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CHAPTER 1

Probability measures and random variables

The goal of the course is to first understand the measure theoretic foundations of probability
theory. Then we study the basic theorems and techniques of probability. Although we shall intro-
duce many interesting probability situations, what we study most in depth are sums of indepen-
dent random variables, essentially devoted to the following single question: Given independent
random variables with known distributions, what can be said about the distribution of the sum?
Here is a brief outline, some of which will not make sense till we go into them in detail.
I Measure theoretic foundations of probability: Borel and Lebesgue founded measure the-

ory, in particular the Lebesgue measure and Lebesgue integral, mainly motivated by the question
of understanding lengths, areas, volumes, in the greatest generality possible. Very soon it was
realized that the same would also give a mathematical foundation to probability. However, be-
yond the basics, the key aspects of probability that make it richer than general measure theory are
the notions of independence and conditional probability. Several analysts had given reasonably
satisfactory measure theoretic foundation to independence (most importantly Daniell) but it was
Kolmogorov who put the entire theory, including conditional probability, on a firm foundation. We
shall see most of this in the first part of the course (though conditional probability will be largely
postponed).
I The second important aspect will be the various techniques. These include the first and

second moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and
Bernstein and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention character-
istic functions or Fourier transforms, a tool of great importance, as well as the less profound but
very common and useful techniques of proofs such as truncation and approximation. It is these
techniques that one must really get comfortable with, to be able to do anything further.
I Thirdly, we introduce a few basic problems/constructs in probability that are of interest in

themselves and that appear in many guises in all sorts of probability problems. These include the
coupon collector problem, branching processes, Pólya’s urn scheme and Brownian motion. Many
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more could have been included if there was more time1. These are also important to introduce, as
techniques cannot be learned in vacuum, but by seeing how they are used in these problems.
I Lastly, some of the fundamental results of probability theory. Laws of large numbers, Cen-

tral limit theorems, Law of iterated logarithm, Sums of heavy tailed random variables, etc. Their
importance cannot be overemphasized.

1. The basic set up for probability

A random experiment is an undefined but intuitively unambiguous term that conveys the idea of
an “experiment” that can have one of multiple outcomes, and which one actually occurs is unpre-
dictable. The first question in making a theory of probability is to give a mathematical definition
that can serve as a model for the real-world notion of a random experiment.

In basic probability class we have already seen how to do this, provided the number of out-
comes is finite or countably infinite. This is how it is done.

Definition 1: Discrete probability space

A discrete probability space is a pair (Ω,p), where Ω is a non-empty countable set and p :

Ω→ [0, 1] is a function such that
∑
ω∈Ω

p(ω) = 1.

Then define P : 2Ω → [0, 1] by P(A) =
∑
ω∈A

p(ω).

The set Ω is called the sample space (the collection of all possible outcomes), p(ω) are called
elementary probabilities, subsets ofΩ are called events, and P(A) is said to be the probability of the event
A. The way this mathematical notion is supposed to represent a random experiment is familiar.
We just illustrate with a few examples.

Example 1: A coin is tossed n times

Then Ω = {0, 1}n where if ω = (ω1, . . . ,ωn) ∈ Ω denotes the outcome where the ith toss
is a head if ωi = 1 and a tail if ωi = 0. Further, p(ω) = pω1+...+ωn(1 − p)n−ω1−...−ωn

(this assignment incorporates the idea that distinct tosses are independent, a notion to be
introduced later) where p ∈ [0, 1] is a parameter describing the coin. An example of an event
is that of getting exactly k heads, i.e., A = {ω : ω1 + . . . + ωn = k}, which has probability
P(A) =

(
n
k

)
pk(1 − p)n−k.

1References: Dudley’s book is an excellent source for the first aspect and some of the second but does not have much
of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can touch
upon in this course. Lots of other standard books in probability have various non-negative and non-positive features.
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Example 2: r balls are thrown into n bins at random

Then Ω = [n]r where [n] = {1, . . . ,n}. Here ω = (ω1, . . . ,ωn) ∈ Ω denotes the outcome
where the ith ball goes into the bin numbered ωi. Elementary probabilities are defined by
p(ω) = n−r. An example of an event is that the first bin is empty, i.e., A = {ω : ωi 6=
1 for all i}, and it has probability P(A) = (n−1)r

nr .

But when the number of possible outcomes is uncountable, this framework fails. Examples:

(1) A glass rod falls and breaks into two pieces.

(2) A fair coin is tossed infinitely many times.

(3) A dart is thrown at a dart board.

Sample space. This is the set of all possible outcomes and is denoted2 Ω. In the above cases it
is easy to see that the sample space must be equal to

(1) [0, 1], where we think of the glass rod as the line segment [0, 1] and the outcome denotes
the point in [0, 1] where the breakage occurs,

(2) {0, 1}N, where ω = (ω1,ω2, . . .) denotes the outcome where the kth toss turns up ωk
(always 1 denotes heads and 0 denotes tails),

(3) {(x,y) : x2 + y2 6 1}, where the point (x,y) denotes the location where the dart hits the
dartboard.

In all three casesΩ is uncountable. We also agree on the probabilities of many events. For example
the events [0.1, 0.35] and {ω ∈ {0, 1}N : ω1 = 1, ω2 = 0} and {(x,y) : x > 0 > y} in the three examples
must have probability 1

4 . But where does that come from? If any elementary probabilities are to
be assigned to singletons, it can only be zero, and there is no unambiguous meaning to adding
uncountably many zeros to get 1

4 . So we need a new framework.
The first example is clearly the same as the issue of assigning lengths to subsets of the line, and

in measure theory class we have seen that it can be done satisfactorily by giving up the idea of
assigning length to every subset. As recompense, we get a notion of length that is not just finitely,
but countably additive. This framework exactly fits our need.

2This is universal among probabilists of the world. If you use a different letter for the sample space, you will be
looked at with concern, but if you useΩ for anything else in probability context, no one will talk to you.
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Definition 2: Probability space

A probability space is a triple (Ω,F,P) where

• Ω is a non-empty set,

• F is a sigma algebra of subsets of Ω. That is, F ⊆ 2Ω. (i) ∅ ∈ F. (ii) A ∈ F =⇒
Ac ∈ F. (iii) An ∈ F =⇒ ∪nAn ∈ F.

• P is a probability measure on F. That is P : F → [0, 1] satisfies P(Ω) = 1 and
P(tAn) =

∑
n P(An) for any pairwise disjoint An ∈ F.

Observe that n will always indicate a countable indexing (may start at 0 or 1 or vary over all
integers). For A ∈ F, we say that P(A) is the probability of A. We do not talk of the probability of
sets not in the sigma algebra. This framework will form the basis of all probability.

To return to the modeling of random experiments, what the sample space should be is usually
clear, as we have seen. What should the sigma-algebra be? Except for the trivial sigma-algebras
2Ω and {∅,Ω}, there is no sigma-algebra of interest that can be defined by explicitly specifying a
membership criterion for which subsets ofΩ belong to it. They are almost always defined indirectly
as follows.

Definition 3: Generated sigma-algebra

Let S be a collection of subsets ofΩ. The smallest sigma-algebra containing S, also called the
sigma-algebra generated by S, exists and is defined as

σ(S) =
⋂
F⊇S

F,

where the intersection is over all sigma-algebras that contain S.

Arbitrary intersection of sigma-algebras is a sigma-algebra, hence σ(S) is a sigma-algebra. The
most important example of a generated sigma-algebra is the Borel sigma algebra of a topological
space. This is the sigma-algebra generated by the collection of all open sets.

An important point to keep in mind is that many different collections S generate the same
sigma-algebra as the following exercise shows.

Exercise 1
On R, show that the Borel sigma-algebra is generated by any of the following collections
of sets: (1) open sets, (2) closed sets, (3) compact sets, (4) intervals, (5) open intervals,
(6) closed intervals, (7) open intervals with rational end-points, (8) left-open, right-closed
intervals, (9) the collection of intervals (−∞, x] with x ∈ Q.
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Sigma-algebra. Now let us decide the sigma-algebras in the three examples we considered
above. As suggested above, the sigma-algebra is defined by giving a generating set S. How to de-
cide what S to take? Into Swe put in all subsets for which we definitely wish to define probabilities.
Then take F = σ(S) as our sigma-algebra.

In all three examples we take S to be the collection of open sets inΩ, and so F = BΩ is the Borel
sigma-algebra. The topology in the first example (Ω = [0, 1]) and third example (Ω = {(x,y) :

x2 + y2 6 1}) are the standard topologies coming from Rd. In the second example, we take the
product topology onΩ = {0, 1}N, which is in fact metrized by

d(ω,ω ′) =
∑
n>1

|ωn −ω ′n|

2n
forω,ω ′ ∈ {0, 1}N.

This certainly defines a sigma-algebra in each case, but is it the right one for us? Let us discuss this
point.

For example, in the stick-breaking example, you might either worry that we are asking for too
little (don’t we want closed sets in our sigma-algebra?) or that we are asking for too much (do
we need all open sets?). The first is not a worry because of the earlier exercise that shows that
we would get the same Borel sigma-algebra from many different collections of sets, including the
collection of closed sets. We are not asking for too much either. Indeed, if we ask for open intervals
to be in the sigma-algebra, then all open sets must also be there (as any open set inRd is a countable
union of open balls).

Identical considerations apply to the dart throwing example.
The stick-breaking example looks a bit different. Introducing a metric out of the blue and taking

its Borel sigma-algebra looks unnatural. More natural would have been to take S to be the collection
of sets of the form {ω : ωi1 = ε1, . . . ,ωim = εm} where 1 6 i1 < . . . < im and εi ∈ {0, 1}. Observe
that these sets specify the outcome of finitely many tosses. These are called (finite-dimensional)
cylinder sets. If S denotes the collection of cylinders, then the generated sigma-algebra σ(S) is the
same as the Borel sigma algebra of the product topology on {0, 1}N (can you see why?). Thus, we
did take the right sigma-algebra.

The probability measure. Now that we are clear how the sigma-algebra associated to a ran-
dom experiment is obtained, the question remains of the probability measure. We have Ω, a col-
lection of subsets S, and the sigma-algebra σ(S). By symmetry considerations or experiments or
something else, let us say that we know what probability of events in S ought to be (or to be pen-
dantically clear, we include in S those events for which we do know what the probabilities ought to
be, and then define the sigma-algebra). So the primary question of designing a probability space
reduces to this:
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Question 1: Extension of probability

Given P : S→ [0, 1], does there exist a probability measure P on σ(S) such that P(A) = P(A)
for A ∈ S. If so, is it unique?

1.1. The uniqueness question. The uniqueness part is easier. But it is not true in general!

Example 3

Let Ω = {1, 2, 3, 4} and S = {{1, 2}, {2, 3}, {3, 4}}. Then σ(S) = 2Ω. Let p(i) = 1
4 for all i and let

q(i) = 1
2 for i = 1, 3 and q(i) = 0 for i = 2, 4. Use these as elementary probabilities to define

probability measures P,Q on 2Ω. Then P(A) = 1
2 = Q(A) for allA ∈ S but P 6= Q.

Uniqueness is true if we assume more structure on S, for example if it is a π-system (closed
under intersections3). The proof is a good illustration of one of the standard tricks of measure
theory.

Proof for π-systems. Indeed, suppose S is a π-system and that P,Q are two probability mea-
sures on σ(S) such that P(A) = Q(A) for A ∈ S. Then the collection G := {A ∈ σ(S) : P(A) = Q(A)}

contains S. If An ∈ G and An ↑ A, then A ∈ S because

P(A) = limP(An) = limQ(An) = Q(A).

Further, if A,B ∈ G and A ⊆ B, then B \A ∈ G because

P(B \A) = P(B) − P(A) = Q(B) −Q(A) = Q(B \A).

As G contains the empty set andΩ, this shows that it is a λ-system. It contains the π-system S. The
π-λ theorem asserts that then G contains σ(S), which means that P = Q on σ(S). �

The standard trick referred to above is in the consideration of G, the collection of all sets with
the property that we wish to show for all sets of σ(S). In fact, there is no other way, as the only
definition of σ(S) is as the smallest sigma-algebra containing S (there is no way to write elements
of σ(S) using countable operations on elements of S).

1.2. The existence question. The existence of a measure is the harder question. But it has a
clean and efficient answer!

3For measure theory terms and facts not explained in detail here, see my other notes.
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Theorem 1: Carathéodory’s extension theorem

Let A be an algebra of subsets ofΩ and let F = σ(A). Let P : A→ [0, 1] satisfy (i) P(A∪B) =
P(A) + P(B) if A,B ∈ A are disjoint, (ii) if An,A ∈ A and An ↑ A, then P(An) ↑ P(A),
(iii) P(Ω) = 1. Then, there exists a probability measure P on F such that P = P on A.

Observe that the assumed conditions are obviously necessary. It is amazing that they are suf-
ficient! In practise, the hardest part of the checking is the countable additivity on A (second con-
dition). But it can be done in many situations of interest including that of Lebesgue measure. The
proof of Carathéodory’s extension theorem can be found in every book on measure theory. A
one-paragraph summary: One defines the outer measure P∗ : 2Ω → [0, 1] by

P∗(A) := inf

{∑
n

P(An) : An ∈ A, ∪nAn ⊇ A

}
.

It turns out thatP∗ = P onA andP∗ is countably sub-additive on 2Ω (i.e., P∗(∪nAn) 6
∑
n P
∗(An)).

However, there is a sigma-algebra F (defined by the “Carathéodory cut condition”) that contains
F and on which P∗ is countably additive. The restriction of P to F is the P we want.

Remark 1
In the uniqueness part, we only needed the generating set to be a π-system whereas in the
existence part we needed it to be an algebra. It would have been more convenient to just
start with a π-system (much less structure than an algebra). This can be done occasionally
by finding π-systems S with the property that the complement of any set in S is a finite
disjoint union of elements of S. The reason this helps is that for such S, the collection A of
finite disjoint unions of elements of S becomes an algebra. And given P : S→ [0, 1], it is clear
that for A = S1 t . . . t Sk ∈ A, we must take P(A) to be P(S1) + . . . + P(Sk). Thus we first
extend P to A, and then check the conditions of Carathéodory’s extension theorem.

The existence of Lebesgue measure is a special case of paramount importance.

Theorem 2: Existence of Lebesgue measure

There exists a unique probability measure λ on the Borel sigma-algebra B of [0, 1] such that
λ([a,b]) = b− awhenever [a,b] ⊆ (0, 1].

Proof. Observe that S = {(a,b] : 0 6 a < b 6 1} is a π-system. It has the special property
mentioned in the above remark: (a,b]c = (0,a] t (b, 1] is a disjoint union of two elements of S.
Hence A = {I1 t . . .t Ik : k > 0, Ij = (aj,bj], bj < aj+1 for all j} is an algebra. For A = I1 t . . .t Ik
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with Ij = (aj,bj] pairwise disjoint, we define

P(A) =

k∑
j=1

(bj − aj).

The finite additivity of P on A is easy to check and left as exercise. To apply Carathéodory’s exten-
sion theorem, it only remains to check that ifAn,A ∈ A andAn ↑ A, then P(An) ↑ P(A), or equiva-
lently thatP(A\An) ↓ 0. LetA = J1t. . .tJmwhere Ji = (ai,bi]. ThenP(A\An) 6

∑k
i=1 P(Ji\An,i)

where An,i = An ∩ Ji ∈ A.
Thus, it suffices to show thatP(J\Bn) ↓ 0 for any J = (a,b] andBn ∈ A such thatBn ↑ J. Replace

J by the smaller compact interval J ′ = [a+ ε,b] and replace the intervals in Bn = In,1 t . . . t In,kn

by slightly larger open intervals (say the intervals are enlarged by ε/kn each) to get an open set
B ′n. Then J ′ \ B ′n are compact sets that decrease to empty set, hence equal to empty set for some
large n. But then

P(J) 6 P(J ′) + ε 6 P(B ′n) + ε 6 P(Bn) + 2ε.

As ε is arbitrary, lim inf P(Bn) > P(J). The other inequality lim supP(Bn) 6 P(J) is clear as Bn ⊆ J.
�

Remark 2
Do not forget to check the finite additivity of P on A. In general, when you start with a
special π-system, it is important to check that P satisfies finite and countable additivity on
the generated algebra A. For example, can we get measures on ([0, 1],B) such that P(a,b] =
(b− a)2 for all a < b or P(a,b] =

√
b− a for all a < b?

2. Probability measures

One can imagine that by a similar method Carathéodory extension theorem, one can define
probability spaces to capture other random experiments such as “throwing a dart” and “tossing a
coin infinitely many times”. For example, in the coin-tossing case, we can start with the π-system
of cylinders for which we know what probabilities to assign, and proceed from there.

However, we emphasize a different point of view here. Once we have the stick-breaking prob-
ability space ([0, 1],B, λ), every other probability space of interest can be constructed from it! First
we introduce a fundamental notion of probability theory.

Definition 4: Random variable or Measurable function
Let F be a sigma-algebra on X and let G be a sigma-algebra on Y. A map T : X→ Y is said to
be measurable if T−1(A) ∈ F for all A ∈ G. We also say that T is a (Y-valued) random variable.
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When we just say random variable, we usually mean anR-valued random variable or preferably
R-valued random variable, where R = R∪ {−∞,∞} is the extended real line whose topology is got
by identifying it with [−1, 1] via the map x 7→ x

1+|x| (or if you prefer metric spaces, the metric on R
is d(x,y) = | x

1+|x| −
y

1+|y| |). When the target space is Rd, we talk of random vectors and depending
on the target space, we may have random sets, random graphs, random measures, etc.

Push-forward to get new measures from old. The existence of Lebesgue measure λ on ([0, 1],B)

solves our search for a mathematical framework for the “breaking a stick” random experiment.

Lemma 1: Push-forward measure
Let (Ω,F,P) be a probability space and let G be a sigma-algebra on Λ. Suppose T : Ω → G

is a Λ-valued random variable. Then, Q : G → [0, 1] defined by Q(A) = P(T−1(A)) is a
probability measure on (Λ,G). It is called the distribution of the random variable T .

Proof. If An ∈ G are pairwise disjoint, then so are Bn := T−1(A) which are in F. Further,
T−1(∪nAn) = ∪nBn, hence

Q(∪nAn) = P(T−1(∪nAn)) =
∑
n

P(Bn) =
∑
n

Q(An).

Of course T−1(Λ) = Ω, hence Q(Λ) = P(Ω) = 1. �

We say that Q is the push-forward of P under T , and sometimes denote it as Q = P ◦ T−1.

2.1. Tossing a coin infinitely many times. Here Ω = {0, 1}N and F is the Borel sigma-algebra
(generated by finite dimensional cyinder sets). For a cylinder set

Aε1,...,εn = {ω = (ω1,ω2, . . .) ∈ Ω : ω1 = ε1, . . . ,ωn = εn},

we know that we want the probability to be 2−n.
Define T : [0, 1] → {0, 1}N by T(x) = (x1, x2, . . .) where x =

∑
n>1

xn2−n is the binary expansion

of x. To avoid ambiguity, for dyadic rational x = k/2n (these are the ones that have more than
one binary expansion), we take the expansion that has infinitely many ones. We claim that T is
measurable. Indeed, for the cylinder set above, T−1(Aε1,...,εn) is an interval of length 2−n (with
left end-point a = ε12−1 + . . . + εn2−n). Clearly, if B is a cylinder set specified by a subset of
co-ordinates i1 < . . . < ik 6 n, then B is a union of 2n−k pairwise disjoint sets of the formAε1,...,εn .
Therefore T−1B is a union of finitely many (pairwise disjoint) intervals, and hence a Borel subset
of [0, 1]. Thus, T is measurable.

As T is measurable, we can define P = λ ◦ T−1 as a probability measure on F. Is this the
probability measure we want? As we saw above, if B = {ω : ωi1 = ε1, . . . ,ωik = εk}, then T−1(B)
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is a union of 2n−k intervals, each of length 2−n, hence P(B) = λ(T−1(A)) = 2n−k × 2−n = 2−k.
Thus, this measure agrees with the probabilities we wanted for cylinder sets.

Observe that all the hard work that was done in constructing Lebesgue measure did not have
to be repeated here.

2.2. Picking a point at random from the Cantor set. LetK be the standard 1
3 -Cantor set. Recall

that K = ∩Kn where K0 = [0, 1], K1 = [0, 1
3 ] ∪ [

2
3 , 1], K2 = [0, 1

9 ] ∪ [
2
9 , 1

3 ] ∪ [
2
3 , 7

9 ] ∪ [
8
9 , 1] and so on. It is

also the set of x ∈ [0, 1] whose base-3 expansion has no digit equal to 1. As a compact set, the Borel
sigma-algebra of K is nothing but the collection of A ∩ K, A ∈ BR.

A natural map from [0, 1] to K is given by T(x) =
∑
n>1

2xn
3n where x =

∑
n>1

xn
2n . Clearly T

maps [0, 1] into K. Why is it measurable? Accepting that, we get a measure µ = λ ◦ T−1 on K (with
its Borel sigma-algebra). It is easy to see that each of the intervals comprising Kn get a measure
of 2−n. That justifies calling it “uniform measure on the Cantor set”. It is also known as Cantor
measure.

As an aside, one can think of µ as a measure on (K,BK), but one can also think of it as a measure
on (R,BR) by setting ν(A) = µ(A ∩ K) for A ∈ BR. Then ν(K) = 1.

2.3. All Borel probability measures on R. What are all the probability measures on the Borel
sigma-algebra of R? In principle, the Carathéodory extension gives the way: Propose a candidate
P : S → [0, 1], where S consists of all left open, right closed intervals. Extend it to the algebra of
finite disjoint unions of such intervals, and check the conditions of finite and countable adiditivity.
If the conditions are satisfied, you get a measure, otherwise not. This is not satisfactory as it is not
explicit enough - how do know which function P work before hand?

To give the answer, recall that a cumulative distribution function (CDF) is any function F : R →
[0, ]1 that is increasing (s 6 t =⇒ F(s) 6 F(t)), right-continuous (F(t + h) ↓ F(t) as h ↓ 0) and
converges to 0 at −∞ and to 1 at +∞.

Let P(R) denote the set of all Borel probability measures on R. For any µ ∈ P(R), the function
Fµ(t) := µ(−∞, t] is a CDF. This is easy to check. Interestingly, the converse is true.

Theorem 3
Let F be a CDF. Then, there is a unique µ ∈ P(R) such that F(t) = µ(−∞, t].

This gives a complete characterization of Borel probability measures on R in terms of much
easier to understand objects, namely CDFs. One approach to the above theorem would be to
define µ(a,b] = F(b) − F(a) for a < b, and extend it to the algebra of finite disjoint unions of
left-open, right-closed intervals (including (−∞,a] and (b,∞)) and check the conditions for the
Carathéodory’s extension theorem. A simpler way is below.
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Proof. Given a CDF F, define T : (0, 1) → R by T(u) := inf{x ∈ R : F(x) > u} (well-defined
as F(x) → 1 as x → +∞). It is a kind of “generalized inverse” in the sense that T(u) 6 x if and
only if F(x) > u. Further, T is increasing, right-continuous and hence Borel measurable. Therefore
µ := λ ◦ T−1 is a probability measure. Further

µ(−∞, x] = λ{u : T(u) 6 x} = λ{u : F(x) > u} = λ(0, F(x)] = F(x).

