a random variable will allow us to get the desired conclusion?
Here is a natural approach using Chebyshev’s inequality: If X is a non-negative random variable

1 1 Var(X
P{x>mm}>1-w{m—Emn>mm}>1_4M%J
1

2 2
Thus, if the variance is smaller than cE[X]? for some ¢ < 7, we get a non-trivial lower bound of

1 — § for the probability. More generally, if Var(X) < (1 — §)?E[X]?, then we get a lower bound
for the probability that X > SE[X]. Observe that in the example given above, Var(Yy,) =< n3is way
larger than E[Y,]? =< n?, hence the method does not work.

Thus, a control on the variance in terms of the square of the mean, allows us to say that a
positive random variable is at least a fraction of its mean (with considerable probability). The
following inequality is a variant of the same idea. It is better, as it gives a non-trivial lower bound

even if we only know that Var(X) < CE[X]? for a large C.

Lemma 12: Second moment method or Paley-Zygmund inequality

For any non-negative r.v. X, and any 0 < « < 1, we have

E[X]2 (1— o)?
P{X> «E[X]} > (1 — oc)zE[Xz] = 14 Yary-
E[X]2

E[X]?

In particular, P{X > 0} > BT

1The measure dx puts mass 1 at the point x, hence P{Y,, > 0} = % — 0.
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Proor. E[X]2 = E[X1x=ol*> < E[X?E[1x=o] = EX?P{X > 0}. Hence the second inequality
follows. The first one is similar. Let u = E[X]. By Cauchy-Schwarz inequality,

EX1x> ap)® < EXCIPX > orp).

Further, u = E[XIx< qu] + E[XIxs o) < oot + E[XIx> ou), whence, E[X1x~ o] > (1 — «)p. Thus,

E[X1X>oq,t]2 QE[X]z
E[X?] E[X2]

The remaining conclusions follow easily. [ |

P{X > o} > > (11—«

Alternately, the first inequality can be derived by applying the second oneto Y = (X — o),
as (1) P{Y > 0} = P{X > au}, (2) E[Y] > E[X — ap] = (1 — &) and (3) E[Y?] < E[X?].

3. Borel-Cantelli lemmas

If A, is a sequence of events in a common probability space (Q),J,P), the event lim sup A,
consists of all w € Q that belong to infinitely many of these events. Probabilists often write
the phrase “A,, infinitely often” (or “{A; i.0}” in short) to mean limsup A,,. One can write it

as{An 1.0} = n>1 Un>n An. Observe that here the inner union decreases as N increases, hence
P(Un>NAn) L P{An i0.}as N 1 oo.

However, the probability on the left depends in a complicated way (“inclusion-exclusion”) on
intersections of the sets A,,, n > N. That is why the following lemma is extraordinarily useful, as
it allows (in some cases) to compute the probability of {A,, i.0.} knowing only the probabilities of

Ay individually, and not of their intersections.

Lemma 13: Borel Cantelli lemmas

Let A;, be events on a common probability space.

(1) If ) P(An) < oo, then P(A,, infinitely often) = 0.

(2) If A,, are independent and } P(A,) = oo, then P(A,, infinitely often) = 1.
n

PROOF. (1) Forany N, P (U%_\An) < Y% N P(An) which goes to zero as N — oo, as it
is the tail of a convergent series. Hence P(lim sup A, ) = 0.
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M
(2) P(UM (An) =1— [ P(AS) forany N < M. By (1), P(AS) = 1 —P(A,) < e F(An),
=N
Therefore "

M M
IP)(UT’Y[:NATL) >1-— H e PlAn) =1 — exp {— Z }P’(An)} .
n=N

n=N
As M — oo, the left side increases to P(Un>NAn) while the right side increases to 1

(since }_, sy P(An) = oo for any N). Therefore, P (UX_yAn) = 1 for all N, implying
that P(A i.0.) = 1. |

We shall give another proof later, using the first and second moment methods. It will be seen
then that pairwise independence is sufficient for the second Borel-Cantelli lemma!
A useful elementary inequality: As in the proof above, we shall often encounter terms like [ [; (1—
xi) with 0 < x; < 1. When x = 0 is small, 1 — x ~ e~ *, but when taking products of many terms,
it is not clear what happens to the closeness. To carry through such operations, the following

inequalities are more useful®.

1
(1) 1—-x<e ™ forallx € R, 1—x>e > for x| < 5

4. Kolmogorov’s zero-one law

As in the Borel-Cantelli lemmas, many events of interest turn out to have probability 0 or 1. In
any probability space (Q, F, P), the collection of all events having probability equal to 0 or 1 form a
sigma algebra. Zero-one laws are theorems that (in special situations) identify specific sub-sigma-
algebras of this sigma-algebra. Such o-algebras (and events within them) are sometimes said to
be trivial (w.r.t. P). An equivalent statement is that any random variable measurable with respect

to a trivial sigma algebra is an almost sure constant.

Definition 13

Let (Q, ) be a measurable space and let F,, be sub-sigma algebras of . Then the tail o-

algebra of the sequence Fy, is defined to be T := (), 0 (Ux>nFx). For a sequence of random
variables Xj, Xy, ..., the tail sigma algebra (also denoted T(Xj, Xy, ...)) is the tail of the se-

quence o(Xn).

2For |x| < 1, we have the power series expansion log(1 —x) = —x —x?/2 —x*/3 —.... If |x| < 1, then } 3" s [xP <
X2 Y ¥ 3275 < 32, hence the sum of all terms from the third one onwards is at least —x?/2. This gives log(1 — x) >
—x — x2. The other inequality is even simpler. Consider e * — (1 — x) which is zero at 0 and has positive derivative for

x > 0 and negative derivative for x < 0.
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How to think of it? If A is in the tail of (X)k>1, then A € o(Xy, Xy 41, ...) for any n. That is,
the tail of the sequence is sufficient to tell you whether the even occurred or not. For example, A

could be the event that infinitely many Xy are positive. Or that lim sup X, = 1, etc.

Theorem 10: Kolmogorov’s zero-one law

Let (Q, J,P) be a probability space and let I, be independent sub sigma algebras. Then the

tail sigma-algebra 7 is trivial.

Proor. Define Ty, := 0 (Uy~p Fx). Then, Fy,...,Fy, Ty are independent. Since T C Ty, it
follows that J7, ..., 5, T are independent. Since this is true for every n, we see that 7, F1, J, .. . are
independent. Hence, T and o (U, Iy, ) are independent. But T C o (UnJn), hence, T is independent
of itself. This implies that for any A € T, we must have P(A)? = P(A N A) = P(A) which forces
P(A) tobe 0 or 1. |

If X1, Xy, ... are independent random variables, and Y is another random variables such that

Y is a function of (Xyn,Xn41,...) for any n, then Y is a constant a.s.

Independence is crucial (but observe that X need not be identically distributed). If Xj = X3
for all k, then the tail sigma-algebra is the same as o(X; ) which is not trivial unless X is constant a.s.
As a more non-trivial example, let &x, k > 1beiid. N(0.1,1) and letn ~ Ber4(1/2). Set X =néx.
Intuitively it is clear that a majority of &ys are positive. Hence, by looking at (Xn, Xn41,...) and
checking whether positive or negatives are in majority, we ought to be able to guess n. In other
words, the non-constant random variable 1 is in the tail of the sequence (X )>1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial

conclusions. Another interesting application will be given in a later section.

Let X; be independent random variables. Which of the following random variables must

necessarily be constant almost surely? lim sup Xy, liminf X, lim sup n~1S,, liminf Sy,.

Remark 13: Reformulation in terms of product measures

Let (Qy, Fx, ux) be probability spaces and consider (Q = x;Q;, F = ®1F;, 1 = ®ipy). The

tail sigma-algebra of the sequence Gy = o{lTy, MMy 1, ...} is trivial.
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5. Ergodicity of i.i.d. sequence

We now prove another zero-one law now, which covers more events, but for i.i.d. sequences
only. We formulate it in the language of product spaces first. Let (Q, F) be a measure space and
consider the product space QN with the product sigma algebra F®N. Let Piy be the projection onto
the kth co-ordinate. For k € N, let 0y : QN — QN denote the shift map defined by TT,, 0 0y =TT,

for all n > 1. In other words, (8 w)(n) = w(n + k) where w = (w(1), w(2),...).

Definition 14: Invariant sigma-algebra

An event A € F®V is said to be invariant if w € A if and only 6w € A for any k > 1.

The collection of all invariant events forms a sigma algebra that is called the invariant sigma
algebra and denoted J. An invariant random variable is one that is measurable with respect

to J.

Note that a random variable X on the product space is invariant if and only if X o 8 = X for
all k > 1. We could also have taken this as the definition of an invariant random variable and then

defined A to be an invariant event if 14 is an invariant random variable.

Example 18

Let A be the set of all w such that lim, ., wn = 0 and let B be the set of all w such that
|wy| < 1forall k > 1. Then A is an invariant event as well as a tail event while B is an

invariant event but not a tail event.

Exercise 15
In the setting above, show that T C J.

Lemma 14: Ergodicity of i.i.d. measures

Let P be a probability measure on (Q, F). Then the invariant sigma algebra J on QY is trivial

under P&N,

Proor. Let u = P®N, Suppose A € J. Since A = |J,, oflTy, ..., T} is an algebra that generates
the sigma algebra FON for any ¢ > 0, there is some B € A such that u(AAB) < ¢. Let N be large
enough that B € o{lTy,...,TIn}. Then ONB € o{lTny1, ..., TTan). Under the product measure, TTys
are independent, hence (B N On(B)) = p(B)u(On(B)). But p = u(B) = p(On(B)) (because the
measure is an i.i.d. product measure and hence invariant under the shift Oy ). Thus, u(BNONB) =
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11(B)2. Now, u(BAA) < € and hence
(BN ON(B)) — (A NON(A)) < 1(BAA) + u((6nB)A(BNA)) < 2¢,
Iu(B)? — u(A)?] < |u(B) — n(A)[Iu(B) + w(A)| < 2e.

This shows that u(A N OnA) and p(A)? are within 4e of each other. But A € J, meaning that
OnA = A. Therefore, p(A) is within 4¢ of 1(A)?. As ¢ is arbitrary, u(A) = p(A)2. This forces that
uw(A)=0of uw(A) =1. [ |

Remark 14: Reformulation in terms of sequences of random variables

Let X1, Xy, ... be a sequence of random variables on a common probability space such that

(X, Xk41, - -.) has the same distribution as (Xj, Xy, ...) for any k. Let Y be another random
variables such that Y = F(Xy, Xix41,...) for any k > 1 for some F : RN — R. Then Y is an

almost sure constant.

It is often more natural to consider the invariant sigma-algebra on the 2-sided infinite product
QZ with shifts being defined in the obvious way. Under any i.i.d. product measure, the invariant

sigma-algebra is trivial.

6. Bernstein/Hoeffding inequality

Chebyshev’s inequality tells us that the probability for a random variable to differ from its
mean by k multiples of its standard deviation is at most 1/k?. Its power comes from its generality,
but the bound is rather weak. If we know more about the random variable under consideration,
we can improve upon the bound considerably. Here is one such inequality that is very useful.
Sergei Bernstein was the first to exploit the full power of the Chebyshev inequality (by applying
it to powers or exponential of a random variable), but the precise lemma given here is due to
Hoeffding.

Lemma 15: Hoeffding’s inequality

Let Xj, ..., X, be independent random variables having zero mean. Assume that [Xy| < ax

a.s. for some positive numbers ay. Then, writing S = X;+...+ X, and A =/ a% + ...+ ai,
we have P{S > tA} < e 2" for any t > 0.

Before going to the proof, let us observe the following simple extensions.
(1) Applying the same to —Xys, we can get the two-sided bound P{|S| > tA} < 2e /2,
(2) If [Xi| < ay are independent but do not necessarily have mean zero, then we can apply

Hoeffding’s inequality to Yy = Xy — E[Xy]. Since [Xi| < ay, we also have [E[Xy]| < ax
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and hence |Yy| < 2ay. This gives a conclusion that is slightly weaker but qualitatively no

different: With S = X7 + ... + X4,

P {s —E[S] > t\/a%—l———i—a%} <e it

Proor. Fix 0 > 0 and observe that
n
(2) P{S > tA} = P{CGS > e@tA} < efGtA]E[eGS] — e OtAR [H eGXk] .
k=1

Ox

The inequality in the middle is Markov’s, applied to 5. Since x + e®* is convex, on the interval

[—ay, ai], it lies below the line x — “ZkT_kxe*eak + "Ztl—akkeeak. Since —ayx < Xy < ay, we get that

9% <oy + BiXy, where o = 3(e99% + e79%%) and By = ﬁ(ee‘1k — e~ %ax). Plug this into (2)

to get

n

T (o + BiXio)

n
s
k=1 k=1

since all terms in the expansion of the product that involve at least one Xys vanishes upon tak-

P{S > tA} < e OAE

ing expectation (as they are independent and have zero mean). We now wish to optimize this
bound over 6, but that is too complicated (note that xxs depend on 0). We simplify the bound by

observing that o < e92a%/2_ This follows from the following observation:

0 2n

1 - Y
E(e9 te V) =) TN (the odd powers cancel)
n=0
> y2n
< Z il (as(2n)! >2nx 2n—2) x ... x2=2"nl)
n=0
— eY’/2

n
Consequently, we get that [ ax < e9’A%/2 Thus, P(S > tA} < e 0tAT29"A" Now it is easy to see
k=1

that the bound is minimized when 6 = t/A and that gives the bound e /2, |

Clearly the Hoeffding bound is much better than the bound 1/t> got by a direct application of
Chebyshev’s inequality. It is also a pleasing fact that e /2 is a bound for the tail of the standard
Normal distribution. In many situations, we shall see later that a sum of independent random
variables behaves like a Gaussian, but that is a statement of convergence in distribution which does
not say anything about the tail behaviour at finite n. Hoeffding’s inequality is a non-asymptotic
statement showing that S behaves in some ways like a Gaussian.

But it sometimes falls short of what one needs. As the tail of N(0, 02) behaves like e—t7/20% for
the tails of S;, one might have expected e~ t*/20" where 02 = Var(S,,) = Var(Xy) + ...+ Var(Xy).
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As Var(Xy) < ai, an upper bound of e—t2/20% for P{S» > t} would be stronger than the Hoeffding

bound. There are inequalities that address this (under more assumptions). Here are two.

Proposition 3: Bernstein’s inequality

Assume that Xy are independent random variables with |Xy| < B a.s. for all k and E[X;] =0
and Var(Xy) = 02. Let 12, = 02 + ... + 0%. Then for t > 0,

&
PS, >t} <e 2(h+3BY) .

In particular, if 0 < ¢ <1, then for t > 0,

e
o ( €)2T%1 1ft< %th/
e 5 ift > £13.

P{Sn =t} <

7. Kolmogorov’s maximal inequality

Kolmogorov proved a remarkable inequality about the maximum of running sums of indepen-
dent random variables. Note that the maximum of n random variables can be much larger than
any individual one. For example, if Y;, are independent Exponential(1), then P(Yy > t) = e ¢,
whereas P(maxx<n Yk > t) = 1—(1—e*)™ which is much larger (in fact converges to 1if n — oo
with t held fixed). However, when we consider partial sums Sq, Sy, ..., Sy, the variables are not
independent and it is not clear how to get a bound for the tail of the maximum. Kolmogorov found

an amazing inequality for which there seems to be no a priori reason!

Lemma 16: Kolmogorov’s maximal inequality

Let X, be independent random variables with finite variance and E[Xy,] = 0 for all n. Then,

P {max ISk | > t} <t 23 1, Var(Xy).
k<n

X

Observe that the right hand side is the bound that Chebyshev’s inequality gives for the prob-
ability that [S,,| > t. Here the same quantity is giving an upper bound for the (generally) much
larger probability that one of [S1],...,[Sn| exceeds t.

Proor. Fix n and let T = inf{k < n : |Sk| > t} where it is understood that T = n if |Sy| < t for

all k < n. Then, by Chebyshev’s inequality,

(3) P(max [Sy| > t) = P(|S<| > t) < t 2E[S2].

k<n
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We control the second moment of S¢ by that of S;, as follows.
E[S3] = E [ (S<+ (Sn — SV
= E[S2] +E [ (Sn — S<)?] + 2E[S<(Sn — S)]
(4) > E[S2] + 2E[S<(Sn — Sx)l.

We evaluate the second term by splitting according to the value of T. Note that S;, — St = 0 when

T = n. Hence,

n—1
E[ST(STL - ST)] = E[lT:kSk(Sn - Skn
k=1
n—1
= E [1:—kSk]E[Sy — Sk] (because of independence)
k=1

=0 (because E[S,, — Sx] =0).
In the second line we used the fact that Sy1.—x depends on Xj,..., Xy only, while S, — Sy de-
pends only on Xy1,...,Xn. From (4), this implies that E[S%] > E[S2]. Plug this into (3) to get
P(maxxgn Sk > t) < t2E[S2]. [ |

Remark 15

In proving this theorem, Kolmogorov implicitly introduced stopping times and martingale

property (undefined terms for now). When martingales were defined later by Doob, the
same proof could be carried over to what is called Doob’s maximal inequality. In simple
language, it just means that Kolmogorov’s maximal inequality remains valid if instead of

independence of Xys, we only assume that E[Xy | Xj,...,Xx_1] =0.

As observed above, the bound for P(maxx<n [Sk| > t) given by Kolmogorov’s maximal in-
equality is the same as the bound for P(|S,,| > t) given by Chebyshev’s inequality. We know that
the bound for P(|S»| > t) can be improved (under assumptions) by applying Markov’s inequality
to powers or exponential function of S,,. Can we similarly improve the maximal inequality? Turns

out we can, by an almost identical proof!

Claim 2: Komogorov’s maximal inequality enhanced

Let Xy be independent random variables with zero mean. Assume that E[e

OXk] < oo for

some 0 > 0. Then, for any t > 0,

P {Omax Sk > t} < e OtE[eO5n].

<k<n
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Observe that the bound is the same as the one we get for P(S,, > t} by applying Markov’s

inequality to e®°

Proor. Let S}, = max{Sy,...,Sn} (without absolute values). Fix t > 0 and define T = inf{k <
n: Sx > t} where the infimum of the empty set is defined to be +oo (that happens precisely when
Si < t). Then,

n
P(S;, >t} < e °'Ele 95“15* s = e Ot Z E[e®S% 1]
k=1
On the other hand

n n
E[eesn] 2 ZE[eeSan k Z 0(Sn=Sk) BSle:k]

_ ZE Sn Sk [ OSle:k]

In the last line, we used the fact that Sx and Ty are measurable with respect to o{Xj, ..., Xy} while
Sn — Sk is measurable with respect to o{Xy 11, Xx+2, .. .}. Hence the independence and factoring of
expectations.

By Jensen’s inequality E[e®(Sn=SK)] > OElSn=Sk] — 1, Putting all this together, we have
P(S} >t} < e O'E[e%5n].

This completes the proof. [ |

8. Coupling of random variables

Coupling is the name probabilists give to constructions of random variables on a common prob-
ability space with given marginals and joint distribution according to the need at hand. If you have
studied Markov chains, then you would have perhaps seen a proof of convergence to stationarity
by a coupling method due to Doeblin. In this method, two Markov chains are run, one starting
from the stationary distribution and another starting at an arbitrary state. It is shown that the two
Markov chains eventually meet. Once they meet, when they separate, it is impossible to tell which
is which (by Markov property), hence the second chain “must have reached stationarity too”. Here

are some simpler general situations where the method is useful.

Proving inequalities between numbers by coupling: Suppose we wish to show that a < b. If we
could find random variables X, Y on a common probability space such that X < Y a.s., and E[X] =

and E[Y] = b, then the inequality would follow. If the numbers are in [0, 1], this may be be possible
to prove by finding events A C B such that P(A) = a and P(B) = b. What is called the probabilistic
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method is of this kind: We show that a set A (described in some way), is non-empty by showing

that P(A) > 0 under some probability measure P.

Example 19

Let X ~ Bin(100,3/4) and Y ~ Bin(100,1/2). Then it must be true that P{X > 71} > P{Y > 71},

but can you show it by writing out the probabilities? It is possible, but here is a less painful

way. Let Uy,...,Ujp be iid. Unif[0, 1] random variables on some probability space. Let
X'=) lu.czaand Y =3 | 1y, <1/2- Then X’ > Y/, hence the event {Y’ > 71} is a subset
of {X’ > 71} showing that P{(X’ > 71} > P{Y’ > 71}. But X’ has the same distribution as X

and Y’ has the same distribution as Y, showing the inequality we wanted!

More generally, if X ~pand Y ~vand X > Y a.s., then F (t) < Fy(t) for all t € R. If the latter
relationship holds, we say that v is stochastically dominated by p.

If v is stochastically dominated by 1, show that there is a coupling of X ~ p with Y ~ v in
such a way that X > Y a.s.

Getting bounds on the distance between two measures: Suppose p and v are two probability
measures on R and we wish to get an upper bound on their Lévy-Prohorov distance. One way is to
use the definition and work with the measures. Here is another: Suppose we are able to construct
two random variables X, Y on some probability space such that X ~ i, Y ~ v and [X — Y| < r with

probability at least 1 — r. Then we can claim that d(u, v) < r. Indeed,
Fv(t) =PlY<t} >PIX<t—1}—PIX-Y|>1}>F (t—1)—1.

and similarly F,(t) > Fy (t—7r)—r. Itis a fact thatif d(p, v) = v, then such a coupled pair of random
variables does exist but it requires a bit of work (it is akin to Hall’s marriage problem), so we skip
it.

Similar ideas can be used for other distances. For example, on a finite set [n] ={1,2,...,n}, let
1, v be two probability measures. Their total variation distance is defined as drv (p, v) = }{réa}i] [W(A)—
v(A)|. One way to get a bound on the total variation distance is to construct two random variables
X,Y on some probability space such that X ~ u, Y ~ v and P{X # Y} = r. Then dyrv(n,v) < 1.

Indeed, for any A, we have
WA)=PXe A} <PYEAI+PYZ A, Xe A} V(A)+P{X £AYL

Getting the inequality with p and v reversed, we see that dtv(p, v) < P{X # Y}. It is an easy fact
that one can always couple random variables this way.
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Show that there is a coupling (X, Y) that achieves equality, i.e., P{X # Y} = dtv(1, V).

Defining distances using coupling: The fact that Lévy distance and total variation distance can be
rephrased in terms of coupling suggests that one can define other distances between probability
measures by minimizing some cost over all possible couplings. The following is a very useful

definition (we shall not use it in this course though).

Definition 15: Transportation distance

Let u and v be two measures on R9. For ¢ : R4 x RY — [0,00), define Tc(p,v) =
inf{Elc(X,Y)]: X ~ u, Y ~ v}, where the infimum is over all couplings with the given

marginals (and one can choose the probability space too).

Popular choices of the cost function are c(x,y) = ||x — y|| (Euclidean distance) and c(x,y) =
|[x —y]|%. In the latter case, the transportation distance is widely referred to as Kantorovich metric or

Wasserstein metric.
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CHAPTER 4

Applications of the tools

We illustrate the use of the tools introduced in the previous chapter. Simultaneously, this is an
excuse to showcase a few probability situations of interest on their own. Coupon collector problem,
branching processes, random walks, etc., are not only interesting on their own, they also appear
embedded within various other problems. A good understanding of probability requires one to

know these well’.