Thus µ has CDF F. If νwas another probability measure on BR with the same CDF, then µ(a,b] =
ν(a,b] for all a < b. As they agree on a π-system that generates BR, it follows that µ = ν. �

As it is much easier to understand CDFs than to understand measures, this parameterization
of P(R) by CDFs is very useful. At the very least, it allows us to write down many probability
measures on R. Two particular classes are useful to keep in mind.

(1) Measures with pmf (probability mass function): Give a real sequence (x1, x2, . . .) and
(p1,p2, . . .) such that pi > 0 and

∑
i pi = 1. Then define F(x) =

∑
i:xi6x pi. This is a CDF

that increases only by jumps, and the corresponding probability measure is said to have
pmf given by (xi) and (pi).

Binomial, Poisson, Hypergeometric, Geometric, Negative-Binomial are important classes
of examples of probability measures having pmf.

(2) Measures with pdf (probability density function): Give a Borel measurable f : R → R+

such that
∫
R f(x)dx = 1 (this integral is Lebesgue integral). Then F(x) =

∫x
−∞ f(u)du =∫

R f(u)1u6xdudefines a CDF. The corresponding probability measure is said to have den-
sity F.

Normal, Exponential, Gamma, Uniform, Beta, Cauchy, are important classes of prob-
ability measures having pdf.

2.4. Higher dimensions. A CDF on Rd is a function F : Rd → [0, 1] that is increasing in
each co-ordinate, is right continuous, and F(t) → 0 if min{t1, . . . , td} → −∞ and F(t) → 1 if
min{t1, . . . , td}→ +∞.

For a Borel probability measure µ on Rd, one can associate a CDF by

F(t1, . . . , td) = µ((−∞, t1]× . . .× (−∞, td]).

The converse is also true. For any CDF F, there is a unique probability measure µ on BRd whose
CDF is F.

Unlike in one dimension, it is not easy to prove this by giving a measurable function T : [0, 1]→
Rd such that λ ◦ T−1 = µ. Instead it is better to take the way out using the Carathéodory extension
theorem as follows.
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For a left-open, right-closed rectangle R = (a−1 ,a+1 ]× . . .× (a−d ,a+d ] define

P(R) =
∑

ε∈{−,+}d

ε1 . . . εdF(aε1
1 , . . . ,aεdd ).

The idea behind this definition is the inclusion-exclusion principle (if Fwas the CDF of a measure
µ, then µ(R) would be precisely given by the above formula). For a finite, disjoint union of such
rectangles, A = R1 t . . .tRm, define P(A) = P(R1) + . . .+ P(Rm). Observe that the collection of all
finite, disjoint unions of such rectangles forms an algebra A. Further, σ(A) = BRd .

Thus, to extendP to a probability measure onBRd , we must check the conditions of the Carathéodory
extension theorem. The finite additivity is easy. Checking the second condition (continuity under
increasing limits) can be reduced to the following (see the proof of existence of Lebesgue measure):
If An = Rn,1 t . . . t Rn,kn increase to a rectangle R, then P(R \ An) ↓ 0. This can be done exactly
as in the case of Lebesgue measure (slightly decrease R to a compact set and slightly increase the
Rn,j to open sets and so on).

2.5. Polish spaces. More generally, every probabilty space of interest to probabilists can be got
this way by pushing forward Lebesgue measure on [0, 1] by a measurable mapping. A Polish space
is a complete, separable metric space (more precisely, a separable metric space whose topology
can be induced by a complete metric, e.g., (−π2 , π2 ) carries the complete metric d(x,y) = | tan−1 x−

tan−1 y|).

Theorem 4: Borel isomorphism theorem

Let (X,d) be a Polish space and let µ be a probability measure on BX. Then there is a mea-
surable T : [0, 1]→ X such that λ ◦ T−1 = µ.

We shall not prove this theorem, but what we primarily need is a very important case of interest,
when X = RN and µ is an infinite product of measures on R. This is intimately connected to one
of the most important notions in probability, namely independence. Instead of repeating, we refer
the reader to sections 28–30 (also 27 if not familiar with finite product measures and 31–32 to go
a little beyond the bare minimum needed) of Part-1 of these lecture notes. In section 24 there is
a brief introduction to conditional probability. In the next section, a very short introduction to
Expectation is given, but for the construction and details, refer to Part-1.

3. Random variables

Let (Ω,F,P) be a probability space. Let RV denote the set of all random variables and let RV+

denote the set of all non-negative random variables on this probability space. Recall that random
variables take values in the extended real numbers R. Random variables are measurements in
a random experiment (e.g., number of heads in a sequence of coin tosses, the distance from the

20

http://math.iisc.ac.in/~manju/PT2019/Lectures-part1.pdf


center at which a dart hits a dartboard, etc.). For every event A ∈ F, one can associate the random
variable 1A (indicator of A). Thus random variables are a generalization of events, from 2-valued
measurements to multi-valued measurements.

3.1. Distributions of random variables. When one is interested in one single random variable
X, all probability questions about it can be answered by finding its distribution, which is the push-
forward measure µ := P ◦ X−1 on R. For example, P{X 6 t} = µ(−∞, t] is the CDF of µ. Here and
in future, we just write {X ∈ A} to mean {ω ∈ Ω : X(ω) ∈ A}.

When considering several random variables, say X1, . . . ,Xn, then one is interested in events
such as {X1 6 t1, . . . ,Xn 6 tn}. The probability of such an event cannot be computed from the
individual distributions of Xks, but can be calculated from their joint distribution, which is just the
probability measure ν := P ◦ X−1 on (Rd,BRd), where X = (X1, . . . ,Xn) : Ω→ Rn. For example,

P{X1 6 t1, . . . ,Xn 6 tn} = ν((−∞, t1]× · · · × (−∞, tn])

When considering a sequence of random variables X1,X2, . . ., we can again form a single func-
tion X = (X1,X2, . . .) : Ω→ RN. It is easy to check that X is measurable (when RN is endowed with
the cylinder sigma-algebra) and hence we can define its distribution θ = P ◦ X−1, a probability
measure on RN. But a probability measure on the cylinder sigma-algebra is determined by its val-
ues on finite dimensional cylinders. In other words, the distribution of the sequence is completely
determined by the collection of finite dimensional joint distributions of (X1, . . . ,Xn) for each n.

One can recast some of what we have discussed in the language of random variables. For
example, given a CDF F : R→ [0, 1], instead of asking for a probability measure µ with CDF F, we
could ask for a random variable X (on a probability space of your choice) such that P{X 6 t} = F(t)
for all t. Indeed, if the measure µ exists, then we can take the probability space (R,B,µ) and define
X(t) = t. Then X has distribution µ. Conversely, if there is some probability space (Ω,F,P) and a
random variable X : Ω→ R satisfying P{X 6 t} = F(t), we can construct the measure µ = P ◦ X−1.
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Remark 3: A matter of language

Probabilists universally use the language of random variables and leave the probability space
unidentified in the background. Statisticians and engineers do the same, but this tends to
confuse other mathematicians who prefer the language of measures.
For example, a probabilist will say, “If X has Exp(1) distribution, then P{X > 2} = 1/e2”
while an analyst might say “In the measure space (R,B,µ = Exp(1)), we have µ[2,∞) =

1/e2”. Observe that the probabilist did not specify the probability space (and the underlying
probability measure is almost always denoted P!) and the analyst did not specify a random
variable (as in this example, if the probability space is chosen minimally, the random variable
will be the identity function).
The convenience of the probabilists’ way becomes more apparent when we have many ran-
dom variables and start doing operations on random variables (adding/multiplying and
later, conditioning). It also has the advantage of being closer to the way we think when
applying probability to real-world situationsa.
aSee this blog post by Timothy Gowers, paragraphs 3-11, for a discussion akin to this. In it is a though-provoking
remark of David Aldous that a random variable is like a cake whereas a measure is like a recipe for a cake.

4. User’s guide to expectation

For an indicator random variable 1A, its distribution is completely described by giving one
number, P(A). For a general random variable, the distribution is a complicated object, but if one
wants a single-number summary, we give its expectation (but it does not always exist). Here are
the fundamental facts about expectation:

Fact: There is a unique function E : RV+ → [0,∞] satisfying

(1) Linearity: E[X+ Y] = E[X] + E[Y] and E[cX] = cE[X] for all X, Y ∈ RV+ and for all c > 0.

(2) Positivity: E[X] > 0 with equality if and only if X = 0 a.s.

(3) MCT (Monotone convergence theorem): If Xn,X ∈ RV+ and Xn ↑ X a.s., then E[Xn] ↑ E[X].

(4) E[1A] = P(A) for all A ∈ F.

We did not say how E[·] is defined. But accepting the above fact, one has the following explicit
form: For any X ∈ RV+,

E[X] = lim
n→∞

n2n−1∑
k=0

k

2n
P
{
k

2n
6 X <

k+ 1
2n

}
.(1)
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This is got by observing that Xn =
n2n−1∑
k=0

k
2n 1 k

2n6X<k+1
2n

increase to X pointwise, and hence E[X] =

lim
n→∞E[Xn] by the MCT. AndE[Xn] can be got from linearity and the fact thatE[1A] = P(A), leading
to (1).

One may also take (1) as the definition of E[X] for X ∈ RV+. It is not hard to see that the limit
exists, and one must then prove that it satisfies the four properties stated above. But the point we
emphasize is that how expectation is defined rarely needs to be used, it is how it behaves (the fours
properties listed above) that matters.

For general X ∈ RV, we write it as X = X+−X− where X+ = X∨0 and X− = (−X)+ = −(X∧0).
If E[X+] and E[X−] are both finite, then we say that X has expectation (or that X is integrable) and
define E[X] = E[X+] − E[X−]. Observe that X+ + X− = |X|, hence integrability is equivalent to
E[|X|] < ∞. We also write X ∈ L1 if X is integrable. More generally, if |X|p is integrable, we write
X ∈ Lp (or Lp(P) or Lp(Ω,F,P) if we must). We did not actually say what is L1 or Lp, usually they
are defined as a collection of equivalence classes got by identifying random variables that are equal
a.s., i.e. X ∼ Y if P{X = Y} = 1.

In conclusion, on the space of integrable random variables L1, expectation is a positive linear
functional that maps 1A to P(A). The notation

∫
Ω X(ω)dP(ω) or just

∫
XdP is also used for E[X],

and it is also called Lebesgue integral.

Remark 4
For a random vector X = (X1, . . . ,Xn), we define E[X] to be (E[X1], . . . ,E[Xn]), if each Xi is
integrable. Similarly, for a complex valued random variable X = X1 + iX2, we write E[X] =
E[X1]+ iE[X2], if X1,X2 have expectation. We cannot in general talk of Expectation of X if X is
a measurable function into some arbitrary space Λ. The least we need is that Λ has a vector
space structure (or at least Λ should be a convex set in a vector space). Indeed, whatever
be the general notion of expectation, for the random variable X taking 2 values a,b ∈ Λ
(assume singletons are measurable) with equal probability, we would want the expectation
to be (a+ b)/2.

4.1. Lebesgue spaces. Fix (Ω,F,P) and for p > 0 let Lp(Ω,F,P) (or Lp(P) or Lp in short)
denote the set of all X ∈ RV such that E[|X|p] < ∞. For p1 < p2 we have |x|p1 6 |x|p2 + 1 for all
x ∈ R, hence it is clear that the spaces Lp are decreasing in p (i.e., if X ∈ Lp2 then X ∈ Lp1). For any
p, the space Lp is a vector space because

|X+ Y|p 6

|X|p + |Y|p if 0 < p 6 1,

2p−1(|X|p + |Y|p) for p > 1.
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The case p < 1 is obvious and the case p > 1 follows by convexity of x → xp for p > 1. In
many ways the latter case is special, and one defines the p-norm ‖X‖p = E[|X|p]

1
p . While the

homogeneity ‖αX‖p = |α|‖X‖p holds for any p > 0, the triangle inequality holds only for p > 1
(this is Minkowski’s inequality, discussed later). For p > 1, the space Lp is a normed linear space.
Often it is extended to p = ∞ by defining L∞ as the set of all bounded random variables (we say
that X ∈ RV is bounded if P{|X| 6M} = 1 for someM <∞). The most important of the Lp spaces
are L1, L2 and L∞.

Some remarks.

(1) Lebesgue showed that Lp space endowed with the Lp norm is complete (all Cauchy
sequences converge). Surprisingly, this fundamental result will not play a role in this
course, and we shall not discuss it.

(2) Another fact is that the p-norm is not quite a norm because ‖X‖p = 0 if and only if X = 0
a.s.[P]. One can get a genuine norm by quotienting the space by the equivalence rela-
tion identifying X and Y if X = Y a.s.[P]. But we don’t need this irritating language of
equivalence classes and avoid it. For us, elements of Lp are in fact random variables.

(3) Although X ∈ Lp means that E[|X|p] <∞, observe that unless X ∈ RV+ or p is a positive
integer, we cannot talk ofXp (and henceE[Xp] does not make sense). For positive integers
p, we can talk of E[Xp] (if it exists) and we call it the pth moment of X.

4.2. Inequalities. Cauchy-Schwarz, Hölder’s and Minkowski’s and Jensen’s inequalities are
important and repeatedly used. Fundamental to these is the notion of convexity.

Definition 5: Convex functions
A function ϕ : Rd → R∪ {+∞} is said to be convex if ϕ(tx+ (1− t)y) 6 tϕ(x) + (1− t)ϕ(y)
for all x,y ∈ Rd and all t ∈ (0, 1) and Dom(ϕ) := {ϕ <∞} is not empty.

Why did we allow +∞ as a value? Observe that Dom(ϕ) is a convex set (if ϕ(x) < ∞ and
ϕ(y) < ∞ then ϕ(tx + (1 − t)y) < ∞ for t ∈ (0, 1)). Conversely, if K ⊆ Rd is a convex set and
ϕ : K → R is convex, then so is the extended function Φ : Rd → R ∪ {+∞} defined by Φ = ϕ in K
andΦ = +∞ on Kc. Thus, by allowing the value +∞, we can assume that the domain is all of Rd.
The following is a fundamental fact.

Supporting hyperplane theorem: Let ϕ : Rd → R ∪ {+∞} be convex. Assume that x0 ∈
Dom(ϕ). Then there exists b ∈ Rd such that ϕ(x0) + 〈b, x− x0〉 6 ϕ(x) for all x ∈ Rd.

The reason for the name is that the graph of x 7→ ϕ(x0)+ 〈b, x−x0〉 is an affine hyperplane that
lies below the graph of ϕ, but touches it at (x0,ϕ(x0)).
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Lemma 2: Jensen’s inequality

Letϕ : Rd → R be a convex function. LetX be a random variable such thatP{X ∈ Dom(ϕ)} =

1. Assume that E[X] exists. Then ϕ(E[X]) 6 E[ϕ(X)].

Proof. Let x0 = E[X] and find b ∈ Rd such that ϕ(x0) + 〈b, x − x0〉 6 ϕ(x) for all x ∈ Rd.
Then ϕ(x0) + 〈b,X − x0〉 6 ϕ(X) a.s., and taking expectations we see that ϕ(x0) 6 E[ϕ(X)], since
E[X− x0] = 0. �

Next we prove the triangle inequality for p-norms, p > 1.

Lemma 3: Minkowski’s inequality

For any p > 1, we have ‖X+ Y‖p 6 ‖X‖p + ‖Y‖p.

The important special cases of p = 1, 2,∞ can be checked easily. The general case is non-trivial!

Proof. Take 1 6 p < ∞ and assume that ‖X‖p > 0 and ‖Y‖p > 0. Let X ′ = X/‖X‖p and
Y ′ = Y/‖Y‖p. Convexity of x 7→ xp yields |aX ′ + bY ′|p 6 a|X ′|p + b|Y ′|p where a =

‖X‖p
‖X‖p+‖Y‖p

and b =
‖Y‖p

‖X‖p+‖Y‖p . Take expectations and observe that E[|aX ′ + bY ′|p] = E[|X+Y|p]
(‖X‖p+‖Y‖p)p while

E[a|X ′|p + b|Y ′|p] = 1 since E[|X ′|p] = E[|Y ′|p] = 1. Thus we get
E[|X+ Y|p]

(‖X‖p + ‖Y‖p)p
6 1,

which is precisely Minkowski’s inequality. �

Lastly, we prove Hölder’s inequality of which the most important special case is the Cauchy-
Schwarz inequality.

Lemma 4: Cauchy-Schwarz and Hölder inequalities

(1) If X, Y are L2 random variables on a probability space, then XY is integrable and
E[XY]2 6 E[X2]E[Y2].

(2) IfX, Y are Lp r.v.s on a probability space, then for any p,q > 1 satisfying p−1+q−1 =

1, we have XY ∈ L1 and ‖XY‖1 6 ‖X‖p‖Y‖q.

Proof. Cauchy-Schwarz is a special case of Hölder with p = q = 2, but one can also give a
direct proof. First observe that 2|XY| 6 X2 + Y2 showing the integrability of XY. For any t ∈ R

0 6 E[|X+ Y|2] = E[X]2 + 2tE[XY] + t2E[Y2]

hence the discriminant of this quadratic expression must be negative, i.e., E[XY]2 6 E[X2]E[Y2].
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Hölder’s inequality follows by applying the inequality ap/p+ bq/q > ab valid for a,b > 0, to
a = |X|/‖X‖p and b = |Y|/‖Y‖q and taking expectations.

The inequality ap/p + bq/q > ab is evident by noticing that the rectangle [0,a] × [0,b] (with
area ab) is contained in the union of the region{(x,y) : 0 6 x 6 a, 0 6 y 6 xp−1} (with area ap/p)
and the region {(x,y) : 0 6 y 6 b, 0 6 x 6 yq−1} (with area bq/q). This is because the latter
regions are the regions between the x and y axes (resp.) and curve y = xp−1 which is also the
curve x = yq−1 since (p− 1)(q− 1) = 1. �

Remark 5
To see the role of convexity, here is another way to prove that ap/p + bq/q > ab. Set a ′ =
p loga and b ′ = q log b and observe that the desired inequality is equivalent to 1

pe
a ′ +

1
qe
b ′ > e

1
pa
′+ 1
qb
′
, which follows from the convexity of x→ ex.

In the study of Lp spaces, there is a close relationship between Lp and Lq where 1
p + 1

q = 1.
In the proof of Hölder’s inequality, we see one elementary way in which it arises (the inverse of
y = xp−1 is x = yq−1).

4.3. Limit properties. Apart from MCT we also have the following very important facts.

(1) Fatou’s lemma: If Xn ∈ RV+, then lim inf E[Xn] > E[lim inf Xn].

(2) DCT (Dominated convergence theorem): If Xn → X a.s., if |Xn| 6 Y for some integrable Y,
then Xn,X are integrable and E[Xn]→ E[X]. In fact, E[|Xn − X|]→ 0.

Fatou’s lemma follows directly from MCT by observing that Yn := infk>n Xk increase to Y :=

lim inf Xn and that 0 6 Yn 6 Xn.
DCT follows by applying Fatou’s lemma to Y −Xn and to Y +Xn, both of which are sequences

of positive random variables converging respectively to Y − X and Y + X a.s. Then, Fatou’s lemma
then gives

E[Y] + E[X] = E[Y + X] 6 lim inf E[Y + Xn] = lim inf E[Y] + E[Xn] = E[Y] + lim inf E[Xn],

E[Y] − E[X] = E[Y − X] 6 lim inf E[Y − Xn] = lim inf E[Y] − E[Xn] = E[Y] − lim supE[Xn].

Thus, E[X] 6 lim inf E[Xn] 6 lim supE[Xn] 6 E[X] showing that E[Xn]→ E[X].
Apply this conclusion to the sequence |Xn − X| that is dominated by 2Y and converges almost

surely to 0 to get E[|Xn − X|]→ 0.

4.4. Change of variables. Suppose (Ωi,Fi,Pi), i = 1, 2, 3 are probability spaces. Assume that
P2 = P1 ◦ T−1 for some measurable function T : Ω1 → Ω2 and that P3 = P2 ◦ S−1 for some
measurable function S : Ω2 → Ω3. It is trivial to check thatU = S ◦ T : Ω1 → Ω3 is measurable and
that P3 = P1 ◦U−1.

26



This easy observation will be used throughout. Here are some ways.
I Let X be a real-valued random variable on (Ω,F,P) having distribution µ. Then for any

Borel measurable ϕ : R → R, the distribution of f(X) is µϕ := µ ◦ f−1. This is got by taking
(Ω1,F1,P1) = (Ω,F,P) and (Ω2,F2,P2) = (R,BR,µ) and (Ω3,F3,P3) = (R,BR,µf) and T = X and
S = ϕ.

E.g., if X has CDF F, then X3 has CDF x 7→ F(x1/3) and eX has CDF x 7→ F(log x).
I The same is true if X = (X1, . . . ,Xd) is Rd-valued (or even RN-valued) and ϕ : Rd → R (or

f : RN → R). The distribution of ϕ(X) is µ ◦ ϕ−1 where µ is the distribution of X (a probability
measure onRd orRN). In particular, asXk = Πk◦X, whereΠk(x1, . . . , xd) = xk is the kth projection,
the marginal distribution of Xk is determined by the distribution of X.

E.g., if (X1,X2) has density 1 on [0, 1]2 and zero outside, then X1 − X2 has the density (1 − |x|)

on [−1, 1].
I It is useful to remember the change of variables formula for densities. Let X be an Rd-

valued random variable and assume that it has density g that is positive on an open setU and zero
outside. Let T : U→ V be a bijection to another open set V ⊆ Rd (same dimension) such that T−1

is differentiable. Then the density of Y := g(X) is h(y) = g(T−1y)|JT−1(y)| on V .

The point above is that if we know the distribution of X, to compute the distribution of f(X),
we need no further information (in particular the original probability space is irrelevant). Then
the same must be true for expectation of f(X). First we state the general point.

Suppose (Ωi,Fi,Pi), i = 1, 2 be probability spaces. Assume that P2 = P1 ◦ T−1 for some
measurable function T : Ω1 → Ω2. If Y : Ω2 → R+ is a random variable on Ω2, then Y ◦ T is a
random variable onΩ1 and EP2 [Y] = EP1 [Y ◦ T ]. In other notation,∫

Ω2

Y(ω ′)dP2(ω
′) =

∫
Ω1

Y(T(ω))dP1(ω).

For general random variable, (Y ◦ T)± = (Y±) ◦ T , hence the same conclusion holds, except that
we must make the more cautious statement: “Y has expectation w.r.t. P2 if and only if Y ◦ T has
expectation w.r.t. P1, and in that case the two quantities are equal”.

Proof. If Y = 1B for some B ∈ F2, the identity follows from the definition of push-forward
measure. By linearity, it holds for simple random variables (linear combinations of indicators).
For Y : Ω2 → R+, we can find Yn : Ω2 → R+ that are simple and increase to Y pointwise. Then
Yn◦T ↑ Y ◦T pointwise too. By applying MCT to both sequences, we get the conclusion for positive
random variables. The reduction from general (integrable) random variables to positive ones is
straightforward. �
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I As a particular case, if X has distribution µ on Rd and ϕ : Rd → R is Borel measurable and
bounded, then E[ϕ(X)] which is

∫
Ωϕ(X(ω))dP(ω) can also be written as

∫
Rd ϕ(x)dµ(x). Bound-

edness was assumed only to ensure that the expectations exist.
I In particular, if X has density g on Rd, then E[ϕ(X)] =

∫
Rd ϕ(x)g(x)dx (which is easier than

trying to find the distribution of ϕ(X) and then integrating xw.r.t. that).

Example 4

Let X ∼ N(0, 1), i.e., X has density 1√
2πe

−x2/2 on R. Then E[Xn] = 0 for odd n and

E[X2n] = (2n− 1)(2n− 3) . . . (3)(1).

To see this, we don’t need to know what the original probability space is. Just compute
1√
2π

∫
R
x2ne−x

2/2dx =
2√
2π

∫∞
0
(2u)n−

1
2 e−udu

=
2n√
2π
Γ(n+

1
2
)

=
2n√
2π
Γ(1/2)1

2
× 3

2
× . . .× 2n− 1

2
which is the claim (recall that Γ(1/2) =

√
π).

4.5. Reweighting a measure to get new measures. On (Ω,F,P), let X be a positive random
variable with E[X] = 1. Define Q : F → R+ by Q(A) = E[X1A]. Then, Q is a probability measure.

Proof. Finite additivity of Q follows from the linearity of expectation (if A,B ∈ F are disjoint,
1AtB = 1A + 1B). Further, if An ∈ F and An ↑ A, then X1An ↑ X1A, hence MCT shows that
Q(An) ↑ Q(A). �

One can think of Q as got by reweighting points of Ω according to the value of X. If we use
the integral notation for expectation, then

∫
1A(ω)dQ(ω) =

∫
A 1A(ω)X(ω)dP(ω). Hence we also

write this relationship as dQ = XdP. We also say that say that X is the Radon-Nikodym derivative or
the density of Q w.r.t. P.

The reason for this name is in the Radon-Nikodym theorem to be discussed elsewhere. That
theorem answers the converse question: Given P and Q (or even infinite measures), how can we
tell if Q can be got from P by reweighting by some X ∈ RV+?
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5. Independence

Definition 6: Independence

Let (Ω,F,P) be a probability space.

I Let G1, . . . ,Gk be sub-sigma algebras of F. We say that Gi are independent if for every
A1 ∈ G1, . . . ,Ak ∈ Gk, we have P(A1 ∩A2 ∩ . . . ∩Ak) = P(A1) . . .P(Ak).

I Random variables X1, . . . ,Xn on F are said to be independent if σ(X1), . . . ,σ(Xn)
are independent.

I An arbitrary collection of σ-algebras Gi, i ∈ I, (each Gi contained in F) is said to
be independent if every finite sub-collection of them is independent. Same applies
for random variables.

How does this compare with the definitions we have seen in basic probability class?

• Since σ(X) = {X−1(A) : A ∈ BR} for a real-valued random variable X, the definition above
is equivalent to saying that P (Xi ∈ Ai i 6 k) =

∏k
i=1 P(Xi ∈ Ai) for any Ai ∈ B(R). The

same definition can be made for random variables Xi taking values in some metric space
(Λi,di), but then Ai must be a Borel subset of Λi.

• Events A1, . . . ,Ak are said to be independent if 1A1 , . . . , 1Ak are independent. This is
equivalent to either of the following sets of 2n conditions:
(1) P(Aj1 ∩ . . . ∩Aj`) = P(Aj1) . . .P(Aj`) for any 1 6 j1 < j2 < . . . < j` 6 k.

(2) P(A±1 ∩A
±
2 ∩. . .∩A±n) =

n∏
k=1

P(A±k )where we use the notationA+ = A andA− = Ac.

The second is clear, since σ(Ak) = {∅,Ω,Ak,Ack}. The equivalence of the first and second
is an exercise.

Some remarks are in order.

(1) Independence is defined with respect to a fixed probability measure P.

(2) It would be convenient if we need check the condition in the definition only for a suffi-
ciently large class of sets. However, if Gi = σ(Si), and for everyA1 ∈ S1, . . . ,Ak ∈ Sk if we
have P(A1∩A2∩ . . .∩Ak) = P(A1) . . .P(Ak), we cannot conclude that Gi are independent!
If Si are π-systems, then it is indeed true that Gi are independent (proof below).

(3) Checking pairwise independence is insufficient to guarantee independence. For example,
suppose X1,X2,X3 are independent and P(Xi = +1) = P(Xi = −1) = 1/2. Let Y1 = X2X3,
Y2 = X1X3 and Y3 = X1X2. Then, Yi are pairwise independent but not independent.
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Lemma 5
Let (Ω,F,P) be a probability space. Assume that Gi = σ(Si) ⊆ F, that Si is a π-system and
thatΩ ∈ Si for each i 6 k. If for everyA1 ∈ S1, . . . ,Ak ∈ Sk if we have P(A1∩A2∩ . . .∩Ak) =
P(A1) . . .P(Ak), then Gi are independent.

Proof. Fix A2 ∈ S2, . . . ,Ak ∈ Sk and set

F1 := {B ∈ G1 : P(B ∩A2 ∩ . . . ∩Ak) = P(B)P(A2) . . .P(Ak)}.

Then F1 ⊇ S1 by assumption. We claim that F1 is a λ-system. Assuming that, by the π-λ theorem,
it follows that F1 = G1 and we get the assumptions of the lemma for G1,S2, . . . ,Sk. Repeating the
argument for S2, S3 etc., we get independence of G1, . . . ,Gk.

To prove that F1 is a λ system is straightforward. If Bn ↑ B and Bn ∈ F1, then B ∈ F and
P(Bn ∩ A2 ∩ . . . ∩ Ak) ↑ P(B ∩ A2 ∩ . . . ∩ Ak) and P(Bn)

∏k
j=2 P(Aj) ↑ P(B)

∏k
j=2 P(Aj). Hence

B ∈ F1. Similarly, check that if B1 ⊆ B2 and both are in F1, then B2 \ B1 ∈ F1. Lastly, Ω ∈ S1 ⊆ F1

by assumption. Thus, F1 is a λ-system. �

Remark 6
If A1, . . . ,Ak are events, then Gi = {∅,Ai,Aci ,Ω} is generated by the π-system Si = {Ai}.
However, checking the independence condition for the generating set (which is just one
equation P(A1 ∩ . . . ∩Ak) =

∏k
j=1 P(Aj)) does not imply independence of A1, . . . ,Ak. This

shows that the condition that Si should containΩ is not redundant in the above Lemma!

Corollary 1

(1) Random variables X1, . . . ,Xk are independent if and only if for every t1, . . . tk ∈ R
we have P (X1 6 t1, . . . ,Xk 6 tk) =

∏k
j=1 P(Xj 6 tj).

(2) Suppose Gα, α ∈ I are independent. Let I1, . . . , Ik be pairwise disjoint subsets of I.
Then, the σ-algebras Fj = σ

(
∪α∈IjGα

)
are independent.

(3) If Xi,j, i 6 n, j 6 ni, are independent, then for any Borel measurable fi : Rni → R,
the r.v.s fi(Xi,1, . . . ,Xi,ni) are also independent.

Proof. (1) Pulling back the familiar π-system of left-closed, right-open intervals on the
line, we get the π-system Si := {X−1

i (−∞, t] : t ∈ R} onΩ. Further Si generates σ(Xi).

(2) For j 6 k, let Sj be the collection of finite intersections of sets Ai, i ∈ Ij. Then Sj are
π-systems and σ(Sj) = Fj.
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(3) Infer (3) from (2) by considering Gi,j := σ(Xi,j) and observing that fi(Xi,1, . . . ,Xi,k) ∈
σ(Gi,1 ∪ . . . ∪ Gi,ni). �

So far, we stated conditions for independence in terms of probabilities of events. As usual, they
generalize to conditions in terms of expectations of random variables.

Lemma 6
(1) Sigma algebras G1, . . . ,Gk are independent if and only if for every Gi-measurable,

bounded random variable Xi, for 1 6 i 6 k, we have E[X1 . . .Xk] =
∏k
i=1 E[Xi].

(2) In particular, random variables Z1, . . . ,Zk (Zi is an ni dimensional random vector)
are independent if and only if E[

∏k
i=1 fi(Zi)] =

∏k
i=1 E[fi(Zi)] for any bounded

Borel measurable functions fi : Rni → R.

We say ‘bounded measurable’ just to ensure that expectations exist. The proof goes inductively
by fixing X2, . . . ,Xk and then letting X1 be a simple r.v., a non-negative r.v. and a general bounded
measurable r.v.

Proof. (1) Suppose Gi are independent. By the linearity of Expectation, we see that
(X1, . . . ,Xk) 7→ E[X1 . . .Xk] is linear in each co-ordinate if the others are fixed. The same
is true of (X1, . . . ,Xk) 7→

∏k
i=1 E[Xi].

If Xi = 1Ai for some Ai ∈ Gi, then the claimed equality holds by definition of inde-
pendence. By the multi-linearity observed above, the claim also holds for simple random
variables Xi. Further, if 0 6 Xk,n ↑ Xk and Xk,n are simple, then applying MCT on both
sides, we get the equality for positive random variables. For general Xk, write it is as the
difference of its positive and negative parts and expand the products on both sides. We
get 2k summands and the claimed equality easily.

Conversely, if E[X1 . . .Xk] =
∏k
i=1 E[Xi] for all Gi-measurable functions Xis, then ap-

plying to indicators of events Ai ∈ Gi we see the independence of the σ-algebras Gi.

(2) The second claim follows from the first by settingGi := σ(Zi) and observing that a random
variable Xi is σ(Zi)-measurable if and only if (see remark following the proof) X = f ◦Zi
for some Borel measurable f : Rni → R. �
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Remark 7
We stated a fact that if X is a real-valued random variable and Y ∈ σ(X), then Y = f(X) for
some f : R→ R that is Borel measurable. Why is that so?
If X(ω) = X(ω ′), then it is clear that any set A ∈ σ(X) either contains both ω,ω ′ or ex-
cludes both (this was an exercise). Consequently, we must have Y(ω) = Y(ω ′) (otherwise,
if Y(ω) < a < Y(ω ′) for some a ∈ R, then the set Y < a could not be in σ(X), as it containsω
but notω ′). This shows that Y = f(X) for some function f : R→ R. But why is fmeasurable?
Indeed, one should worry a little, because the correct statement is not that f is measurable,
but that f may be chosen to be measurable. For example, if X is the constant 0 and Y is the
constant 1, then all we know is f(0) = 1. We shall have Y = f(X) however we define f on
R \ {0} (in particular, we may make f non-measurable!).
One way out is to use the fact that the claim is true for simple random variables and that
every random variable can be written as a pointwise limit of simple random variables (see
exercise below). Consequently, Y = lim Yn, where Yn is a σ(X)-measurable simple random
variable and hence Yn = fn(X) for some Borel measurable fn : R → R. Let f = lim sup fn,
also Borel measurable. But Y = f(X).

5.1. Existence of independent random variables. Now we come to the question of existence
of independent random variables with given distributions. The following is the starting point of
probability theory.

Proposition 1: [Daniell, Kolmogorov]

Letµi ∈ P(R), i > 1, be Borel p.m onR. Then, there exist a probability space with independent
random variables X1,X2, . . . such that Xi ∼ µi.

Proof. We arrive at the construction in three stages.

(1) Independent Bernoullis: On the probability space ((0, 1),B, λ), consider the random
variables Xk : (0, 1) → R, where Xk(ω) is defined to be the kth digit in the binary ex-
pansion of ω (see Section ?? for convention regarding binary expansion). We have seen
that X1,X2, . . . are independent Bernoulli(1/2) random variables.
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(2) Independent uniforms: Note that as a consequence4, on any probability space, if Yi are
i.i.d. Ber(1/2) variables, then U :=

∑∞
n=1 2−nYn has uniform distribution on [0, 1]. Con-

sider again the canonical probability space and the r.v. Xi, and set U1 := X1/2 + X3/22 +

X5/23+. . .,U2 := X2/2+X6/22+. . .,U3 = X4/2+X12/22+. . . etc. (in short, let g : N×N→ N
be an injection and define Yk =

∑∞
j=1 Xg(k,j)2−j). Clearly, Ui are i.i.d. Unif[0, 1].

(3) Arbitrary distributions: For a p.m. µ, recall the left-continuous inverse Gµ that had
the property that Gµ(U) ∼ µ if U ∼ U[0, 1]. Suppose we are given p.m.s µ1,µ2, . . .. On
the canonical probability space, let Ui be i.i.d uniforms constructed as before. Define
Xi := Gµi(Ui). Then, Xi are independent and Xi ∼ µi. Thus we have constructed an
independent sequence of random variables having the specified distributions. �

The same proof works for a countable product of (Ωi,Fi,µi), provided each µi is a pushfor-
ward of Lebesgue measure, that is, µi = P◦T−1

i for some Ti : [0, 1]→ Ωi. The only change needed is
to set Xi = Ti(Ui) (instead ofGµi(Ui)) in the last step. As we know, all Borel probability measures
on Rd are push-forwards of Lebesgue measure and hence, the above proof works if µi ∈ P(Rdi),
i > 1, and gives a sequence of independent random vectors Xk such that Xk ∼ µk.

One may ask whether one can construct uncountably many independent random variables
with specified distributions. It is possible, but entirely useless. There is no situation in probability
that requires or can benefit from the existence of uncountably many independent random variables.
Hence we do not concern ourselves with that.

6. Product measures

Suppose X1,X2, . . . are real-valued random variables on (Ω,F,P). Let X : Ω → RN be defined
by X = (X1,X2, . . .). Then X is measurable (on RN we have the Borel sigma-algebra which is the
same as the cylinder sigma-algebra). Therefore, µ = P ◦ X−1 is a probability measure on RN, and
µk := P ◦ X−1

k is a Borel probability measure on R. If Πk : RN → R is the projection on the kth
co-ordinate, then Xk = Πk ◦X, hence µk = µ ◦Π−1

k (change of variables). We say that µ is the joint

4Let us be pedantic and show this: Suppose Yi are independent Bernoullis on (Ω,F,P) and V =
∑
k>1 Yk/2k. For

any dyadic interval I = [p2−n, (p + 1)2−n] with p + 1 6 2n, we see that V ∈ I if and only if Y1, . . . ,Yn take on specific
values, hence P{V ∈ I} = 2−n. From this, we see that FV (t) = t for any dyadic rational t ∈ [0, 1], and by right-continuity
that FV (t) = t for all t ∈ [0, 1]. Thus V ∼ Unif[0, 1].

Again, we emphasize the unimportance of the original probability space, what matters is the joint distribution of the
random variables that we are interested in. In other words, the mapping Y = (Y1, Y2, . . .) : Ω → {0, 1}N pushes forward
P to the fair-coin-tossing measure that we had constructed earlier, and hence the distribution of any function of Y, such
as V , is the same regardless of the original probability space. Since the claim is true for the binary digits Xk on [0, 1], it
is true for any independent Bernoullis.
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distribution of X1,X2, . . . (or simply the distribution of X) and that µk is the marginal distribution
of Xk. We also say that µk is the kth marginal of µ.

Now suppose Xk are independent. Then one can recover µ from (µk)k, because for any finite
dimensional cylinder set A = A1 × . . .×An × R× R . . . with Ak ∈ BRk , we have

µ(A) = P{X1 ∈ A1, . . . ,Xn ∈ An}

= P{X1 ∈ A1} . . .P{Xn ∈ An} = µ1(A1) . . .µn(An).

Thus, if we know the marginal distributions µk, then we can recover the joint distribution µ on the
π-system of finite dimensional cylinders, and hence on the Borel sigma-algebra of RN. Conversely,
if for some X = (X1,X2, . . .), the above relationship between µ and the (µk)k on cylinder sets holds,
then the random variables Xk are independent. This is easy to see and left as exercise.

In other words, we have found a formulation of independence in terms of measures. Let us
make a definition in greater generality.

Definition 7: Product measure
Let (Ωi,Fi,Pi), i ∈ I, be probability spaces indexed by an arbitrary set I. Let Ω = ×i∈IΩi
and let F (usually denoted⊗i∈IFi) be the sigma-algebra generated by all finite dimensional
cylinders (equivalently, the smallest sigma-algebra on Ω for which all the projections Πi :

Ω→ Ωi are measurable). If µ is a probability measure on (Ω,F) such that for any cylinder
set A = Π−1

i1
(Ai1) ∩ . . . ∩ Π−1

ik
(Aik) for some Air ∈ Fir ,

µ(A) =

k∏
r=1

µir(Air),

then we say that µ is the product of µi, i ∈ I, and write µ = ⊗i∈Iµi.

The existence of independent random variables and the discussion at the beginning of this
subsection show that if µi ∈ P(R) (or even µi ∈ P(Rdi) for i ∈ N, then the product measure
µ = µ1 ⊗ µ2 ⊗ . . . on RN exists.

For arbitrary probability measures on arbitrary spaces and arbitrary (even uncountable) in-
dex sets, does product measure exist? Yes, irrespective of the cardinality of I, one can use the
Carathéodory construction, starting from the desired probabilities for finite dimensional cylin-
ders. The algebra generated by cylinder sets consists of finite disjoin unions of cylinder sets, and
the measure is naturally defined on that. The key point is to check that µ is finitely and countably
additive on the algebra. Then it extends to a measure on the sigma-algebra. We do not discuss any
further as uncountable products are not needed5.

5If interested, consult Dudley’s Real analysis and probability for example.
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6.1. Fubini’s theorem. One of the important and useful facts about product measures is that
the integral w.r.t the product measure can be computed by integrating over each variable one after
another.

Theorem 5: Fubini-Tonelli theorem
Let (Ωi,Fi,Pi), i = 1, 2, be probability spaces and let Ω = Ω1 × Ω2, F = F1 ⊗ F2 and
P = P1⊗P2. Let Y : Ω→ R be a random variable that is either positive or integrable w.r.t. P.
Then, Y(ω1, ·) : Ω2 → R is a random variable onΩ2 for eachω1 ∈ Ω1, and is either positive
or integrable (w.r.t. P2) for a.e. ω1 [P1]. Further, the function ω1 7→

∫
Ω2
Y(ω1,ω2)dP2(ω2)

is a random variable onΩ1, and is either positive or integrable. Finally,∫
Ω1

[∫
Ω2

Y(ω1,ω2)dP2(ω2)

]
dP1(ω1) =

∫
Ω

YdP.

Two remarks:

(1) The order of iterated integrals can be interchanged, so we also have∫
Ω2

[∫
Ω1

Y(ω1,ω2)dP1(ω1)

]
dP2(ω2) =

∫
Ω

YdP.

In particular, the two iterated integrals are equal.

(2) Both iterated integrals may exist but still not be equal! This is a common mistake in apply-
ing Fubini’s theorem, forgetting to check that Y is integrable w.r.t. the product measure.

The essential idea is to prove the statements for indicator random variables, and hence for simple
random variables Y by linearity. From there use MCT to prove it for positive random variables and
take differences to prove it for integrable random variables. The key step is the first one, proving it
for indicator random variables. That step is obvious for rectanglesA = A1×A2, but not so obvious
for general A ∈ F. We just sketch how to go about this part and leave the rest as exercise.

Proof of Fubini-Tonelli theorem for indicators. Let A ∈ F. We must show that (a) for any
ω1 ∈ Ω1, the sectionAω1 = {ω2 ∈ Ω2 : (ω1,ω2) ∈ A} is in F2, (b)ω1 → P2(Aω1) is F1-measurable,
(c)
∫
Ω1

P2(Aω1)dP1(ω1) = P(A).
Let G = {A ∈ F : (a), (b), (c) hold}. Then G contains the π-system of rectangles. If we show

that G is a λ-system, the π− λ theorem then implies that G = F.
Suppose A,B ∈ G and A ⊆ B. Then (B \ A)ω1 = Bω1 \ Aω1 (also a proper difference) and

hence in F2, for any ω1 ∈ Ω1. Hence, µ2((B \ A)ω1) = µ2(Bω1) − µ2(Aω1), a difference of two
F1-measurable functions, hence F1-measurable. By the linearity of expectations,∫

Ω1

µ2((B \A)ω1)dP1(ω1) =

∫
Ω1

µ2(Bω1)dP1(ω1) −

∫
Ω1

µ2(Aω1)dP1(ω1)

= µ(B) − µ(A) = µ(B \A).
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Thus G is closed under proper differences.
SupposeAn ∈ G andAn ↑ A. Of courseA ∈ F and (An)ω1 ↑ Aω1 for eachω1 ∈ Ω1. Therefore,

µ2((An)ω1) ↑ µ2(Aω1) pointwise on Ω1. As a limit of measurable functions, ω1 7→ µ2(Aω1) is
measurable, and MCT tells us that∫

Ω1

µ2(Aω1)dP1(ω1) = lim
n→∞

∫
Ω1

µ2((An)ω1)dP1(ω1)

= lim
n→∞µ(An)

= µ(A).

Thus G is closed under increasing limits, completing the proof that G is a λ-system. �

6.2. Probability measures are special. Infinite products of measures only makes sense for
probability measures. For example, suppose λa denotes Lebesgue measure on [0,a] with total
mass a. Can we construct the product measure λa ⊗ λa ⊗ . . .? What does it even mean? If we ask
for a µ on [0,a]N such that

µ(A1 ×A2 × . . .) = µ(A1)µ(A2) . . . ,

then all finite dimensional cylinders get infinite measure if a 6= 1 (as we An = [0,a] for all large n,
we get a product of a infinitely many times). One might try to salvage the situation by asking for
the cylinder set A = A1× . . .×An× [0,a]× [0,a]× . . . to have measure equal measure µ such that
µ(A) = µ(A1) . . .µ(An). But we can also writeA asA1× . . .×An+1× [0,a]× . . . withAn+1 = [0,a],
and the requirement then would be that µ(A) = µ(A1) . . .µ(An+1) = aµ(A1) . . .µ(An). The two
requirements are inconsistent if a 6= 1. The case a = 1 is fine, as we have already constructed
infinite product of probability measures. Thus, infinite products are a special feature of probability
measures, and it is at this point that probability theory diverges from general measure theory and
becomes a much richer subject!

However, finite products do make sense for sigma-finite measures. It is usually done in mea-
sure theory class (by the Caratheodory construction, what else?), but one can easily deduce it
from the existence of products of probability measures. Indeed, if µi are finite nonzero measures
on (Ωi,Fi), i = 1, 2, then we can write µi = aiPi, where ai = 1/µi(Ωi) are positive numbers and
Pi(·) = µi(·)/ai are probability measures. Then we may simply define µ1 ⊗ µ2 as a1a2(P1 ⊗ P2).