1. Borel-Cantelli lemmas

If X takes values in R U {+co} and E[X] < oo then X < oo a.s.. That is obvious from the
definition of expectation, but one may also see it as a consequence of Markov’s inequality, as P(X >
t} <t 'E[X] — 0ast — oco. Apply thisto X = Y 32,14, which has E[X] = } 3° ; P(Ay) which is
given to be finite. Therefore X < oo a.s. which implies that for a.e. w, only finitely many 14, (w)
are non-zero. This is the first Borel-Cantelli lemma.

The second one is more interesting. Fix n < m and define X = > " 14,. Then E[X] =

e P(Ay). Also,

EX=E|) > 1Ak1Ae] =) PA+ ) PAIP(AY)
k=n{=n k=n k#L
m 2 m
< (Z P(A@) + ) P(Ax).
k=n k=n

Apply the second moment method to see that for any fixed n, as m — oo (note that X > 0 is the
sameas X > 1),

PX>1)> (Zin PAW)’

T PA)) + Y P(AY)
1
1+ (I P(A)

It is not necessary to read all the sections. On first reading one may omit the ones marked with an asterisk. Nothing
is majorly wrong with them - some are incompletely written. Besides, many more applications of the basic tools are in

the problem set.
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which converges to 1 as m — oo, because of the assumption that ) P(Ay) = co. This shows that
P(Uk>nAxk) =1 for any n and hence P(limsup A, ) = 1.

Note that this proof used independence only to claim that P(AxNA,) = P(A)P(A¢). Therefore,
not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma holds

for pairwise independent events too!

2. Coupon collector problem

A bookshelf has (a large number) n books numbered 1,2,...,n. Every night, before going to
bed, you pick one of the books at random to read. The book is replaced in the shelf in the morning.
How many days pass before you have picked up each of the books at least once? Let T, denote
the number of days till each book is picked at least once. We show that Ty, is concentrated around
nlogn in a window of size n. The precise statement is in the theorem below. First let us convert
the informal language to mathematics.

Let &3, &5, ... beiid. random variables with uniform distribution on [n]. Then define

TTL = mln{t : {Evl/ ceey Et} = [Td}

Theorem 11: Coupon collector problem

With the above notation, for any sequence of numbers 6,, — +o00, we have

P(|Tn —nlogn| <nbn) — 1.

Proor oF THEOREM 11. Fix an integer t > 1 and let X, i be the indicator that the Kth book is not
picked up on the first t days. Then, P(T,, > t) = P(S¢n > 1) where S¢n = X1+ ... + Xgn is
the number of books not yet picked in the first t days. As E[X¢ ] = (1 —1/n)* and E[X¢ 1 X¢,¢] =

(1—2/n)* for k # £, we also compute that thefirst two moments of S ,, and use (1) to get

1t 1\*
(5) ne n nZ gE[St,n]—n<1—n) gne_%.
and
> 1\" 2\* i _a
(6) E[Si ] =n 1—; +nn-—1) 1—; <me n+nn-—1)e n.

The left inequality on the first line is valid only for n > 2 which we assume.

Now set t = nlogn + n0, and apply Markov’s inequality to get

nlogn+nén 0
—Un

(7) P(Th >nlogn +n0y) =P(S¢n 2 1) < E[S¢nl <ne™ ™ <e =o(1).

On the other hand, taking t = nlogn —n6,, (where we take 6,, < logn, of course!), we now apply
the second moment method. For any n > 2, by using (6) we get E[S? ] < e + 2%, The first
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On— logn On

inequality in (5) gives E[S¢n] > e . Thus,

logn—6n

E[S ]2 ezen—zin

(8) P(Tn > nlogn —nbn) =P(Sun >1) > s > <5 ——g— = 1-o(1)
N

asn — oo. From (7) and (8), we get the sharp bounds

P (|T, —nlog(n)| > n6y) — 0 for any 6, — oo. [ |

Here is an alternate approach to the same problem. It brings out some other features well. But

we shall use elementary conditioning and appeal to some intuitive sense of probability.

ALTERNATE PROOF OF THEOREM 11. Let 11 = 1 and for k > 2, let Ty be the number of draws after
k — 1 distinct coupons have been seen till the next new coupon appears. Then, T, =711 + ...+ Tn.
We make two observations about Tys. Firstly, they are independent random variables. This is
intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the

distribution of Ty is Geo( n%m)

. This is so since, after having seen (k —1) coupons, in every draw,
there is a chance of (n — k + 1)/n to see a new (unseen) coupon.
If £ ~ Geo(p) (this means P(§ =k) =p(1—p)* L fork > 1), then E[&] = % and Var(&) = 1;7213;

by direct calculations. Therefore, remembering that 1+ 3 +... + + =logn + O(1), we get

o n
E[T,.] = Z T nlogn+ O(n),

k=1
n
_ 2 < Cn2
Var(Tu) “Z (n— k+1 “; (n— k+1 n
with C = Z . Thus, if 6, T oo, then fix N such that |E[T,,] —nlogn| < 2n9 forn > N. Then,

1
P{{Tn —nlogn| > no,} <P {|Tn —E[T]] > znen}

Var(T,)
N1
1n262
o 4C
which goes to zero as n — oo, proving the theorem. u
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Remark 16

One can investigate what happens when the number of days t = NlogN + c¢N for some

constant ¢ € R. One can follow the first proof and show that the number of unseen books
S¢,N converges in distribution to Pois(e™¢), i.e., for each k > 0, as n — oo,
—ck

k!
Indeed, if Xy 1, ..., X¢n were independent, then we would have S; ;, ~ Bin(n, p,,) with p,, =

e

P{Sin =kl —e ¢ x

(1-— %)t. When t = nlogn + cn, we see that np,, — e~¢, hence the Poisson limit would
follow. Although X are not quite independent, their dependence is weak enough that the
conclusion does hold. We leave it to the interested reader to do the calculations, just pointing
out that it is an instance of Poisson limit law for rare events. Another point to note is that
P{S¢n = 0} converges to 0 as ¢ — —oo and to 1 as ¢ — 400, which is consistent with the

statement of Theorem 11.

3. Branching processes

Consider a Galton-Watson branching process with offsprings that are i.i.d. as & We quickly
recall the definition informally. The process starts with one individual in the 0th generation who
has &; offsprings and these comprise the first generation. Each of the offsprings (if any) have new
offsprings, the number of offsprings being independent and identical copies of £. The process
continues as long as there are any individuals left*.

Let Z,, be the number of offsprings in the n'" generation. Take Zy = 1.

ZFor those who are not satisfied with the informal description, here is a precise definition: Let V = [ J;_; N¥ be the
collection of all finite tuples of positive integers. For k > 2, say that (vi,...,v) € N¥ isa child of (vy,...,vi_1) € N&°L,
This defines a graph G with vertex set V and edges given by connecting vertices to their children. Let G; be the connected
component of G containing the vertex (1). Note that G; is a tree where each vertex has infinitely many children. Given
anyn : V — N (equivalently, n € N V), define T,, as the subgraph of G; consisting of all vertices (vy, ..., Vi) for which
v; <N((vi,...,vj-1)) for 2 < j < k. Also define Zy_1(n) = #{(v1,...,vk) € T} for k > 2 and let Z, = 1. Lastly, given a
probability measure p on N, consider the product measure p®¥ on NV. Under this measure, the random variables n(u),
u € Vareii.d. and denote the offspring random variables. The random variable Zy denotes the number of individuals
in the kth generation. The random tree T, is called the Galton-Watson tree.

It is hoped that this exorcises you of any wish for more such descriptions and convinces you of the value of the

probabilists” language using random variables.
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Theorem 12: The fundamental theorem on Branching processes

Let m = E[] be the mean of the offspring distribution.
(1) If m < 1, then w.p.1, the branching process dies out. That is P(Z, =
0 for all large n) = 1.

(2) If m > 1, then the process survives with positive probability, ie., P(Z, >
1 foralln) > 0.

Proor. In the proof, we compute E[Z,] and Var(Z,,) using elementary conditional probability
concepts. By conditioning on what happens in the (n — 1)5t generation, we write Z,, as a sum
of Z,,_; independent copies of & From this, one can compute that E[Z,|Z,,_;] = mZ,,_; and
if we assume that & has variance o2 we also get Var(Zn|Zn_1) = Zn—1 o2. Therefore, E[Z,] =
E[E[Zn|Zn—1]] = mE[Z,,_1] from which we get E[Z,,] = m™. Similarly, from the formula Var(Z,,) =
E[Var(Zn|Zn—1)] + Var(E[Zn|Z,,_1]) we can compute that

Var(Zn) = m™ 1o + m*Var(Z,_1)

2

= (m“_1 +m"t .+ mzn—l) o (by repeating the argument)

+1
_mnttt—1
:O.Zmnl

m-—1

1) By Markov’s inequality, P{Z,, > 0} < E[Z] = m™ — 0. Since the events {Z,, > 0} are
y q Y,

decreasing, it follows that P(extinction) = 1.

(2) If m =E[¢] > 1, then as before E[Z,,] = m™ which increases exponentially. But that is not
enough to guarantee survival. Assuming that & has finite variance o2, apply the second
moment method to write

E[Z,]? < 1
Var(Z,) +E[Z,]2 7 14 ¢

m—1

P{Z, >0} >

which is a positive number (independent of n). Again, since {Z,, > 0} are decreasing
events, we get P(non-extinction) > 0.

The assumption of finite variance of & can be removed as follows. Since E[E] = m > 1,
we can find A large so that setting 1 = min{¢, A}, we still have En] > 1. Clearly, n has
finite variance. Therefore, the branching process with 1 offspring distribution survives
with positive probability. Then, the original branching process must also survive with
positive probability! (A coupling argument is the best way to deduce the last statement:
Run the original branching process and kill every child beyond the first A, a brutal form
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of family planning. If inspite of the violence, the population survives, then the original

must also survive...) [

The proof does not cover the critical case which may be skipped on first reading.

The critical case m = 1: This case is a little more delicate as E[Z,,] = 1 stays constant. Here the
strengthened form of Markov’s inequality (??) comes in handy. The intuitive explanation why it
can help is that if there is one survivor in the nth generation, then it is likely that there are many

survivors. For simplicity we give a not entirely rigorous argument in a particular example.

A HEURISTIC PROOF OF EXTINCTION IN THE CRITICAL CASE FOR BINARY BRANCHING. Assume that pg =
P2 = % Thenm = 1. If Z, > 1, pick an individual in the nth generation (this is where the argument
is loose - one needs to specify how this individual is picked). Call this individual v,, and let her
ancestors be vi,_1,vn_2, ..., vy (Where vy belongs to the kth generation). Let My be the number of
descendents of vy that are alive in generation n, excluding those that are also descendents of vy 1.
Then,

Zn=14+M,_1+...+ My.

We claim that E[My] = 1. Indeed, as vy has at least one offspring (i.e., vi1), she must have exactly
one more off-spring, call it v;_, ;. Then My is exactly the number of descendents of v, ; who are
in the nth generation of the original process (which is the n — k — 1st generation of the tree under
vy, 41)- But as the branching is critical, E[My] = 1. This shows that E[Z,, | Zn>1=n+1and
consequently, by the strengthening of Markov’s inequality given above,

E[Z,] 1
ElZy|Zn>1 n+1

which converges to 0. |

P{Zn 21} <

4. How many prime divisors does a number typically have?

For a natural number k, let v(k) be the number of (distinct) prime divisors of n. What is the
typical size of v(n) as compared to n? We have to add the word typical, because if p is a prime
number then v(p) = 1 whereas v(2 x 3 x ... x p) = p. Thus there are arbitrarily large numbers
with v = 1 and also numbers for which v is as large as we wish. To give meaning to “typical”, we
draw a number at random and look at its v-value. As there is no natural way to pick one number

at random, the usual way of making precise what we mean by a “typical number” is as follows.

Formulation: Fix n > 1 and let [n] :={1,2,...,n}. Let u,, be the uniform probability measure on
[n], i.e., un{k} = 1/n for all k € [n]. Then, the function v : [n] — R can be considered a random
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variable, and we can ask about the behaviour of these random variables. Below, we write E,, to

denote expectation w.r.t pin,.

Theorem 13: Hardy-Ramanujan

With the above setting, for any 6 > 0, as n — oo we have

(9) {ke ‘m 1‘>5}%o.

Proor. (Turan). Fix n and for any prime p define X, : n] — R by X;(k) = 1,x. Then,

k) = > Xp(k). Wedefine (k) := 3 Xp(k). Then, P(k) < v(k) < (k) + 4 since there can
psk p<Vk
be at most four primes larger than vk that divide k. From this, it is clearly enough to show (9) for

P in place of v (why?).

We shall need the first two moments of \ under p,,. For this we first note that E [X,] = @
and E [XpXq] = —L%J Observe that % — % < Li;LJ < % and % — % < —Lﬁj < #.
By linearity E,[] = 3 EXp]= > % +0(n 1) Similarly
p<ym p<Ym
Var, [P] = Z Var[Xp] + Z Cov(Xp, Xq)
p<ym pAq< YT
1 1
=) <—+O( )> + > omM
<<*F PP pra< T
- X 1 ¥ domh
p<f p<f

We make use of the following two facts. Here, a, ~ by, means that a,, /b, — 1.

1
Z — ~ loglogn Z—<oo
p<ym P
The second one is obvious, while the first one is not hard, (see exercise 18 below)). Thus, we get

E.[V] =loglogn + O(n*%) and Varn[lb] =loglogn + O(1). Thus, by Chebyshev’s inequality,
& 108 g10g y y q Y,

W(k) —En ] Varn () 1
u“{ ‘ loglogn ’ ” 6} < §2(loglogmn)? O <loglogn> '

From the asymptotics E,,[{] = log logn + O(n~1) we also get (for n large enough)

Vary, () 1

S A <————= — .

ke ‘10 logn 1‘>6 = 52(loglogn)? O loglogn u
glog g 108 g 108
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Exercise 18

> % ~ loglogn. [Note: This is not trivial although not too hard. ]
p<¥ym

5. Connectivity of a random graph

The complete graph K, has vertex set [n] ={1,2,...,n}and edgesetE = {{i,j}: 1 <i<j<n}
We now define a random graph model as a random sub-graph of K. This model has been studied

extensively by probabilists in the last fifty years.

Definition 16: Erd6s-Rényi random graph

Fix0 <p <1 Let Xi;,1 <1i<j<n, beiid. Ber(p) random variables. Let G be the graph
with vertex set [n] and edge-set {{i,j}: X;; = 1}. Then G is called the Erdds-Rényi random
graph with parameters n and p and denoted G(n, p).

There are many interesting questions about §(n, p). Here we ask only one: Is §(n, p) connected?
If p = 1, the answer is clearly yes, and if p = 0, the answer is clearly no. It is not hard to see that
(use coupling!) to show that the probability that §(n,p) is connected increases with p. What is
surprising is that for large n, the change from disconnected to connected happens over a short

range of p around the point logn/n.

Theorem 14: Connectivity threshold for Erdos-Renyi random graph

Fix 6 > 0 and letpff =(1=x 6)l°gn. Then, asn — oo,

n

P{G(n,p;) is connected } —+1 and P{G(n,p;,) is connected } — 0.

Unlike in the other problems, here the second moment method is easier, because we show dis-
connection by showing that there is at least one isolated vertex ( i.e., a vertex that is not connected

to any other vertex). To show connectedness, we must go over all proper subsets of vertices.

Proor THAT §(n, p;;) IS UNLIKELY TO BE CONNECTED. Let Y be the number of isolated vertices, i.e.,
Y = > i, Yi, whereY; is the indicator of the event that vertex i is not connected to any other vertex.
Then,

EYI =) ENi]=n(1-p)"'> ne PP’
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ifp < % (sothatl—p > e_p_pz). Further, Y;Y; = 1 if and only if all the 2n — 3 edges coming out
of i orj (including the one connecting i and j) are absent (i.e., X i, Xj x are all 0). Therefore,
n
EYY =) E[Yi+2) EYVJEL)
i=1 i<j
=n(l—-p)" T +nn-1)(1-p)3

<ne P 4 n2e—(2n=3)p,

When p = p,,, by the second moment method that

2 2 2np—2np? —2np?
PY>1)> o s i -
E[YZ] ne—P(m—1) L n2e—(2n-3)p %ep(nJrl) 4 e3p

which goes to 1 asn — oo (as pn — 0 and %e“p“ — 0). As §(n, p;,) is disconnected, when Y > 1,

this completes the proof. |

"1 which goes to zero if p = p;}, we

Of course, just using the first moment E[Y] = n(1 — p)
see by the first moment method that at p{, there are no isolated vertices (with probability tending
to 1). But this is not in itself of much use because absence of isolated vertices does not mean that
the graph is connected. A more involved argument is needed to show that the expected number

of connected components (of any size strictly smaller than n) goes to zero.

Proor THAT §(n, p;;) Is UNLIKELY TO BE DISCONNECTED. We get a crude estimate as follows. Sup-
pose A C [n]. Then A is disconnected from A€ if and only if X;; = 0 foralli € A and all j € A°.
This has probability (1 — p)|A| (—IAD_If the graph is disconnected, then there must be some such
set A with |A| < n/2. Thus, by the union bound,

[n/2]
n
]P) H < 1 o k(TL*k) .
{G(n, p) is not connected} kE_l ( k) (1—p)

Now, we set p = p;. and divide the sum into k < en and k > en.
In the second sum, we use the simple bounds (E) < 2™ and k(n — k) > ¢(1 — e)n?. Since
1—p < e P, and there are at most n terms, we get (recall the definition of p;")
n 2
1— k(n—k) < omn —e(l—e)n“p
> ()a-» n2"e

k>en

— nznefs(lfs)(lJré)nlogn when p= prt

Obviously this goes to zero as n — oo (for any choice of ¢ > 0, which will be made later).

91



The sum over k < en is handled by using the bounds ( ) nkand1— p < e P. We get
n k)p—Ilog n]
I [ S
1<k<Len k<Len
< Z efklogn[(1+6)(17%)71] ( when p = pi)

1<k<Len

00
Z —klogn[(1+56)(1— )—1].

If ¢ > 0 is chosen small enough that (1 +58)(1—¢)—1> 16 then the above sum is bounded by a

geometric series (with terms e~ 2k8log ™) whose sum is at most

—1&logn n—9%/2

1— ef%élogn - 1—n—9%/2°

Thus, P{S(n, p;}) is connected} — 1 as n — oo. |

6. A probabilistic version of Fermat’s last theorem*

Fermat’s last theorem is the statement that there are no strictly positive integers a, b, c such that
aP +bP =cP,if p > 3is an integer. For p = 2 there are solutions of course, e.g., 3,4,5. What is the
intuition behind why it fails for larger p? There are more squares than cubes than fourth powers
and so on (in the sense that the number of p-th powers below N grows like N'/P). In a sparser
sequence, there should be less coincidences of the kind where sum of two terms is another term.
Here is a way to make a random version of the question that shows that p = 3 is precisely where
there is a change of behaviour!

Fix « > 0 and let &, ~ Ber(n™ %) be independent. This gives us a random subset of positive
integers 8 = {n : &, = 1}. By considering the summability of P{&;, = 1}, from the Borel-Cantelli
lemmas we see that 8 is a finite set w.p.1. if and only if « > 1. Hence let us fix « < 1 and observe

that [So N [N]| = & + ... + EN. Therefore,

AR |
ElS« NINID =)+~
k=1

The number of p-th powers below N grows like N'/P. Comparing to the above, we see that p > 3

1 l—ax
mN if x < 1,

log N if x =1.

corresponds to o > 2.

Theorem 15: Erdos—-Ulam
If « < 3, then with probability 1, there are at most finitely many triples (a, b, c) € 83, such

thata <b < cand a+b = c. If « > 3, then with probability 1, there are infinitely many

such triples.
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Just to avoid some computations, we have not allowed a = b in our solution space. It does
not make a difference to the result if allowed. The proof will proceed by computing the first and
second moment of the random variable Tyy denoting the number of solution triples (a, b, c) with
c<N.

Proor. Fix any 1 < a < b < ¢ with ¢ = (a + b). The probability that (a,b,c) is in 8, is
1/(ab(a+b))*. Asa+b > Vab,

1
E[Tn] < Z (because a + b > Vv ab)
1<a<b<N (ab)

- 2
1
()

This sum finite if o > % Since the total number of solutions T is the increasing limit of Ty, MCT

Mg

shows that E[T] < co and hence T < oo a.s. This proves the first statement.
For the second statement, we work out the case « = % and leave x < % as an (easier) exercise.
=1
E[TN} = Z 7 Z

1
e—1¢% gz (alc—a))

7"
3

The inner sum can be written as

1 1 1 1 (VY2 dx
d e aq_an:
c3 (c(1—=2))5  c3

c 0 x%(l—x)%.

a<

NIo

for c large. Denoting the integral as C (and a small argument needed to ignore small c), we get
E[Tn] ~C ZCN:1 % ~ Clog N. This expectation goes to infinity and hence E[T] = oco. But to say that

T is infinite a.s., we compute the second moment of Ty.

N
ETRI= Y )  Eliabc afclarfer—akel

c,c’=1a<c, a’<c’

When the two triples are disjoint, the expectations factor and hence we can write

E[TTZ\J] = E[TN]z + Z E[Eyaacfa&caa’ac’—a’(t—vc’] - E[Eaacfaac]E[Eya’Eyc’—a’ac’]

SEMNP+ ) Eléabe abelarer aréel]

where the asterisk indicates summing over pairs of triples such that{a, c—a,c}N{a’,c’—a’, ¢’} # 0.
We show that this entire sum is O(log N), which then shows that the standard deviation of Ty is
O(4/logN). As E[Tn] ~ Clog N, by Chebyshev inequality we get
Var(Tyn)

P{Th <(1—-6)ClogN} < ——————
(v < (1-81ClogN) < o B
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as N — oo. This shows that T = oo a.s. and in fact gives a more quantitative statement about how
many solutions there are.
It remains to show that the asterisked sum is O(log N). Now we must divide into several cases.

To complete n

7. Random series

Let X,, be independent random variables. The event that the series ) X;, converges is clearly

n
a tail event, hence has probability zero or one. Is it zero or one? Depends on the variables.

Example 20

Let X;, ~ Ber(pn ). Then the series converges if and only if X, = 0 for all but finitely many n.

By the Borel-Cantelli lemmas, the event {X,, = 11i.0.} has probability zero or one according as
> pn converges or diverges. Thus, the series ) ., X, converges almost surely if ) | pn < 00
n

and diverges almost surely if ) |, pn = oc0.

Since pn = E[Xy] in this example, this may give the impression that what matters is the sum of
expectations. Not entirely correct. For example, let X, be independent with P{X,, = 1} = P{X,, =
—1} =pn/2and P{X;, = 0} = 1—pn. Then again, the random series converges if and only if X;, # 0
only finitely often. Again by Borel-Cantelli lemma, this is equivalent to the convergence of } |, pn.
Here E[X,] = 0 for all n, what p,, measures is the variance. Khinchine showed that this holds in

great generality.

Theorem 16: Khinchine
Let X;, be independent random variables with zero means and finite variances. Assume that

> o Var(X;) < oo. Then ) X, converges, a.s.