For sigma-finite measures µi, we partition Ωi = tk>1Ωi,k where µi(Ωi,k) < ∞. Then we
can define the finite measures µi,k(·) = µi(· ∩ Ωi,k) (note that it is supported on Ωi,k) so that
µi =

∑
k µi,k. We can then define

µ =
∑
k>1

∑
`>1

µ1,k ⊗ µ2,`.
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To check that this has the defining property of product measure, letAi ∈ Fi, and writeAi = tAi,k,
whereAi,k = Ai∩Ωi,k. ThenA = tk,`A1,k×A2,`, and µ1,k ′⊗µ2,` ′(A1,k×A2,`) = µ1(A1,k)µ2(A2,`)

if k = k ′ and ` = ` ′ and zero otherwise. From this it follows that µ(A1 ×A2) = µ1(A1)µ2(A2).
Finally, the Fubini-Tonelli theorem continues to hold, and in fact follows from the correspond-

ing theorem for probability measures.

7. Kolmogorov’s consistency theorem

A generalization of the theorem on the existence of product measures is to go beyond inde-
pendence. To motivate it, consider the following question. Given three Borel probability measures
µ1,µ2,µ3 ∈ P(R), i 6 3, does there exist a probability space and three random variables X1,X2,X3

such that Xi ∼ µi? The answer is trivially yes, for example we can take three independent random
variables X1,X2,X3 such that Xi ∼ µi. There are other ways, for example, take one uniform random
variable and set Xi = Gµi(U) (then Xi won’t be independent).

Having disposed of that easy question, what if we specify three Borel probability measures
ν1,ν2,ν3 ∈ P(R2) and want X1,X2,X3 such that (X1,X2) ∼ ν1, (X2,X3) ∼ ν2 and (X1,X3) ∼ ν3? Is it
possible to find such random variables? If the first marginal of ν1 and the first marginal of ν3 do not
agree, then it is not possible (because then we have two distinct specifications for the distribution
of X1!). This is because our specifications were internally inconsistent. The following theorem of
Kolmogorov asserts that this is the only obstacle in constructing random variables with specified
finite dimensional distributions.

Theorem 6: Consistency theorem (Daniell, Kolmogorov)

LetΩi = Rdi for some di > 1. For each n > 1 and each 1 6 i1 < i2 < . . . < in, let µi1,...,in be
a Borel p.m onΩi1 × . . .×Ωin . Then the following are equivalent.

(1) There exists a unique Borel probability measure µ on ×iΩi such that µ ◦Π−1
i1,...,in =

µi1,...,in for any i1 < i2 < . . . < in and any n > 1.

(2) The given family of probability measures satisfy the consistency condition

µi1,...,in(B×Ωin) = µi1,...,in−1(B)

for any B ∈ B(Ωi1 × . . .×Ωin−1) and for any n > 1 and any i1 < i2 < . . . < in.

We have stated the consistency theorem forΩi that are Euclidean spaces. It can be generalized,
but some metric structure onΩis is needed. This is in contrast to the situation of product measures,
which exist even ifΩi have no structure.
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Alternate form of the consistency condition: Suppose for eachn > 1, we have a probability measure
νn onΩ1×. . .×Ωn. Assume that νn+1(A1×. . .×An×Ωn+1) = νn(A1×. . .×An) for alln > 1 and
all Ai ∈ Fi. Then, for any 1 6 i1 < . . . < ik and any n > ik, the probability measure νn ◦ Π−1

i1,...,ik
on Ωi1 × . . . ×Ωik is the same. If we define this to be µi1,...,ik , then we get a consistent family of
probability measures as required in the theorem.

The importance of the consistency theorem comes from having to construct dependent random
variables such as Markov chains with given transition probabilities (see the next section). It also
serves as a starting point for even more subtle questions such as constructing stochastic processes
such as Brownian motion.

7.1. A more general consistency question. It clears things up if we take a more abstract view-
point.

Question 2: A general consistency question

Let Fi, i ∈ I be sigma-algebras on a setΩ and let F = σ (∪i∈IFi). Suppose µi are probability
measures on (Ω,Fi). Does there exist a probability measure µ on (Ω,F) such that µ

∣∣
Fi

= µi?
If so, is it unique?

Some remarks.

(1) It does not make sense to take F to be larger than σ (∪i∈IFi). In general, a measure cannot
be extended from a smaller sigma-algebra to a larger one (otherwise we would extend all
measures to the power set!).

(2) An obvious necessary condition for the existence of µ is that µi and µj agree on Gi ∩ Gj

for i, j ∈ I.

(3) IfΩ =
∏
kΩk and Fi1,...,in = σ(Πi1 , . . . ,Πin) gives the setting of the Kolmogorov consis-

tency theorem.

How would we try to prove the existence of such a µ? We make one extra assumption (which is
clearly satisfied in the setting of the Kolmogorov consistency theorem) in addition to the consis-
tency conditioned mentioned earlier.
Assumptions:

(1) If A ∈ Gi ∩ Gj, then µi(A) = µj(A).

(2) For any i, j ∈ I, there is some k ∈ I such that Gi ∪ Gj ⊆ Gk.

Under the second assumption, A := ∪iGi is an algebra that generates the sigma-algebra F. We
must define µ : G→ [0, 1] by µ(A) = µi(A) ifA ∈ Gi for any i ∈ I, or what is the same, µjn(Bn) ↓ 0.
Because of the first assumption, this is a valid definition.
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In view of the Caratheodory extension theorem, there is a unique extension of µ toF if and only
if µ is countably additive on A. As finite additivity is clear, this means checking that if An,A ∈ A

and An ↑ A, then µ(An) ↑ µ(A). If An ∈ Fin and A ∈ Fi, we can find jn such that Fjn ⊇ Fi ∪ Fin

so that Bn := A\An ∈ Fjn . What we need to check is that µ(Bn) ↓ 0. We write this as a conclusion.

Conclusion: Under the above assumptions, there is a unique probability measure µ on F that
extends each µi if and only if whenever Bn ∈ Fin and Bn ↓ ∅we have µin(Bn) ↓ 0.

Proof of the Daniell-Kolmogorov consistency theorem. By the conclusion reached above in
the general consistency theorem, the only point to check (a little reindexing may be needed first)
is that if Bn = An,1 × . . . × An,n ×Ωn+1 ×Ωn+2 × . . . for some An,i ∈ B(Ωi) and Bn ↓ ∅, then
νn(An,1 × . . .×An,n) ↓ 0, where νn = µ1,...,n.

Case-1: Assume that each µn is supported on a compact subset Kn ⊆ Ωn.
To check the condition above, assume to the contrary that νn(An,1 × . . .×An,n) > p for some

p > 0, for all n, where An,j ⊆ Kj for all j,n. By the regularity of νn, we can find compact Cn ⊆
An,1 × . . . × An,n such that νn(Cn) > p/2. As continuous images of compact sets are compact, it
follows that Πj(Cn) ⊆ Kj is compact for each j. By a diagonal argument, we can get a subsequence
nr such that

Set Dn = ∩nk=1(Ck ×Ωk+1 × . . .×Ωn). Then Dn ⊆ Cn is also compact and

νn(Dn) > νn(An,1 × . . .×An,n) −

n∑
k=1

νk(Ak,1 × . . .×Ak,k)

Observe that µ1(Π1(Cn)) > νn(Cn) > (1 − 1
2n )p. Thus, Π1(Cn) is a sequence of compact subsets

of R, and the
compact Cn,i ⊆ An,i for i 6 n such that

νn(Cn,1 × . . .× Cn,n) > 0.5νn(An,1 × . . .×An,n).

As An,j ↓ ∅ for each j (because Bn ↓ ∅), it follows that Cn,j ↓ ∅ for each j. By compactness, there is
a nj such that Cn,j = ∅ for n > nj. This is not good enough. We want an N such that Cn,j = ∅ for
n > N. This follows by a diagonal argument. Complete the details �

Remark 8
The proof of the consistency theorem does require some topology. The existence of product
measure does not.
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8. Applications of the consistency theorem

8.1. Markov chains. Consider (Rd,B(Rd)) and let µ0 ∈ P(Rd) and let κ : Rd × B(Rd) 7→ R+

be a transition kernel. This means that y 7→ κ(x, ·) is a Borel probability measure function for each
x ∈ Rd and x 7→ κ(x,A) is Borel measurable for each A ∈ B(Rd). Then, define for each n > 1, a
probability measure on (Rd)n by

νn(A0 ×A1 × . . .×An−1) =

∫
A0

∫
A1

. . .
∫

An−1

κ(xn−2,dxn−1)κ(xn−3,dxn−2) . . . κ(x0,dx1)dµ(x0).

for any Ai ∈ B(Rd). It may be easier to parse this expression if we assume that all the measures
µ0 and κ(x, ·) are absolutely continuous to one measure θ. In this case, write dµ0(x) = ρ(x)dθ(x)

and κ(x,dy) = p(x,y)dθ(y) and then

νn(A0 ×A1 × . . .×An−1)

=

∫
A0

∫
A1

. . .
∫

An−1

p(xn−2, xn−1)p(xn−3, xn−2) . . .p(x0, x1)ρ(x0) dθ(xn−1) . . .dθ(x0).

That is, νn has density ρ(x0)p(x0, x1) . . .p(xn−2, xn−1) with respect to θ⊗n.
It is easy to check that νn defines a probability measure on (Rd)n and also that νn+1(A0 ×

. . . × An−1 × Rd) = νn(A0 × . . . × An−1). Consequently, by the alternate form of the consistency
condition stated above, we see that there is a probability measure µ on (Rd)N (endowed with the
Borel/cylinder sigma algebra) such that µ◦Π−1

0,1,...,n−1 = νn. This measure µ on RN is what is called
a Markov chain with state space Rd, transition kernel p and initial distribution µ0.

8.2. Gaussian processes. Suppose m : Z → R and σ : Z × Z → R. A Gaussian process
with mean µ(·) and covariance σ = (σi,j)i,j∈Z is a collection of jointly Gaussian random variables
(Xn)n∈Z such that E[Xn] = µ(n) and Cov(Xn,Xm) = σ(m,n).

Question: Does it exist?

First let us note some necessary conditions. If we could construct a Gaussian process Y with
mean 0 and we set X = m+ Y (i.e., Xn = m(n)+ Yn) has meanm(·) and the same covariance as Y.
Hence the mean poses no challenge and we assume that it is zero henceforth.

The covariance is more subtle. For example, σ(n,n) = E[X2
n] cannot be negative. More gener-

ally, for any n > 0 and i1 < . . . < in and any c1, . . . , cn ∈ R, we must have

0 6 E[(c1Xi1 + . . . + cnXin)2] =

n∑
p,q=1

cpcqE[XipXiq ] =

n∑
p,q=1

cpcqσ(ip, iq).

Thus, every principal finite sub-matrix of σmust be positive semi-definite. We now claim that this
is also sufficient.
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Assume that σ is positive definite in the above sense. Then for any n > 1 and any i1 < . . . < in,
the measure µi1,...,in = Nn(0, (σ(ip, iq))p,q,6n) is well-defined. This is because positive definite-
ness allows us to write

(σ(ip, iq))p,q6n = BBt

for a n × n matrix B. Taking Z1, . . . ,Zn i.i.d. N(0, 1), the distribution of the random vector BZ,
where Z = (Z1, . . . ,Zn)t is the desired Gaussian distribution.

From basic properties of Gaussian distributions (marginals of Gaussians are Gaussian) it fol-
lows that the family of distributions {µi1,...,in} is consistent. Hence by the consistency theorem, the
Gaussian process with covariance σ exists.

8.3. Did we really need the consistency theorem? Actually no! We could have constructed
Markov chains and Gaussian processes from the simpler fact that i.i.d. uniform random variables
V0,V1,V2, . . . exist. For Markov chains, to take the kth step, we can use Vk to generate a random
variable from the required step distribution (depending on the current location). For Gaussian
process, one can first convert Vk to Zk ∼ N(0, 1). Then the Gaussian process can be generated in
the form X = BZ, where Z = (Z1,Z2, . . .)t and B is an infinite, lower triangular matrix such that
BBt = σ (here the indexing set is N instead of Z which of course makes no difference). As B is
lower triangular, observe that in defining any entry of BZ or BBt, only finite sums and products
are needed, so there is no convergence issue.

In fact, every situation of interest to probabilists can be generated from a sequence of inde-
pendent random variables, and hence on the probability space ([0, 1],B, λ). The idea is that we
construct i.i.d. uniforms U1,U2, . . . and then set Xn = fn(Un,X1, . . . ,Xn−1) (for n = 1 this means
X1 = f1(U1)) where fn is the inverse of the cumulative distribution function of the conditional
distribution of Xn+1 given σ{X1, . . . ,Xn}. We have not yet defined what conditional distribution
means, but in the situations where you know what it means, it should be clear that the above pro-
cedure works.
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Exercise 2
Let S = [n] and let Pn×n = (pi,j)16i,j6n be a stochastic matrix (i.e., all entries are positive
and row sums are 1). Show the existence of a Markov chain with transition matrix P by
completing the following steps.

(1) Construct independent random variables ξi,t, 1 6 i 6 n, t > 0 (here t is also an
integer) such that ξi,t ∼ pi,1δ1 + . . .+ pi,nδn (the probability vector defined by the
ith row of P).

(2) Define the “random mappings” Ft : S→ S by Ft(i) = ξi,t. Then define X0 = i0 and
Xt+1 = Ft ◦ Ft−1 ◦ . . . ◦ F0(X0) for t > 0. Show that (X0,X1, . . .) is a Markov chain
with transition matrix P and initial state i0.

9. The Radon-Nikodym theorem and conditional probability

9.1. Absolute continuity and singularity. Consider a probability space (Ω,F,P). Let X : Ω→
R be a non-negative random variable with E[X] = 1. Define Q(A) = E[X1A] for A ∈ F. Then, Q is
a probability measure on (Ω,F). Finite additivity is clear, by linearity of expectation. MCT shows
that if An,A ∈ F and An ↑ A then Q(An) ↑ Q(A).

All this clearly remains valid even ifPwas an infinite measure andXwas a general non-negative
measurable function, except that Q is possibly an infinite measure too. One can think of Q as got
from P by re-weighting the space according to the values of X. We say that Q has density X with
respect to P.

Question: Given two measures µ,ν on (Ω,F), does ν have a density with respect to µ and is it
unique?

The uniqueness part is easy.

Proof of uniqueness. If f and g are two densities, then ν(A) =
∫
A fdµ =

∫
A gdµ for some f,g,

then h := f − g satisfies
∫
A hdµ = 0 for all A ∈ F. Take A = {h > 0} to get

∫
h1h>0dµ = 0. But

h1h>0 is a non-negative measurable function, hence it must be that h1h>0 = 0 a.s.[µ]. This implies
that µ{h > 0} = 0. Similarly µ{h < 0} = 0 and we see that h = 0 a.s.[µ] or equivalently f = g a.s[µ].
The density is unique up to sets of µ-measure zero. More than that cannot be asked because, if f is
a density and g = f a.s.[µ], then it follows that

∫
A gdµ =

∫
A fdµ and hence g is also a density of ν

with respect to µ. �

Existence of density is a more subtle question. First let us see some examples.
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Example 5

On ([0, 1],B, λ) let ν be the measure with distribution Fν(x) = x2. Then ν has density f(x) =
2x1x∈[0,1] with respect to λ. Indeed, if we set θ(A) =

∫
A fdλ, then θ and ν are two measures

on [0, 1] that agree on all intervals, since
∫
[a,b] fdλ = b2 − a2 for any [a,b] ⊆ [0, 1]. By the

π− λ theorem, θ = ν.
Note that the same logic works whenever ν ∈ P(R) and Fν has a continuous (or piecewise
continuous) derivative. If f = F ′ν, by the fundamental theorem of Calculus,

∫
[a,b] fdλ =

Fν(b) − Fν(a) and hence by the same reasoning as above, ν has density f with respect to
Lebesgue measure.

Example 6

LetΩ be some set and let a1, . . . ,an be distinct elements inΩ. Let ν =
∑n
k=1 pkδak and let

µ =
∑
k=1 qkδak where pi,qi are non-negative numbers such that

∑
i pi =

∑
i qi = 1.

Assume that qi > 0 for all i 6 n. Then define f(x) = pi
qi

for x = ai and in an arbitrary
fashion for all other x ∈ Ω. Then, f is the density of νwith respect to µ. The key point is that∫
f1{ai}dµ = f(ai)µ{ai} = pi = ν{ai}.

On the other hand, if qi = 0 < pi for some i, then ν cannot have a density with respect to µ
(why?).

Let us return to the general question of existence of density of a measure ν with respect to a
measure µ (both measures are defined on (Ω,F)). As in the last example, there is one necessary
condition for the existence of density. If ν(A) =

∫
f1Adµ for all A, then if µ(A) = 0 we must

have ν(A) = 0 (since f1A = 0 a.s[µ]). In other words, if there is even one set A ∈ F such that
ν(A) > 0 = µ(A), then ν cannot have a density with respect to µ. Let us make a definition.

Definition 8
Two measures µ and ν on the same (Ω,F) are said to be mutually singular and write µ ⊥ ν if
there is a set A ∈ F such that µ(A) = 0 and ν(Ac) = 0. We say that µ is absolutely continuous
to ν and write µ� ν if µ(A) = 0 whenever ν(A) = 0.

Remark 9
(1) Singularity is a symmetric relation, absolute continuity is not. If µ� ν and ν� µ, then
we say that µ and ν are mutually absolutely continuous. (2) If µ ⊥ ν, then we cannot also
have µ � ν (unless µ = 0). (3) Given µ and ν, it is not necessary that they be singular or
absolutely continuous to one another. (4) Singularity is not reflexive but absolute continuity
is. That is, µ� µ but µ is never singular to itself (unless µ is the zero measure).
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Example 7

Uniform([0, 1]) and Uniform([1, 2]) are singular. Uniform([1, 3]) is neither absolutely contin-
uous nor singular to Uniform([2, 4]). Uniform([1, 2]) is absolutely continuous with respect to
Uniform([0, 4]) but not conversely. All these uniforms are absolutely continuous to Lebesgue
measure. Any measure on the line that has an atom (eg., δ0) is not absolutely continuous to
Lebesgue measure. A measure that is purely discrete is singular with respect to Lebesgue
measure. A probability measure on the line with density (eg., N(0, 1)) is absolutely con-
tinuous to λ. In fact N(0, 1) and λ are mutually absolutely continuous. However, the expo-
nential distribution is absolutely continuous to Lebesgue measure, but not conversely (since
(−∞, 0), has zero probability under the exponential distribution but has positive Lebesgue
measure).

Returning to the existence of density, we saw that for ν to have a density with respect to µ, it is
necessary that ν� µ. This condition is also sufficient!

Theorem 7: Radon Nikodym theorem

Suppose µ and ν are two finite measures on (Ω,F). If ν � µ, then dν = fdµ for some
f ∈ L1(µ).

The function f in the statement is called the Radon-Nikodym derivative of ν w.r.t. µ. When both
ν is a probability measure, we also call it the density of ν w.r.t. µ. Of particular importance is the
case when ν is a probability measure on Rd and µ is the Lebesgue measure on Rd.

A first attempt at proof: Let H = L2(µ) and define L : H 7→ R by Lf =
∫
fdν. Suppose we could

show that L is well-defined (then it is clearly linear) and bounded, i.e., |Lf| 6 C‖f‖H for all f ∈ H.
Then, by the Riesz representation theorem for linear functionals on a Hilbert space, it follows that
Lf = 〈f,ψ〉 for some ψ ∈ H. Take f = 1A with A ∈ F to see that ν(A) =

∫
Aψ dµ. This is what we

want to show.
The problem is that L need not be bounded. Indeed, it it were true, the above argument would

have shown that the Radon -Nikodym derivative of νw.r.t. µ is in L2(µ), which is false in general!
For example, let ν(A) =

∫
A

1√
x
dλ(x), where λ is the Lebesgue measure on [0, 1]. Then the Radon-

Nikodym derivative is 1/
√
x, whose square is not integrable w.r.t. µ. The proof below overcomes

this issue by a small trick.
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Proof of the Radon Nikodym theorem. Let θ = µ+ ν and let H = L2(Ω,F, θ). Define L : H 7→
R by Lf =

∫
fdν. Since (note that

∫
gdν 6

∫
gdθ for any g > 0)∣∣ ∫ fdν∣∣ 6 ∫ |f|dν 6 ∫ |f|dθ 6√θ(Ω)

(∫
|f|2dθ

) 1
2

,

it follows that L is well-defined and |Lf| 6 C‖f‖H with C =
√
θ(Ω).Therefore, L is bounded and

Lf =
∫
fϕ dθ for some ϕ ∈ H. Rewrite this as∫

f(1 −ϕ)dν =

∫
fϕdµ for all f ∈ H.(2)

From this identity, it is clear that 0 6 ϕ 6 1 a.s.[µ] (hence also a.s.[ν]). Further, setting f = 1ϕ=1,
we see that the left hand side is zero while the right hand side is µ{ϕ = 1}. Thus, ϕ < 1 a.s.[µ]
(hence also a.s.[ν]).

Now for anyA ∈ F and δ > 0, setting f = 1
1−ϕ1A1ϕ61−δ (which is bounded above by 1/(1−δ)

and hence in H), we get that ν(A ∩ {ϕ 6 1 − δ}) =
∫
Aψ1ϕ61−δdµ, where ψ = ϕ/(1 − ϕ). Set

δ = 1/n and let n ↑ ∞. We get ν(A ∩ {ϕ < 1}) =
∫
ψ1ϕ<1dµ. Since ϕ < 1 almost surely with

respect to both measures, it is redundant to write that, and we get ν(A) =
∫
Aψdµ. �

Exercise 3: Lebesgue decomposition

Let µ,ν be two finite measures on (Ω,F). Show that we can write ν = ν1 + ν2, where ν1,ν2

are measures on F and ν1 � µ and ν2 ⊥ µ. This decomposition is unique. [Hint: Follow the
steps in the proof of Radon-Nikodym theorem and consider theset {ϕ = 1} carefully!]

9.2. Some singular probability measures. This section is not directly needed for what comes
next in the course. But these are some natural directions suggested by the previous discussion of
absolute continuity and singularity of measures.

Is there any µ ∈ P(R) that is singular to Lebesgue measure on R? Of course, any discrete
probability measure is singular, since it gives probability one to a countable set while Lebesgue
measure gives probability zero to that set. The interesting question is whether there is a singular
µ that has no atoms. For this, we must spread our set on some uncountable set of zero Lebesgue
measure. The first example that comes to mind is the standard Cantor set.

Recall that the middle-thirds Cantor set is defined as the decreasing intersectionK ofKns where
K0 = [0, 1], K1 = [0, 1

3 ]∪ [
2
3 , 1], K3 = [0, 1

9 ]∪ [
2
9 , 3

9 ]∪ [
6
9 , 7

9 ]∪ [
8
9 , 1], and so on. In general, Kn is a union

of 2n intervals each of length 3−n, and Kn+1 is got from Kn by deleting the middle third open
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subinterval of each of these intervals. An alternate description of the Cantor set is

K =

{
x ∈ [0, 1] : x =

∞∑
n=1

xn

3n
for some xn ∈ {0, 2}

}
.

In other words, it consists of those numbers that have a ternary (base-3) expansion without using
the digit 1.

Example 8: Cantor measure

Let K be the middle-thirds Cantor set. Consider the canonical probability space ([0, 1],B, λ)
and the random variable X(ω) =

∑∞
k=1

2Bk(ω)
3k , where Bk(ω) is the kth binary digit of ω

(i.e.,ω =
∑∞
k=1

Bk(ω)
2k ). Then X is measurable (we saw this before). Let µ := λ ◦ X−1 be the

pushforward measure.
Then, µ(K) = 1, because X takes values in numbers whose ternary expansion has no ones.
Further, for any t ∈ K, X−1{t} is a set with atmost two points and hence µ{t} = 0. Thus µ has
no atoms and must have a continuous CDF. Since µ(K) = 1 but λ(K) = 0, we also see that
µ ⊥ λ.

Exercise 4: Alternate construction of Cantor measure
Write K = ∩Kn as in the definition of the Cantor set. Let µn be the uniform probability
measure on Kn, i.e., µn(A) = (3/2)nλ(A∩Kn) for allA ∈ BR. Show that Fµns converge uni-
formly to a CDF F and that the measure having this CDF is the Cantor measure constructed
above.
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Example 9: Bernoulli convolutions - a fun digression (omit if unclear!)

We generalize the previous example. For any α > 1, define Xα : [0, 1] → R by Xα(ω) =∑∞
k=1 α

−kBk(ω). Let µα = λ◦X−1
λ (did you check that Xα is measurable?). These measures

are called Bernoulli convolutions. For α = 3, this is almost the same as 1/3-Cantor measure,
except that we have left out the irrelevant factor of 2 (so µ3 is a probability measure on
1
2K := {x/2 : x ∈ K}) and hence is singular. For α = 2, the map Xα is identity, and hence µ2 is
the Lebesgue measure on [0, 1], certainly absolutely continuous to Lebsegue measure. What
about the singularity and absolute continuity of µα for other values of α?

Exercise 5
For any α > 2, show that µα is singular w.r.t. Lebesgue measure.

Hence, one might expect that µα is absolutely continuous to Lebesgue measure for 1 < α <
2. This is false! Paul Erdős showed that µα is singular to Lebesgue measure whenever α is a
Pisot-Vijayaraghavan number, i.e., if α is an algebraic number all of whose conjugates have
modulus less than one!! It is an open question as to whether these are the only exceptions.

9.3. Hausdorff measures. Consider two Cantor type sets: A consisting of those numbers who
decimal expansion does not have the disgit 5 and B consisting of those numbers who decimal ex-
pansion does not have any odd digit. Both have Lebesgue measure zero. Is there another measure
that can measure the sizes of these sets (one might feel that B is somehow smaller than A, but in
what sense?).

Let (X,d) be a compact metric space. Fix α > 0 and define for any A ⊆ X,

H∗α(A) = inf

{ ∞∑
n=1

dia(Bn)α : Bn are open balls whose union covers A

}
.

It is easy to check that H∗α(A) 6 H∗α(B) if A ⊆ B and H∗α(∪nAn) 6
∑
nH
∗
α(An). Thus H∗α is

an outer measure Hα and can be used to construct a measure on (X,BX) (one must check many
things, for example that the Caratheodary construction gives a sigma algebra containing all Borel
sets). As it happens, for most α, the measure Hα turns out to be trivial. For example, if X = [0, 1],
then for any interval I, one can check that Hα(I) = 0 if α > 1 and Hα(I) = ∞ if α < 1. For α = 1,
we get the Lebesgue measure.

For a generalX, again there is always a valueα0 such that for any open ballBwe haveHα(B) = 0
if α > α0 and Hα(B) = ∞ if α < α0. At α = α0, we may or may not get a meaningful measure. If
we do, then Hα0 is called the Hausdorff measure on X. Whether Hα0 is trivial or not, the number α0

is called the Hausdorff dimension of X.
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Example 10

Let X = K, the middle-thirds Cantor set. Then α0 = log 2/ log 3 and Hα0 is precisely the
Cantor measure that we constructed earlier.

9.4. Conditional probability and expectation - a first view. So far (and for a few lectures
next), we have seen how a rigorous framework for probability theory is provided by measure the-
ory. We have not yet touched the two most important concepts in probability, independence and
conditional probability. We shall see independence very shortly but may not have time to study
conditional probability in detail in this course. But one of the important aspects of Kolmogorov’s
axiomatization of probability using measure theory was to define conditional probability using the
Radon-Nikodym theorem. Here is a teaser for that story.

Let (Ω,F,P) be a probability space. Let X be a random variable that takes finitely many values
a1, . . . ,an with P{X = ak} > 0 for each k. Then, the law of total probability says that for anyA ∈ F,

P(A) =
n∑
k=1

P(A
∣∣∣∣∣∣ X = ak)P{X = ak}

where P(A
∣∣∣∣∣∣ X = ak) =

P{A∩{X=ak}}
P{X=k} . Now suppose X takes uncountably many values, for eg., X

has density fX. Then, we would like to write

P(A) =
∫
P(A

∣∣∣∣∣∣ X = t)fX(t)dt

where fX is the density ofX and perhaps even generalize it to the case whenXdoes not have density
as P(A) =

∫
P(A

∣∣∣∣∣∣ X = t)dµX(t). The question is, what is P(A
∣∣∣∣∣∣ X = t)? The usual definition makes

no sense since P{X = t} = 0.
The way around is this. Fix A ∈ F and set νA(I) = P{A ∩ {X ∈ I}} for I ∈ BR. Then ν is a Borel

probability measure on as a measure on R. If µX is the distribution of X, then clearly νA � µX (if
µX(I) = 0 then P{X ∈ I} = 0 which clearly implies that νA(I) = 0). Hence, by the Radon-Nikodym
theorem, νA has a density fA(t) with respect to µX. In other words,

P(A ∩ {X ∈ I}) =
∫
I

fA(t)dµX(t)

and in particular, P(A) =
∫
R fA(t)dµX(t). Then, we may define fA(t) as the conditional probability

of A given X = t! Note that fA is defined only almost everywhere, hence P(A
∣∣∣∣∣∣ X = t) should

also be interpreted as being defined for almost every t (w.r.t. µX). This way, the intuitive notion
of conditional probability is brought into the ambit of measure theoretical probability. We now
elaborate on this a bit.
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LetP, Q be probability measures on (Ω,F). Assume that Q� P. Then there is aX ∈ L1(Ω,F,P)
such that

Q(A) =

∫
A

XdP for all A ∈ F.

Now suppose G ⊆ F is a sub-sigma algebra. Let P ′, Q ′ be the restrictions of P, Q to G. It is
trivially the case that Q ′ � P ′. Hence, again by the Radon-Nikodym theorem, there is some
X ′ ∈ L1(Ω,G,P ′) such that Q ′(A) =

∫
A X
′dP ′ for all A ∈ G. The last statement can also be written

as

Q(A) =

∫
A

X ′dP for all A ∈ G.

This X ′ is not the same as X, because the latter need not be G-measurable.
Now start with any integrable random variable Y on (Ω,F,P). Writing as Y+−Y− and applying

the above steps to find Y ′+, Y ′− (these are G-measurable and give the same integrals as Y+, Y− over
sets in G). Writing Y ′ = Y ′+ − Y ′−, we have shown that there is a G-measurable random variable Y ′

such that ∫
A

Y dP =

∫
A

Y ′ dP for all A ∈ G.

This Y ′ is called the conditional expectation of Y w.r.t. G and denoted E[Y | G].

Example 11

Again consider (Ω,F,P) and a measurable partition {A1, . . . ,Ak} with P(Ai) > 0 for all i.
Let G = σ{A1, . . . ,Ak}. If Y is an integrable random variable (F-measurable), we compute
Y ′ = E[Y | G]. Since Y ′ is G-measurable, we can write Y ′ = α11A1 + . . .+αk1Ak . Equating its
integral over Ai with that of Y, we arrive at αiP(Ai) =

∫
Ai
YdP. Thus,

Y ′ =

k∑
i=1

(
1

P(Ai)

∫
Ai

YdP
)

1Ai .

The value of αi is what you would have seen in basic probability class as the expected value
of Y given Ai (just restrict the probability measure to Ai and renormalize by dividing by
P(Ai). Then take expectation of Y w.r.t this new measure).
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Example 12

Let X, Y be random variables on (Ω,F,P), having a joint density f(x,y) on R. We want to talk
of E[Y | X = x]. For this, we take G = σ(X), the sigma-algebra generated by X and compute
E[Y | G]. What are G-measurable random variables? They are precisely those of the form
ϕ(X) for some Borel measurable ϕ : R 7→ R (why?). Let us simply write down the formula
and check that it works: Y ′ = ϕ(X) where

ϕ(x) :=


1∫

R f(x,y)dy
∫
R yf(x,y)dy if

∫
R f(x,y)dy > 0

0 if
∫
R f(x,y)dy = 0.

Clearly Y ′ is G-measurable (since it is a function of X). Check that E[Y ′1A] = E[Y1A] if
A = {Z ∈ B} for some B ∈ BR. That shows that Y ′ = E[Y | G].

It may be confusing for the first time that what we call conditional expectation is a random vari-
able and not a number. But that is indeed the point. First we conceptualize an experiment which
tells us for each element of G, whether or not it has occurred. Then depending on the outcome of
the experiment, we update our probabilities of event or expectations of random variables. In other
words, the update is a function of the outcome of the experiment, hence a random variable.
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CHAPTER 2

Convergence of probability measures and random variables

So far, we have looked at individual probability measures and random variables. Now we look
at what properties they have as a collection, in particular, in particular the sense in which they can
be close to one other. Some of the main theorems we shall prove later, the weak and strong laws of
large numbers and the central limit theorem are statements about such closeness. This language is
helpful for all future discussions.

First we discuss the important notion of convergence of probability measures on Euclidean
spaces. Then we discuss multiple modes of convergence of a sequence of random variables to
another random variable.

1. A metric on the space of probability measures on Rd

What kind of space is P(Rd), the space of Borel on Rd? It is clearly a convex set (this is true for
the space of probability measures on any measurable space (Ω,F)). We want to measure closeness
of two probability distributions. Two natural definitions come to mind.

(1) For µ,ν ∈ P(Rd), define

D1(µ,ν) := sup
A∈Bd

|µ(A) − ν(A)|.

Since µ and ν are functions on the Borel σ-algebra, this is just their supremum distance,
usually called the total variation distance. It is easy to see that D1 is indeed a metric on
P(Rd) (check the triangle inequality).

One shortcoming of this metric is thatD1 is too strong. If µ is a discrete measure and ν
is a measure with density, thenD1(µ,ν) = 1. But if µ is uniform distribution on [0, 1] and
µn is uniform distribution on the finite set {j/n : 1 6 j 6 n}, then for largenwe would like
to think that µ and µn are close (after all, if we want a sample from µ, a random number
generator will in fact give us a sample from ν for some large n, and we accept that). But
in the metric D1, they remain far apart.
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(2) We can restrict the class of sets over which we take the supremum. In fact, if we take
any measure-determining class1 of sets C ⊆ BRd , then DC(µ,ν) := sup

A∈C
|µ(A) − ν(A)| is a

metric on P(Rd).
For instance, taking the class of all semi-infinite rectangles Rx := (−∞, x1] × . . . ×

(−∞, xd] with x ∈ Rd gives us the Kolmogorov-Smirnov distance

D2(µ,ν) = sup
x∈Rd

|Fµ(x) − Fν(x)|.

If two CDFs are equal, the corresponding measures are equal. HenceD2 is also a genuine
metric on P(Rd).

ClearlyD2(µ,ν) 6 D1(µ,ν), henceD2 is weaker thanD1. Unlike withD1, it is possible
to have discrete measures converging in D2 to a continuous one. For example, if if µ is
uniform distribution on [0, 1] and µn is uniform distribution on the finite set { jn : 1 6 j 6
n}, then D2(µ,µn) 6 1

n . But it is still too strong.
For example, if a 6= b are points in Rn, then it is easy to see that D1(δa, δb) =

D2(δa, δb) = 1. Thus, even when an → a in Rd, we do not get convergence of δan to
δa in these metrics. This is an undesirable feature as we must accept errors in measure-
ment, for example, a 10 digit number as an approximation to a real number. Alternately,
let us just say that we would like the embedding R 7→ P(R) defined by a 7→ δa to be
continuous.

Thus, we would like a weaker metric, where more sequences converge. The problem with the
earlier two definitions is that they compare closeness of µ(A) with ν(A). But we must allow for
finite precision of measurement, meaning that we cannot be too sure if a number belongs to A or
is close to it. The next definition allows for this imprecision.

Definition 9
For µ,ν ∈ P(Rd), define the Lévy distance between them as (here 1 = (1, 1, . . . , 1))

d(µ,ν) := inf{u > 0 : Fµ(x+ u1) + u > Fν(x), Fν(x+ u1) + u > Fµ(x) ∀x ∈ Rd}.

If d(µn,µ)→ 0, we say that µn converges in distribution or converges weakly to µ and write
µn

d→ µ. [...breathe slowly and meditate on this definition for a few minutes...]

1We say that C is measure-determining if µ(A) = ν(A) for all A ∈ C implies that µ = ν. We have seen that any
π-system that generates the Borel sigma-algebra is measure-determining.
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Remark 10
Although we shall not use it, in the same way one can define a metric on P(X) for a metric
space X (it is called Lévy-Prohorov distance). For µ,ν ∈ P(X)

d(µ,ν) := inf{t > 0 : µ(A(t)) + t > ν(A) and ν(A(t)) + t > µ(A) for all closed A ⊆ X}.

Here A(t) is the set of all points in X that are within distance t of A. This makes it clear
that we do not directly compare the measures of a given set, but if d(µ,ν) < t, it means that
whenever µ gives a certain measure to a set, then ν should give nearly that much (nearly
means, allow t amount less) measure to a t-neighbourhood of A.

As an example, if a,b ∈ Rd, then check that d(δa, δb) 6 (maxi |bi−ai|)∧1. Hence, if an → a,
then d(δan , δa)→ 0. Recall that δan does not converge to δa in D1 or D2.

Exercise 6
Let µn = 1

n

∑n
k=1 δk/n. Show directly by definition that d(µn, λ) → 0. Show also that

D2(µn, λ)→ 0 but D1(µn, λ) does not go to 0.

The definition is rather unwieldy in checking convergence. The following proposition gives
the criterion for convergence in distribution in terms of distribution functions.

Proposition 2

Let µn,µ ∈ P(Rd). Then, µn
d→ µ if and only if Fµn(x)→ Fµ(x) for all continuity points x of

Fµ.

Proof. Suppose µn
d→ µ. Let x ∈ Rd and fix u > 0. Then for large enough n, we have Fµ(x +

u1) + u > Fµn(x), hence lim sup Fµn(x) 6 Fµ(x + u1) + u for all u > 0. By right continuity of Fµ,
we get lim sup Fµn(x) 6 Fµ(x). Further, Fµn(x)+u > Fµ(x−u1) for large n, hence lim inf Fµn(x) >
Fµ(x− u) for all u. If x is a continuity point of Fµ, we can let u→ 0 and get lim inf Fµn(x) > Fµ(x).
Thus Fµn(x)→ Fµ(x).

For the converse, for simplicity let d = 1. Suppose Fn → F at all continuity points of F. Fix any
u > 0. Find x1 < x2 < . . . < xm, continuity points of F, such that xi+1 6 xi + u and such that
F(x1) < u and 1 − F(xm) < u. This can be done because continuity points are dense. Now use
the hypothesis to fix N so that |Fn(xi) − F(xi)| < u for each i 6 m and for n > N. Henceforth, let
n > N.

If x ∈ R, then either x ∈ [xj−1, xj] for some j or else x < x1 or x > x1. First suppose x ∈ [xj−1, xj].
Then

F(x+ u) > F(xj) > Fn(xj) − u > Fn(x) − u, Fn(x+ u) > Fn(xj) > F(xj) − u > F(x) − u.
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If x < x1, then F(x + u) + u > u > F(x1) > Fn(x1) − u. Similarly the other requisite inequalities,
and we finally have

Fn(x+ 2u) + 2u > F(x) and F(x+ 2u) + 2u > Fn(x).

Thus d(µn,µ) 6 2u. Hence d(µn,µ)→ 0. �

Example 13

Again, let an → a in R. Then Fδan (t) = 1 if t > an and 0 otherwise while Fδa(t) = 1 if t > a
and 0 otherwise. Thus, Fδan (t)→ Fδa(t) for all t 6= a (just consider the two cases t < a and
t > a). This example also shows the need for excluding discontinuity points of the limiting
distribution function. Indeed, Fδan (a) = 0 (if an 6= a) but Fδa(a) = 1.

Observe how much easier it is to check the condition in the theorem rather than the original
definition! Many books use the convergence at all continuity points of the limit CDF as the defini-
tion of convergence in distribution. But we defined it via the Lévy metric because we are familiar
with convergence in metric spaces and this definition shows that convergence in distribution in
not anything more exotic. On the other hand, giving the metric first is also misleading unless one
understands that there are several alternate definitions that we could have given (see exercise at
the end of the section), all of which give the same topology on P(R). The point to keep in mind
is that the topology, however you define it, is metrizable. This is helpful, for example we can check
continuity of a function on the space or compactness of a subset, using sequential criteria.

Exercise 7

If an → 0 and b2
n → 1, show that N(an,b2

n)
d→ N(0, 1) (recall that N(a,b2) is the Normal

distribution with parameters a ∈ R and b2 > 0).

Question: In class, Milind Hegde raised the following question. If we define (write in one dimen-
sion for notational simplicity)

d ′(µ,ν) = inf{t > 0 : Fµ(x+ t) > Fν(x) and Fν(x+ t) > Fµ(x) for all x},

how different is the resulting metric from the Lévy metric? In other words, is it necessary to allow
an extra additive t to Fµ(x+ t)?

It does make a difference! Suppose µ,ν are two probability measures on R such that µ(K0) = 1
for some compact setK0 and ν(K) < 1 for all compact setsK. Then, if x is large enough so that x > y
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for all y ∈ K0, then Fν(x+ t) < 1 = Fµ(x) for any t > 0. Hence, d ′(µ,ν) > t for any t implying that
d ′(µ,ν) =∞.

Now, it is not a serious problem if a metric takes the value∞. We can replace d ′ by d ′′(µ,ν) =
d ′(µ,ν) ∧ 1 or d ′′′(µ,ν) = d(µ,ν)/(1 + d(µ,ν)) which gives metrics that are finite everywhere
but are such that convergent sequences are the same as in d ′ (i.e., d ′(µn,µ) → 0 if and only if
d ′′(µn,µ)→ 0).

But the issue is that measures with compact support can never converge to a measure without
compact support. For example, if X has exponential distribution and Xk = X ∧ k, then the distri-
bution of Xk does not converge to the distribution of X in the metric d ′. However, it is indeed the
case that the convergence happens in the metric d. Thus the two metrics are not equivalent 2.

In the exercise below, we give other ways we could have defined the Lévy metric. There is no
natural way to choose between these definitions, underlining the point made earlier that the value
of the Lévy distance is itself of no great significance, what matters is the topology, or which se-
quences of probability measures converge to which probability measure. In fact, the Kolmogorov-
Smirnov and total variation distances are more meaningful (and actually used!) when one really
wants to measure distances, but in restricted settings.

Exercise 8
Show that each of the following is a metric that is equivalent to the Lévy metric (in the sense
that µn → µ in one metric if and only if in the others).

(1) inf{u > 0 : Fµ(x + au1) + bu > Fν(x), Fν(x + au1) + bu > Fµ(x) ∀x ∈ Rd} where
a,b > 0 are fixed.

(2) inf{u+ v : u, v > 0 and Fµ(x+ u1) + v > Fν(x), Fν(x+ u1) + v > Fµ(x) ∀x ∈ Rd}.

Equivalent forms of convergence in distribution. We have given two equivalent definitions
of convergence in distribution. There are several others.

2In class I wrongly claimed that for probability measures on a compact set in place of the whole real line, eg.,
P([−1, 1]), convergence in d ′ and in d are equivalent. Chirag Igoor showed me the following counter-example. Let
µ = δ1 and for each n define

Fn(x) =


0 if x < 0,

x/n if 0 6 x < 1,

1 if x > 1.

Then, Fn(x)→ Fµ(x) for each x and hence the corresponding measures converge toµ in Lévy metric. But the convergence
fails in d ′. To see this, take any x > 0 and observe that if Fµ(0.5 + t) > Fµn(0.5), then we must have t > 0.5. As this is
true for every n, it follows that µn does not converge to µ in d ′. Another such example is µn = (1 − n−1)δ0 + n

−1δ1 and
µ = δ0.
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Theorem 8
Let µn,µ ∈ P(Rd). The following statements are equivalent.

(1) µn
d→ µ.

(2) Fµn(x)→ Fµ(x) for all xwhere Fµ is continuous.

(3) lim inf
n→∞ µn(G) > µ(G) for all open G ⊆ Rd.

(4) lim sup
n→∞ µn(C) 6 µ(C) for all closed C ⊆ Rd.

(5)
∫
fdµn →

∫
fdµ for all bounded continuous f : Rd → R.

We have proved the equivalence of (1) and (2). It is also clear that (3) and (4) are equivalent
(just take complements). Hence it suffices to show that (2) =⇒ (3) =⇒ (5) =⇒ (2). For
simplicity, we present the proof in one-dimension.

Proof for d = 1. Assume (2). Let G ⊆ R be an open set. Then write it as G = tk(ak,bk).
Choose intervals (a ′k,b ′k) ⊆ (ak,bk) such that a ′k,b ′k are continuity points of Fµ and µ(a ′k,b ′k) >
µ(ak,bk) − ε2−k (possible as there are at most countably many discontinuity points). Then

µn(ak,bk) > Fµn(b ′k) − Fµn(a ′k)→ Fµ(b
′
k) − Fµ(a

′
k) = µ(a

′
k,b ′k).

Hence lim inf µn(ak,bk) > µ(ak,bk) − ε2−k. By Fatou’s lemma applied to sums, we see that

lim inf
∑
k

µn(ak,bk) >
∑
k

µ(ak,bk) − ε2−k > µ(G) − ε.

The left side is lim inf µn(G) and ε > 0 is arbitrary, hence lim inf µn(G) > µ(G). This proves (3).
Assume (3) holds. Let f ∈ Cb(R). Then {f > t} is an open set for any t ∈ R and hence

lim inf µn{f > t} > µ{f > t} by assumption. By Fatou’s lemma,

lim inf
∫∞

0
µn{f > t}dt >

∫∞
0
µ{f > t}dt.