Proor. A series converges if and only if it satisfies Cauchy criterion. A sequence (xn )n is not
Cauchy if and only if there is some ¢ > 0 such that for any N > 1, there exists k > 1 such that
IXN+k — XN| > €. Translated into symbols, this means that the event E that (S;,)n is not Cauchy is
given by

1
E:= ngm@lgl {|sN+k Snl > m}.
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Thus, P(E) = 0if and only if n>1 Uis1 {ISn+k — S| = = } has zero probability for each m. The

intersection is smaller than each of the sets in the intersection, hence it suffices to show that

, 1
0= lim P¢ | J{ISne—Snl>—]

—00
k>1

1
=1 lim P — — f 1<k ML
ngnoo M1LmOO {ISnak — SN > - or some k < M}

Kolmogorov’s maximal inequality (Lemma 16) gives

N+M [e9)
1
P{Snsk — Sn| > — forsome 1 < n < M} < m? Z Var(Xy) — m? Z Var(Xy)
m k=N-+1 k=N

as M — oo. The last quantity is the tail of a convergent series and hence goes to zero as N — oo.

That is precisely what we wanted to show, and the proof is complete. |

What to do if the assumptions are not exactly satisfied? First, suppose that ) , Var(Xy) is
finite but E[X;,] may not be zero. Then, we can write } X, = ) (Xn, —E[X]) + ) E[X;]. The first
series on the right satisfies the assumptions of Theorem 16 and hence converges a.s. Therefore, if
the deterministic series ) ,, E[Xy] converges, then ) | X, converges a.s. Observe that we are not
asking for the absolute convergence of the series of expectations.

Next, suppose we drop the assumption that X,, has finite mean or variance. Now X,, are arbi-
trary independent random variables. We reduce to the previous case by truncation. Suppose we
could find some A > 0 such that P(|X;,| > A) is summable. Then set Y;, = X1x,|<a- By Borel-
Cantelli, almost surely, X;, = Yy, for all but finitely many n and hence ) X, converges if and only
if > Yy, converges. Note that Yy, has finite variance. If ) | E[Yy] converges and ) ,, Var(Yy) < oo,
then it follows from the argument in the previous paragraph and Theorem 16 that )} Yy, converges

a.s. Thus we have proved

Theorem 17: Kolmogorov’s three series theorem - part 1

Suppose X, are independent random variables. Suppose for some A > 0, the following hold

with Yn = ananlgA'
(a) Z]P’(IXnI > A) < 0. (b) Z]E[Yn] converges. (c) ZVar(Yn) < 0.
n n n

Then, )} X, converges, almost surely.
n

Kolmogorov showed the converse too! That is, if ) | Xy, converges a.s., then for any A > 0,
the three series (a), (b) and (c) must converge. We skip the proof of this converse implication
(but the necessity of convergence of the series (a) is a simple exercise). Although it is of great
satisfaction to have found the precise conditions, the useful part is the direction that we showed,
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since it allows us to show the almost sure convergence of a random series by checking convergence

of three (non-random) numerical series. But we make two remarks on the necessity part.

8. Random series of functions*

One can similarly ask about convergence of ), X un, where X;, are independent random vari-
ables and u,, are elements of a Banach space. In particular, let f;, : [0, 1] — R be given continuous

functions and consider the series ) ., Xnfn(t). The following events are clearly tail events.
o The event C that the series converges uniformly on [0, 1].

e The event ND that the sum is a nowhere differentiable function (it makes sense to ask this
only if P(C) =1).
Again, whether these events have probability 0 or 1 depends on the variables X;,s and the functions
fns. Forexample, if f,, (t) = sin(mnt)/n and X, arei.i.d. N(0, 1), then Wiener showed that P(C) =1
and P(ND) = 1.
We shall see this in the next part of the course on Brownian motion. For now, you may sim-
ply compare it with Weierstrass’ nowhere differentiable function ) ., sin(3™7tt)/3™. In contrast, the

random series does not require such rapid increase of frequencies. However, although P(CNND) =

sin(7tnt)
n

1, it is not easy to produce a particular sequence xn, € R such that the function ), xn con-

verges uniformly but gives a nowhere differentiable function!

9. Random power series

Let X, be iid. Exp(1). As a special case of the previous examples, consider the random
power series Y o Xn(w)z™. For fixed w, we know that the radius of convergence is R(w) =
(lim sup |Xy (w)["/™)~1. Since this is a tail random variable, by Kolmogorov’s zero-one law, it must
be constant. In other words, there is a number 1 such that R(w) = ry a.s.

But what is the radius of convergence? It cannot be determined by the zero-one law. We may

use Borel-Cantelli lemma to determine it. Observe that IP’(IXnI% > 1) e t" for any t > 0. If

EIE|

t =1+ ¢ with € > 0, this decays very fast and is summable. Hence, [X;,|®* < 1+ ¢ a.s.. and hence
R < 1+ ¢ a.s. Take intersection over rational ¢ to get R < 1 a.s.. For the other direction, if t < 1,
then e t" — 1 and hence > n e " = c0. Since X, are independent, so are the events {IXnI% >t}
By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n
such that IXnI% > 1 — e. Again, take intersection over rational ¢ to conclude that R > 1 a.s. This
proves that the radius of convergence is equal to 1 almost surely.

In a homework problem, you are asked to show the same for a large class of distributions and
also to find the radius of convergence for more general random series of the form ) [ ;cnXnz™.
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10. Growth of a supercritical branching process*

We showed that a super-critical branching process survives with strictly positive probability.
One can ask how the generation sizes Z,, grow when the branching is supercritical. An important
theorem of Kesten and Stigum asserts that under the extra condition that E[Llog, L] < oo, the

generation sizes grow exponentially in the sense that
z
P {lim sup —~ > O} = P{non-extinction}.
mTl

Actually it says that with lim Z,,/m™ in place of lim sup (the existence of the limit must be proved,
of course), but we stick to the above form. Obviously the event on the left is contained in the event
on the right, hence the asserion is really that whenever non-extinction occurs, it occurs by the Z,,
grown exponentially fast.

We prove a very special case of this, as the main goal here is to illustrate the tools introduced
in the previous chapter. Recall that the off-spring variable L has distribution px = P{L = k} and

m =) , kpk is its mean.

Theorem 18: Growth of supercritical branching process

Assume that py = 0 and m > 1 and that 0? := Var(L) < co. Then, lim supm "Z, >0a.s.

Proor. Under the assumption that py = 0, extinction never occurs. Further, if

Let W, = Z,,/m™ and let W = lim sup W;,. Also recall the way we constructed a branching
process from i.i.d. random variables L,, x, n,k > 1 by using L, 1, L1 2 . .. to determine the numbers
of offsprings of those individuals in the (n — 1)st generation.

First we claim that P{W > 0} > 0.

The same proof that we used (second moment method) to show that non-extinction has strictly

positive probability in fact shows that

1 1
limianP’{ZTL > m“} > —.
2 N
m—1

Now let W = limsup Z,,/m™ and let NE be the event of non-extinction. Clearly {W > 0} C NE.
What we need to show is that P{W > 0} = P{NE}, which then implies that P{{W > 0} " NE} = 0 as
claimed.

First we claim that P(W > 0} > 0. As{W < ¢} C UN Mnx>N {Zn < em™}, it follows that if
P{W > 0} = 0, then forany ¢ > 0, thereis some N < oo such thatP{Z,, > em™ for somen > N} < e.
|
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11. Random walk on a graph

Let X; beii.d. Ber1(1/2) and let Sy, = X1 +...+ X,y forn > 1and Sg =0 (S = (Sy,) is called
simple, symmetric random walk on integers). Let A be the event that the random walk returns to the

origin infinitely often, i.e., A ={w : Sy (w) = 0 infinitely often}. Pélya showed that
(10) P(A) =1.

Observe that A is not a tail event. Indeed, suppose Xy (w) = (—1)¥ for k > 2. Then, if X;(w) = —1,
the event A occurs (i.e., A 5 w) while if X;(w) = +1, then A does not occur (i.e., A # w). This
proves that A ¢ o(Xy, X3,...) and hence, it is not a tail event. Therefore Kolmogorov’s zero-one

law is inapplicable. Nevertheless, P(A) = 1 as we shall show now.

ProoF oF THE cLAIM. Letpx = P(Sy = 0). Itis easy to see that px = 0forodd kand pyx = (k%) zik

for even k. By Stirling’s formula, one can check that ﬁ < P2k < \j—% for some ¢, c’.
Let Ry = Y 7™ 15, —o be the number of times the random walk visits the origin in the first 2n

steps. We see that

BRI =Y prc>c) |
Rn =cC —
k=0 k=1 \/E
On the other hand,
n n
=> ) P{Sy=0,S% =0} = szk+ZZ Z P2kP2(¢—k)
k=0 ¢=0 k=0 ¢=k+1
n—1ln—k
nl +2 Z Z pakp2j < ERn] +ERp
k=0 j=1
Therefore, ]]EE[[]SE}L — 1asn — oo. By the second moment method, we see that P{R,, > v} — 1 as

n — oo, for any 1. But {Rn, > 1} T {Rs > 1. Hence P{Ry, > 1} =1 for all r, which is another way of

saying that the random walk returns to the origin infinitely many times, almost surely. |
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Remark 17

If you examine the proof, you see that the specifics of the random walk was not used. Al-

though we wrote E[R,,] > cy/n, that was used only to say that E[R,] — oo.
If (Sn)n>0 is a random walk on any graph (or even a general Markov chain) started at a
vertex 0, write px = P{Sx} = 0and R, = Y [ _;1s, = 0. Following the same reasoning as

above,

n

ERnl=) pr,  ERZ] <ERn]+ERn
k=0

Thus, the second moment method shows that if E[R,,] — oo, then the random walk eventu-
ally returns to the starting point, almost surely.

On the other hand, if E[R,] stays bounded, then } * ;px < oo. Fund N such that
Y %N Pk < 1. This shows that P{Sx = 0 for some k > N} < 1 or equivalently, there is a

positive probability for the random walk to return only finitely many times.

12. Ramsey numbers

A well-known riddle asks for a proof that among 6 people, there are three who know each
other or there are three none of whom knows the other two. To generalize, let us fixn > k > 3.
Let G be a graph with vertex set [n]. Let G denote the complementary graph: {i,j} is an edge in
G if and only if {i,j} is not an edge in G. The question is: Is there necessarily a clique of size k in
at least one of G and G.

The smallest number n for which the answer is “Yes” for every possible graph G on [n], is called
the kth Ramsey number, R(k). Beyond a few small values of k, the value of R(k) is not known, even

approximately or asymptotically for large k. Erdos used probability to get a lower bound:

R(k) > Kok
2e

The key conclusion is that R(k) grows exponentially fast in k.

Erp0s’ PrOOF. Pick the graph G uniformly at random from the set of all graphs with vertex set
[n]. This is done by sampling i.i.d. Ber(1/2) random variables Xj;, 1 < i < j < n and setting the
edge set of G to be the set of all {i,j} with X;; = 1. The edges of GT are those {i,j} with i < j for
which X ; = 0.

Take any subset S C [n] with |S| = k. The chance that S is a clique in G is 2—(3), The chance
that S is a clique in G is the same. Summing these and summing over all S, we see by the union
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bound that the chance that some k-element subset of [n] forms a clique in one of G or G is at most

k
(M) g —
k k! 22k (k=1)—1

Therefore, if n* < k!22%(1)~1 then the above probability is less than 1. Therefore, there is a
positive probability that there is no k-element subset that is a clique of either G or of G'. Hence
there must be at least one such graph G. Therefore, R(k) > (k!Z%k(k*”*l)% > %2“/2 as k! >
(k/e)k. [ |

Although the conclusion has nothing to do with probability, the probabilistic method was used.
Can you do without it? All you have to do is to construct an explicit graph on c* vertices (for some
¢ > 1) such that no clique of size k exists in the graph or its complement. Apparently, no one has

found such an explicit example to date! This is not an uncommon occurrence’.

13. Percolation

Let G = (V, E) be an infinite connected graph. For 0 < p < 1 and let X¢, e € E, be i.i.d. Ber(p)
random variables. These random variables give rise to a random subgraph G, = (V, &), where
€ ={e: Xe = 1}. Percolation is the study of connectivity properties of this random subgraph. In

particular, one is interested in
(1) o(p), the probability that G, has an infinite connected component.
(2) 0o(p), the probability that the vertex o is in an infinite connected component in G,.

The following seems intuitively obvious, but try proving it before reading the proof!

a(p) and 6, (p) are increasing functions of p.

Indeed, if p; < p2, we should expect more edges in Gy, than in G, hence it seems that we
must have «(pz) > «(p1). But how to prove it? If there were a formula for «(p) or 6, (p), we could
write the formula and analytically check. But that is not the case. Fortunately, there is a beautiful

probabilistic way out!

Proor. Let Ug, e € E, be ii.d. Unif[0, 1] random variables. For each p € [0, 1], define the graph
H,, as having vertex set V and edge set {e € E : Ue < p}. Then H}, has the same distribution as Gy,
for fixed p. Therefore

P{H,, has an infinite cluster} = P{G, has an infinite cluster} = o(p).

3The famous book The probabilistic method by Alon and Spencer has many such uses of probability.
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But H,, are all constructed on the same probability space (“coupled”) in such a way that the set of
edges of Hy,, is a subset of the set of edges of Hy,,, if p1 < pa.

Therefore, if the event “H,,| has an infinite cluster” occurs, so does the event “H,,, has an infinite
cluster”. Hence a(p1) < «(p2). Similarly, if the event “o is in an infinite cluster of H,,” occurs, so

does the event “o is in an infinite cluster of Hp,”. Hence 6y(p1) < 05 (p2). |

There is another surprise now.

a(p) is 0 or 1, for any p.

After reading the proof below, think why it does not apply to 8, (p).

Proor. Arrange the edges of G in a sequence eq, ey, .... Then X;,,, X;,,, ... are independent ran-
dom variables, hence any tail event has probability 0 or 1, by Kolmogorov’s law. But the event that
Gp has an infinite cluster is a tail event, since changing the status of finitely many edges cannot

create or destroy and infinite component. Therefore, x(p) € {0, 1}. [ ]

When one combines the two claims, it follows that there must be some p. € [0,1] (that may
depend on the graph G) such that (p) = 0if p € [0,pc) and a(p) = 1 for p € (pc,1]. In many
graphs (including Z¢ for any d > 2), one can show* that p is strictly between 0 and 1. This is very
interesting and raised many questions, including what the value of p. is for specific graphs and
what is the value of «(p.), etc.

But the most interesting take-away for now is that something discontinuous has popped up
from a model where no discontinuity was thrown into the definition. There are phenomena in
physics called phase transitions that are points of discontinuity of some quantity. For example, when
ice changes to water or water changes to steam, there is a drastic and sudden change in the inter-
molecular distances. How can mathematics lead to discontinuous phenomena, unless it is already
built into the model definition? Percolation probability «(p) shows us that it is indeed possible!

The study of phase transitions is a very active area of research in probability today.

14. Cycles in a random permutation

This section can be said to be an application of coupling, but in a somewhat different sense
than we did before. The point we wish to convey is that building a random object using appropri-
ate independent random variables illuminates the random object and makes many computations

easier. The random object we choose to illustrate this is a random permutation.

4While not too difficult, this is a digression that we don't take now. What it entails is showing that a(p) = 0 for

sufficiently small p > 0 and that «(p) > 0 for sufficiently large p < 1.
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Let 8;, denote the set of permutations of [n]. Let IT ~ Unif(8,) denote a uniformly sampled
random permutation. One can ask many questions about TT, we stick to the following one: How
many cycles does IT typically have?

It is possible to approach this question in many ways, using recursions, generating functions,
etc. You are encouraged to try your hand at it. The method below is exquisitely beautiful and
depends on building IT using independent random variables in an ingenious way:.

The Chinese restaurant process of Dubins and Pitman: Imagine a restaurant with infinitely
many circular tables numbered 1,2,3.... Initially, all tables are empty. People Py, Py, ... enter the

restaurant one after another and sit as follows.

e P; sits at table V; = 1.

e For k > 2, when Py arrives, she picks a number Vi ~ Unif{1,2,...,k} (independently of
Vi,..., Vi—1). If Vie = j <k, then Py sits to the immediate left of the person P; (if P; is
already sitting to the left of P;, then Py sits between P; and Pj). But if Vi, = k, then Py sits
in the first vacant table available.

o Interpret each table as a cycle going clockwise. For example, if a table has Py, Py, P11, P12
seated clocwise in that order, we interpret it as the cycle (4,7,11,12). Taking the different

tables as a product of disjoint cycles, we get a permutation TT.

For example, if (V4,...,Vy) =(1,1,2,1,5,4,7,7,6), then TT = (1,9,6,4,2,3)(5)(7, 8).

After n people arrive, the permutation TT,, built from the Chinese restaurant process has

uniform distribution on 8, .

Proor. V = (V4,..., V) has uniform distribution on the set 8y =] x [2] x ... x [n]. Further,

the CRP sets up a bijection V « TT between S, and 8,,. Hence TT,, ~ Unif (8, ). [ |

How is this useful? Let us address the above question on the number of cycles C;, of T;.

Observe that

n
Cn = Z 1v, =k
k=1

since a new table is started by Py if and only if Vi = k (and Cj, is just the number of tables occupied

after n people have arrived). From this we immediately arrive at

n

E€n] =) PVi=1} = ) % = logn + O(1).
k=1

k=1
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Thus, a random permutation has about log n number of cycles in expectation. Observe that the
independence of Vis was not used, just the linearity of expectation. Using independence, one can

show that typically (not just on average) the number of cycles is close to log n.

Calculate Var(C,, ) and show that P{(1 —%)logn < €, < (14 8)logn} — 1asn — oo.

Remark 18

The Chinese restaurant way is particularly suited to study the cycle structure of a random

permutation. For example one can use it to study the distribution of the cycle sizes. It is not
well-suited if one is interested in some other feature such as the number of descents or the
length of the longest increasing subsequence (both have been studied by combinatorists and
probabilists). One can try to find other ways of constructing or representing IT to study such

features, but there is no guarantee that so illuminating a representation exists!
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CHAPTER 5

Laws of large numbers

The time it takes to drive from Bangalore to Dharwad is fairly stable, although the details of
traffic is different every day. How many passengers will board the metro in a day is also fairly
stable, which allows the planning of frequency of trains. Itis possible to predict with great certainty
how long 2 grams of a radio active material is reduced to 1 gram of it, although it is impossible to
predict when a particular atom will decay and the best model is that it is a random variable with
an exponential distribution.

In the broadest sense, a law of large numbers is the phenomenon of deterministic behaviour
emerging from the combination of many random ingredients. In this chapter we shall see a few

theorems that try to capture this in simple, yet important, situations.

1. Weak law of large numbers

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close
to 50. What do we mean by that, for after all the number of heads could be any number between 0
and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The
weak law of large numbers expresses precisely this.

Here and in the rest of the course S;, will denote the partial sum X; + ... + Xy. If we have

several sequences (X ), (Yn) etc., we shall distinguish them by writing SX, SY and so on.

Theorem 19: Kolmogorov’s weak law of large numbers

Let X1, X, ... be i.i.d random variables. If E[|X;]] < oo, then for any § > 0,

P{’%Sn—E[Xl] ‘ >5} 50  asn— oo

Let us introduce some terminology. If Yy, Y are random variables on a probability space and
P{Yn — Y| > 6} = 0 as n — oo for every 6 > 0, then we say that Y;, converges to Y in probability
and write Y, & Y. In this language, the conclusion of the weak law of large numbers is that

s, B EX] (the limit random variable happens to be constant).

Proor. Step 1: First assume that X; have finite variance o2. Without loss of generality, let

E[X;] = 0 (or else replace X; by X; — E[X1]). By Chebyshev’s inequality, P(In~1S,,| > ) <
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n~2572Var(Sy). By the independence of X;s, we see that Var(S,,) = no?. Thus, IP’(\%“I >9) < n"—;

which goes to zero as n — oo, for any fixed 6 > 0.

Step 2: Now let X; have finite expectation (which we assume is 0), but not necessarily any higher

moments. Fix n and write Xy = Yy + Zy, where Yy := Xy 1jx, <A, and Zy := Xi1jx, |~ A, for some

An to be chosen later. Then, Y; are i.i.d, with some mean p, = E[Y;] = —E[Z;] that depends on

An and goes to zero as A, — oo. Fix & > 0 and choose ng large enough so that |p,| < d forn > ny.
As Y1 < Ay, we get Var(Y;) < [Y%] < ALE[X;]]. By the Chebyshev bound that we used in

the first step,

Y
(11) p{ 52y |> 5}  VarV)) _ Al

nd2 = nd?

Ifn > ng then [u, | < 8 and hence if | 1 SZ +unl| = 6, then atleast oneof Z1, ..., Z,, must be non-zero.

P{‘$+un‘>6}<n]?(zl;é0)

=nP(Xq1| > An).
Thus, writing Xy = (Yx — un) + (Zx + 1n), we see that

S, sY sz
P ‘—’>25 <P ‘——un‘>6 4P ‘—+un‘>5
n n n
E[1X1]]

= nd?

A E[IX1]
S— sz 7 A—E (X1l 11,5 A,

Now, we take A, = on with « = §E[X;[]~!. The first term clearly becomes less than 5. The

+nP([X1| > An)

second term is bounded by « 'E[|X1| 1 x, |~ «n], which goes to zero as n — co (for any fixed choise
of & > 0). Thus, we see that

hmsupIP’{‘ ’ >26} d

n—oo

which gives the desired conclusion. [

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to
say that Var(SY) = nVar(Y;) for which it suffices if Y; were uncorrelated. In particular, if
we assume that X; pairwise independent, identically distributed and have finite mean, then

the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with den-

sity — Observe that E[[X[P] < oo for all p < 1 but not p = 1. It is a fact (we shall

1+t2
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probably see this later, you may try proving it yourself!) that %Sn has exactly the same

distribution as X;. There is no chance of convergence in probability to a constant!

(3) The proof under finite variance assumption is the most useful one, as the minimality of
assumptions is less important than the strength of the conclusion. For example, if we
assume that X; have exponential moments, one can get the deviation probability to decay

exponentially. We shall see this later under the heading “concentration of measure”.

(4) If Xy are ii.d. random variables (possibly with E[|X;|] = 00), let us say that weak law of
large numbers is valid if there exist (non-random) numbers a,, such that %Sn —an > 0.
When X; have finite mean, this holds with a,, = E[X].

It turns out that a necessary and sufficient condition for the existence of such a, is
that tP{|X| > t} — 0 as t — oo (in which case, the weak law holds with a,, = E[X1jx|<n])-
Note that the Cauchy distribution violates this condition.

Find a distribution which satisfies the condition tP{|X| > t} — 0 but does not have

finite expectation.

2. Applications of weak law of large numbers

We give three applications, two “practical” and one theoretical.

2.1. Bernstein proof of Weierstrass approximation theorem. Recall the Weierstrass” approx-

imation theorem.

Theorem 20: Weierstrass” approximation theorem

The set of polynomials is dense in the space of continuous functions (with the sup-norm

metric) on an interval of the line.

Proor (BernstEIN). Letf € C[0,1]. Foranyn > 1, we define the Bernstein polynomials Q¢ (p) =
Yot (¥) (B)p*(1 —p)™*. We show that [[Qsn — f|| = 0 as n — oo, which is clearly enough.
To achieve this, we observe that Q¢ (p) = E[f (n"1S,)], where S,, has Bin(n, p) distribution. Law
of large numbers enters, because Binomial may be thought of as a sum of i.i.d Bernoullis.
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For p € [0,1], consider Xi, Xy, ... i.i.d Ber(p) random variables. For any p € [0, 1], we have

()< 2)- ]
~E, “f (i‘) — f(p) (1?_p|<4 +Ep “f (i‘) — f(p) ‘1|5$—p>5]

S
(12) < wrlo) + 2017, { |32~ | > 5}
where ||f|| is the sup-norm of f and w(8) := sup{|f(x) — f(y)|: |x —y| < 8} is the modulus of
continuity of f. Observe that Var, (X;) = p(1 — p) to write

Sn p(1—7p) 1
—_— — < < .
PP{‘n p‘>5}\ ne? S 45’n

Plugging this into (12) and recalling that Q¢ (p) = Ep [f <%“)] , we get
[I£]]

sup | Qenlp) = 1(p) | < wrld) + 50

pel0l

Since f is uniformly continuous (which is the same as saying that w¢(8) | 0 as & | 0), given
any ¢ > 0, we can take 6 > 0 small enough that w¢(5) < e. With that choice of 5, we can choose n
large enough so that the second term becomes smaller than e. With this choice of 6 and n, we get
|Qfn — f|| < 2e. [

Remark 19

It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but

the Chebyshev bound. The main point is that the Bin(n, p) probability measure puts almost
all its mass between np(1 —8) and np(1+ 8) (in fact, in a window of width y/n around np).