If f > 0, then this is the same as saying lim inf
∫
fdµn >

∫
fdµ. For general bounded continuous f

withM = ‖f‖sup, apply this to the positive functionsM − f andM + f to conclude that
∫
fdµn →∫

fdµ.
Assume (5) holds. If x < y, letϕx,y : R→ [0, 1] be a continuous function such thatϕx,y(u) = 1

for u 6 x and ϕx,y(u) = 0 for u > y. Then

Fµn(x) 6
∫
ϕx,ydµn 6 Fµn(y), Fµ(x) 6

∫
ϕx,ydµ 6 Fµ(y).

As
∫
ϕx,ydµn →

∫
ϕx,ydµ by assumption, we see that

lim sup Fµn(x) 6 Fµ(y), lim inf Fµn(y) > Fµ(x).
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This is true for all x < y. Let y ↓ x in the first inequality to get lim sup Fµn(x) 6 Fµ(x) for all x. Let
x ↑ y in the second inequality to get lim inf Fµn(y) > Fµ(y−) for all y. Hence if x is a continuity
point of Fµ, we have lim Fµn(x) = Fµ(x). �

As we have seen, µn
d→ µ does not imply that µn(A) → µ(A) in general. Sometimes it does,

for example if A = (−∞, x] where µ{x} = 0. Here is a generalization.

Exercise 9

Let A ∈ B(R). If µn
d→ µ and µ(∂A) = 0, then show that µn(A)→ µ(A).

All these conditions may be thought of as convergence of certain integrals (as µ(A) =
∫

1Adµ).
When the objective is to show that µn

d→ µ, then we would like the collection of integrals to check
to be as small as possible. From this point of view, in condition 5 of Theorem 8, can we replace
Cb(Rd) by Cc(Rd) (compactly supported continuous functions) or even C∞c (Rd) (smooth ones)?

If µ is not assumed to be a probability measure, then it need not be true, as the example of
µn = 1

2δ0+
1
2δn and µ = 1

2δ0 shows. On the other hand, if we already assume that µ is a probability
measure, then the statement is true. This is because the sequence is tight and we can find a compact
set K = [−M,M]d such that µn(K) > 1 − ε for all n and µ(K) > 1 − ε. Given any f ∈ Cb(Rd),
replace it by g ∈ Cc(R) such that f = g on K. Then

|

∫
fdµn −

∫
gdµn| 6 ‖f‖supµn(K

c) 6 ε‖f‖sup

and a similar inequality for µ. As
∫
gdµn →

∫
gdµ (by assumption as g ∈ Cc(Rd)) and as ε is

arbitrary, we get
∫
fdµn →

∫
fdµ for all f ∈ Cb(Rd). As Cc(Rd) functions can be approximated

uniformly by C∞c (Rd), it also suffices to check the convergence for smooth compactly supported
functions (the details are left as exercise).
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Remark 11
The dual of Cc(R) is the space of all signed measures on R with finite total variation. These
are basically of the form θ = µ − ν where µ,ν are mutually singular finite measures and
θ acts on f by f 7→

∫
fdµ −

∫
fdν. The dual norm is ‖θ‖ = µ(R) + ν(R). Convergence in

weak-* sense in the dual space is defined by θn → θ if θn(f)→ θ(f) for all f (i.e., pointwise
convergence of linear functionals), though we are being a little loose in talking in terms
of sequences (the dual space with weak-* topology is generally not a metric space). That
is essentially the definition of weak convergence of probability measures (point (5) in the
theorem proved above), except that in this sense probability measures can converge to a sub-
probability measure. But if we ask for θn(f)→ θ(f) for all f ∈ Cb(R), a larger space, then this
leakage of mass to infinity cannot happen. Modulo this point, convergence in distribution is
just weak-* convergence.

2. Ways to prove convergence in distribution

We end the chapter by outlining different ways in which to prove convergence in distribution.
Suppose we need to show that µn

d→ µ.

(1) The most elegant of all ways is to find random variables Xn,X on some probability space
such that Xn ∼ µn and X ∼ µ and Xn

a.s.→ X. This will follow from later sections in this
chapter.

In fact, Skorohod’s principle tells us that this can always be done, although it is not
always clear how to find such random variables.

(2) Go by the book and show that
∫
fdµn →

∫
fdµ for all f ∈ Cb(R) or any of the other

equivalent conditions that were mentioned before. In practise, the smaller the class of
functions for which we need to check this convergence, the better it is for us.

For example, if we know that µn,µ ∈ P(R), then it suffices to show that convergence
for f ∈ C∞c (R). To see this, go back to the proof of (5) =⇒ (2) in the proof of Theorem 8.
Observe that we can choose ϕx,y to be smooth, even with bounded derivatives. The rest
of the proof remains the same.

(3) We shall later see that a surprisingly small class of functions suffices! Let et(x) = eitx for
t ∈ R. If

∫
etdµn →

∫
etdµ for all t ∈ R, then µn

d→ µ. We shall prove this when we
discuss characteristic functions.
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3. Compact subsets in the space of probability measure on Euclidean spaces

Often we face problems like the following. A functional L : P(Rd) → R is given, and we
would like to find the probability measure µ that minimizes L(µ). By definition, we can find nearly
optimal probability measures µn satisfying L(µn) − 1

n 6 infν L(ν). Then we might expect that if
the sequence µn (or a subsequence of it) converged to a probability measure µ, then µmight be the
optimal solution we are searching for. This motivates us to characterize compact subsets of P(Rd),
so that existence of convergent subsequences can be asserted.

Looking for a convergent subsequence: Let µn be a sequence in P(Rd). We would like to see if a
convergent subsequence can be extracted. Towards this direction, we prove the following lemma.
We emphasize the idea of proof (a diagonal argument) which recurs in many contexts.

Lemma 7: Helly’s selection principle

Let Fn be a sequence distribution functions on Rd. Then, there exists a subsequence {n`} and
a non-decreasing, right continuous functon F : Rd → [0, 1] such that Fn`(x) → F(x) if x is a
continuity point of F.

As before, we present the proof in one-dimension (just for notational simplicity).

Proof. Step-1: Getting the subsequence {n`}. Fix a dense subset S = {x1, x2, . . .} of R. Then,
{Fn(x1)} is a sequence in [0, 1]. Hence, we can find a subsequence {n1,k}k such that Fn1,k(x1) con-
verges to some number α1 ∈ [0, 1]. Then, extract a further subsequence {n2,k}k ⊆ {n1,k}k such that
Fn2,k(x2) → α2, another number in [0, 1]. Of course, we also have Fn2,k(x1) → α1. Continuing this
way, we get numbers αj ∈ [0, 1] and subsequences {n1,k} ⊃ {n2,k} ⊃ . . . {n`,k} . . . such that for each
`, as k→∞, we have Fn`,k(xj)→ αj for each j 6 `.

The diagonal subsequence {n`,`} is ultimately the subsequence of each of the above obtained sub-
sequences and therefore, Fn`,`(xj) → αj as ` → ∞, for each j. Henceforth, write n` instead of
n`,`.

Step-2: Getting the function F. Define

F(x) := inf{αj : j for which xj > x}.

F is well defined, takes values in [0, 1] and is increasing. It is also right-continuous, because if
yn ↓ y, then for any j for which xj > y, it is also true that xj > yn for sufficiently large n. Thus
limn→∞ F(yn) 6 αj. Take infimum over all j such that xj > y to get limn→∞ F(yn) 6 F(y). Of
course F(y) 6 lim F(yn) as F is increasing. This shows that lim F(yn) = F(y) and hence F is right
continuous.
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Step-3: Proving the convergence. Lastly, we claim that if y is any continuity point of F, then
Fn`(y) → F(y) as ` → ∞. To see this, fix δ > 0. Find i, j such that y − δ < xi < y < xj < y + δ.
Therefore

lim inf Fn`(y) > lim Fn`(xi) = αi > F(y− δ)

lim sup Fn`(y) 6 lim Fn`(xj) = αj 6 F(y+ δ).

In each line, the first inequalities are by the increasing nature of CDFs, and the second inequalities
are by the definition of F. Thus

F(y−) 6 lim inf Fn`(y) 6 lim sup Fn`(y) 6 F(y)

for all y ∈ R. If F(y−) = F(y), then it follows that lim Fn`(y) exists and equals F(y). �

The Lemma does not say that F is a CDF, because in general it is not!

Example 14

Consider δn. Clearly Fδn(x) → 0 for all x if n → +∞ and Fδn(x) → 1 for all x if n → −∞.
Even if we pass to subsequences, the limiting function is identically zero or identically one,
and neither of these is a CDF of a probability measure The problem is that mass escapes to
infinity. To get weak convergence to a probability measure, we need to impose a condition
to avoid this sort of situation.

Definition 10
A family of probability measure A ⊆ P(Rd) is said to be tight if for any ε > 0, there is a
compact set Kε ⊆ Rd such that µ(Kε) > 1 − ε for all µ ∈ A.

Example 15

Suppose the family has only one probability measure µ. Since [−n,n]d increase to Rd, given
ε > 0, for a large enough n, we have µ([−n,n]d) > 1 − ε. Hence {µ} is tight. If the family is
finite, tightness is again clear.
Taked = 1 and letµn be probability measures with Fn(x) = F(x−n) (where F is a fixed CDF),
then {µn} is not tight. This is because given any [−M,M], if n is large enough, µn([−M,M])

can be made arbitrarily small. Similarly {δn} is not tight.

We now characterize compact subsets of P(Rd) in the following theorem. As P(Rd) is a metric
space, compactness is equivalent to sequential compactness and we phrase the theorem in terms
of sequential compactness.
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Theorem 9
Let A ⊆ P(Rd). Then, the following are equivalent.

(1) Every sequence in A has a convergent subsequence in P(Rd).

(2) A is tight.

Proof. Let us take d = 1 for simplicity of notation.

(1) Assume that A is tight. Then any sequence (µn)n in A is also tight. By Lemma 7, there
is a subsequence {n`} and a non-decreasing right continuous function F (taking values in
[0, 1]) such that Fn`(x)→ F(x) for all continuity points x of F.

FixA > 0 such that µn` [−A,A] > 1−ε and such thatA is a continuity point of F. Then,
Fn`(−A) 6 ε and Fn`(A) > 1 − ε for every n and by taking limits we see that F(−A) 6 ε
and F(A) > 1−ε. Thus F(+∞) = 1 and F(−∞) = 0. This shows that F is a CDF and hence
F = Fµ for some µ ∈ P(Rd). By Proposition 2 it also follows that µn`

d→ µ.

(2) Assume that A is not tight. Then, there exists ε > 0 such that for any k, there is some
µk ∈ A such that µk([−k,k]) < 1 − 2ε. In particular, either Fµk(k) 6 1 − ε or/and
Fµk(−k) > ε. We claim that no subsequence of (µk)k can have a convergent subsequence.

To avoid complicating the notation, let us show that the whole sequence does not
converge and leave you to rewrite the same for any subsequence. There are infinitely
many k for which Fµk(−k) > ε or there are infinitely many k for which Fµk(k) > 1 − ε.
Suppose the former is true. Then, for any x ∈ R, since −k < x for large enough k, we see
that Fµk(x) > Fµk(−k) > ε for large enough k. This means that if Fµk converge to some F
(at continuity points of F), then F(x) > ε for all x. Thus, F cannot be a CDF and hence µk
does not have a limit. �

Exercise 10
Adapt this proof to higher dimensions.

4. Modes of convergence of random variables

One of the primary objects of study will be the sample averages (X1 + . . . + Xn)/n, where Xk
are i.i.d. random variables. Laws of large numbers state that these sample averages are close to the
mean of X1, but there are multiple ways this could be made precise. Here we try to understand the
different senses in which random variables can converge to other random variables.
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Definition 11
Let Xn,X be real-valued random variables on a common probability space.

I Xn
a.s.→ X (Xn converges to X almost surely) if P {ω : limXn(ω) = X(ω)} = 1.

I Xn
P→ X (Xn converges to X in probability) if P{|Xn − X| > δ} → 0 as n → ∞ for

any δ > 0.

I Xn
Lp→ X (Xn converges to X in Lp) if ‖Xn − X‖p → 0 (i.e., E[|Xn − X|p] → 0. This

makes sense for any 0 < p 6∞ although ‖ · ‖p is a norm only for p > 1. Usually it
is assumed that E[|Xn|p] and E[|X|p] are finite, although the definition makes sense
without that.

I Xn
d→ X (Xn converges to X in distribution) if the distribution of µXn

d→ µX where
µX is the distribution of X. This definition (but not the others) makes sense even if
the random variables Xn,X are all defined on different probability spaces.

Now, we study the inter-relationships between these modes of convergence.

4.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli
random variables elucidates the matter.

Example 16

Suppose An are events in a probability space. Then one can see that

(1) 1An
P→ 0⇐⇒ lim

n→∞P(An) = 0,

(2) 1An
a.s.→ 0⇐⇒ P(lim supAn) = 0.

By Fatou’s lemma, P(lim supAn) > lim supP(An), and hence we see that a.s convergence
of 1An to zero implies convergence in probability. The converse is clearly false. For instance,
if An are independent events with P(An) = n−1, then P(An) goes to zero but, by the sec-
ond Borel-Cantelli lemma P(lim supAn) = 1. This example has all the ingredients for the
following two implications.

Lemma 8
Suppose Xn,X are random variables on the same probability space. Then,

(1) If Xn
a.s.→ X, then Xn

P→ X.

(2) If Xn
P→ X “fast enough” so that

∑
n P(|Xn − X| > δ) < ∞ for every δ > 0, then

Xn
a.s.→ X.

Proof. Note that analogous to the example, in general
62



(1) Xn
P→ X⇐⇒ ∀δ > 0, lim

n→∞P(|Xn − X| > δ) = 0,

(2) Xn
a.s.→ X⇐⇒ ∀δ > 0, P(lim sup{|Xn − X| > δ}) = 0.

Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For
the second part, observe that by the first Borel Cantelli lemma, if

∑
n P(|Xn − X| > δ) < ∞, then

P(|Xn − X| > δ i.o) = 0 and hence lim sup |Xn − X| 6 δ a.s. Apply this to all rational δ and take
countable intersection to get lim sup |Xn − X| = 0. Thus we get a.s. convergence. �

The second statement is useful for the following reason. Almost sure convergence Xn
a.s.→ 0

is a statement about the joint distribution of the entire sequence (X1,X2, . . .) while convergence in
probability Xn

P→ 0 is a statement about the marginal distributions of Xns. As such, convergence
in probability is often easier to check. If it is fast enough, we also get almost sure convergence for
free, without having to worry about the joint distribution of Xns.

Note that the converse is not true in the second statement. On the probability space ([0, 1],B, λ),
let Xn = 1[0,1/n]. Then Xn

a.s.→ 0 but P(|Xn| > δ) is not summable for any δ > 0. Almost sure
convergence implies convergence in probability, but no rate of convergence is assured.

Exercise 11

(1) If Xn
P→ X, show that Xnk

a.s.→ X for some subsequence.

(2) Show that Xn
P→ X if and only if every subsequence of {Xn} has a further subse-

quence that converges a.s.

(3) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn +

bYn
P→ aX+ bY and XnYn

P→ XY.

4.2. In distribution and in probability. We say that Xn
d→ X if the distributions of Xn con-

verges to the distribution of X. This is a matter of language, but note that Xn and X need not be on
the same probability space for this to make sense. In comparing it to convergence in probability,
however, we must take them to be defined on a common probability space.

Lemma 9
Suppose Xn,X are random variables on the same probability space. Then,

(1) If Xn
P→ X, then Xn

d→ X.

(2) If Xn
d→ X and X is a constant a.s., then Xn

P→ X.

Proof.
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(1) Suppose Xn
P→ X. Since for any δ > 0

P(Xn 6 t) 6 P(X 6 t+ δ) + P(X− Xn > δ)

and P(X 6 t− δ) 6 P(Xn 6 t) + P(Xn − X > δ),

we see that lim supP(Xn 6 t) 6 P(X 6 t + δ) and lim inf P(Xn 6 t) > P(X 6 t − δ) for
any δ > 0. Let t be a continuity point of the distribution function ofX and let δ ↓ 0. We
immediately get limn→∞ P(Xn 6 t) = P(X 6 t). Thus, Xn

d→ X.

(2) If X = b a.s. (b is a constant), then the cdf of X is FX(t) = 1t>b. Hence, P(Xn 6 b−δ)→ 0
and P(Xn 6 b + δ) → 1 for any δ > 0 as b ± δ are continuity points of FX. Therefore
P(|Xn − b| > δ) 6 (1− FXn(b+ δ)) + FXn(b− δ) converges to 0 as n→∞. Thus, Xn

P→ b.
�

If Xn = 1−U and X = U, then Xn
d→ X but of course Xn does not converge to X in probability!

Thus the condition of X being constant is essential in the second statement. In fact, if X is any non-
degnerate random variable, we can findXn that converge toX in distribution but not in probability.
For this, fix T : [0, 1] → R such that T(U) d= X. Then define Xn = T(1 − U). For all n the random
variable Xn has the same distribution as X and hence Xn

d→ X. But Xn does not converge in
probability to X (unless X is degenerate).

Exercise 12
(1) Suppose that Xn is independent of Yn for each n (no assumptions about indepen-

dence across n). If Xn
d→ X and Yn

d→ Y, then (Xn, Yn)
d→ (U,V) where U d

= X,
V
d
= Y and U,V are independent. Further, aXn + bYn

d→ aU+ bV .

(2) If Xn
P→ c (a constant) and Yn

d→ Y (all on the same probability space), then show
that XnYn

d→ cY.

4.3. In probability and in Lp. How do convergence in Lp and convergence in probability com-
pare? Suppose Xn

Lp→ X (actually we don’t need p > 1 here, but only p > 0 and E[|Xn − X|p]→ 0).
Then, for any δ > 0, by Markov’s inequality

P(|Xn − X| > δ) 6 δ−pE[|Xn − X|p]→ 0

and thus Xn
P→ X. The converse is not true. In fact, even almost sure convergence does not imply

convergence in Lp, as the following example shows.

Example 17

On ([0, 1],B, λ), define Xn = 2n1[0,1/n]. Then, Xn
a.s.→ 0 but E[Xpn] = n−12np for all n, and

hence Xn does not go to zero in Lp (for any p > 0).
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As always, the fruitful question is to ask for additional conditions to convergence in probability
that would ensure convergence in Lp. Let us stick to p = 1. Is there a reason to expect a (weaker)
converse? Indeed, suppose Xn

P→ X. Write

E[|Xn − X|] =

∫∞
0

P(|Xn − X| > t)dt.

For each t the integrand goes to zero because Xn
P→ X. Will the integral go to zero? The example of

Xn = n1[0,1/n] and X = 0 on ([0, 1],B, λ) shows that it need not. What goes wrong in that example
is that with a small probability Xn can take a very very large value and hence the expected value
stays away from zero. This observation makes the next definition more palatable. We put the new
concept in a separate section to give it the due respect that it deserves. This will

5. Uniform integrability

Definition 12: Uniform integrability

A family {Xi}i∈I of random variables is said to be uniformly integrable if given any ε > 0, there
exists A large enough so that E[|Xi|1|Xi|>A] < ε for all i ∈ I.

Two remarks on the definition.

(1) If X is integrable and P{|X| > M} = δ, then for any set A ∈ F with P(A) 6 δ, we have
(exercise!) E[|X|1A] 6 E[|X|1|X|>M].

Therefore, the uniform integrability of {Xi}i∈Imay be rephrased as: Given ε > 0, there
is a δ > 0 such that E[|Xi|1A] < ε for all i ∈ I and for all A ∈ F with P(A) 6 δ.

(2) If µ is the distribution of X, then E[|X|1|X|>M] =
∫
[−M,M]c |x|dµ(x) = ν([−M,M]c) where

dν(x) = |x|dµ(x) (observe that ν is also the push-forward of |X(ω)|dP(ω) by the mapping
X).

Therefore, the uniform integrability of {Xi}i∈I is equivalent to the tightness3 of the
family {νi}i∈I, where νi = Pi ◦ X−1

i and dPi(ω) = |Xi(ω)|dP(ω).

Next we discuss conditions that ensure uniform integrability. This also gives us many examples.

• If X is integrable, then by DCT, E[|X|1|X|>M] → 0 as M → ∞. Therefore, any finite set of
random variables is uniformly integrable. It is when we have an infinite family that the
uniformity constraint starts to be felt.
• A family dominated by one integrable random variable (the condition in DCT) is uni-

formly integrable. Indeed, if |Xi| 6 |Y| a.s. for each i ∈ I, then findM such thatE[|Y|1|Y|>M] <

3We defined tightness for probability measures but here νi are general (but finite) measures. By tightness, we
naturally mean that given ε > 0 there is someM such that νi([−M,M]c) < ε for all i ∈ I.
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ε and observe that |Xi|1|Xi|>M 6 |Y|1|Y|>M. Hence the sameMworks for the whole fam-
ily.
• An Lp-bounded family for p > 1 is u.i. For, if supi∈I E[|Xi|p] 6 B for some B <∞, then

E[|Xi| 1|Xi|>t] 6 E

[(
|Xi|

M

)p−1
|Xi| 1|Xi|>M

]
6

1
Mp−1E[|Xi|

p] 6
B

Mp−1

which goes to zero asM→∞. Thus, given ε > 0, one can chooseM so that supi∈I E[|Xi|1|Xi|>M] <

ε.
• The previous conclusion fails for p = 1. For example, let Xn = n1[0, 1

n ]
on ([0, 1],B, λ).

ThenE[|Xn|] = 1, so {Xn} isL1-bounded. However, for anyM, ifn > M, thenE[|Xn|1|Xn|>M] =

1, hence the family is not uniformly integrable.
• But L1 boundedness is necessary for uniform integrability. To see this findM > 0 so that
E[|Xi|1|Xi|>M] < 1 for all i. Then, for any i ∈ I, we get

E[|Xi|] = E[|Xi|1|Xi|6M] + E[|Xi|1|Xi|>M] 6M+ 1.

Domination by an integrable random variable and Lp boundedness (for some p > 1) are sufficient
for uniform integrability, not necessary.

Exercise 13
Produce examples of uniformly integrable families that are neither dominated by an inte-
grable random variable nor bounded in Lp for some p > 1.

The union of two uniformly integrable families is obviously uniformly integrable. The follow-
ing is less obvious.

Claim 1
If {Xi}i∈I and {Yj}j∈J are both u.i, then {Xi + Yj}(i,j)∈I×J is u.i.

Proof. For any x,y ∈ R andM > 0, observe that |x+y|1|x+y|>M 6 2|x|1|x|>M/2 + |y|1|y|>M/2.
Substitute Xi and Yj for x and y and take expectations to get

E[|Xi + Yj|1|Xi+Yj|>M] 6 2E[|Xi|1|Xi|>M] + 2E[|Yj|1|Yj|>M].