Nevertheless, WLLN makes it transparent why this is so.

2.2. Monte Carlo method for evaluating integrals. Consider a continuous functionf: [a, b] —
R whose integral we would like to compute. Quite often, the form of the function may be suf-
ficiently complicated that we cannot analytically compute it, but is explicit enough that we can
numerically evaluate (on a computer) f(x) for any specified x. Here is how one can evaluate the
integral by use of random numbers.

Suppose Xi, Xy, ... are iid uniform([a,b]). Then, Yy := f(Xy) are also iid with E[Y;] =
fz f(x)dx. Therefore, by WLLN,

P(\i;f(xw - J
1

Hence if we can sample uniform random numbers from [a, b], then we can evaluate - > g T(Xk),

b

a

£(x)dx ‘ > 5) 0.

and present it as an approximate value of the desired integral!
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In numerical analysis one uses the same idea, but with deterministic points. The advantage of
random samples is that it works irrespective of the niceness of the function. The accuracy is not
great, as the standard deviation of % Y e f(Xy) is Cn 172, so to decrease the error by half, one

needs to sample four times as many points.

Since m = f(l) ﬁdx, by sampling uniform random numbers Xy and evaluating
% D ﬁ we can estimate the value of ! Carry this out on the computer to see how
many samples you need to get the right value to three decimal places.

2.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such
as “do you support the war in Iraq?”. The poll may be conducted across continents, and one is
sometimes dismayed to see that the pollsters asked a 1000 people in France and about 1800 people
in India (a much much larger population). Should the sample sizes have been proportional to the
size of the population?

Behind the survey is the simple hypothesis that each person is a Bernoulli random variable
(1="yes’, 0="n0"), and that there is a probability p; (or p¢) for an Indian (or a French person) to
have the opinion yes. Are different peoples’” opinions independent? Definitely not, but let us make

that hypothesis. Then, if we sample n people, we estimate p by Xn where X; are ii.d Ber(p). The

accuracy of the estimate is measured by its mean-squared deviation \/Var(X,,) = 1/p(1 — pin~z.
Note that this does not depend on the population size, which means that the estimate is about as
accurate in India as in France, with the same sample size! This is all correct, provided that the
sample size is much smaller than the total population. Even if not satisfied with the assumption of
independence, you must concede that the vague feeling of unease about relative sample sizes has

no basis in fact...

3. Strong law of large numbers

If X;, are i.i.d with finite mean, then the weak law asserts that n 1S, i E[X;]. The strong law

strengthens it to almost sure convergence.

Theorem 21: Kolmogorov’s strong law of large numbers

Let X;, be i.i.d with E[[Xq]] < co. Then, as n — oo, we have 32 43" E[X4].

The proof of this theorem is somewhat complicated. First of all, we should ask if WLLN implies
SLLN? From Lemma 8 we see that this can be done if P (ITflsn —EX4{]| > 6) is summable, for
every 5 > 0. Even assuming finite variance Var(X;) = o2, Chebyshev’s inequality only gives a
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bound of 626 ~2n ! for this probability and this is not summable. Since this is at the borderline of
summability, if we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that oy := E[X}] < oo (of course 4 is not the smallest number bigger
than 2, but how do we compute E[[S;,|P] in terms of moments of X; unless p is an even integer?).

Then, we may compute that (assume E[X;] = 0 without loss of generality)

E [si] — n2(n—1)%0* + noy = O(n2).
Thus P (\nflsn\ > 6) < n*46*4E[S‘$L] = O(n—2) which is summable, and by Lemma 8 we get the
statement of SLLN under fourth moment assumption. This can be further strengthened to prove

SLLN under the second moment assumption, which we first present since there is one idea (of

working with subsequences) that will also be used in the proof of the general SLLN'.

Theorem 22: SLLN under second moment assumption

Let X;, be i.i.d with ]E[X%] < o0. Then, ST“ L E[Xq] asn — 0.

Proor. Assume E[X;] = 0 without loss of generality and let 0> = Var(X;). By Chebyshev’s
inequality, P{I%Snl >t} < Tf—iz since Var(S,,) = no?. Now consider the sequence ny = k2. The
bounds % are summable, hence by the first Borel-Cantelli lemma, we see that |niksnk| < 6 forall
but finitely many k, almost surely. If this even be denoted Es, then P(Es) = 1, hence Nscq, Es also
has probability one, which is another way of saying that niksnk 0.

This can be applied to the i.i.d. sequence X and the i.i.d. sequence X;; (that two sequences

are not independent of each other is irrelevant) to see that
1 1
(13) — Uy, = EX{] and —Vn, —E[X{], as.
My Nk

where Uy, V;, are partial sums of X;™ and X;, respectively.
Now for any n, let k be such that ny <n <mnyy4. Clearly U, < U, < Uy, and Vy, < Vi <
V

sy, Since the summands are non-negative (a similar assertion is false for Sy, which is why we
break into positive and negative parts). Thus,

1 1 1
unk g Hun g nikunkJFl

MNk+1
and the analogous statement for V. Now, ny;1/nx — 1, hence rewriting the above as

e Ly < %un < Mer1 1

unk+1 s

MNk+1 Nk Nk Mk+1

IThe idea of proving SLLN this way was told to me by Sourav Sarkar who came up with the idea when he was a

B.Stat student. I have not seen it any book, although it is likely that the observation has been made before.
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we see that on the event in (13), we also have %Un — E[X{] and %Vn — E[X{]. Putting these

together with the almost sure assertion of (13), and recalling that S,, = Uy, — Vy,, we conclude that
1, S EX1—EX]] =EX. |

Now we return to the more difficult question of proving the strong law under first moment
assumptions. We give two proofs, one in this section and one in the next’.

In the first proof, we shall reuse the idea from the previous proof of (1) proving almost sure
convergence along a subsequence {ny}and then (2) getting a conclusion about the whole sequence
from the subsequence for positive random variables. However, since we do not have second mo-
ment, we cannot use Chebyshev to take the sequence ny = k? in the first step. In fact, we shall
have to take an exponentially growing sequence ny = o, where o > 1. But this is a problem for
the second step, since ny1/n — « whereas the proof above works only if we have ny1/n — 1.
Fortunately, we shall be able to take o arbitrarily close to 1 and thus bridge this gap! As before,
using positive random variables is necessary to be able to sandwich S, between S, and S, ;.

This will also feature in the proof below.

Proor or THEOREM 21. Step 1: It suffices to prove the theorem for integrable non-negative random
variable, because we may write X = X; — X_ and it is true that S, = S;} — S;; where S;i =
X{+...+ X and S;; = X{ + ...+ X;,. Henceforth, we assume that X,, > 0 and p = E[X;] < oo
(Caution: Don't also assume zero mean in addition to non-negativity!). One consequence of non-
negativity is that

SNy . Sn . SN,

N2 = n = N1
Step 2: The second step is to prove the following claim. To understand the big picture of the proof,

(14) if N7 <n < Nj.

you may jump to the third step where the strong law is deduced using this claim, and then return

to the proof of the claim.

a

Fix any A > 1 and define ny := [A¥]. Then, Snﬂk 23 E[Xq] as k — oo.

Proof of the claim Fix j and for 1 < k < ny write Xy = Yx + Zx where Y, = Xy1x, <n; and

Ly = Xy Ix, >n; (why we chose the truncation at n; is not clear at this point). Then, let J5 be large
enough so that for j > J5, we have E[Z;] < §. Let STYLj =Y, Y and Sﬁj = Y 0, Zy. Since

’The proof given in this section is due to Etemadi. Most books in probability give this proof. The presentation is

adapted from a blog article of Terence Tao.

111


https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/

Sn; = STYLJ_ + STZIJ_ and E[X;] = E[Y1] + E[Z;], we get

Sn. Sy SZ.
P22 B | > 257 <P —BY] |+ |2 - Bz | > 25
T T T
Sy Sz
<PY T2 —EM] | >80+ PO | T2 —EZi] | >0
T T
Sy SZ.
(15) <IP’{ Y _E[V] >5}+P{“’7é0}.
1y T
We shall show that both terms in (15) are summable over j. The first term can be bounded by
Chebyshev’s inequality
(16) pl |5 _E[v] ‘ Y WP YV N
Tl)' ! = 521’1]' = 521’1]' 1 Xlgnj '

while the second term is bounded by the union bound
SZ
(17) P Tl7) 75 0 < TL)']P)(X1 > le).
j

The right hand sides of (16) and (17) are both summable. To see this, observe that for any positive

x, there is a unique k such that ni < x < ny41, and then

1 1 C

2 2 2 A

E -X 1X<n]. <x E N =X N T < Chx,
j=1 'j j=k+1

00 k

. 1
IR SURPU) o
j=1 j=1 j>0

Here, we may take C) = Z]- >0 A = %, but what matters is that it is some constant depending
on A (but not on x). We have glossed over the difference between [A | and A but you may check
that it does not matter (perhaps by replacing C, with a larger value). Setting x = X; in the above

inequalities (a) and (b) and taking expectations, we get

oo oo
1
> ;E[X%lxlgnj] < CAEXi]  and > nP(Xy > 1) < CREIXq).
j=1 " j=1

As E[X1] < oo, the probabilities on the left hand side of (16) and (17) are summable in j, and hence
it also follows that P { ’ Sn—n]] —E[Xq] ‘ > 26} is summable. This happens for every 6 > 0 and hence

Sh.
Lemma 8 implies that T]] 2% E[X4] a.s. This proves the claim.

Step 3: Fix A > 1. Then, for any n, find k such that A* < n < A**!, and then, from (14) we get

1 S S
~E[X] < liminf = < limsup = < AE[X;], almost surely.
A n—oo M nooo N
Take intersection of the above event over all A =1 + %, m > 1to get lim %“ =E[X;] a.s. [ |

n—oo
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4. Another proof of the SLLN via a maximal inequality

Here we give another proof of the SLLN, much shorter and involving hardly any technicalities®.

But the techniques used in the first proof are useful and worth keeping in mind.

Lemma 17: A maximal inequality

Let Xy be i.i.d. random variables with finite expectation. Then, for any t > 0,

1 1
P {Sl;llp ES“ > t} < ¥]E[|X1|].

The proof will assume that we know the SLLN for bounded i.i.d. random variables. Indeed,
we do know a simple proof under the fourth moment assumption by a direct application of the

first Borel-Cantelli lemma.

Proor oF SLLN assuMmING LEmMma 17. Fix A > 0and define Yy, = Xi1jx, <A and Zn = Xnljx, > A,

sothat X;, =Y +Z,, and SX = SIL + STZl. The two sums can be controlled separately as follows.

(1) %SX = E[X11x,)< Al by the SLLN for bounded random variables

(2) For any € > 0, by Lemma 17,
1 1
P {limsup ~S%& > s} <P {sup ~S%& > s} <
n n N

Putting these together, we have

1
EE[|X1|1IX1 I>Al

X SY SZ
limsup —* < limsup —* + limsup —*

1
< E[X11|X]|<A] +& wp. 21— EE[|X1|1‘X1|>A].
Now let A — oo and then ¢ | 0 (and note that E[X;1)x, <Al — E[X;] and E[X11jx,=A] — 0by DCT)
to get lim sup % < 0 a.s. Applying the same to —X; gives lim inf Sn—ﬁ > 0 a.s. Hence Sn—“ X EXq).
|

It remains to prove the maximal inequality.

Proor or LEmmA 17. Define

Mn = max{0, X1, X1 +Xp,..., X1 + ... + Xn},

M.;L =max{0, X, Xo + X3,..., Xo+ ...+ Xn+1}.

3Sauditya Jaiswal suggested that we could prove the SLLN on these lines, using the maximal inequality. When he
asked me about it, my first response was that we shall see this proof when we study reverse martingales. That is true,
but then I found that Michael Steele has a beautiful exposition (Explaining a mysterious maximal inequality—and a path to
the law of large numbers. Amer. Math. Monthly 122 (2015), no. 5, 490—-494.) that gives an elementary proof of the maximal

inequality and deduces the SLLN from it. It seems nice enough to include here.
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Observe that these quantities are positive. On the event {M,, > 0}, we can drop the zero from the
maximum and write
Mn =max{Xy, Xy +Xp,..., X1 + ...+ Xn}

= X1 +max{0,Xy,...,Xo + ...+ Xn}
< X1+ My
Hence, M;, — M/, < Xj on the event M, > 0. On the event M,, = 0 we have the trivial bound
My, —M;, <0 (since M;, > 0 anyway). Putting them together, M,, — M} < X11m,, >0
If Xy are ii.d. with finite mean, we have M,, < M, and hence have the same expectation (why
does E[M,,] exist?). Hence E[X;1pm, 0] = 0.

Fix t > 0 and apply this to the variables X; —t. The corresponding quantities M, 1, M], , satisfy
Mnt < (M —t)4 and M < (M, —t) . Therefore,

E[(X1 —t)Im, >t = El(X; —t)1m,, >0l = 0.

Therefore, E[X11pm, ] = tP{My, > t}, and the left side is clearly bounded by E[|X;]]. This gives
the inequality

1
P{Mn >t} < CE[X]l-

Let n — oo and note that M, 1 sup S?“ to get the statement of the Lemma. |
n

5. Beyond the law of large numbers

There are multiple ways in which we can go beyond the laws of large numbers. In particular,
there are two directions, both of which could be made precise in different ways. Overall, the interest
is in getting stronger conclusions by making stronger assumptions as necessary.

Let X1, X5, ... be i.i.d. random variables with zero means.

Sn

o 2o Clearly if « > 1, these are true, but the interest is in

(1) For what o does % X 0or

0 < o« < 1. This leads to what is known as the law of iterated logarithm.

(2) We know that ]P’{\%“I >t} — 0 for any t > 0? Can we say more? One may ask for upper
bounds valid for all n and t or one may ask for the rate at which the probability goes to
zero as n — oo. The first (exact bounds) kind are called concentration inequalities and the

second kind (asymptotic rate) are called large deviations.

5.1. The law of iterated logarithm. For simplicity, assume that X; are bounded random vari-

ables with mean zero. Say [X| < B a.s. Then Hoeffding’s inequality says that

w2
P{ISn| > u} < 2e 2820
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Un

forany n > 1 and any u > 0. Clearly this goes to zero if u = u,, and e T 00 Thus, for any

such u,, we get 3—2 20 In particular, this holds for u, = n® with « > %, but one can also
take up = y/nh(n), where h(n) — oo arbitrarily slowly. When we prove CLT, it will be clear that
the probability does not go to zero if h(n) stays bounded. So we have a complete answer for the
convergence in probability question.

The story is a little more interesting when it comes to almost sure convergence. Now we should
ask for summability of the deviation probabilities. If u = u,, where u, =B \/W, then

2
ele‘;izn _ e*(lJrE)lOng _ 1

nl+e

which is summable. Therefore, lim sup \/11512? < Bv2as. In particular, if we takeu,, = h(n)y/nlogn

Sn
nlognh(n)
precise answer is given by the following theorem, first proved by Khinchine for Bernoulli distribu-

where h(n) — co asn — oo, then 23 0. However, this is not the optimal answer. The

tion, and extended by Komogorov and then Hartman and Wintner to more general distributions.

Theorem 23: Law of iterated logarithm

Let X1, Xy, ... be ii.d. random variables with zero means and unit variances. Then

lim su L

'n.—)oop V/2nloglogn

This is the sharp answer, as dividing by anything growing faster than /nloglog n will obvi-
ously give zero in the limit.

This cannot be proved by a naive application of Borel-Cantelli lemmas. We know that if A, are
independent events, then P{A,, i.0.}is 0 or 1 according as ) ,, P(Ay,) is finite or infinite. However,
for non-independent events, only one side of the implication is correct. Consider the following

example.

Example 21: Borel-Cantelli after blocking

Let A, be independent events in a probability space and let By = A, B, = B3 = Ay,

By = Bs = B = Az and so on (n many Bjs are equal to A ). To show that only finitely
many Bys occur a.s., if we apply Borel-Cantelli lemma naively, we get the sufficient condi-
tion ) nP(A,) < oco. This is clearly foolish, as the event {B, i.0.} is the same as {A,, i.0.}, and

the latter has zero probability whenever } P(A,) < oo, a much weaker condition!

Although the situation in the example may look artificial, it is the general nature of things.
Often we have a sequence of events By, By, ... where B,, and B, 4 are very nearly the same event,
but B, and B, are nearly independent if [n — m| is large. This is clearly so for B, = {S > g(n)}
for some smooth, polynomially growing function. Khinchine’s idea is that there is some way to
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make them into blocks Cyx = Un, <n<n,,,Bn, so that Cy are nearly independent, Cy is almost the
same as By, . This way, the event {B,, i.0} is nearly the same as {Cy i.o} and that has (nearly) zero
or one probability according as ) ; P(Br,, ) converges or diverges. There are many details glossed
over here, but the key point is that of applying Borel-Cantelli lemma after appropriate blocking.
We give proof of the upper bound in LIL in Section 2.

5.2. Large deviations and concentration inequalities. Now we come to the second question of
getting bounds for deviation probabilities IP{| %“I > t}. We already know that if the Xy are bounded

by B and have zero means, then Hoeffding’s inequality gives

2

P{ISn| > tn} < 2¢ 27,
Such inequalities are called concentration inequalities. Recall that the starting point of the proof of
Hoeffding’s inequality was the application of Markov’s inequality to e®5n:
P{Sn > tn} < e  OME[e%%] = e OME[]"

— e*CT\.

where ¢ = 0t + log E[e®X1]. Similar, but weaker polynomially decaying bounds can be derived
assuming only a few moments for the Xys. All these are concentration inequalities.

If we are interested in the asymptotics of the deviation probabilities as n — oo, more precise
things can be said.

Assume that X;, Xy, ... are i.i.d. random variables such that {(8) = E[e®X1] < co forall € R

(satisfied by bounded random variables, for example). Then we take the bound obtained above
P{Sn > tn} < e—n[et—loglb[e)}‘
For fixed t > 0, the best bound is got by optimizing over 0. Let I(t) = supy (0t —log1(0)). The

supremum can be shown to be finite by some convexity observations, but just assume it for now.

Then we get
P{S,, > tn} < e ™M),

This is still valid for all n and t > 0. What is remarkable is that the bound becomes tight asn — oo,

at least on the logarithmic scale.

Theorem 24: Cramer’s theorem
Let X1, X5, ... beii.d. random variable with {)(0) < oo for all 6 € R. Then

%log]P’{Sn/n >t} =-I(t) foranyt > 0.

Because we take logarithms and divide by n, this statement is not saying that we can reverse

—nI(t

the upper bound and write P{S,, > tn} < ce ) for some constant. In fact, it could be well be
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that P{S,, > tn} < ﬁe*““t). But on the log-scale, asymptotically, we get a sharp estimate for the
probability of deviation.
We have already proved the upper bound. We shall not prove the lower bound here. We work

it out for the special case of Bernoulli random variables, where precise computations are possible.

5.3. Bernoulli random variables. Let X; be i.i.d. Ber(1/2) random variables. Then S, has the

transformed Binomial distribution

ny\ 1
pn(k) :=P{S, =k} = (k)zn 0<k<n

By Stirling’s formula, we have the following estimate when n as well as k and n — k are large:

nn+%
Pn(k) ~ 1 1
omyk+s (T‘L _ k)n k+3/2m1
n" Vn

= ank(n—k)nfk mm

k k n—k n—k
log2 + —log — 1
0g +nogn+ n og n ]}

_ VM {—n [
Van/km—x) P
— \/TT' e711I(k/n)
V21 /k(n —k)
where I(x) =log2+xlogx+(1—x)log(1—x) for x € [0, 1] (with the interpretation that 01og 0 = 0,

by continuity). is called the Shannon entropy function. The precise meaning of the approximation
in the first line is that given ¢ > 0, there exist N and K such that foralln > Nand K <k < N —K,

we have

(18) (1—¢) e—nI(k/n) < pn(k) < (14 E)e*“I(k/n)‘

2y/n
where we used the fact that k(n —k) is largest when k = n/2 and smallest when k = 1 (we anyway
have k > K) to to simplify the form of the bounds.
The properties of x — I(x) play a key role in the estimates for the probabilities. It is symmetric
about x = 1/2, attains its minimum value of 0 uniquely at x = 1/2, is convex, and is bounded

between the parabolas 2(x — %)2 <I(x) <3(x— %)2 for0 <x < 1.

Large deviations: If x > %, then take ¢ = 1/2 (or any fixed number in (0,1)) and use (18) to get

1
]P){STL > TIX} > pn(lyn)[l) > 767n1(x)’

4v/n

P{S,, > nx} = Z prn(k) < ne ™),
k>nx

In the second line, we bounded all terms by the largest one (i.e., pn([nx]) and used the fact that
I(x) is increasing on [1/2,1]. As I(x) > 0 for x > %, the polynomial factors outside are negligible
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Ficure 1. Graph of the function x — I(x)

compared to the exponential term and we can simply write P{S;, > nx} =~ e ™ (*) in the sense that
1
lim —log P{Sn, > nx} = —I(x).
n—oo N

This is the statement of the large deviation principle for Bernoullis.

Concentration inequalities: From the estimate above and the fact that I(x) > 2(x — %)2, we get
P{Sy, > nx} < ne ™M) ne2n(x—3)?
We can get rid of the polynomial factor below and rewrite this as

P{S,, > nx} < Cge(z_s)“("_f)2

for any ¢ > 0 and C, < oo (required to take care of the case of small n). With more care, one can

derive the following inequality of Bernstein

P{Sy > nx} < 2e20x—1)’

6. Empirical distribution converges to true distribution*

Let X1, Xy, ... beii.d. real-valued random variables with distribution p. The empirical distribu-

tion based on the first n samples is defined as the random probability measure

1
L, = *(5)(1 —l—...—i—éxn).
n
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This is the probability distribution whose CDF Fy__ has jumps of size % at each of the sample points
Xi, k < n, counted with multiplicity (meaning that if a particular value occurs p times, then the

jump at that location if £). Thus for a fixed x € R, we see that

1 & .
FL.) =— ) Txoox S Fux)
k=1

by SLLN, since 1x, <x are i.i.d. with Ber(F,(x)) distribution. If D is any countable dense set such

as rationals, we can take the intersection of the almost sure event above and say that
(19) Fr,(x) = Fu(x) forallx € D, a.s.

Pay attention to the placement of the “a.s.”; for example, it is not evident that we can write the
above statement with “for all x € R” as it involves taking uncountable intersection. Nevertheless,
the above statement is sufficient to say that L;, 4 . This is because (it was an exercise in the
problem set), convergence of the CDF at a countable dense set of points implies convergence in
distribution. Applying this to each w in the good set in (19), we get that* L,, 4 na.s.

But in fact, the convergence holds in the stronger Kolmogorov-Smirnov metric! In particular,

that implies that in (19)one can write “for all x € R”.

Theorem 25: Glivenko-Cantelli
Let X1, X5, ... beii.d. random variables with distribution p. Then

||FLn = FuHsup a_.s). 0.

Proor. First let us do it assuming that p = A is the uniform distribution on [0, 1]. Fix integer
M > 1 and let N(w) be such that [Fy_(,)(k/M) — (k/M]| < ¢ forall k € {0,1,..., M} for all
n > N(w). SLLN shows that N(w) < oo a.s., for any M < oco. But then, for any x € [0, 1], we can
find k such that ﬁ < x < X1 and then

M
k+1 k
Fi(w)(x) —Falx) < FLn(w)(W) *FA(M)
AV M MSSTMm
Similarly
k+1 k
Fa(x) —Fr, (w)(x) < Ve _FLn(w)(M)
k 1

4Be careful in reading this statement. What it means is that for almost every w, the sequence of measures L,, (w)

converge to p in the Lévy metric.
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Together, this shows that |[Fi (o) — Fallsup < € + 57 foralln > N(w). Ase > 0and M < co are
arbitrary, we see that ||[Fr,, — Fa|lsup — 0 a.s.
Now if p is a general distribution, without loss of generality, we assume that Xi = G (Uy),

where Uy are i.i.d. Unif[0, 1] and G, is the generalized inverse of F,, that satisfies
Gu(u) <x if and only if u < Fy(x)

foru € (0,1) and x € R. Therefore 1x, <x = 1y, <F,(x), and hence Fr | (x) = Frs (Fu(x)), where L},

is the empirical distribution of Uy, ..., U,. Therefore (as Fx(F,.(x)) = Fu(x) for all x),
||FLn - FuHsup = ||FL{L - FAHsup

and we have shown that the latter goes to 0 almost surely, as n — oco. |

Observe that the key element in the proof was applying SLLN to Bernoulli random variables.
We have already seen in that case how the closeness of the sample mean to expectation can be
strengthened using Bernstein’s/Hoeffding’s inequality. Following it up, one can strengthen the

Glivenko-Cantelli theorem to show that
nPF, — Fuusup =0

provided p < . We leave this as exercise.

7. Using characteristic functions to prove laws of large numbers

Let X, Xy, ...bei.i.d. with finite expectation . Let(t) = E[e'tX1] be the characteristic function
of Xys. Then,

Ele*%] = [ Ee™™/™] = g(t/n)™
k=1

As E[X1] exists, by Theorem 39 in the appendix, it follows that ¢ is C!-smooth and ¢’ (t) = E[iX;e'tX1].

Therefore, using the Taylor expansion of ¢ near 0, we get @ (u) = 1+ipu+o(u)asu — 0. Therefore,
for fixed t,

. Sn t n .
Ele't™] = <1 - iu; + o(l/n)) — ettt

asm — oco. Butt — et is the characteristic function of §,,. Lévy’s continuity theorem implies that
Sn
n

WLLN under first moment assumption.

it ... As the limiting distribution is degenerate, it follows that S?“ 5 u. Thus we have proved
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Assume that © = 0 and that E[X%] < 00, s0 that @(u) =14 O(u?) asu — 0. Let h,, — oo as

n — oo and consider S,, /h,,. Its characteristic function is

E ltsn/hn HE lth/hn :(p(t/hn)n

- (1 n O(1/h$l)) 1

if nhgz — 0. As the constant function 1 is the characteristic function of the zero random variable,
by Lévy’s continuity theorem we get }51—2 40. As the limit is constant, STHI % 0 for any hy, such that
h2 /m — co.

This finishes alternate proofs of several WLLN type results we had seen earlier. I am not aware

of any approach to the strong laws using characteristic functions.

8. Strong law for certain non-independent random variables

The techniques that we used allow us to prove strong law for certain sequences of random vari-
ables even if there is no independence. Such questions may arise in contexts that have no explicit
mention of probability. For example, in analysis, the sequence (sin(n®))., looks like a sequence of
random numbers (for a.e. 6, it fails spectacularly if you take 6 = 7/2 for example). In number
theory, many arithmetical sequences like the M&bius function may satisfy laws of large numbers
(on average equal number of zeros and ones occur in the sequence).

For example, let X, = «™ for n > 0, where « is picked uniformly at random from the unit
circle S! = {z € C:|z| = 1} (this just means that o« = e?™V where V ~ Unif(0, 1]). Clearly, X, are

not independent. But we can still see that

Nt
1 N 11\1(?—;) if o #£1,
N2 Xk =

k=1 1 if o = 1.

As |1 — aNF1] < 2, it follows that > N Xy — 0 for all « # 1. Extending this, we can see that if

o is not a root of unity, then = S XP — 0 forall p > 1. In particular

1
NZXE S 0forallp > 1.
k=1

Whatisn; < np < ng < ... is a fixed sequence. Is it true that & SR XB %3 0? The geometric
series formula does not apply, and the answer is not clear. It suffices to take p = 1 (just replace «

by o which is also uniform on S'). We show that it is true”.

5 Abhishek Khetan raised this question to me, and while we were both certain it must be somewhere in the literature,

we could not locate a proof. We worked out for ourselves the proof given here.
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Theorem 26
a.s.

Letn; <mnp <nz <.... Then %Zszl Xn, = 0.

Now we do not have independence. But the random variables (complex-valued, but that is
no big deal®) are bounded. The more basic techniques based on Chebyshev inequality are more

amenable, as they only require pairwise correlations, and it is easy to see that

ean(n—m)v

27T i

_ dv 0 ifm#n,
E[anm} :J T —

0 T 1

ifm=n.

Proor. Let YN = % Z}:‘Zl Xx. Then E[YN] = 0 and E[|[YN]?] = % Therefore,
E[[Yn[?) < 1 _
52 N2
This is summable, for any & > 0, over the subsequence Ny = k2. Therefore, by Borel-Cantelli we
see that Yy 237 0.

For general n, find k such that k? < n < (k+ 1)? and observe that

P{Yn| > 8} <

1% 1 &
Yol < |— 4= ;
'S \nzan > Xl
j=1 j=k241
2k +1
<|Yk2|+ .
n
This shows that Y, 3" 0as n — oo. [ |

Notice the similarity to the proof of SLLN under second moment assumption that we gave
earlier. The difference is that there we used the positivity of Xjs to sandwich S,, between S, . and

S(k+1)2 but here we used the boundedness of Xjs to get that control.

b1f X = X1 + 1X; is a complex valued random variable, then E[X] just means E[X;] + iE[X;] etc. No new definitions
are needed and we can write everything in terms of real-valued random variables. It is just that the complex notation

could be more convenient.
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CHAPTER 6

Central limit theorems

Laws of large numbers apply when there is deterministic behaviour arising out of randomness.
As we saw, this happens when the system size goes to infinity. But at any finite size of the system,
there are fluctuations from the deterministic behaviour, and they may be important.

For example, traveling to the airport may take 60 minutes on average, but one must make al-
lowance for random happenstances that increase the time above average. In planning frequency
of buses or trains, average numbers of passengers is a key input, but the system for allow for more
or less people showing up at a particular time and day. A dangerous chemical may be packed in a
tight container, but some of the molecules are sure to leak out by chance - how many and is it safe?

Central limit theorems (or more general convergence in distribution statements) describe such
fluctuations. A one line summary would be that in laws of large numbers, all probabilities of
interest are close to 0 or to 1, whereas in central limit behaviour, events of all probabilities between
0and 1 feature. Nevertheless, there is a remarkable regularity or universality in that while there are
a great many different ways to change the “microscopic details” (the random variables that make
up the system), but only a few distinct behaviours for the fluctuations. We shall see a few theorems
about sums of random variables, in most of which the fluctuations turn out to be Gaussian or

Poisson, even though the model description does not have anything to do with these distributions!

1. Central limit theorem - statement, heuristics and discussion

If X; are i.i.d with zero mean and finite variance o2, then we know that E[S%] = no?, which can
roughly be interpreted as saying that S,, = y/n (That the sum of n random zero-mean quantities
grows like y/n rather than n is sometimes called the fundamental law of statistics). The central limit
theorem makes this precise, and shows that on the order of \/n, the fluctuations (or randomness)
of S, are independent of the original distribution of X;! We give the precise statement and some

heuristics as to why such a result may be expected.

Theorem 27: Central limit theorem for i.i.d. variables

Let X;, be i.i.d with mean p and finite variance 2. Then, S‘;;\/%” 4N (0,1).
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Informally, letting Z denote a standard Normal variable, we may write S, ~ nu+oy/nZ. More
precisely, P{S,, < nu+oy/nt} — P{Z < t}forany t € R. This means, the distribution of S, is hardly
dependent on the distribution of X; that we started with, except for the two parameters - mean and
variance. This is a statement about a remarkable symmetry, where replacing one distribution by
another makes no difference to the distribution of the sum. This feature that the behaviour of
a large yet random system does not depend on the details of the microscopic parts that go into
building it, is called universality and is a major theme of modern probability.

In the rest of the section, we discuss various aspects of the theorem, and in later sections we

give proofs of this and even more general central limit theorems.

Why scale by \/n? Without loss of generality, let us take u = 0 and ¢ = 1. First point to note is
that the standard deviation of Sy /y/n is 1, which gives hope that in the limit we may get a non-
degenerate distribution. Indeed, if the variance were going to zero, then we could only expect the
limiting distribution to have zero variance and thus be degenerate. Further, since the mean is zero
and the variance is bounded above, it follows that the distributions of Sy, /v/n form a tight family.

Therefore, there are at least subsequences that have distributional limits.

Why Normal distribution? Let us make a leap of faith and assume that the entire sequence
Sn/v/M converges in distribution to some Y. If so, what can be the distribution of Y? Observe
that (ZTL)*%SZn 4 vand further,
X1 +X34+...+Xon £>Y, X2+X4+'”+X2nﬂ>Y.
vn vn
But (X1, X3, ...) is independent of (Xy, Xy, ...). Therefore (this was an exercise earlier), we also get
<X1+X3+...+X2n1 Xo +Xg+ ...+ Xon
vn ' vn
where Y1, Y; are i.i.d copies of Y. But then, (yet another exercise), we get
Son. _ 1 <X1+X3+...+X2n_1 +X2+X4+...+X2n> q Y1+ Y2
van o V2 vn vn V2
Thus we must have Y + Y, 4 V2Y. If Y; ~ N(0, 02), then certainly it is true that Y; +Y> 4 V2Y. We
claim that N(0, o?) are the only distributions that have this property. If so, then it gives a strong

> % (Y3, Y2)

heuristic that the central limit theorem is true. The claim itself is not trivial, we discuss it in the

section on the Gaussian distribution.

Justification by examples: Assuming that S, /\/n has a distributional limit, we have justified that
the limit must be Gaussian. There are specific examples where one may easily verify the statement
of the central limit theorem directly (indeed, that was how the theorem was arrived at).

One is of course the Demoivre-Laplace limit theorem (CLT for Bernoulli random variables),
which is well known and we omit it here. We just recall that sums of independent Bernoullis have
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binomial distribution, with explicit formula for the probability mass function and whose asymp-
totics can be calculated using Stirling’s formula.
Instead, let us consider the slightly less familiar case of exponential distribution. If X; are i.i.d
Exp(1) so that E[X;] =1 and Var(X;) = 1. Then S,, ~ Gamma(n, 1) and hence S“T;“ has density
1

fnld) = mre Y ) Ve

_emnt w1 )
Jn

1
- e ¥

V2m

by elementary calculations (use Stirling’s approximation for I'(n) and for terms involving x write
the exponent as —x/n +log(1 + x/y/n) and use the Taylor expansion of logarithm). By an earlier
exercise (Scheffe’s lemma) convergence of densities implies convergence in distribution and thus

we get CLT for sums of exponential random variables.

Prove the CLT for for the following distributions of Xjs. (1) Ber(p). (2) Bin(k,p).
(3) Poisson(A). (4) Geometric(p).

The special feature of these cases is that we can explicitly work out the distribution of S,,. This is
not the case in general, and in fact one of the uses of central limit theorem (for example, in statistics)

goes the other way. We use the Normal distribution as an approximation to the distribution of S,.

Justification under stronger hypotheses Lastly, we show how the CLT can be derived under strong
assumptions by the method of moments. As justifying all the steps here would take time, let us
simply present it as a heuristic for CLT for Bernoulli random variables. Let X; be i.i.d. Ber4(1/2).
Then S, has a symmetric distribution and hence all odd moments are zero (but first, [Sn| < n,
hence all moments exist). For even moments,
ESFl= >  EXg ... Xk,
1<ki<n

Fix k = (kq,...,kzp) and consider the corresponding summand. The expectation factors as a prod-
uct of E[X%], 1 < i < n, where {; is the number of j for which k; = 1. Unless each {; is even, the
summand vanishes and if each {; = 1. The terms for which each {; contribute 1 each, and these
terms may be divided into two parts.

First, those in which each ¢{; is 0 or 2. The number of ways to ways to choose the p indices i for
which {; =2isn(n—1)...(n—p + 1), and the number of ways that these indices may be chosen
is2p—1)(2p—3)...(3)(1).
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Next those terms in which at least one {; is equal to 4. Then there are at most p — 1 distinct
indices, and they can be chosen in at most n? ! ways. The number of ways of choosing ;s is itself

a number that depends only on p, say C,,.

2. Gaussian distribution

We collect some basic facts about the Gaussian distribution here. The standard Gaussian mea-
sure is denoted v, its density is denoted ¢ and its distribution function is denote ®. The density
of N(u, 02) is then o1 ((x — p)/0). We also use the notation p¢(-) for the density of N(0,t). We

usually write Z, Z;, Z,, . .. for standard Gaussian random variables.

x2
2.1. Heat equation. Consider p(x) = ﬁeff for t > 0 and x € R. Differentiation gives

0 1292
(E)t - 267@) pe(x) =0.

In other words, p¢(x) is a solution to the heat equation. This is the single most important fact about

the Gaussian distribution.

2.2. Integration by parts formula. Let f : R — R be a smooth function such that [x[ f(*)(x) €
L!(y) for any j, k (we need much less below). Then, as IR (x/vVt)pt(x)dx = E[f(Z)] for any t,

differentiating w.r.t. t under the integral, we get

d
0= T JR f(x/vVt)pe(x)dx

— _ﬁ J f/(x/vVt)xpe(x)dx + = 1 J f(x/Vt)p{ (x)dx (by heat equation)
1 1 //
= _2t3/2J f/(x/vVt)xpe(x)dx + — o J (x/Vt)pt(x)dx (integration by parts)

from which, setting t = 1, we arrive at the Gaussian integration by parts formula
(20) E(Zf'(Z)] = E[f"(Z)).

We leave it as an exercise to justify the differentiation under integral and the integration by parts.
If we set h = f/, then (20) transforms to

(21) E[(Zh(Z)] = E[h/(Z)],
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which is often called Stein’s identity’. With a bit more care, one can prove that (21) holds for any
h: R — R that is absolutely continuous with h’ € L!(y) (this means that h(x) =[5 gl

for some g € L!(y), which is then called the derivative of h and denoted as h').

2.3. Moments. The odd moments are zero by symmetry, while the even moments can be got
by a direct integration. Alternately, use integration by parts formula (20) with f(x) = x*P we get
E(Z%P] = (2p — 1)E[Z?P~2], from which it follows that

E[Z?"] = (2p—1) x 2p—3) x ... x 3 x 1.

2.4. Characteristic function. Formally one can see that E[e''4] = e —3t? by substituting it in
the moment generating function. That can be made into an honest proof by first arguing that
w — E[e"4] is an entire function (which is equal to the characteristic function on the imaginary
axis and equal to the moment generating function on the real axis). Two entire functions that agree
on the real line must agree everywhere, hence the claim follows.
Another way (avoiding complex analysis) is to apply the integration by parts formula to f(x) =
et to get E[itZe''?] = —t?E[e''4]. Setting @ (t) = E[e*'4] we see (again, differentiating under the

expectation) that ¢’(t) = —t@(t), for which the unique solution satisfying ¢(0) = 1 is

ot) = e 2%,

2.5. Characterizations of Gaussian distribution. A feature of a probability distribution thatis
not shared by any other probability distribution is called a characterization of the said distribution.
For example, the characteristic function determines the distribution, hence is always a characteri-
zation. Any distribution p with finite moment generating function (i.e., [ e"™dp(x) < oo for [t| < &
for some & > 0) is characterized by its moment sequence.

In particular, the Gaussian distribution is characterized by its moments, i.e., no other distribu-
tion has the same moments as the standard Gaussian distribution. The identities (20) and (21)
are also characterizations of the standard Gaussian distribution. This means that if E[h/(W)] =
E[Wh(W)] for a large enough class of functions h, then W ~ N(0,1). For instance, we saw that
applying it to h = e one can derive that the characteristic function of N(0, 1) is e~*"/2, but one can
also consider other classes of functions (e.g., C L(R)) that do not contain es. Yet another character-
ization is the stability property that we used earlier: If W, W' are i.i.d. and W + W’ 4 \/2W, then

W ~ N(0, 0?) for some o2 > 0. To see this, suppose (-) denotes the characteristic function of W,

TAs Arka Das pointed out in class, (21) can be got directly by writing E[f = [f'(x)@(x)dx and integrating
by parts. We gave a more roundabout derivation to emphasize its connection with the heat equation. In addition, the
dynamical viewpoint of considering py, t > 0, is of great importance. The identity (20) is related to the Ornstein-

Uhlenbeck process, a Markov process with stationary distribution N(0, 1).
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then

Y(t) =E [e"V] =E [emwﬁwr — (t>2.
V2

From this, by standard methods (note that characteristic functions are necessarily continuous), one
can deduce that P(t) = e~ for some a > 0. Therefore, W ~ N (0,2a).

3. Strategies of proof of central limit theorem

To show that a random variable W ~ N(0,1), it suffices to show that it has any one of the
characterizing properties of the standard Gaussian distribution. In the context of CLT, we have a
sequence Wy, = S;,/y/n that we must show converges to N(0,1) in distribution. Hence we wish
to know if W,, approximately has a characterizing property (and the approximation gets better as
n — 00), does it mean that Wy, 4N (0,1)? Here are the essential statements that give a positive

answer, hence each of them provides a possible route to showing that Wy, 4N (0,1).

Theorem 28

Let un,p € P(R) and let Wy, ~ pn and W ~ p. Each of the following is equivalent to
W, S w.
(1) E[f(Wn)] — E[f(W)] for all f € C®)(R) (i.e., f0) € Cy(R) for all j).

(2) Elet(Wn)]l — Elet(W)] for all t € R.
If u = vy, then the following statement also implies that W;, 4N (0,1): E[Wnl|l < co and

Eh' (Wn)] —EWn,h(Wn)] =0  ifhe CL(R).

The second statement is known as Levy’s continuity theorem and is proved in the section on
characteristic functions. Further, what we need is the conclusion that W,, 3) W, so we prove the

relevant one-way implications in the first and third statements.

PrOOF. (1) Fixtand for k > 1 find fx € C* such that 1(_, 1 < fi <1 - Taking

(—oot++
expectations, we see that

1
i

PWn <t} < Elf(Wh)] = Elfi( W) <PW <t +
Let k — oo to get limsup Fy,, (t) < F.(t). Similarly,

PIWa < t4 ) > Elfic(Wa)) = Elf(W)) > PIW < 1)
Replace t by t — % and let k — oo to get liminf F, (t) > F.(t—).

(2)
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3.1. Outline of three proofs of CLT. We present three proofs of the central limit theorem.

(1) Using characteristic functions: In this proof we show that E[e{(Sn/v/1)] — e~ /2 for all
t € R. The reason that the characteristic function is so effective is that for sums of inde-
pendent random variables, the characteristic function will be a product of the individual
characteristic functions. Additional ingredients are basic facts about characteristic func-
tions, which imply that if Ele¢(X;/yn)] =~ 1 — % if E[X;] = 0 and IE[X%] = 1. Hence
Elet(Sn/vMn)] =~ (1 — % )L e~t*/2_ A little work is needed to make the approximations

precise.

(2) Using Lindeberg’s replacement principle: In this proof, along with X;, we construct inde-
pendent standard Gaussians Z;s on the same probability space, and show that E[f( SX/ym)] =
E[f(SZ/y/n)]. As the latter is the same as E[f(Z)], CLT follows. To show the closeness of
expectations, the idea is to go from SX to SZ in n steps, by replacing each X; by Z;, one
after another. The heart of the proof is in showing that the difference in expectations in
each step is o(1/n).

(3) Using Stein’s method: This proof works by showing that Wy, = S, /y/n satisfies the Stein
identity approximately.

To not obfuscate the main ideas with less important technicalities, we present the first two proofs as-
suming that the third moment of X;s is finite. Then we shall in fact state the more general Lindeberg-
Feller central limit theorem and prove it under minimal conditions, thereby also proving the standard

CLT under second moment assumption. The proof by Stein’s method is given thereafter.

4. Central limit theorem - two proofs assuming third moments

We give two proofs of the following slightly weaker version of CLT.

Theorem 29

Let X, be i.i.d with finite third moment, and having zero mean and unit variance. Then, %

converges in distribution to N(0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume
Theorem 27.

4.1. Proof via characteristic functions. We shall need the following facts.

Let z,, be complex numbers such that nz,, — z. Then, (1 + z,)™ — e~
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Proor or THEOREM 29. By Lévy’s continuity theorem (Lemma ??), it suffices to show that the
characteristic functions of n—2 Sy converge to the characteristic function of N(0, 1). The character-
istic function of S, /y/n is by (t) :=E [e“sﬂ/\/ﬂ . Writing S;, = X; +... + X, and using indepen-

dence,

3

PYn(t) =E

H eith/ﬁ]

k=1

ﬁ E [eitxk/ﬁ}
k=1

o)

where 1 denotes the characteristic function of Xj.

Use Taylor expansion to third order for the function x — e'** to write,

. 1 i .
et =1 +itx — §t2x2 — E’LSeltX x3 for some x* € [0,x] or [x,0].

Apply this with X; in place of x and tn~'/2 in place of t. Then take expectations and recall that
E[X;] = 0and E[X?] =1 to get
t t2 i o
W <ﬁ) =1— 2 +Ra(t), whereRn(t) = —6?91@ [eltxl xﬂ .
Clearly, R (t)] < C¢n—3/2 for a constant C; (that depends on t but not n). Hence nR, (t) — 0 and
by Exercise 23 we conclude that for each fixed t € R,
t2 n 2
nlt) = (1= 5+ Ral)) e
2n
which is the characteristic function of N(0,1). |

4.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we
observe that the central limit theorem is trivial for (Y1 +...4 Yn)/v/n, if Y; are independent N(0, 1)
random variables. The key idea of Lindeberg is to go from X; 4 ... + X, to Y1 +... + Yy, in steps,

replacing each X; by Yj, one at a time, and arguing that the distribution does not change much!

Proor. We assume, without loss of generality, that X; and Y; are defined on the same probabil-
ity space, are all independent, X; have the given distribution (with zero mean and unit variance)
and Y; have N(0, 1) distribution.