By the uniformly integrability of {Xi}i∈I and {Yj}j∈J, this can be made arbitrarily small by choosing
M sufficiently large. Thus {Xi + Yj : i ∈ I, j ∈ J} is uniformly integrable. �

Now we come to the main reason why we started discussing uniform integrability.
66



Lemma 10
Suppose Xn,X are integrable random variables on the same probability space. Then, the
following are equivalent.

(1) Xn
L1
→ X.

(2) Xn
P→ X and {Xn} is u.i.

Proof. If Yn = Xn − X, then Xn
L1
→ X iff Yn

L1
→ 0, while Xn

P→ X iff Yn
P→ 0 and by Claim 10,

{Xn} is u.i if and only if {Yn} is. Hence we may work with Yn instead (i.e., we may assume that the
limiting r.v. is 0 a.s).

First suppose Yn
L1
→ 0. We already showed that Yn

P→ 0. If {Yn} were not uniformly inte-
grable, then there exists δ > 0 such that for any positive integer k, there is some nk such that
E[|Ynk |1|Ynk |>k] > δ. This in turn implies that E[|Ynk |] > δ. But this contradicts Yn

L1
→ 0.

Next suppose Yn
P→ 0 and that {Yn} is u.i. Then, fix ε > 0 and findA > 0 so thatE[|Yk|1|Yk|>A] 6

ε for all k. Then,

E[|Yk|] 6 E[|Yk|1|Yk|6A] + E[|Yk|1|Yk|>A]

6
∫A

0
P(|Yk| > t)dt + ε.

Since Yn
P→ 0 we see that P(|Yk| > t) → 0 for all t > 0. Further, P(|Yk| > t) 6 1 for all k and 1 is

integrable on [0,A]. Hence, by DCT the first term goes to 0 as k→∞. Thus lim supE[|Yk|] 6 ε for
any ε and it follows that Yk

L1
→ 0. �

Corollary 2

Suppose Xn,X are integrable random variables and Xn
a.s.→ X. Then, Xn

L1
→ X if and only if

{Xn} is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT. The
domination condition is sufficient. But as Lemma 10 and corollary 2 show, uniform integrability
is the sharp condition, both necessary and sufficient. This is consistent with what we saw earlier,
that a dominated family is u.i., while the converse is false. However, it is worth keeping in mind
that uniform integrability is difficult to check from the definition. One does it by verifying either
the domination condition or boundedness in L2.

5.1. Relationship to compactness*. Uniform integrability is reminiscent of tightness, and in
fact we rephrased it terms of tightness. Recall that tightness is the necessary and sufficient condi-
tion for a subset of P(R) to be precompact. Similarly, uniform integrability is also a criterion for
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precompactness of a subset of L1(Ω,F,P), but not in the usual topology, but what is called the weak
topology.

Weak and Weak-* topologies: Let (X, ‖ · ‖) be a Banach space over R and let X∗ be its dual, i.e., the
space of all continuous linear functionals from X to R. It is well-known that X∗ is itself a Banach
space when endowed with the norm ‖L‖∗ = sup{|L(x)| : ‖x‖ 6 1}.

Weak topology on X is the smallest topology on X that makes all elements of X∗ continuous
functions on X. Of course, the weak topology is weaker than the norm topology. For all infinite
dimensional X, it is strictly weaker.

The weak-* topology on X∗ is the smallest topology for which L 7→ L(x) is continuous for each
x ∈ X.

If it so happens that X is reflexive, i.e., (X∗)∗ = X, i.e., the only continuous linear functionals on
X∗ are the evaluations at elements of X (i.e., L 7→ L(x) for some x ∈ X), then the weak topology on
X∗ is identical to the weak-* topology on X∗.

It is a celebrated theorem of Riesz that for 1 6 p < ∞, the dual (Lp(P))∗ is equal to Lq, where
1
p + 1

q = 1. What does that mean? Any g ∈ Lq(P) defines a linear functional Lg on Lp(P) by
Lg(f) =

∫
fgdP and every continuous linear functional on Lp(P) is of this form. As 1 6 p <∞, we

get∞ > q > 1. In particular, all Lp for 1 < p <∞ are reflexive. The two odd cases are L1 and L∞.
While L∞ = (L1)∗, the dual of L∞ is generally much larger than L1.

One of the famous theorems of functional analysis is that of Banach and Alaoglu that asserts
that in X∗ with its weak topology, precompact sets are precisely bounded sets . But if X = X∗, as
for Lp with 1 < p <∞, this tells us that for weak topology on Lp, the precompact sets are precisely
bounded sets. In particular, any Lp bounded sequence (for 1 < p <∞) is precompact (in fact has
a convergent subsequence).

This argument fails for L1, since it is not the dual of a Banach space. The Dunford-Pettis theorem
asserts that pre-compact subsets of L1(µ) in its weak topology are precisely uniformly integrable
subsets of L1(µ)!
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CHAPTER 3

Some basic tools in probability

We collect several basic tools in this section. Their usefulness cannot be overstated.

1. First moment method

In popular language, average value is often mistaken for typical value. This is not always cor-
rect, for example, in many populations, a typical person has much lower income than the average
(because a few people have a large fraction of the total wealth). For a mathematical example, sup-
pose X takes the values 0 and 106 with probabilities 0.999 and 0.001 respectively. Then E[X] = 1000
although with a probability 0.999 its value is zero. Thus the typical value of 0 and the average value
of 1000 are far from each other.

It is often easier to calculate expectations and variances (for example, expectation of a sum
is the sum of expectations) than to calculate probabilities (example, tail probability of a sum of
random variables). Therefore, inequalities that bound probabilities in terms of moments may be
expected to be somewhat useful. In fact, they are extremely useful!

Lemma 11: First moment method or Markov’s inequality

Let X > 0 be a r.v. For any t > 0, we have P{X > t} 6 E[X]
t .

Proof. For any t > 0, clearly t1X>t 6 X. Positivity of expectations gives the inequality. �

Thus, a positive random variable is unlikely to be more than a few multiples of its mean, e.g.
there is less than 10% chance of it being more than 10 times the mean. Trivial though it seems,
Markov’s inequality is very useful, particularly as it can be applied to various functions of the
random variable of interest. Observe that in the following instancesX is not assumed to be positive,
but Markov’s inequality is applied to positive functions of X.

(1) Markov’s inequality asserts that the tail of a random variable with finite expectation must
decay at least as fast as 1/t. In fact, the proof shows that if X is integrable then

P{|X| > t} 6
1
t
E[|X|1|X|>t] = o(1/t)

since E[|X|1|X|>t]→ 0 by DCT.
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(2) If X has finite variance, applying Markov’s inequality to (X− E[X])2 gives

P{|X− E[X]| > t} = P{|X− E[X]|2 > t2} 6 t−2Var(X),

which is called Chebyshev’s inequality. Higher the moments that exist, better the asymptotic
tail bounds that we get, for example, P{|X− E[X]| > t} 6 t−pE[|X− E[X]|2p].

(3) If E[eλX] < ∞ for some λ > 0, we get P{X > t} = P{eλX > eλt} 6 e−λtE[eλX]. This is an
even better bound as it decays exponentially as t→∞.

2. Second moment method

The first moment method says that a positive random variable is likely to be less than a few
multiples of the mean. Can we say the converse, i.e., a random variable is likely to be larger than
a fraction of its mean? If the expectation is large, is the random variable likely to be large? This is
not true, for example, if1 Yn ∼ (1 − 1

n)δ0 +
1
nδn2 , then E[Yn]→∞ but P{Yn > 0} = 1

n2 → 0.
What more information about a random variable will allow us to get the desired conclusion?

Here is a natural approach using Chebyshev’s inequality: If X is a non-negative random variable

P
{
X >

1
2
E[X]
}
> 1 − P

{
|X− E[X]| >

1
2
E[X]
}
> 1 − 4Var(X)

E[X]2
.

Thus, if the variance is smaller than cE[X]2 for some c < 1
4 , we get a non-trivial lower bound of

1 − c
4 for the probability. More generally, if Var(X) < (1 − δ)2E[X]2, then we get a lower bound

for the probability that X > δE[X]. Observe that in the example given above, Var(Yn) � n3 is way
larger than E[Yn]2 � n2, hence the method does not work.

Thus, a control on the variance in terms of the square of the mean, allows us to say that a
positive random variable is at least a fraction of its mean (with considerable probability). The
following inequality is a variant of the same idea. It is better, as it gives a non-trivial lower bound
even if we only know that Var(X) 6 CE[X]2 for a large C.

Lemma 12: Second moment method or Paley-Zygmund inequality

For any non-negative r.v. X, and any 0 6 α 6 1, we have

P {X > αE[X]} > (1 − α)2
E[X]2

E[X2]
=

(1 − α)2

1 +
Var(X)
E[X]2

.

In particular, P {X > 0} > E[X]2
E[X2]

.

1The measure δx puts mass 1 at the point x, hence P{Yn > 0} = 1
n2 → 0.
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Proof. E[X]2 = E[X1X>0]
2 6 E[X2]E[1X>0] = E[X2]P{X > 0}. Hence the second inequality

follows. The first one is similar. Let µ = E[X]. By Cauchy-Schwarz inequality,

E[X1X>αµ]2 6 E[X2]P{X > αµ}.

Further, µ = E[X1X<αµ] + E[X1X>αµ] 6 αµ+ E[X1X>αµ], whence, E[X1X>αµ] > (1 − α)µ. Thus,

P{X > αµ} >
E[X1X>αµ]2

E[X2]
> (1 − α)2

E[X]2

E[X2]
.

The remaining conclusions follow easily. �

Remark 12
Alternately, the first inequality can be derived by applying the second one to Y = (X−αµ)+,
as (1) P{Y > 0} = P{X > αµ}, (2) E[Y] > E[X− αµ] = (1 − α)µ and (3) E[Y2] 6 E[X2].

3. Borel-Cantelli lemmas

If An is a sequence of events in a common probability space (Ω,F,P), the event lim supAn
consists of all ω ∈ Ω that belong to infinitely many of these events. Probabilists often write
the phrase “An infinitely often” (or “{An i.o}” in short) to mean lim supAn. One can write it
as {An i.o.} =

⋂
N>1

⋃
n>NAn. Observe that here the inner union decreases as N increases, hence

P(∪n>NAn) ↓ P{An i.o.} as N ↑∞.

However, the probability on the left depends in a complicated way (“inclusion-exclusion”) on
intersections of the sets An, n > N. That is why the following lemma is extraordinarily useful, as
it allows (in some cases) to compute the probability of {An i.o.} knowing only the probabilities of
An individually, and not of their intersections.

Lemma 13: Borel Cantelli lemmas
Let An be events on a common probability space.

(1) If
∑
n
P(An) <∞, then P(An infinitely often) = 0.

(2) If An are independent and
∑
n
P(An) =∞, then P(An infinitely often) = 1.

Proof. (1) For any N, P
(
∪∞n=NAn) 6∑∞n=N P(An) which goes to zero as N → ∞, as it

is the tail of a convergent series. Hence P(lim supAn) = 0.
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(2) P(∪Mn=NAn) = 1 −
M∏
n=N

P(Acn) for any N < M. By (1), P(Acn) = 1 − P(An) 6 e−P(An).

Therefore

P(∪Mn=NAn) > 1 −

M∏
n=N

e−P(An) = 1 − exp

{
−

M∑
n=N

P(An)

}
.

As M → ∞, the left side increases to P(∪n>NAn) while the right side increases to 1
(since

∑
n>N P(An) = ∞ for any N). Therefore, P

(
∪∞n=NAn) = 1 for all N, implying

that P(An i.o.) = 1. �

We shall give another proof later, using the first and second moment methods. It will be seen
then that pairwise independence is sufficient for the second Borel-Cantelli lemma!
A useful elementary inequality: As in the proof above, we shall often encounter terms like

∏
i(1−

xi) with 0 < xi < 1. When x ≈ 0 is small, 1 − x ≈ e−x, but when taking products of many terms,
it is not clear what happens to the closeness. To carry through such operations, the following
inequalities are more useful2.

1 − x 6 e−x for all x ∈ R, 1 − x > e−x−x
2 for |x| <

1
2

.(1)

4. Kolmogorov’s zero-one law

As in the Borel-Cantelli lemmas, many events of interest turn out to have probability 0 or 1. In
any probability space (Ω,F,P), the collection of all events having probability equal to 0 or 1 form a
sigma algebra. Zero-one laws are theorems that (in special situations) identify specific sub-sigma-
algebras of this sigma-algebra. Such σ-algebras (and events within them) are sometimes said to
be trivial (w.r.t. P). An equivalent statement is that any random variable measurable with respect
to a trivial sigma algebra is an almost sure constant.

Definition 13
Let (Ω,F) be a measurable space and let Fn be sub-sigma algebras of F. Then the tail σ-
algebra of the sequence Fn is defined to be T :=

⋂
n σ
(
∪k>nFk

)
. For a sequence of random

variables X1,X2, . . ., the tail sigma algebra (also denoted T(X1,X2, . . .)) is the tail of the se-
quence σ(Xn).

2For |x| < 1, we have the power series expansion log(1 − x) = −x − x2/2 − x3/3 − . . .. If |x| < 1
2 , then

∑∞
k=3 |x|

3 6

x2∑∞
k=3 2−k 6 1

2x
2, hence the sum of all terms from the third one onwards is at least −x2/2. This gives log(1 − x) >

−x − x2. The other inequality is even simpler. Consider e−x − (1 − x) which is zero at 0 and has positive derivative for
x > 0 and negative derivative for x < 0.
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How to think of it? If A is in the tail of (Xk)k>1, then A ∈ σ(Xn,Xn+1, . . .) for any n. That is,
the tail of the sequence is sufficient to tell you whether the even occurred or not. For example, A
could be the event that infinitely many Xk are positive. Or that lim supXn = 1, etc.

Theorem 10: Kolmogorov’s zero-one law

Let (Ω,F,P) be a probability space and let Fn be independent sub sigma algebras. Then the
tail sigma-algebra T is trivial.

Proof. Define Tn := σ (
⋃
k>n Fk). Then, F1, . . . ,Fn,Tn are independent. Since T ⊆ Tn, it

follows that F1, . . . ,Fn,T are independent. Since this is true for everyn, we see that T,F1,F2, . . . are
independent. Hence, T and σ (∪nFn) are independent. But T ⊆ σ (∪nFn), hence, T is independent
of itself. This implies that for any A ∈ T, we must have P(A)2 = P(A ∩ A) = P(A) which forces
P(A) to be 0 or 1. �

Corollary 3

If X1,X2, . . . are independent random variables, and Y is another random variables such that
Y is a function of (Xn,Xn+1, . . .) for any n, then Y is a constant a.s.

Independence is crucial (but observe that Xk need not be identically distributed). If Xk = X1

for all k, then the tail sigma-algebra is the same asσ(X1)which is not trivial unlessX1 is constanta.s.
As a more non-trivial example, let ξk, k > 1 be i.i.d. N(0.1, 1) and let η ∼ Ber±(1/2). Set Xk = ηξk.
Intuitively it is clear that a majority of ξks are positive. Hence, by looking at (Xn,Xn+1, . . .) and
checking whether positive or negatives are in majority, we ought to be able to guess η. In other
words, the non-constant random variable η is in the tail of the sequence (Xk)k>1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial
conclusions. Another interesting application will be given in a later section.

Exercise 14
Let Xi be independent random variables. Which of the following random variables must
necessarily be constant almost surely? lim supXn, lim inf Xn, lim supn−1Sn, lim inf Sn.

Remark 13: Reformulation in terms of product measures

Let (Ωk,Fk,µk) be probability spaces and consider (Ω = ×iΩi,F = ⊗iFi,µ = ⊗iµi). The
tail sigma-algebra of the sequence Gk = σ{Πk,Πk+1, . . .} is trivial.
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5. Ergodicity of i.i.d. sequence

We now prove another zero-one law now, which covers more events, but for i.i.d. sequences
only. We formulate it in the language of product spaces first. Let (Ω,F) be a measure space and
consider the product spaceΩN with the product sigma algebra F⊗N. Let Pik be the projection onto
the kth co-ordinate. For k ∈ N, let θk : ΩN 7→ ΩN denote the shift map defined by Πn ◦ θk = Πn+k

for all n > 1. In other words, (θkω)(n) = ω(n+ k) whereω = (ω(1),ω(2), . . .).

Definition 14: Invariant sigma-algebra

An event A ∈ F⊗N is said to be invariant if ω ∈ A if and only θkω ∈ A for any k > 1.
The collection of all invariant events forms a sigma algebra that is called the invariant sigma
algebra and denoted I. An invariant random variable is one that is measurable with respect
to I.

Note that a random variable X on the product space is invariant if and only if X ◦ θk = X for
all k > 1. We could also have taken this as the definition of an invariant random variable and then
defined A to be an invariant event if 1A is an invariant random variable.

Example 18

Let A be the set of all ω such that limn→∞ωn = 0 and let B be the set of all ω such that
|ωk| 6 1 for all k > 1. Then A is an invariant event as well as a tail event while B is an
invariant event but not a tail event.

Exercise 15
In the setting above, show that T ⊆ I.

Lemma 14: Ergodicity of i.i.d. measures

Let P be a probability measure on (Ω,F). Then the invariant sigma algebra I onΩN is trivial
under P⊗N.

Proof. Let µ = P⊗N. Suppose A ∈ I. Since A :=
⋃
n σ{Π1, . . . ,Πn} is an algebra that generates

the sigma algebra F⊗N, for any ε > 0, there is some B ∈ A such that µ(A∆B) < ε. Let N be large
enough that B ∈ σ{Π1, . . . ,ΠN}. Then θNB ∈ σ{ΠN+1, . . . ,Π2N}. Under the product measure, Πks
are independent, hence µ(B ∩ θN(B)) = µ(B)µ(θN(B)). But µ = µ(B) = µ(θN(B)) (because the
measure is an i.i.d. product measure and hence invariant under the shift θN). Thus, µ(B∩θNB) =
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µ(B)2. Now, µ(B∆A) < ε and hence

|µ(B ∩ θN(B)) − µ(A ∩ θN(A))| 6 µ(B∆A) + µ((θNB)∆(θNA)) 6 2ε,

|µ(B)2 − µ(A)2| 6 |µ(B) − µ(A)||µ(B) + µ(A)| 6 2ε.

This shows that µ(A ∩ θNA) and µ(A)2 are within 4ε of each other. But A ∈ I, meaning that
θNA = A. Therefore, µ(A) is within 4ε of µ(A)2. As ε is arbitrary, µ(A) = µ(A)2. This forces that
µ(A) = 0 of µ(A) = 1. �

Remark 14: Reformulation in terms of sequences of random variables

Let X1,X2, . . . be a sequence of random variables on a common probability space such that
(Xk,Xk+1, . . .) has the same distribution as (X1,X2, . . .) for any k. Let Y be another random
variables such that Y = F(Xk,Xk+1, . . .) for any k > 1 for some F : RN → R. Then Y is an
almost sure constant.

It is often more natural to consider the invariant sigma-algebra on the 2-sided infinite product
ΩZ with shifts being defined in the obvious way. Under any i.i.d. product measure, the invariant
sigma-algebra is trivial.

6. Bernstein/Hoeffding inequality

Chebyshev’s inequality tells us that the probability for a random variable to differ from its
mean by kmultiples of its standard deviation is at most 1/k2. Its power comes from its generality,
but the bound is rather weak. If we know more about the random variable under consideration,
we can improve upon the bound considerably. Here is one such inequality that is very useful.
Sergei Bernstein was the first to exploit the full power of the Chebyshev inequality (by applying
it to powers or exponential of a random variable), but the precise lemma given here is due to
Hoeffding.

Lemma 15: Hoeffding’s inequality

Let X1, . . . ,Xn be independent random variables having zero mean. Assume that |Xk| 6 ak
a.s. for some positive numbers ak. Then, writing S = X1 + . . .+Xn andA =

√
a2

1 + . . . + a2
k,

we have P {S > tA} 6 e−
1
2t

2 for any t > 0.

Before going to the proof, let us observe the following simple extensions.

(1) Applying the same to −Xks, we can get the two-sided bound P{|S| > tA} 6 2e−t2/2.

(2) If |Xk| 6 ak are independent but do not necessarily have mean zero, then we can apply
Hoeffding’s inequality to Yk = Xk − E[Xk]. Since |Xk| 6 ak, we also have |E[Xk]| 6 ak
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and hence |Yk| 6 2ak. This gives a conclusion that is slightly weaker but qualitatively no
different: With S = X1 + . . . + Xn,

P
{
S− E[S] > t

√
a2

1 + . . . + a2
n

}
6 e−

1
8t

2 .

Proof. Fix θ > 0 and observe that

P{S > tA} = P{eθS > eθtA} 6 e−θtAE[eθS] = e−θtAE

[
n∏
k=1

eθXk

]
.(2)

The inequality in the middle is Markov’s, applied to eθS. Since x 7→ eθx is convex, on the interval
[−ak,ak], it lies below the line x 7→ ak−x

2ak e
−θak + x+ak

2ak e
θak . Since −ak < Xk < ak, we get that

eθXk 6 αk + βkXk, where αk = 1
2(e

θak + e−θak) and βk = 1
2ak (e

θak − e−θak). Plug this into (2)
to get

P{S > tA} 6 e−θtAE

[
n∏
k=1

(αk + βkXk)

]
= e−θtA

n∏
k=1

αk

since all terms in the expansion of the product that involve at least one Xks vanishes upon tak-
ing expectation (as they are independent and have zero mean). We now wish to optimize this
bound over θ, but that is too complicated (note that αks depend on θ). We simplify the bound by
observing that αk 6 eθ

2a2
k/2. This follows from the following observation:

1
2
(ey + e−y) =

∞∑
n=0

y2n

(2n)!
(the odd powers cancel)

6
∞∑
n=0

y2n

2n n!
(as (2n)! > 2n× (2n− 2)× . . .× 2 = 2n n!)

= ey
2/2.

Consequently, we get that
n∏
k=1

αk 6 eθ
2A2/2. Thus, P{S > tA} 6 e−θtA+ 1

2θ
2A2 . Now it is easy to see

that the bound is minimized when θ = t/A and that gives the bound e−t2/2. �

Clearly the Hoeffding bound is much better than the bound 1/t2 got by a direct application of
Chebyshev’s inequality. It is also a pleasing fact that e−t2/2 is a bound for the tail of the standard
Normal distribution. In many situations, we shall see later that a sum of independent random
variables behaves like a Gaussian, but that is a statement of convergence in distribution which does
not say anything about the tail behaviour at finite n. Hoeffding’s inequality is a non-asymptotic
statement showing that S behaves in some ways like a Gaussian.

But it sometimes falls short of what one needs. As the tail of N(0,σ2) behaves like e−t2/2σ2 for
the tails of Sn one might have expected e−t2/2σ2 where σ2 = Var(Sn) = Var(X1) + . . . + Var(Xn).
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As Var(Xk) 6 a2
k, an upper bound of e−t2/2σ2 for P{Sn > t} would be stronger than the Hoeffding

bound. There are inequalities that address this (under more assumptions). Here are two.