Fix f € Cy” (R) and let v/l = Y 1 X5+ X1 Vyand viVie = Y5 X5 + S, Y for
0 < k < n and empty sums are regarded as zero. Then, Vy = SY/\/n and V,, = SX/\/n. Also,
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SY /\/n has the same distribution as Y;. Thus,

E [f (\%sﬁ)] — ZE (Vi) = f (Vie1)]
= i E[f (Vi) —f (Uy)] — i E[f (Vik—1) — f (U )] .
By Taylor expansion, we see that - -
Vi = (U] = 0/ (U0 2+ 17 3%+ ) 2%,
Vi) = 1) = £/ Y+ w3+ ) Yo

Take expectations and subtract. A key observation is that Uy is independent of Xy, Yi. Therefore,

E[f'(Ux)XY] = E[f’ (Uy )JE[X}] etc. Consequently, using equality of the first two moments of Xy, Yy,

we get

B (Vi) — F(Vie )] = —5 {BIF/(Ui)XE) + B (U v}

6nz2
Now, Uy and Uy* are not independent of Xy, Yy, hence we cannot factor the expectations. We put

absolute values and use the bound on derivatives of f to get

BV~ Bl (Vi 1) < = Ce {EDGP + BV}

n2
Add up over k from 1 to n to get
L ox 1 3 3
_ _ <
e ()] E[fmn] < n% Ce {EIXPI+ BV}
which goes to zero asn — oo. Thus, E[f(Sn/y/n)] — E[f(Y1)] forany f € C )(R) and consequently,

by Lemma ?? we see that %Sn 4 N(O, 1). |

5. Central limit theorem for triangular arrays

The CLT does not really require the third moment assumption, and we can modify the above
proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where
we don't have one infinite sequence, but the random variables that we add to get S,, depend onn
themselves. Further, observe that we assume independence but not identical distributions in each

row of the triangular array.
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Theorem 30: Lindeberg-Feller CLT

Suppose Xy, x, k <n,n > 1, are random variables. We assume that
(1) Foreachn, the random variables X, 1, ..., Xy, n, are defined on the same probability
space, are independent, and have finite variances.

(2) EXnxl=0and Y |4 ]E[X%l/k] — 02,as N — 00.

(3) Forany 5 >0, wehave ) ' E[X%  1)x,,|>s] = 0asn — oo.

Then, X1 +...+ Xnn 4 N(0, 0%) as n — oo.

First we show how this theorem implies the standard central limit theorem under second mo-

ment assumptions.

Proor oF THEOREM 27 FROM THEOREM 30. Let X;, 1« = n*%Xk fork=1,2,...,n. Then, E[X, ] =
Owhile Y ¥ E[X2 ] =+ > ' EX}] = 02 foreachn. Further, } ' | E[X% \ 1)x, ,|>5] = EX31x, 1~ 5 /5]
which goes to zero as n — oo by DCT, since E[X?] < co. Hence the conditions of Lindeberg Feller

theorem are satisfied and we conclude that 5—\/% converges in distribution to N(0, 1). |

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-

Feller CLT. We consider some examples.

Example 22

Let Xy ~ Ber(py) be independent random variables with 0 < py < 1. Is S, asymptotically
normal? By this we mean, does (Sn, — E[Sy])//Var(S») converge in distribution to N(0,1)?
Obviously the standard CLT does not apply.

To fit it in the framework of Theorem 30, define X, x = Xk—T_np—k where 12, = Y o1 pk(l—px)

is the variance of S,. The first assumption in Theorem 30 is obviously satisfied. Further,

Xn x has mean zero and variance px (1 — pi)/ T%l which sum up to 1 (when summed over
1 < k < n). As for the crucial third assumption, observe that 1)x ,|~5 = 1jx,—py|>5t,- If
Tn T 00 as n — oo, then the indicator becomes zero (since [Xix — px| < 1). This shows that
whenever Tt,, — 00, asymptotic normality holds for S,,.

If T, does not go to infinity, there is no way CLT can hold. We leave it for the reader to
think about, just pointing out that in this case, X; has a huge influence on (S;, — E[Sn])/Tn.
Changing X; from 0 to 1 or vice versa will induce a big change in the value of (S, —E[Sn])/Tn

from which one can argue that the latter cannot be asymptotically normal.

The above analysis works for any uniformly bounded sequence of random variables. Here is a
generalization to more general, independent but not identically distributed random variables.
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Exercise 24: Lyapunov’s central limit theorem

Suppose Xy are independent random variables and E[Xk[*T%] < M for some & > 0 and

M < oo. If Var(Sn) — oo, show that S, is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 23

If X;, are i.i.d (mean zero and unit variance) random variable, what can we say about the
asymptotics of T, := X1 +2Xp + ... + nXy? Clearly E[T,] = 0 and E[T2] = Y 1, kK ~ %3

Thus, if we expect any convergence to Gaussian, then it must be that n3T, 3 N(0,1 /3).

To prove that this is indeed so, write TF%TTl = Y v_1 Xnx, where Xy, = n*%ka. Let us
check the crucial third condition of Theorem 30.
E[X%l/kl‘xn,k|>6] = n73k2E[X12<1|Xk|>5k*1n3/2]
< n_lE[X21|X‘>5ﬁ] (since k < n)

which when added over k gives E[X*1,x|- 5 /- Since E[X?] < oo, this goes to zeroasn — oo,

for any & > 0.

Let0 < a1 < ap < ...Dbe fixed numbers and let Xy be i.i.d. random variables with zero mean
and unit variance. Find simple sufficient conditions on ay to ensure asymptotic normality
of Tn = Z{clzl CLka.

6. Two proofs of the Lindeberg-Feller CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with

the earlier proofs and see where some modifications are required.

6.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a

product to an exponential.

n n n
If zi,, wi, € Cand |zi|, wi| < O forall k, then | [] zik — [ wi | O™ Y |z — Wil
k=1 k=1 k=1

Proor or THEOREM 30. The characteristic function of Sy, = Xy 1 +...+ X n is given by P, (1) =

n . .
[ E [e'*X~x]. Again, we shall use the Taylor expansion of e***, but we shall need both the second
k=1
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and first order expansions.

ix 1+ 1itx — %tzx2 — %t3eit"*x3 for some x* € [0, x] or [x,0].
14 itx — l‘czei""+><2 for some x™ € [0,x] or [x,0].
Fix 6 > 0 and use the first equation for [x| < 6 and the second one for |x| > & to write

1 1 . i1 -
X =] itk — Etzx2 + —‘X2'>5t2x2(1 ety 7|)2<5t3x361tx .

Apply this with x = X,, i, take expectations and write G%llk = E[X%L,k] to get
; 1
ElettXnk] =1 — EU%L,ktZ + Rn k()
where, Ry x(t) = 5 LR |:1|Xnk|>5xnk (1 — itxsz)} — ” K |:1|Xnk|<6XTL keltxlk] We can bound
Rn k() from above by using Xkl 1ix, /<5 S ZSXn " and I1—elt™™| <2, to get

(22) Rlt) < 28 1, -3 ] + 0 52, ]

We want to apply Exercise 26 to zi = E [e"™n¥] and wi. = 1 — Jo%  t%. Clearly |z, < 1by

properties of c.f. If we prove that max 02 , — 0, then it will follow that jwy| < 1 and hence with
k< ’

X

0 = 1 in Exercise 26, we get

lim sup ’ H E [e'Xnk] — ﬁ <1 — ;U%L/kt2> ’ < lim sup i [Rn k(1)

noee Ty k=1 L
1
<f|t|3022'> (by 22)

To see that max O‘n « — 0, fix any 6 > 0 note that crn W S P +E [X%I,k1| Xl > 5} from which we get

N

n
I]?<ax < 62 + Z E |:X$1,kllxn,k|>5:| — 52.
k=1

As b is arbitrary, it follows that max crn « — 0asn — oo. As d > 0 is arbitrary, we get

k<n
1
Xnk] — _ L 2
®) T}zf;oHE ] = sz;oﬂ(l i)
For n large enough (and fixed t), m<ax t207 Ok < < } and then

152 42 4 44 1 152 42
5 t —U Kt 2 42 504 t
20 k <1 20- ,kt <e 2%kt

Take product over k < n, and observe that ) G‘Tlllk — 0 (why?). Hence,

e

n
1 o212
1~ Lose) e

k=1

From 23 and Lévy’s continuity theorem, we get > '_; Xn x 4N (0, 02). |
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6.2. Proof of Lindeberg-Feller CLT by replacement method.

Proor. As before, without loss of generality, we assume that on the same probability space as
the random variables X;, . we also have the Gaussian random variables Y, i that are independent
among themselves and independent of all the X, xs and further satisfy E[Yy k] = E[Xy ] and
EIY2 ) = EDC, .

Similarly to the earlier proof of CLT, fix n and define Uy = Z}:ll Xnj + 2341 Yn,j and
Vie= Y Xnj+ X[y Ynj for0 < k <m. Then, Vg = Y 1+...4+ Y nand Va = Xn1+...+Xnn.
Also, V ~ N(0, 02). Thus,

n

(24) E[f (Vo) —EIf(Vo)l = ) E[f (Vi) = f (Vic1)]

I
Mﬂi

E[f (Vi) — f (Us)] ZE (Vieea) — (W)l

~
I

1
We expand f(V) — f(Ux) by Taylor series, both of third order and second order and write

1 1
(Vi) — f(Uy) = /(W) Xk + 2f’/(uk) kT 6f’”(uk)Xn "

1
(Vi) — f(Uy) = (U ) X i + Ef’/(ui)le,k
where Uy and Ui are between Vy and Uy. Write analogous expressions for f(Vy_1) — f(Uy) (ob-

serve that Vi1 = Uy + Yy, k) and subtract from the above to get

1 * kK
U)Xy = 7 (U )Y ),

1
F(Vie) = F(Vier) = /(W) (Xige = Ynge) 5 (77 (UD)XR, e — £ (UF)YE ).

1
+ o (W) (XE = Y2 ) +

f(Vie) = f(Vi—1) = /(U)X e — Yn i) 5

Use the first one when [X;, k| < 8 and the second one when [X;, k| > 6 and take expectations to get

1
(25) (Vi) = EIf(Vie)I| < SEIF (Wi)l) [EX ilix, 6] — EIVA slpv, <51

2
1
(26) 43 [BIF U0 i, 16)| + 5 [BIF UEIVE iy, 5]
1 * 1 %ok
(27) < B (W X Py, o] + 2 B (W) YL,y s

Since E[XZ, ] = E[Y3

2 J, the term in the first line (25) is the same as s E[f” (Ui )[] [EIXZ (1, =5l —

E[YA \ 1}y, . >sl| which in turn is bounded by

CoEIX 11, >8] + BV iy, 81
The terms in (26) are also bounded by

CHEIX 1, 1>5] + EIVA 1 1y, =)
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To bound the two terms in (27), we show how to deal with the first.
E[f" (W)IXn 1P 1x, <5l | < Cr8EIXG, .
The same bound holds for the second term in (27). Putting all this together, we arrive at
BIF(Vio)] = BIF(Viee )l < CHEIXS 1 Lx,, 5] + BNV iy, 8]} + SEIXE, 1] + EIVG 1 J).

Add up over k and use (24) to get

EIf (Va)] = EIf(Vo))| <8 ) EIX3 ;) +EDV2
k=1

+Ce Y EIXE pIx, >8] + EIVA k1, 5)-
k=1

Asn — oo, the first term on the right goes to 2602. The second term goes to zero. This follows
directly from the assumptions for the terms involving X whereas for the terms involving Y (which
are Gaussian), it is a matter of checking that the same conditions do hold for Y.

Consequently, we get lim sup !E[f (o)l — EIf (Vn)]‘ < 20%5. As § is arbitrary, we have shown
that for any f C(b3) (R), we have

E[f(Xn1+ ...+ Xnn)] = E[f(Z)]

where Z ~ N(0, 02). This completes the proof that X, 1 + ... + Xnn <4 N(o, 0?). [

7. Sums of more heavy-tailed random variables

Let X; be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see
that the sums S, converge to Gaussian distribution after shifting (by nE[X;]) and scaling (by v/1).
What if we drop the assumption of second moments? Let us first consider the case of Cauchy

random variables to see that such results may be expected in general.

Example 24

Let X; be i.i.d Cauchy(1), with density m Then, one can check that 57“ has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write %“ L

If X; were i.i.d with density ﬁ (which can be denoted C,, with a > 0, b € R),

a?+(x—b
then X%:b are ii.d Cy, and hence, we get

S. —
n—nb g Cy.
an

This is the analogue of CLT, except that the location change is nb instead of nE[X;], scaling
is by n instead of /n and the limit is Cauchy instead of Normal.

This raises the following questions.
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(1) For general i.i.d sequences, how are the location and scaling parameter determined, so

that b;l (Sn — an) converges in distribution to a non-trivial measure on the line?
(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what

distributions on X; do we get b (Sn —an) 4 C1?

For simplicity, let us restrict ourselves to symmetric distributions, i.e., X 4 _x Then, clearly no
shifting is required, a,, = 0. Let us investigate the issue of scaling and what might be the limit.
Symmetric x-stable distributions Fix « > 0. Do there exist i.i.d. random variables X, Y such that
X +Y £ 25X? When « = 2, centered Gaussian distributions satisfy the distributional equation,
and when o = 1, the symmetric Cauchy distributions do. What about other o?

From the distributional identity, if X, Y ~ p are i.i.d., then the characteristic function {1 satisfies
f1(21/*t) = fi(t)%. As {Lis continuous, real-valued and symmetric, it is not hard to see that fi(t) =
e <ItI*_ Of course, we don’t know if this is a valid characteristic function, i.e., if such a distribution

u exists. This is answered in the following theorem.

Theorem 31: Symmetric stable distributions

The symmetric «-stable distribution exists if and only if 0 < « < 2.

The proof that e~/*" is a valid characteristic function for 0 < « < 2 is explained in Example ??.
That it fails to be a characteristic function for « > 2 is explained in Example ??. Let us give a second

proof of the latter fact.

PROOF OF NON-EXISTENCE FOR & > 2. If o« > 2, then t — e~ 't1" is a C? function, with a maximum
at 0. If a probability measure j14 with characteristic function e It" were to exist, it would have
finite variance and zero mean. But taking variance of both sides in the identity X + Y 4 gl/ex
where X, Y are i.i.d. ps, we see that 2Var(X) = 22/*Var(X). Either Var(X) = 0, in which case X =0

a.s., or & = 2, in which case X ~ N(0, 62) for some ¢ > 0. [ |

Henceforth, we shall write 1 for the distribution with characteristic function e~ t!*, for 0 <
o < 2 (our convention is to keep the « = 2 case of Gaussian outside the class of stable distribu-
tions). These distributions are heavy tailed. The proof above in fact shows that none of them can

have finite variance.

Theorem 32: Moments of symmetric stable distributions

Let 0 < a < 2. Then [[x[Pdp(x) < o0 if p < aand [ [x[Pdpa(x) = ocoif p > o
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Proor. In the chapter on characteristic functions in the appendix, the following estimate is

proved:

1/M
w(—2M, 2M]) < MJ BNCEIDIEE

Applying this to L and using the fact that 1 — e~ It" ~ [t|/* as t — 0, we get pq([-2M,2M]¢) <

CM X 37k = CM™%. Now,

j|x|vdua L (P > tdt

<C(1+ J t~%/Pdt)

which is finite if p < «.

To write: Proof that moments above o« do not exist [ |

Domains of attraction of symmetric stable distributions Let j1, be the symmetric a-stable distri-

bution with characteristic function e t!*

, where 0 < « < 2. If X ~ pq, then it is easy to see that
Sn/nY/% has the same distribution as X, in particular n_isn 4 L. The question is, what are
the other distributions for which S, (with the same scaling or different) have the same limit. For
o = 2, all we needed for the CLT was that X; have zero mean and unit variance.

We stick to symmetric distributions here. Nevertheless, it is not sufficient to ask for X; to have
finite moments of order up to « and infinite moments beyond. A certain regularity in the tail
behaviour of the distribution is needed. The regularity is stated in terms of the important concept

of slowly varying functions. We say that L : (0, 00) — (0, oo0) is slowly varying if L )} —last — oo,

for any a > 0. Examples are log t, powers and iterates of logarithm. Observe that t€ is not slowly
varying if € # 0.
Let X; be i.i.d. with symmetric distribution p. Assume that t*p([—t, t]) is a slowly varying
function. Define b(u) = inf{t : u([—t,t]¢) = u}. Then

Sn i
b(i/m) M

What is the scaling b(1/n) here? If p([—t,t]¢) ~ Ct—%, then b(1/n) < n/*. Butif u([—t,t]) ~
Ct~*logt, thenb(1/n) = n=(logn)= andif p([—t, t}°) ~ Ct~%/log t, then b(1/n) = n=(logn) .
Thus the exact scaling depends on the correction to t~ in the tail of p. The limit distribution does
not.

The proof of the above theorem requires another limit theorem that is of fundamental impor-
tance in itself.

138



7.1. Poisson limit theorems. We know that Bin(n,A/n) 4 Pois(A) as n — oo. Like the de
Moivre Laplace theorem, this is just a baby version of a rather widespread phenomenon. Here is

one particular version of it.

Theorem 34: Poisson convergence of sums of independent Bernoullis

Let &, ~ Ber(pnj), 1 < j < n, be a triangular array of Bernoulli random variables such

that (1) For each n, the variables &, 1,...,&n n are independent, (2) pni+... + pnn — A
asn — oo, (3) ph = maxpy,j — 0asn — oo. Then Sy, := &n1 + ... + &n,n converges in
j<n

distribution to Pois(A).

Proor. By a direct calculation,

4
P{Sn = e} = Z Hpn,ji H (1 - pn,j)

ji<..<jesn i=1 i€{j1,de)
n 4 Pri
mn,
=[[0-vn) > 170
i=1 1< <je T=1 Pnjs

From the inequality e™ > 1—x > e (valid when |x| < 1), for large enough n,

n
_yn . 2 _yn .
e~ L= (Pnitphn;) | |(1 —pnj) <e 2imiPng

i=1
o 1 n(1+p3)
ebn < - < epn Pn .
1 _pn/jr
Thus,
¢ [J
— YN (pnj+Pi;) Pk -5 i oPh (1+P7)
e~ Li=1(Pni+Ph ;) o Z Hpn/jr <SPSy, =} < e Zi=1PnjePnll+pn Z 1_[]%/].r
j1<.<jer=1 j1<..<jer=1

Now, 31 pnj — Aand 3 3, p%l,j < P 2j21Pn;j — 0. Thus the exponential factors outside the

sum on both left and right converge to e M. Further,

4 1 n ¢ * 4

> IIpms=g{{2Zvni] = 2 Tlrns
j1<..<jer=1 ’ j=1 j1msje T=1

where the second sum is over tuples (ji, . ..,j¢) of which at least two are equal. The first term inside

the brackets converges to A'. As
2

¢
Z Hpn,jr < ZP%L,) an,j — 0,
J

ji=ja =1 j
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and the same is true of the other (5) possible pairs of equal (j+,js), we conclude that

[4
Y TIvws = g

j1<..<jer=1

In summary, P{S,, = {} — e”‘%l for £ € N, and thus S, 4 Pois(A). |

ALTERNATE PROOF. Fort € R,
n

E[eitsn] = H(l —Pn;j+Pnj eit)~
k=1

By Exercise 26,

n

n
| B B ]
j=1 j=1

n

<C Z p%l,j
i—1

. _ . Lelt _ it . . c g .
which converges to 0. As Hjn:1 e PritPnie”  e~AFTAeT which is the characteristic function of

Pois(A), we see that S, 4 Pois(A). [ |

7.2. Proof of Theorem 33. The proof is very different from all the proofs of central limit the-
orem, because the underlying phenomena are themselves different. In CLT, all the variables con-
tribute about the same, but for the heavy tailed variables under consideration, the sum S,, essen-
tially comes from the largest few X;s.

For example, if P{X; > x} ~ Cx™%, then the expected number of Xy, ..., X, that are above x
is Cnx~%, which shows that the maximum M,, = max{Xj,..., Xy} is not likely to be significantly
more than nl/%. By the second moment method, one can show that M,, is of the order of nl/«
which is also the order of magnitude of S, (as the statement of Theorem 33 asserts). Contrast this
with the Gaussian case, where the maximum is of order \/@ while the sum is of order /n.

First we prove a Theorem that is in the same spirit as Theorem 33, but technically much simpler.

Theorem 35: Poissonized version of convergence to symmetric stable distributions

Let X; be i.i.d. with symmetric distribution p and let K;, ~ Pois(n) be independent of X;s.
Assume that t*p([—t, t]) is a slowly varying function. Define b(u) = inf{t : pu([—t, t]¢) < u}.
Then

Sk, q
b(l/m)

Proor. The advantage of considering Sk, instead of Sy, is that its characteristic function can be
written in a form similar to that of 1. Define the measure p, by pn (J) =2nu(an]J) for | € B and
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let a,, = b(1/n). We claim that

(28) E [eitSKn/a“} = exp {J (cos(tu) — 1)dpn(u)} .

0
To see this?, let M,, = OX,/an T -+ T 83Xy, /an, @ random measure, in terms of which ay 'Sy, =
JtdMy,(t). For & > 0, let Ij s = (§5, (j + 1)5] and @5 = Z]-%jé(llj/ZS —1_1;,). Then @5(t) — tas

5] 0,and |@;(t)| < t. Hence, by DCT,

hmZ)éMn 5,5) Z]éMn(—Ijlé) a.s.

510
an \ o1

If J1,..., ]k are pairwise disjoint mtervals, then M, (J1),..., Mn(Jx) are independent random vari-
ables with My, (]) ~ Pois(np(ayJ)). This is a well-known fact about thinning of Poissons. Thus, for
fixed & > 0, the quantity on the right is a weighted sum of independent Poisson random variables,

hence it has characteristic function (using the symmetry u(ls) = u(—1Ij,s))

exp Z nu(I)-,@)(eitj6 +e e 1)} = exp Z 2np(l;5)(cos(j0) — 1)
j=1 j=1

The exponent is 2 fgo (cos(@s(t)) —1)dpn(t), hence it converges to 2 fgo (cost—1)dun (t) by another
application of DCT. This proves (28).
Now we need to let n — oco. For any s > 0,

ulsan, oo) 1
ilan,c0) 25
as nplan, 00) = 1/2 by choice of an, and using the fact that s*u[say, 0o) is slowly varying. This is

Unls, 00) = nulan, 0o0) x

almost like saying that i, (restricted to (0, co)) converges in distribution to the measure 3as~*~!ds.

However the limiting measure here is infinite, and hence we need to justify that

(29) 2E°(cost— 1)dpn(t) — J:o(cost— 1)%&.

Once we justify (29), the proof is complete, as it shows that the characteristic function of Sy, /n!/*

converges pointwise to the characteristic function of py (refer back to the definition of py). n

To justify (29), we fix ¢ > 0 and divide the integral over (0, €), [¢,1/¢] and (1/¢, 00). Since the
limiting integral is convergent, we can choose ¢ small enough to make the first and third integrals
smaller than ¢. On [¢,1/¢], the measures are finite, and we can scale and pretend that we are

working with probability measures to conclude that (we leave the details as exercise)

1/¢ 1/¢ x
ZJ (cost—l)dun(t)%J (COSt—l)mdt-

£ £

21f you are familiar with Poisson processes, it is possible to see this formula and nod “yes, it is obvious”. The

explanation given is for those who did not nod.
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It only remains to show that the first and third integrals can be made arbitrarily small uniformly

over n, by choosing ¢ small. As the integrand is bounded by 2, the third integral is bounded by

ulan /e, 00)
tlan, oo)

by the same argument that we used above. This shows that the third integral can be made uni-

4un[l/e,00) = dnplan, o) ~2e%

formly small by choosing & small enough. The first integral is to complete
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CHAPTER 7

More about sums of independent random variables

Sums of independent random variables are very important, and have played a central role in
the development of the concepts of probability theory. People have delved far more deeply into
this topic than anyone today wants to know'! In this chapter we give a few isolated snippets. Some

of these are usually taught in probability courses, some not so much.

(1) Law of iterated logarithm.
(2) Cramer’s theorem of large deviations.
(3) Anti-concentration inequalities.

(4) Error estimates in the central limit theorem.

1. The law of iterated logarithm

If a, T oo is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup i—z
is constant a.s. What is this constant?

If X; have finite mean and a,, = n, the strong law tells us that the constant is zero. What if
we divide by something smaller, such as n* for some « < 1? To probe this question further, let us
assume that X; are i.i.d. Ber4(1/2) random variables. Then using higher moments (just as we did
in proving strong law under fourth moment assumption), we can get better results. For example,
from the fact that E[S},] = n + 3n(n — 1) (check!), we can see that lim sup i—’; =0as.ifa, =n®

with « > 2. More generally, we reason as follows. For a positive integer p,

P(Sn > tn} < E[SPILP < CpnPt,?P

where we used the fact that E[S%lp] < CpnP foraconstant C,,. Assuming this, we see thatif t, = n*

with & > %, then we can choose a p large enough to make the probabilities summable. By Borel-
Cantelli it follows that n=*S,, 23" 0 asn — oo.

To see that E[S?P] < CpnP, expand S2P as a sum of monomial terms Xf 1...Xkn where k; are
non-negative integers that sum to 2p. When we take expectations, this factors as E[lel] . EXKn].

If any k; is odd, then the product is zero. If all k;s are even, the product is 1. We need to count the

7\ great deal of it was developed in the Soviet union. One particular reference is Petrov’s Sums of independent random

variables
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number of monomials of the latter type: Since each k; is even, there are at most p of them that are
not zero. The subset of such indices can be chosen in (;) < nP ways. Once the indices are chosen,
the number of monomials are at most the number of ways to distribute 2p balls into p bins. Let
this number be C,,. With all the overcounting, we still get E[SZ] < CpnP, as claimed.

Instead of using moments, one may use Hoeffding’s inequality to see that lim sup (Sl—z =0 even
if an, = hn\/TTgn for any sequence h,, — oo. In the converse direction, one can show that
lim sup ST:T = 400, a.s. (let us accept this without proof for now). This motivates the question of
what is the right order of (limsup) growth of S,? In other words, we want a deterministic sequence
an such that lim sup Sy, /ay, is finite and strictly positive. Since the lim sup is a constant a.s., we can

scale by that and reformulate the question as follows.

Question: Let X; be i.i.d Ber4(1/2) random variables. Find a,, so that lim sup (Sl—z =1a.s.

The sharp answer, due to Khinchine is one of the great results of probability theory.

Theorem 36: Khinchine’s law of iterated logarithm

Let X; be i.i.d. Ber4(1/2) random variables. Then,

lim su Sn =1a.s.

n—)oop v2nloglogn

By symmetry, the liminf of S, /,/2nloglogn is equal to —1 almost surely. From these two,
one can also deduce (since the difference between successive terms is 1/,/2nlog log n that goes to
zero) that the set of all limit points of the sequence {S/\/2nloglogn} is equal to [—1, 1], almost
surely.

The law of iterated logarithms was extended to general distributions with finite variance by
Hartman and Wintner (with intermediate improvements by Kolmogorov and perhaps others).
Here we only prove the theorem for Bernoullis (the general case is more complicated and a clean

way to do it is via Brownian motion in the next course).

Result 1: Hartman-Wintner law of iterated logarithm

Let X; be i.i.d. with mean  and finite, non-zero variance o2. Then,

lim sup Sn T

n—oo 0y/2nloglogn

=1a.s.
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2. Proof of LIL for Bernoulli random variables

Let X1, Xy,...beii.d. Bers(1/2) random variables. Theorem 36 follows from the following two

statements. For any & > 0, we have

(30) lim sup __Sn <1486 as.
n—oo y/2nloglogn
(31) limsu __Sn >1-%6 as.

n%oop V2nloglogn =
Taking intersection over countably many values of 9, e.g., & = %, k > 1, we get the statement of

LIL. To motivate the principal idea in the proof, consider the following toy situation.

Example 25: Borel-Cantelli after blocking

Let B, be events in a probability space and let A; = By, Ay = A3 =By, Ay = As = Ag = B3

and so on (n many Ajs are equal to By, ). To show that only finitely many A s occur a.s., if we
apply Borel-Cantelli lemma to A, s naively, we get the sufficient condition } nP(Bn) < oo.
This is clearly foolish, as the event {A,, i.0.} is the same as {By, i.0.}, and the latter has zero

probability whenever ) P(Bn) < oo, a much weaker condition!

What this suggests is that when we have a sequence of A s and want to show that P{A;, i.0.} =
0, it may be good to combine together those A;s that are close to each other. For example, we can
take a subsequence 1 = n; < ny < ... and set Cy to be the union of A,;s with nje < n < nyyg.
If only finitely many Cys occur, the only finitely many A, s occur, and thus it suffices to show that
> « P(Cx) < oco. The naive union bound P(Cy) < Zg‘gglk P(A,) takes us back to the condition

>+ P(An) < oo, but the point is that there may be better bounds for P(C;,) than the union bound.

PRrOOF OF THE UPPER BOUND (30). Write a,, = /2nloglogn. We want to show that only finitely
many of the events A,, = {Sy, > an(1 + 9)} occur, a.s. We use blocking as follows. Fix A > 1 and

set ny = |AK|. Define the events

ny1—1
Cx = U An ={Sn > an(1+0) forsomeny <n < nyi1},
n=ny
ny+1—1
Dy = U An ={Sn > an, (1+9) forsomeny <n < nyy1}h
n=ny

Then Cy C Dy as an, is increasing in n. Thus if we show that )}, P(Dy) < oo, it follows that only

finitely many C;, occur a.s. and hence only finitely many A,, occur a.s. We claim that
(32) P(Dy) < Cak™(178*/A  where Cy < oo for any A > 1.
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Granting this, it is clear that choosing 1 < A < (1+ 8)? ensures summability of P(Dy ). We give two
proofs of the inequality (32) below, which completes the proof. [ |

Proof of (32) via the reflection principle: The following lemma is of interest in itself and useful.

Lemma 18: Reflection principle/Ballot problem

Let Xy be i.i.d. Ber4(1/2) random variables. Then for any integer a > 0, we have

2P{S,, > a} < P{max{Sy,...,Sn} = a} <2P{S;;, > a}.

Equality holds if n and a have opposite parity.

Chapter-3 of Feller’s vol-1 is highly recommended for more such beautiful combinatorial facts

about simple symmetric random walks.

Proor. Break the event max{Sy,...,Sn} > a as a union of pairwise disjoint events
Ax :{SO < a,...,Sk_l < a,Sk = (1}, k= 1,...,TL.
By the symmetry of S, — S and its independence from Ay,

P{Sn 2 a} N Ax) =P({{Sn — Sk =2 0} N Ax)

(3) = B(Sn — Sk > OJPIA) > P(AY)

Sum over k. On the right we get %P{max{SO, ..., Sn} = a} while on the left we get P{S,, > a} (since
{Sn = a} € AjU...UA,). Hence the second inequality is proved. To prove the first inequality,

using the same idea, write

P{Sn > a}NAy) =P({Sn — Sk > 0} N Ay)

(34) = BSn — Sk > OJF{A) < SP(A).

Add up over k to get 2P{S,, > a} < P{max{Sy,...,Sn} > al.
If n has the opposite parity, then P{S,, = a} = 0, hence all three probabilities in the statement

are equal. [

Returning to the proof of (32), if Dy occurs, then there is some n < ny44 (in factsomen > ny)

such that S, > an, (14 9). The reflection principle in Lemma 18 applies to give the bound

P(Dk) < ZP{Sle+1 2 ank(l + 6)}

(1+8)2a%k

<2e 21 (by Hoeffding’s inequality).
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The exponent is (omitting integer part for simplicity of notation)

(1+8)22AF loglog A® 1+ 5)2
\k+1 - A

from which (32) immediately follows. [

(35) log(klog A)

Proof of (32) via the modified Markov inequality (??): Let X = Y %" 11 1s,>a,, (1+8), SO that

n=mny
Dy is the event that X > 1. Apply the strengthened form of Markov’s inequality (??) to write
E[X]
EXk [ X =11

What we need is an upper bound for the numerator and a lower bound for the denominator.

P(Dy) =P{Xik 2 1} <

To get an upper bound for E[Xy], use Hoeffding’s inequality to write

Tk+1—1 ny1—1 2 5
as, (1+9)
E[Xk] = Z ]P){Sn > (lnk(]_ + 6)} < Z exp {_szl}

n=ng n=ny
2 2
< (M1 — i) exp {_angillk;é)}
where we bounded all terms by the largest one (which is the last one).

Next we claim that ¢c(ny1 — nk) (for some ¢ > 0) is a lower bound for E[Xy } Xi = 1]. The
heuristic idea is that if Xy > 1, there is some (random) N € [ny, ny 1) for which Sy > an, (14 9).
If we fix that N and regard it as given, then S,, — Sy has a symmetric distribution about 0 for any
n, hence P{S,, — Sy > 0} > %, which would imply that E[Xy | Xx > 1] > %(nkﬂ — 1y ). This
reasoning is faulty, as the way we choose N (which is a random variable) may invalidate the claim
that S;, — Sy has a symmetric distribution.

To make the reasoning precise, write Xy = Yy + Zi where Yy is the number of n in the first half
of the interval [y, ny 1) for which S, > an, (1+9) and Zy is the analogous number for the second
half of [ny, nk41). Then Xilx, >1 > (Yklzk/l + Zx1y, >1) and {Xy > 1} C{Yyx > 1} U{Zy > 1}
Consequently,

EXi1x, >1] - 1EY 17,31 + E[Zy 1y, »1]
PXx =1} 7 2 P{Zx > 1} +PY > 1)
1. {E[Yklzk>1] ElZy 1y, >1] }

27 Vi
2 M Pz > 1 Py > 1

EXk [ Xk > 1] =

1
=5 min{E[Yy | Zx > 1], E[Zy | Y > 1]}

In the second line we used the elementary 1nequa11ty ‘”b

> min{<¢ —} valid for any non-negative
numbers a, b, ¢, d. Now consider the second term inside the minimum. Since Yy > 1, condition on
the location N in the first half of [ny, ny1) where S;, > an, (1 + ) and use the fact that S,, — S,

n > N, is still a simple symmetric random walk, and hence for any n in the second half, has
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probability 1/2 or more to be non-negative. Therefore, E[Z} | Yy > 1] > %(nkﬂ — ny). Similarly
(considering the random walk in backwards direction starting from ny_1), reason that E[Yy | Zy >
1] > %(nk+1 — ny ). Putting all this together, E[Xy | X > 1] > %(nkﬂ —Ny).

Thus,

a, (1+5)?
(M1 — i) exp T e by (+8)?
<8¢ k1

P(Dy) <

(i1 — i)
By the computation shown in (35), this is of the form given in (32). |

2.1. Proof of the lower bound (31). Again we choose a subsequence ny, = |A¥ |, the difference

being that we shall choose A to be a large constant in the end. It suffices to show for any & > 0 that
(36) P(Sn, = (1—28)an, i0}=1

where a,, = y/2nloglogn as before. By the upper bound and the symmetry of S,,, we know that
almost surely, S, > —2an, for all but finitely many k. Also, an, < an,,,/ VA, hence

2
Snk+1 > Snk+1 - Snk o ﬁankﬂ

for all but finitely many k, a.s. Therefore, (36) follows if we choose A > 4/5% and show that
P{Snk+1 - STLk 2 (1 - 6)ank+1 i.O.} = 1.

These events are independent across k, and hence a good lower bound on the individual probabil-
ities is sufficient. The one given below in Claim 7 gives

1—8)%a?
P{S - Snk > (1—- é)ankH} = ﬁ exp {_()ank“}

e (M1 — i) 2(negq — 1)

_ 52
_ V2 exp{—(l d) loglognk+1}

1
1=x

41 (1 — %)

Claim 7: An estimate for binomial coefficients

If n, k — oo in such a way that [k — %nl < n?/3, then

n\ 1 V2 e
n+k | on e .
ntk fon - /mn

In particular, for such k, we have

P(Sn >k} > e 2k

In a basic probability class you may have seen the de Moivre-Laplace theorem that compares
binomial coefficients to the Gaussian density. This one is almost the same, except that in the de
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Moivre-Laplace theorem one only needs k = 3n-+x/n with fixed x, while here we allow x to grow
like O(n1/).

Proor. The first one is just by Stirling’s approximation. n

3. Law of iterated logarithm for general i.i.d. random variables

Hartman and Wintner showed in that if Xy are i.i.d. with zero mean and unit variance, then

S
lim su n =1 a.s.

n—>oop v2nloglogn
This extends Khinchine’s LIL for Bernoulli random variables. It also immediately implies that the
lim inf of the same quantities is —1 and that the set of limit points of the sequence {S //2nlog log n}
is equal to [-1, 1] a.s. The easiest way to prove this is using Brownian motion. For now, we present
an earlier law of iterated logarithm due to Kolmogorov, which is restrictive in asking for the Xy to

be bounded, but relaxes the requirement of identical distribution.

Theorem 37: Kolmogorov (1929)

Let Xy be independent random variables with E[Xy] = 0, Var(Xy) = Gi and [Xy| < By

as. Let 14 = 07 + ... + 0% and assume that (1) 7%, — ocoasn — oo and (2) B, =

o(T2 /A /loglog Tr,). Then,

lim su Sn =1 a.s.

e /272 loglog Tn

The excuse for discussing this theorem is to show the techniques. In particular, pay attention to
how Kolmogorov finds substitutes for the estimates that were easily obtained for Bernoulli random
variables, some of which look delicate and not easy to generalize. These are (1) Bernstein like
estimate for the probability that S, is large. (2) Corresponding lower bound of Gaussian type.
(3) Reflection principle that allowed to control the maximum of Sy, k < n, by Si.

The key probability estimates are in the following lemma.

Lemma 19: Gaussian tail bounds analogue

Let X be as in the statement of Theorem 37. Fix n > 1. Let B}, = max By,.

k<n
(1) Upper bound:

2

,(175)’(7

e 2w fort < e
_ ot

e 4Bn fort >

2
gg, where ¢ < 1.
2
n

P{Sn > t} <
T
S

*
n

(1) 2
2) PSha, >t} >e ( H)ZT% fora,t, <t< bgg—i where a, -+ coand b, — 0as e | 0.

In fact, we may take b, = O(e?)and a, = @(é log %).
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Let S}, = max{Sy, S1,...,Sn}.

Lemma 20: Reflection principle analogue

P{S}, > t} < 2P(Sn > t — V21,

Proor. Let ] = min{k < n: Sy > t}, which is well-defined on the event {S;, > t}. Conditional
on ] = j, we know that §; < t + Bj. By Chebyshev’s inequality, S, — §; > —V2(Th — T;) with
probability at least 3. Thus P{Sy, > t+ Bj — v2(tn —Tj) | ] =j} > 3. Dropping the B; + v/21; term
which is positive, P{S;, >t — /21, | J=il> % Multiply by P{] = j}and sum over 1 < j < n to get

1@ 1
PlSn>t—V2ta) > 5 ) P{J =j}=P(S} >t}

j=1
This proves the lemma. [

Now we come to the proof of the LIL. Let ¢(n /21 loglog Tr,. The second assumption
Bn (P (n
T2

n

can be written as — 0.

Proor oF THE uPPER BOUND IN THE LIL. Fix0 < & < 1and chooseng > % such that Jlogloﬁ >
% and 2B, @(n) < 813 for n > ng. Then define ng < n; < Ny < ... successively by choosing
Nk+1 = [(1+ 8)nk]. The condition dny > 1 ensures that ny 1 > ny.

Let En = {Sn > (14 8)%¢(n)} and let Ey = UK“*& 4+1En. The goal is to show that P(E})
is summable, which implies that only finitely many E;s occur a.s., hence only finitely many E;s

occur a.s.
Observe that if E} occurs then St = (1+8)%p(ny). By Lemma 20,
]P){ET(} < ]P){Snk+1 = (1 + 6 fTleﬁ»l
®(Myi1)

<P{Sn,,, = (1+6 -

S = (T4 8)@ (i) lOglOngw}
78
8

s /loglogtyn, > % By the first part of Lemma 19, with ¢ = § (satisfied by the requirement
2B @(n) < 872 for n > ny), we see that this probability is bounded by

<P{Sn, 2 0+ )e(mi))

2
exp { (1-08)(1+ 86)2@;@“1)} <exp{—(1+ g) loglogtn,.,} (if b if small enough)

Ty
_ 1
(log Tn,.,)' "2
As log Tn, < K, this is summable. Hence E} occurs only finitely many times, a.s. |
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Proor oF THE LOWER BOUND IN THE LIL. Fix 6 > 1 and 6 > 0. Inductively choose ny_ to be the
smallest n > ny so that 61, < Tn. Then logTh, ~ klog6. By the limsup upper bound and
negating the Xis, we see that S, > —(1 + 8)@(n) for all large n.

Now fix some k and suppose that S, > —(1490)@(ny). We apply the second part of Lemma 19

withn =nyg, ;1 —ngand t = (1 —8)@(nky1). Then

(1) £= = cy/loglogtn — oo and

Bn+/2l0glog Tn )
(2) -y ;Bn < Tof 8T — 0 by assumption.

Therefore, Lemma 19 applies for large enough k, and

,(1+5)M
P{Snk+1 —Sn, 2 (1 +8)o(mki1)t >e M1

The exponent is

Tnk+1 log log Tnk+1

Ty — Ty

> logk

4. Anti-concentration
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CHAPTER 8

Appendix: Characteristic functions and their properties

Definition 17
Let p € P(R). The function i : R4 — C defined by fi(t) := [ e'™dp(x) is called the

characteristic function or the Fourier transform of p. If X is a random variable whose distribution

is 1, we also refer to {1 as the “characteristic function of X” and denote it P x.

There are various other “integral transforms” of a measure that are closely related to the c.f. For
example, t — [ e"™du(x) (if it exists) is called the moment generating function of p. The probabil-
ity generating function of a probability measure u supported on N is defined by t — [t*dp(x) =
2 1>0 u{k}t* (which exists for [t| < 1), and so on. The characteristic function has the advantage
that it exists for all t € R and for all finite measures .

The importance of c.f comes from the following facts, which we shall discuss and prove one by

onel.

(A) It transforms well under certain operations, such as shifting, scaling and under convolu-
tions. The last of these makes it a tool of amazing power in studying sums of independent

random variables.

(B) The characteristic function determines the measure. Further, the smoothness of the char-
acteristic function encodes the tail decay of the measure, and vice versa. In general, c.f.

encodes properties of the distribution in a not-so-direct but still tractable manner.

(C) fin(t) — fu(t) pointwise, if and only if pn 4 i. The forward implication is the key

property that is used in proving central limit theorems.

(D) There exist necessary and sufficient conditions for a complex valued function on the real
line to be the c.f. of a measure. Because of this and part (B), sometimes one defines a

measure by its characteristic function.

0.1. Basic observations. We state some basic properties of characteristic functions.

IIn addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is

an excellent resource for the basics of characteristic functions. Our presentation is based on it too.
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Theorem 38

Let X, Y be random variables with distributions p, v respectively.

(1) Forany a,b € R, we have Poxb(t) = etPthx(at).

(2) If X, Y are independent, then Px v (t) = Wx(t)py(t).

PROOE. (1) Waxqp(t) = Elett(aX+b)] — FleitaX]eibt — oibty,  (qt).

(2) Wxiy(t) = ElettX+Y)] = E[ettXeltY] = E[e!X]E[e™Y] = Py (t) by (). u

Let u € P(R). Then, i is a uniformly continuous function on R with [{i(t)| < 1 for all t with
{1(0) = 1. (equality may be attained elsewhere too).

Proor. Clearly {1(0) =1 and [{i(t)] < f|eltx|du( ) = 1. Further,

Bt +h) — (0] < J|e”+h e“*|du(x)=j|e”“—1|du(x).

As h — 0, the integrand lethx

— 1] — 0 and is also bounded by 2. Hence by the dominated
convergence theorem, the integral goes to zero as h — 0. The uniformity is clear as there is no

dependence on t. [ ]

Lemma 22: Parseval’s identity

If u,v e P(R), then [fidv = [¥dp

Proor. Integrate (x,y) — eV against u ® v in two ways, using Fubini’s theorem. The two
iterated integrals are [[ e™Ydu(x)dv(y) = [ fidv and [[ e™Ydv(y)du(x) = [Vdp. [ |

0.2. Decay and smoothness. Smoothness of the characteristic function is related to the tail
decay of the measure and smoothness of the measure is related to the tail decay of the characteristic

function. We give some statements illustrating all four directions of implication.

Theorem 39: Decay of the measure to smoothness of Fourier transform

Let u € P(R). If [ [x[*du(x) < oo for some k € N, then ft € C(¥)(R) and

a9 (1) = J (b)*et*dp(x).
R
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Proor. Itisamatter of justifying the differentiation w.r.t. t under the integral fi(t) = [ et dp(x).
We show it for k = 1 and leave the rest as an exercise. As h—1(et(t+T)x _ gitx) _ jxeltx 35 h — 0

and h1jet(t+h)x _ eitX| < x| by mean value theorem, if [ [x|di(x) < oo then DCT justifies

1 ; : .
]_lliirb E J(el(t+h)x _ eltX)du(X) — Jixem‘du(x)

which is the same as {1/(t) = [ixe'™dp(x). [ |
itx

In fact, by expanding e'** in finite order Taylor expansion and applying expectations, one can

write the Taylor expansion for {1 with coefficient given by moments of p.

Theorem 40: Smoothness of measure to decay of Fourier transform

Let u € P(R). Assume that n has density f with respect to Lebesgue measure.

(1) (Riemann-Lebesgue lemma). i(t) — 0ast — fo0.

(2) If f € C¥), then fi(t) = o(|t|™*) as t — +oo.

Proor. First assume that f is smooth and that its derivatives are also integrable (and hence

vanish at infinity). Then, integrating by parts, we get
1 .
i(t) = — J — e (x)dx
1t
which is bounded by ‘17‘ [fllL1(r)- This goes to 0 as [t| — co. In general, we can approximate f by a
smooth g whose derivatives are integrable so that ||[f — gl 1(g) < &. Then If — dllsup < € (we use
f(t) for [ f(x)e'**dx). Therefore,
limsup [f(t)| < limsup |§(t)| + ¢ = ¢
t—to0 t—+oo

as §(t) — 0. This completes the proof of the first part.
Observe that the positivity of f was not used, only its integrability. Hence if f is k times differ-
entiable and f(¥) € L1(R), then f(¥)(t) = o(1) as t — Fo00. Now, integrating by parts we see that

—

f(t) = (=i/t)*f(%) (1), which is o(t~¥). [ |

Theorem 41: Smoothness of the characteristic function to the decay of the measure

Let u € P(R). Then, for any M > 0,

w(=2M, 2MI°) < M. J_M(l _ p()at.
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Proor. Let 8 = 1/M and write

[awwa=] [a-emama= | [ 0-evadu

:J <25—25m("5)) du(x) = 25J (1—51“("5)) dp(x).
R X R X5

When §|x| > 2, we have Sini’gé) < % (since sin(x8) < 1). Therefore, the integrand is at least % when

x| > % and the integrand is always non-negative since | sin(x)| < [x|. Therefore we get

)
J (L= o)t > 8 (-2/5,2/51).

This is the claim. [ |

Theorem 42: Decay of the Fourier transform to the smoothness of the measure

If L € L(R), then p has a bounded continuous density f given by

f(x) = %{ J e "XQ(t)dt.

If further t*{i(t) is integrable over R, then f is k times differentiable.

The first part is proved below under the heading of Fourier inversion formula. Once that is
proved, we have essentially express f as the Fourier transform of {1 (except for the negative sign in
the exponent and the factor of 1/27). Hence, the earlier proof, where we showed that if the kth
moment is finite, then the characteristic function is k times differentiable, applies here with f{i(t)dt

taking the place of the measure.

0.3. Examples. We give some examples.

(1) If u = &, then {1(t) = 1. More generally, if &L = p18q, + ...+ Prda,, then fL(t) = prett® +

oot pkeit“k.

(2) If X ~ Ber(p), then {x(t) = pe'* + q where q = 1 —p. If Y ~ Binomial(n,p), then,
= X1 + ...+ Xn where Xy arei.i.d Ber(p). Hence, {y(t) = (pe't +q)™.

(3) Let X, X" ~ unif[—1, 1] be independent and let Y = X 4 X’. The density of X is % on [—1,1]
while that of Y is %(1 — %le) for x| < 2. The characteristic function of X is easily computed

to be sin t/t and hence the characteristic function of Y is (sin t/t)2.

(4) The characteristic function of Pois(A) distribution is
: AK it
ikt ,—A  _ —A+Ae
Z ee iy =e .
k>0
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(5) If X ~ Exp(M), then Px(t) = [o7 Ae Meltxdx =

integer, then Y 4 X1+.. .—i—XV where Xy arei.i.d Exp(7\). Therefore, Py (t) = W

(v,A), then if v is an
This

is true even if v is not an integer, but the proof would have to be a direct computation.

1

(6) Laplace distribution having density 2e~/* on all of R has characteristic function e

This is similar to the previous example and left as an exercise.

(7) Y ~Normal(p, 02). Then, Y = p + oX, where X ~ N(0, 1) and by the transofrmatin rules,
Py (t) = ettt x(ot). Thus it suffices to find the c.f of N(0,1). Denote it by 1.

P(t) = 1J eit"e*XTde e % <1J e "2 e dx>
\/277-[ R v 27T R

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of
a normal density with mean it and variance 2. But if the mean is complex, what does
it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff
inside brackets is indeed equal to 1%

The final conclusion is that N(u, 02) has characteristic function e't*~"2 . We gave
an alternate rigorous proof using Stein’s identity in the notes. The idea is that if (t) =
Ele'*4] where Z ~ N(0, 1), then differentiating under the integral,

P/ (t) = E[iZe't4] = —t?E[e'4] = —t2(t)

where the second equality uses Stein’s identity (E[Zh(Z)] = E[h/(Z)] for all reasonable

h). The only solution to this differential equation satisfying {(0) = 0is P (t) = e t?/2,
(8) Let pbe the standard Cauchy measure de Lett > 0and consider(t) = ~f 7 f;z

We use contour integration. Let y(u) = u for —R < u < Rand n(u) = Re's for 0<s<m

i) =t

, sincet > 0. The length of

Y 1+x2 dx
converges to et for t > 0. By the symmetry of the underlying measure, P(—t) = P(t),

Then by the residue theorem

1 itz 1 itz
J edz—i—J edz:><2mRes<
<

)y 1422 7y 1422

However, on 1, the integrand is bounded by H%I:zlz Rzl 1

the contour is 7R, hence the total integral over n is O(1/R) as R — oo. Thus, 1 = i

whence we arrive at P(t) = e~ Itl.

2Here is the argument: Fix R > 0 and let y(u) = uand n(t) = u + it for —R < u < Rand let n}(s) = x + is for

0 < s < t. The integral that we want is the limit of the contour integrals fn e 27 dz as R — oo. Since the integrand has
PR . 22/ . —x2/2 .

no poles, this is the same as the integral fy + fn% — InLR of e7*"/2. The integral over vy converges to [ e /?dx which

is v/2m. The integrals over n; and i’ ; converge to zero as R — oco. This is because the absolute value of the integrand is

e 2(R+s%) < e"R*/2 for any 0 < s < t. Thus the two integrals are bounded in absolute value by e~**/2|t| which goes to

0OasR — oo.
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0.4. Inversion formulas. We now come to one of the most important reasons why character-
istic function is a useful tool. Characteristic function determines the measure and we can write
formulas for recovering a measure from the characteristic function®.

Theorem 43
Ifit=79, then u=v.

Proor. Let 0, denote the N(0, 6?) distribution with density @q(x) = ﬁ e—**/20% and CDF

DOs(x) = ffoo ¢o(u)du and characteristic function 84(t) = e~9°t/2 denote the density and cdf

and characteristic functions, respectively. Then, by Parseval’s identity, we have for any «,
[ertamaoaty = [Botx— alduix)

= Y g (xmduty

where the last line comes by the explicit Gaussian form of Oy Let fo(ot) := f Je —latp(1)d0,(t)
and integrate the above equation to get that for any finite a < b,

b rb
J folo)dar = Jcpl(a—x) dn(x) de
R o

a Ja

© (b
= J @1(ax—x) daxdu(x) (by Fubini)
R o

a

_ R(Oyb—xy—®(a—x0dwm.

Now, we let 0 — oo, and note that

0 ifu<O.
®i(w) — 141 ifu>0.
% ifu=0.

3The idea behind these arguments may not be clear unless one starts with a simpler situation. Consider a function
f € L'(T), where T = [, 7] with the measure 9°. Then e,,(0) = "%, n € Z, form an orthonormal basis for L*(T), and
hence we have the [?-expansion f = Y, _, f (n)en, where f(n) = (f, e,) = [, f(0)e "® 48 "If we change the interval to
[—niL, L] with uniform probability measure, then the orthonormal basis is {en, : 1 € Z}. When L — oo, we may expect
to getall{e; : t € R}, and try to expand f € L*(R) as a superposition of these complex exponentials. However, e; ¢ L*(R),
and as there are uncountably many, they cannot possibly form an orthonormal basis either. A related pointis that there is
no uniform probability distribution on R. However, the fact that #ZL) limy o ILL ec(x)es(x)dx = 5t s can be thought
of as a form of orthonormality. And then we should expect that if f(t) = [, f(x)e(x)dx, then f(x) = ;- [, f x)dt.
This is indeed the Fourier inversion formula, but a proper proof will uncover the precise Condltlons on f and f that
are needed. It is also not easy to justify the interchange the L — oo limit with the inversion formula for finite L. The
proofs here in some sense do that, by first multiplying f or f by 1;_ 1), or even better, by multiplying or convolving with

Gaussian.
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Further, @ : is bounded by 1. Hence, by DCT, we get

O0—00 a

_(° 1 1
lim J fola)de ZJ [l(a,b)(x) + El{a,b}(x) dp(x) = nla,b) + Eu{a, b}.

Now we make two observations: (a) that f is determined by {1, and (b) that the measure p is

determined by the values of n(a,b) + %p.{a, b} for all finite a < b. Thus, {1 determines L. |

We can continue the reasoning in the above proof to get a formula for recovering a measure

from its characteristic function.

Corollary 4: Fourier inversion formula

Let 1 € P(R).

(1) For all finite a < b, we have

1 1 1 e—lat —e ibt 2
_ _ — |i _ _ 0 T2
(1) w(a,b) + 2 pufa) + sulb) = Tim - JR —C (e iat

(2) If [ |f(t)|dt < oo, then p has a continuous density given by

o 1 0 —ixt
f(x) := o JR f(t)e dt.
PrOOF. (1) Recall that the left hand side of (1) is equal to li_r>n fz fo where
O0— 00
o
fola) = —= | e " **{i(t)dO
ol = —= | et 1) a0 ).
Writing out the density of 0, we see that

b 1 2

L fo(a)da = e —th(t)e 202 dtda

27
1 —iat __ 71bt 2

= t)e 202dt.
27'[ JR it IJ'( )e ’

‘)

_ 1 J —iaty(t)e i dadt  (by Fubini)
e

2
In the second line, Fubini’s theorem was applicable as (t, &) — Iﬁ(t)le_zt? is integrable

over R x [a, b], for o > 0. Thus, we get the first statement of the corollary.

(2) With f as before, we have fq () := 271 | e tat p.(t)e_% dt. Note that the integrand con-
verges to e "*'{i(t) as 0 — oo. Further, this integrand is bounded by |{i(t)| which is as-
sumed to be integrable Therefore, by DCT, for any « € R, we conclude that fs(«) — f(x)
where f(a) == o [ e~ T*t(t)dt.
Next, note that for any o > 0, we have |[fs(«)| < C for all x where C = [ |f(t)|dt. Thus,
for finite a < b, using DCT again, we get fz fo — fa fas o — oo.

159



But the proof of Theorem 43 tells us that

b 1 1
lim J fol)dae = u(a,b)+ =wfa}+ =u{b}
Faa 2 2

Therefore, w(a,b) + %u{a} + %u{b} = fz f(a)de. Fixing a and letting b | a, this shows
that u{a} = 0 and hence p(a,b) = jz f(a)dee. Thus f is the density of p.
The proof that a c.f. is continuous carries over verbatim to show that f is continuous

(since f is the Fourier transform of {1, except for a change of sign in the exponent). u

An application of Fourier inversion formula Recall the Cauchy distribution p with with density

m whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is

a way to compute this integral).
Consider the seemingly unrelated p.m v with density e~ /* (a symmetrized exponential, this
is also known as Laplace’s distribution). Its c.f is easy to compute and we get
1™ 10 1/ 1 1 1
(t) = = 1tx—xd - 1tx+xd I — .
vy zLe X+2Jme x 2(1—ﬁ+1+ﬁ> 112
By the Fourier inversion formula (part (b) of the corollary), we therefore get
1

1 ) 1 1 )
[P 'S I itxgqe — & itx g
2¢ 2nJv(t)e dt 27TJ1+’£2€ dt.

This immediately shows that the Cauchy distribution has c.f. et/ without having to compute the

integral!!

0.5. Continuity theorem. Now we come to the key result that was used in the proof of cen-
tral limit theorems. This is the equivalence between convergence in distribution and pointwise

convergence of characteristic functions.

Theorem 44: Lévy’s continuity theorem

Let un, u € P(R).

(1) If un 4 u then {i,, (t) — [i(t) pointwise for all t.

(2) If fin(t) — P(t) pointwise for all t and 1 is continuous at 0, then { = {1 for some
ue P(R)and pn 4 L.

Observe that in the second statement, we did not a priori assume that 1 is a characteristic

function. It of course implies that if {1, — {1 pointwise for some p € P(R), then py, 4 L.

PROOF. (1) If pn 4 i, then [fdp, — [fdu for any f € Cp(R) (bounded continuous
function). Since x — e'** is a bounded continuous function for any t € R, it follows that
fin(t) — fi(t) pointwise for all t.
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(2) Now suppose fin(t) — P (t) pointwise for all t and 1 is continuous at zero. We first claim
that the sequence {,, } is tight. Assuming this, the proof can be completed as follows.
Let un, be any subsequence that converges in distribution, say to v. By tightness,
v € P(R). Therefore, by the first part, {i,, — ¥ pointwise. But obviously, {i,, — fiL since
fin, = {i. Thus, ¥ = {1t which implies that v = u. That is, any convergent subsequence of
{pn} converges in distribution to p. This shows that iy, 4 L.

It remains to show tightness4. From Lemma 23 below, as n — oo,

5 o
un (1-2/8,2/8%) < 5 [ (1= n(o)ae— ¢ [ 1-wio)ar
s s

where the last implication follows by DCT (since 1 — fin(t) = 1 — 1|)( ) for each t and
also [1 — {in (t)] < 2 for all t). Further, as & | 0, we get 3 f t))dt — 0 (be-
cause, 1 — {i(0) = 0 and  is continuous at 0). Thus, given ¢ > O, we can find 6 > 0
such that limsup, _, _ un ([-2/6,2/8]¢) < e. This means that for some finite N, we have

n ([=2/8,2/8]¢) < e forallm > N. Now, find A > 2/8 such that for any n < N, we
get un ([—2/5,2/8]¢) < €. Thus, for any ¢ > 0, we have produced an A > 0 so that

n ([=A, A]¢) < ¢ for all n. This is the definition of tightness. [ |

Let p € P(R). Then, for any & > 0, we have

)
u(P%?])é%Jﬁ—ﬁmmt
)

Proor. We write

5 5 '
j (1—f(t)dt — Ju ") du(x)dt
) —& JR
)
— J ltX dtd}l( )
JR i)
_ (26 2sin(xd) )du(x)
R

_ ZSJ ( sin(xd) )du(x).
R

41 would like to thank Pablo De Népoli for pointing out a flaw in the statement and proof of the second part.
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When 8|x| > 2, we have % < % (since sin(xd) < 1). Therefore, the integrand is at least % when

[x| > % and the integrand is always non-negative since | sin(x)| < [x|. Therefore we get
5
| a-amecssui-2s200). m
-5

From the continuity theorem, it follows that if {1, converge to a continuous function, then the

limit is a characteristic function too. Here is an application of this.

Example 26: Symmetric stable distributions

As X ~ Pois(A) has characteristic function exp{7\(eit — 1)}, it follows that uX has character-

istic function exp{?\(eiut — 1)}. Adding independent copies of such variables, we see that
exp{Z}\J:1 Aj (etit — 1)} is also a characteristic function for u; € Rand A; > 0. As a special
case, take +u; with equal weight A; to get the characteristic function exp{Z}\J ~1Aj(2cos(uyt)—
2)}. Taking Riemann sum approximations to the integral and Lévy’s continuity theorem, we
see that for any continuous function A(-)

exp {Jw(cos(ut) —1)A(u) du}

0
is a characteristic function. Of course, we need the integral inside the exponent to make

sense and be the limit of its Riemann sums. One example is A(u) = [u|~*"1. Integrability
near oo forces « > 0 and integrability near 0 forces o« < 2. On the other hand, if I(t) =
fgo(cos(ut) — 1)[u/~*"1du, then by a change of variables I(bt) = b*I(t) for any b > 0.
Therefore, I(t) = C[t|* for C = I(1). We have proved that exp{—|t|*} is a characteristic
function for 0 < « < 2.

For 0 < « < 2, the distribution p, with characteristic function i (t) = e It/ is called the
symmetric o-stable distribution. If we set « = 2, we get the Gaussian distribution. But e ~/** is

not a characteristic function for o« > 2, as we shall see later and in the problem sets.

0.6. Positive semi-definiteness. What functions arise as characteristic functions of probability

measures on R? If ¢(t) = [ e'™du(x) for a probability measure p, then ¢(—t) = ¢(t) forall t € R.

Further, for any m > 1 and any complex numbers cy, ..., cm and any real numbers ty,...tm, we

must have
m ) 2 n )
0 gﬂzckeﬁkx du(x) = ) o J ethtxdu(x)
k=1 k=1

n
= ) oot —to).
k=1

This motivates the following definition.
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Definition 18: Positive definite functions
A function ¢ : R — R is said to be positive definite if the matrix M [ty, ..., tn] == (@(tj —

tk))1<j,k<n is Hermitian and positive semi-definite for any n > 1 and any ty,...,t, € R.

Before going further, let us see why symmetric «-stable distributions do not exist for o« > 2.

Example 27

Suppose X is a random variable with characteristic function e~ !!I*. Fix t > 0 and let Y =
2 — e X — e 1tX Then

E[YP?] =6 —8e " 4+ 221"

=6—8(1 —t* + O(t?%)) +2(1 — 2PtP + O(t?%)) (ast — 0)
=2(4 —2%)tP + O(t?%)

Thus if « > 2, then for small enough t we get E[|Y?] < 0, which is impossible! Hence eI

is not a characteristic function for o« > 2.

Thus characteristic functions are necessarily positive definite functions. We have also seen that
they are continuous and take the value 1 at 0. These are all the properties that it takes to make a

characteristic function.

Theorem 45: Bochner’s theorem
A function @ : R — R is a characteristic function of a Borel probability measure on R if and

only if ¢ is continuous, positive definite and ¢(0) = 1.

Before starting the proof, we make some basic observations about positive definite functions.

o If ¢ is positive definite, then || < 1. Indeed, for any t, the positive semi-definiteness of

Mo [0, t] shows that 1 — lo(t)]*> = 0 (note that @(—t) = ¢(t) is part of the condition of

positive definiteness).

o If ¢ and 1 are positive definite functions and 8(t) = @(t)y(t), then 6 is also positive
definite. The matrix C = Mglty, ..., tn] is the Hadamard product (entry-wise product)
of A =Mylty, ..., tnl and B = My[ty, ..., tn]. Itis a theorem of Schur that a Hadamard
product of positive semi-definite matrices is also positive demi-definite. It is not hard
to see: As A is positive semi-definite, we can find random variables Xy, ..., X;, such that
ai; = E[X;X;]. Similarly B = E[Y;Yj] for some random variables Yi,...,Y,,. We can
construct X;s and Yjs on the same probability space, so that (Xy, ..., Xy, ) is independent
of (Y1,...,Yn). Then, the covariance matrix of Z; = X;Yj, 1 < i < n, is precisely C. Hence
C is positive semi-definite.
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e For any nice function ¢ : R — C, we have

(2) ” c(t)e(s)o(t—s)dtds = 0.

This is just a continuum analogue of }_; , ¢jCk¢@(tj —tx) and can be got by approximating

the integral by sums. We omit details.

Now we come to the proof of Bochner’s theorem. What we need to prove is that given a continuous
positive definite function ¢ satisfying ¢(0), there is a probability measure whose characteristic
function it is. The idea is the natural one. We have already seen inversion formulas that recover a
measure from its characteristic function. We just apply these inversion formulas to ¢ and then try

to show that the object we get is a probability measure.

Proor or BocHNER’s THEOREM. Let ¢ be continuous, positive-definite and ¢(0) = 1.

Case: @ is absolutely integrable: Taking a cue from the Fourier inversion formula, define

1 .
f(x) = J e(t)e '™ dt.
27 R
The integral is well-defined as ¢ is bounded. We want to show that f is a probability density. First
we show that f is non—negative5 . Fix an interval Ipq = [—M, M] and observe that
1 .
f(x) = J J e (=) p(t — s)dtds (the inner integral does not depend on s)
2n(2M) ;. Jr @ & P
1

. 1 )
= — e (=)o (t — s)dtds + J J eX(t=s) o (t — s)dtds.
2n(2M) LMJ » v 2n(2M) J1, )i ¢

The first integral is positive by (2) (take c(t) = ¢™'1;;<m). As for the second integral, we claim
that it goes to zero as M — oo. Indeed, fix 8 > 0 and observe that for |s| < (1 — §)M, the inner
integral is less than cp == IIWC le(u)|du (as [t —s| > 6M for any |s| < (1 —0)M and any [t| > M).
If [s| > (1—8)M, we just use the trivial bound C := j'R || for the inner integral. Overall, the bound

for the second term becomes

1
2 1 < M
7( M) ( ( 5)MCM + CEM) cm + oC

Let M — oo and then & | 0 (or just take 6 = ﬁ) to see that this goes to zero as M — oo. This
proves that f(x) > 0 for all x. We now claim that [ f(x)dx = 1. To start with, since |f| < | ¢||1, for

51t may be easier to first see the following formal argument. Fix x € R and use c(t) = e'** in (2) to get

0< J:[ et o (t — )dtds = JU ei"“(p(u)du} ds

= f(x) <J1ds> .

Of course, the integral here is infinite, hence the proof is only formal, but it gives a hint why f(x) > 0. The actual proof

makes this precise by integrating s over a finite interval.
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any o > 0 we have

1 .
J f(x)e“zxz/zdx:J J @(t)e¥te o/ 24y dt
R 21t Jr Jr

1 s 2,2
—_ t ixt —GX/Zdtd
27 J]R olt) J]R © e *
where the application of Fubini’s theorem is justified because |¢(t) Ie*GZXZ/ 2 ¢ LI(R xR). The inner
2
integral is essentially the Fourier transform of the Gaussian and equal to v/ 2me 307 Plugging this

in, we see that
1

oV 2T

2
J f(x)efczxz/zdx: J (p(t)e_;?dt
R R

The right side is E[¢(0Z)] where Z ~ N(0,1). By continuity and boundedness of ¢, DCT implies
that it converges to @(0) = 1 as o | 0. The integrand on the left side increases (as f > 0) to f(x).
hence by MCT, the limit as o | 0 of the integral is | g f(x)dx. This shows that f is a probability
density.

As fis integrable, the Fourier inversion formula applies to show that | r F(x) e ™ dx = @(t) for
all t. Thus, ¢ is the characteristic function of the probability measure f(x)dx.
General case: For any o > 0, define ¢(t) = (p(t)e*"ztz/ 2 (the idea behind: If ¢ is the characteristic
function of a random variable X, then ¢ s would be that of X 4+ 0Z, where Z ~ N(0,1)). Since ¢ is
bounded, ¢ is absolutely integrable for any o > 0. Further, ¢ is continuous and positive definite
by the Schur product theorem. Thus, by the first case, ¢ is the characteristic function of a measure
Lo (in fact, dug(x) = fo(x)dx, where fq(x) = % fre ' os(t)dt).

Qs — @ point-wise as o | 0. By the second part of Lévy’s continuity theorem, we see that

pggpasc7¢0forsomepe?(]1%) and that L = . |

0.7. Multivariate situation. Let X ~ u € P(R9). Its Fourier transform or characteristic function
is a function L : RY — C defined as {i(t) = [e¥** du(x) = E[e'(*X)]. All the theorems proved in

the univariate case go through with the most obvious modifications. In particular, we have
(1) Parseval relation: [pq idv = [pa ¥dp.

(2) Fourier inversion formula: If i = ¥, then p = v. In particular, if {1 is integrable, then p
has bounded continuous density given by f(x) = (271) =9 [Lq f1(t)e' (¥ dt.

(3) Lévy’s continuity theorem: Identical to the one-dimensional case.

(4) Joint moments of X;js are related to partial derivatives of the characteristic function at the
origin.
And these tools can be used to prove CLT just as before.
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Here is an interesting fact that is totally non-trivial if we do not use characteristic functions (I

don’t know any such proof).

Proposition 4: Cramer-Wold device

Suppose p, v € P(R4) have equal 1-dimensional marginals in all directions. Then p = v.

To be clear, what the equality of marginals means that if X ~ pand Y ~ v and (X,v) = (Y,v)
for each v € RY. The conclusion is that X £ Y. As we know very well, equality of 1-dimensional
marginals in the co-ordinate (or any finite set of) directions is not enough to claim equality of joint

distributions.

Proor. Since (X, V) 4 (Y, v) for each v, we see that E[et™XV)] = E[e(YV)] hence the characteristic

functions of X and Y coincide. Therefore, they have the same distribution on R9. n

Remark 20

Fourier analysis on general locally compact abelian groups goes almost in parallel to that

on the real line. If G is a locally compact abelian group (eg., R4, (S1)4, Z4, finite abelian
groups, their products), then the set of characters (continuous homomorphisms from G to
S') form a collection G called the dual of G. It can be endowed with a topology (basically
of point-wise convergence on G) and these characters form a dense set in L?(G) (w.r.t. Haar
measure). For a measure p on G, one defines its Fourier transform i : G- C by {i(x) =
fG x(x)dp(x). Plancherel’s theorem, Lévy’s theorem, Bochner’s theorem all go through with

minimal modification of language”.

?A good resource is the book Fourier analysis on groups by Walter Rudin.
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