Proposition 3: Bernstein’s inequality

Assume that Xk are independent random variables with |Xk| 6 B a.s. for all k and E[Xk] = 0
and Var(Xk) = σ2

k. Let τ2
n = σ2

1 + . . . + σ2
n. Then for t > 0,

P{Sn > t} 6 e
− t2

2(τ2
n+ 1

3Bt) .

In particular, if 0 < ε < 1, then for t > 0,

P{Sn > t} 6

e
−(1−ε) t2

2τ2
n if t 6 ε

Bτ
2
n,

e−
t

4B if t > ε
Bτ

2
n.

7. Kolmogorov’s maximal inequality

Kolmogorov proved a remarkable inequality about the maximum of running sums of indepen-
dent random variables. Note that the maximum of n random variables can be much larger than
any individual one. For example, if Yn are independent Exponential(1), then P(Yk > t) = e−t,
whereas P(maxk6n Yk > t) = 1−(1− e−t)n which is much larger (in fact converges to 1 if n→∞
with t held fixed). However, when we consider partial sums S1,S2, . . . ,Sn, the variables are not
independent and it is not clear how to get a bound for the tail of the maximum. Kolmogorov found
an amazing inequality for which there seems to be no a priori reason!

Lemma 16: Kolmogorov’s maximal inequality

Let Xn be independent random variables with finite variance and E[Xn] = 0 for all n. Then,

P
{

max
k6n

|Sk| > t

}
6 t−2∑n

k=1 Var(Xk).

Observe that the right hand side is the bound that Chebyshev’s inequality gives for the prob-
ability that |Sn| > t. Here the same quantity is giving an upper bound for the (generally) much
larger probability that one of |S1|, . . . , |Sn| exceeds t.

Proof. Fix n and let τ = inf{k 6 n : |Sk| > t} where it is understood that τ = n if |Sk| 6 t for
all k 6 n. Then, by Chebyshev’s inequality,

P(max
k6n

|Sk| > t) = P(|Sτ| > t) 6 t−2E[S2
τ].(3)
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We control the second moment of Sτ by that of Sn as follows.

E[S2
n] = E

[
(Sτ + (Sn − Sτ))

2
]

= E[S2
τ] + E

[
(Sn − Sτ)

2
]
+ 2E[Sτ(Sn − Sτ)]

> E[S2
τ] + 2E[Sτ(Sn − Sτ)].(4)

We evaluate the second term by splitting according to the value of τ. Note that Sn − Sτ = 0 when
τ = n. Hence,

E[Sτ(Sn − Sτ)] =

n−1∑
k=1

E[1τ=kSk(Sn − Sk)]

=

n−1∑
k=1

E [1τ=kSk]E[Sn − Sk] (because of independence)

= 0 (because E[Sn − Sk] = 0).

In the second line we used the fact that Sk1τ=k depends on X1, . . . ,Xk only, while Sn − Sk de-
pends only on Xk+1, . . . ,Xn. From (4), this implies that E[S2

n] > E[S2
τ]. Plug this into (3) to get

P(maxk6n Sk > t) 6 t−2E[S2
n]. �

Remark 15
In proving this theorem, Kolmogorov implicitly introduced stopping times and martingale
property (undefined terms for now). When martingales were defined later by Doob, the
same proof could be carried over to what is called Doob’s maximal inequality. In simple
language, it just means that Kolmogorov’s maximal inequality remains valid if instead of
independence of Xks, we only assume that E[Xk | X1, . . . ,Xk−1] = 0.

As observed above, the bound for P(maxk6n |Sk| > t) given by Kolmogorov’s maximal in-
equality is the same as the bound for P(|Sn| > t) given by Chebyshev’s inequality. We know that
the bound for P(|Sn| > t) can be improved (under assumptions) by applying Markov’s inequality
to powers or exponential function of Sn. Can we similarly improve the maximal inequality? Turns
out we can, by an almost identical proof!

Claim 2: Komogorov’s maximal inequality enhanced

Let Xk be independent random variables with zero mean. Assume that E[eθXk ] < ∞ for
some θ > 0. Then, for any t > 0,

P
{

max
06k6n

Sk > t

}
6 e−θtE[eθSn ].
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Observe that the bound is the same as the one we get for P{Sn > t} by applying Markov’s
inequality to eθSn .

Proof. Let S∗n = max{S0, . . . ,Sn} (without absolute values). Fix t > 0 and define τ = inf{k 6
n : Sk > t} where the infimum of the empty set is defined to be +∞ (that happens precisely when
S∗n < t). Then,

P{S∗n > t} 6 e−θtE[eθS
∗
n1S∗n>t] = e−θt

n∑
k=1

E[eθSk1τ=k]

On the other hand

E[eθSn ] >
n∑
k=1

E[eθSn1τ=k] =

n∑
k=1

E[eθ(Sn−Sk)eθSk1τ=k]

=

n∑
k=1

E[eθ(Sn−Sk)]E[eθSk1τ=k].

In the last line, we used the fact that Sk and τk are measurable with respect to σ{X1, . . . ,Xk} while
Sn−Sk is measurable with respect to σ{Xk+1,Xk+2, . . .}. Hence the independence and factoring of
expectations.

By Jensen’s inequality E[eθ(Sn−Sk)] > eθE[Sn−Sk] = 1. Putting all this together, we have

P{S∗n > t} 6 e−θtE[eθSn ].

This completes the proof. �

8. Coupling of random variables

Coupling is the name probabilists give to constructions of random variables on a common prob-
ability space with given marginals and joint distribution according to the need at hand. If you have
studied Markov chains, then you would have perhaps seen a proof of convergence to stationarity
by a coupling method due to Doeblin. In this method, two Markov chains are run, one starting
from the stationary distribution and another starting at an arbitrary state. It is shown that the two
Markov chains eventually meet. Once they meet, when they separate, it is impossible to tell which
is which (by Markov property), hence the second chain “must have reached stationarity too”. Here
are some simpler general situations where the method is useful.

Proving inequalities between numbers by coupling: Suppose we wish to show that a 6 b. If we
could find random variablesX, Y on a common probability space such thatX 6 Y a.s., and E[X] = a
and E[Y] = b, then the inequality would follow. If the numbers are in [0, 1], this may be be possible
to prove by finding events A ⊆ B such that P(A) = a and P(B) = b. What is called the probabilistic

79



method is of this kind: We show that a set A (described in some way), is non-empty by showing
that P(A) > 0 under some probability measure P.

Example 19

Let X ∼ Bin(100, 3/4) and Y ∼ Bin(100, 1/2). Then it must be true that P{X > 71} > P{Y > 71},
but can you show it by writing out the probabilities? It is possible, but here is a less painful
way. Let U1, . . . ,U100 be i.i.d. Unif[0, 1] random variables on some probability space. Let
X ′ =

∑
k 1Uk63/4 and Y ′ =

∑
k 1Uk61/2. Then X ′ > Y ′, hence the event {Y ′ > 71} is a subset

of {X ′ > 71} showing that P{X ′ > 71} > P{Y ′ > 71}. But X ′ has the same distribution as X
and Y ′ has the same distribution as Y, showing the inequality we wanted!

More generally, if X ∼ µ and Y ∼ ν and X > Y a.s., then Fµ(t) 6 Fν(t) for all t ∈ R. If the latter
relationship holds, we say that ν is stochastically dominated by µ.

Exercise 16
If ν is stochastically dominated by µ, show that there is a coupling of X ∼ µ with Y ∼ ν in
such a way that X > Y a.s.

Getting bounds on the distance between two measures: Suppose µ and ν are two probability
measures on R and we wish to get an upper bound on their Lévy-Prohorov distance. One way is to
use the definition and work with the measures. Here is another: Suppose we are able to construct
two random variables X, Y on some probability space such that X ∼ µ, Y ∼ ν and |X − Y| 6 r with
probability at least 1 − r. Then we can claim that d(µ,ν) 6 r. Indeed,

Fν(t) = P{Y 6 t} > P{X 6 t− r}− P{|X− Y| > r} > Fµ(t− r) − r.

and similarly Fµ(t) > Fν(t−r)−r. It is a fact that if d(µ,ν) = r, then such a coupled pair of random
variables does exist but it requires a bit of work (it is akin to Hall’s marriage problem), so we skip
it.

Similar ideas can be used for other distances. For example, on a finite set [n] = {1, 2, . . . ,n}, let
µ,ν be two probability measures. Their total variation distance is defined asdTV(µ,ν) = max

A⊆[n]
|µ(A)−

ν(A)|. One way to get a bound on the total variation distance is to construct two random variables
X, Y on some probability space such that X ∼ µ, Y ∼ ν and P{X 6= Y} = r. Then dTV(µ,ν) 6 r.
Indeed, for any A, we have

µ(A) = P{X ∈ A} 6 P{Y ∈ A}+ P{Y 6∈ A,X ∈ A} 6 ν(A) + P{X 6= Y}.

Getting the inequality with µ and ν reversed, we see that dTV(µ,ν) 6 P{X 6= Y}. It is an easy fact
that one can always couple random variables this way.
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Exercise 17
Show that there is a coupling (X, Y) that achieves equality, i.e., P{X 6= Y} = dTV(µ,ν).

Defining distances using coupling: The fact that Lévy distance and total variation distance can be
rephrased in terms of coupling suggests that one can define other distances between probability
measures by minimizing some cost over all possible couplings. The following is a very useful
definition (we shall not use it in this course though).

Definition 15: Transportation distance

Let µ and ν be two measures on Rd. For c : Rd × Rd → [0,∞), define Tc(µ,ν) :=

inf{E[c(X, Y)] : X ∼ µ, Y ∼ ν}, where the infimum is over all couplings with the given
marginals (and one can choose the probability space too).

Popular choices of the cost function are c(x,y) = ‖x − y‖ (Euclidean distance) and c(x,y) =

‖x−y‖2. In the latter case, the transportation distance is widely referred to as Kantorovich metric or
Wasserstein metric.
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CHAPTER 4

Applications of the tools

We illustrate the use of the tools introduced in the previous chapter. Simultaneously, this is an
excuse to showcase a few probability situations of interest on their own. Coupon collector problem,
branching processes, random walks, etc., are not only interesting on their own, they also appear
embedded within various other problems. A good understanding of probability requires one to
know these well1.

1. Borel-Cantelli lemmas

If X takes values in R ∪ {+∞} and E[X] < ∞ then X < ∞ a.s.. That is obvious from the
definition of expectation, but one may also see it as a consequence of Markov’s inequality, as P{X >
t} 6 t−1E[X] → 0 as t → ∞. Apply this to X =

∑∞
k=1 1Ak which has E[X] =

∑∞
k=1 P(Ak) which is

given to be finite. Therefore X < ∞ a.s. which implies that for a.e. ω, only finitely many 1Ak(ω)

are non-zero. This is the first Borel-Cantelli lemma.
The second one is more interesting. Fix n < m and define X =

∑m
k=n 1Ak . Then E[X] =∑m

k=n P(Ak). Also,

E[X2] = E

[
m∑
k=n

m∑
`=n

1Ak1A`

]
=

m∑
k=n

P(Ak) +
∑
k6=`

P(Ak)P(A`)

6

(
m∑
k=n

P(Ak)

)2

+

m∑
k=n

P(Ak).

Apply the second moment method to see that for any fixed n, as m → ∞ (note that X > 0 is the
same as X > 1),

P(X > 1) > (
∑m
k=n P(Ak))

2

(
∑m
k=n P(Ak))

2
+
∑m
k=n P(Ak)

=
1

1 + (
∑m
k=n P(Ak))

−1

1It is not necessary to read all the sections. On first reading one may omit the ones marked with an asterisk. Nothing
is majorly wrong with them - some are incompletely written. Besides, many more applications of the basic tools are in
the problem set.
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which converges to 1 as m → ∞, because of the assumption that
∑

P(Ak) = ∞. This shows that
P(∪k>nAk) = 1 for any n and hence P(lim supAn) = 1.

Note that this proof used independence only to claim thatP(Ak∩A`) = P(Ak)P(A`). Therefore,
not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma holds
for pairwise independent events too!

2. Coupon collector problem

A bookshelf has (a large number) n books numbered 1, 2, . . . ,n. Every night, before going to
bed, you pick one of the books at random to read. The book is replaced in the shelf in the morning.
How many days pass before you have picked up each of the books at least once? Let Tn denote
the number of days till each book is picked at least once. We show that Tn is concentrated around
n logn in a window of size n. The precise statement is in the theorem below. First let us convert
the informal language to mathematics.

Let ξ1, ξ2, . . . be i.i.d. random variables with uniform distribution on [n]. Then define

Tn = min{t : {ξ1, . . . , ξt} = [n]}.

Theorem 11: Coupon collector problem

With the above notation, for any sequence of numbers θn → +∞, we have

P(|Tn − n logn| < nθn)→ 1.

Proof of Theorem 11. Fix an integer t > 1 and let Xt,k be the indicator that the kth book is not
picked up on the first t days. Then, P(Tn > t) = P(St,n > 1) where St,n = Xt,1 + . . . + Xt,n is
the number of books not yet picked in the first t days. As E[Xt,k] = (1 − 1/n)t and E[Xt,kXt,`] =
(1 − 2/n)t for k 6= `, we also compute that thefirst two moments of St,n and use (1) to get

ne
− t
n−

t

n2 6 E[St,n] = n
(

1 −
1
n

)t
6 ne−

t
n .(5)

and

E[S2
t,n] = n

(
1 −

1
n

)t
+ n(n− 1)

(
1 −

2
n

)t
6 ne−

t
n + n(n− 1)e−

2t
n .(6)

The left inequality on the first line is valid only for n > 2 which we assume.
Now set t = n logn+ nθn and apply Markov’s inequality to get

(7) P(Tn > n logn+ nθn) = P(St,n > 1) 6 E[St,n] 6 ne−
n logn+nθn

n 6 e−θn = o(1).

On the other hand, taking t = n logn−nθn (where we take θn < logn, of course!), we now apply
the second moment method. For any n > 2, by using (6) we get E[S2

t,n] 6 e
θn + e2θn . The first
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inequality in (5) gives E[St,n] > eθn−
logn−θn

n . Thus,

(8) P(Tn > n logn− nθn) = P(St,n > 1) > E[St,n]2

E[S2
t,n]

>
e2θn−2 logn−θn

n

eθn + e2θn
= 1 − o(1)

as n→∞. From (7) and (8), we get the sharp bounds

P (|Tn − n log(n)| > nθn)→ 0 for any θn →∞. �

Here is an alternate approach to the same problem. It brings out some other features well. But
we shall use elementary conditioning and appeal to some intuitive sense of probability.

Alternate proof of Theorem 11. Let τ1 = 1 and for k > 2, let τk be the number of draws after
k− 1 distinct coupons have been seen till the next new coupon appears. Then, Tn = τ1 + . . . + τn.

We make two observations about τks. Firstly, they are independent random variables. This is
intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the
distribution of τk is Geo(n−k+1

n ). This is so since, after having seen (k−1) coupons, in every draw,
there is a chance of (n− k+ 1)/n to see a new (unseen) coupon.

If ξ ∼ Geo(p) (this means P(ξ = k) = p(1 − p)k−1 for k > 1), then E[ξ] = 1
p and Var(ξ) = 1−p

p2 ,
by direct calculations. Therefore, remembering that 1 + 1

2 + . . . + 1
n = logn+O(1), we get

E[Tn] =
n∑
k=1

n

n− k+ 1
= n logn+O(n),

Var(Tn) = n
n∑
k=1

k− 1
(n− k+ 1)2

6 n2
n∑
j=1

1
(n− k+ 1)2

6 Cn2

with C =
∑∞
j=1

1
j2

. Thus, if θn ↑∞, then fixN such that |E[Tn] −n logn| 6 1
2nθn for n > N. Then,

P {|Tn − n logn| > nθn} 6 P
{
|Tn − E[Tn]| >

1
2
nθn

}
6

Var(Tn)
1
4n

2θ2
n

6
4C
θ2
n

which goes to zero as n→∞, proving the theorem. �
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Remark 16
One can investigate what happens when the number of days t = N logN + cN for some
constant c ∈ R. One can follow the first proof and show that the number of unseen books
St,N converges in distribution to Pois(e−c), i.e., for each k > 0, as n→∞,

P{St,n = k}→ e−e
−c × e

−ck

k!
.

Indeed, if Xt,1, . . . ,Xt,n were independent, then we would have St,n ∼ Bin(n,pn) with pn =

(1 − 1
n)
t. When t = n logn + cn, we see that npn → e−c, hence the Poisson limit would

follow. Although Xt,k are not quite independent, their dependence is weak enough that the
conclusion does hold. We leave it to the interested reader to do the calculations, just pointing
out that it is an instance of Poisson limit law for rare events. Another point to note is that
P{St,n = 0} converges to 0 as c → −∞ and to 1 as c → +∞, which is consistent with the
statement of Theorem 11.

3. Branching processes

Consider a Galton-Watson branching process with offsprings that are i.i.d. as ξ. We quickly
recall the definition informally. The process starts with one individual in the 0th generation who
has ξ1 offsprings and these comprise the first generation. Each of the offsprings (if any) have new
offsprings, the number of offsprings being independent and identical copies of ξ. The process
continues as long as there are any individuals left2.

Let Zn be the number of offsprings in the nth generation. Take Z0 = 1.

2For those who are not satisfied with the informal description, here is a precise definition: Let V =
⋃∞
k=1 Nk+ be the

collection of all finite tuples of positive integers. For k > 2, say that (v1, . . . , vk) ∈ Nk+ is a child of (v1, . . . , vk−1) ∈ Nk−1
+ .

This defines a graphGwith vertex setV and edges given by connecting vertices to their children. LetG1 be the connected
component of G containing the vertex (1). Note that G1 is a tree where each vertex has infinitely many children. Given
any η : V → N (equivalently, η ∈ NV), define Tη as the subgraph of G1 consisting of all vertices (v1, . . . , vk) for which
vj 6 η((v1, . . . , vj−1)) for 2 6 j 6 k. Also define Zk−1(η) = #{(v1, . . . , vk) ∈ T } for k > 2 and let Z0 = 1. Lastly, given a
probability measure µ on N, consider the product measure µ⊗V on NV . Under this measure, the random variables η(u),
u ∈ V are i.i.d. and denote the offspring random variables. The random variable Zk denotes the number of individuals
in the kth generation. The random tree Tη is called the Galton-Watson tree.

It is hoped that this exorcises you of any wish for more such descriptions and convinces you of the value of the
probabilists’ language using random variables.
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Theorem 12: The fundamental theorem on Branching processes

Letm = E[ξ] be the mean of the offspring distribution.

(1) If m < 1, then w.p.1, the branching process dies out. That is P(Zn =

0 for all large n) = 1.

(2) If m > 1, then the process survives with positive probability, i.e., P(Zn >

1 for all n) > 0.

Proof. In the proof, we compute E[Zn] and Var(Zn) using elementary conditional probability
concepts. By conditioning on what happens in the (n − 1)st generation, we write Zn as a sum
of Zn−1 independent copies of ξ. From this, one can compute that E[Zn|Zn−1] = mZn−1 and
if we assume that ξ has variance σ2 we also get Var(Zn|Zn−1) = Zn−1σ

2. Therefore, E[Zn] =

E[E[Zn|Zn−1]] = mE[Zn−1] from which we getE[Zn] = mn. Similarly, from the formula Var(Zn) =
E[Var(Zn|Zn−1)] + Var(E[Zn|Zn−1]) we can compute that

Var(Zn) = mn−1σ2 +m2Var(Zn−1)

=
(
mn−1 +mn + . . . +m2n−1

)
σ2 (by repeating the argument)

= σ2mn−1m
n+1 − 1
m− 1

.

(1) By Markov’s inequality, P{Zn > 0} 6 E[Zn] = mn → 0. Since the events {Zn > 0} are
decreasing, it follows that P(extinction) = 1.

(2) Ifm = E[ξ] > 1, then as before E[Zn] = mn which increases exponentially. But that is not
enough to guarantee survival. Assuming that ξ has finite variance σ2, apply the second
moment method to write

P{Zn > 0} > E[Zn]2

Var(Zn) + E[Zn]2
>

1
1 + σ2

m−1

which is a positive number (independent of n). Again, since {Zn > 0} are decreasing
events, we get P(non-extinction) > 0.

The assumption of finite variance of ξ can be removed as follows. Since E[ξ] = m > 1,
we can find A large so that setting η = min{ξ,A}, we still have E[η] > 1. Clearly, η has
finite variance. Therefore, the branching process with η offspring distribution survives
with positive probability. Then, the original branching process must also survive with
positive probability! (A coupling argument is the best way to deduce the last statement:
Run the original branching process and kill every child beyond the first A, a brutal form
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of family planning. If inspite of the violence, the population survives, then the original
must also survive...) �

The proof does not cover the critical case which may be skipped on first reading.

The critical case m = 1: This case is a little more delicate as E[Zn] = 1 stays constant. Here the
strengthened form of Markov’s inequality (??) comes in handy. The intuitive explanation why it
can help is that if there is one survivor in the nth generation, then it is likely that there are many
survivors. For simplicity we give a not entirely rigorous argument in a particular example.

A heuristic proof of extinction in the critical case for binary branching. Assume that p0 =

p2 = 1
2 . Thenm = 1. IfZn > 1, pick an individual in thenth generation (this is where the argument

is loose - one needs to specify how this individual is picked). Call this individual vn and let her
ancestors be vn−1, vn−2, . . . , v0 (where vk belongs to the kth generation). LetMk be the number of
descendents of vk that are alive in generation n, excluding those that are also descendents of vk+1.
Then,

Zn = 1 +Mn−1 + . . . +M0.

We claim that E[Mk] = 1. Indeed, as vk has at least one offspring (i.e., vk+1), she must have exactly
one more off-spring, call it v ′k+1. Then Mk is exactly the number of descendents of v ′k+1 who are
in the nth generation of the original process (which is the n− k− 1st generation of the tree under
v ′k+1). But as the branching is critical, E[Mk] = 1. This shows that E[Zn

∣∣∣∣∣∣ Zn > 1] = n + 1 and
consequently, by the strengthening of Markov’s inequality given above,

P{Zn > 1} 6 E[Zn]
E[Zn

∣∣∣∣∣∣ Zn > 1]
=

1
n+ 1

which converges to 0. �

4. How many prime divisors does a number typically have?

For a natural number k, let ν(k) be the number of (distinct) prime divisors of n. What is the
typical size of ν(n) as compared to n? We have to add the word typical, because if p is a prime
number then ν(p) = 1 whereas ν(2 × 3 × . . . × p) = p. Thus there are arbitrarily large numbers
with ν = 1 and also numbers for which ν is as large as we wish. To give meaning to “typical”, we
draw a number at random and look at its ν-value. As there is no natural way to pick one number
at random, the usual way of making precise what we mean by a “typical number” is as follows.

Formulation: Fix n > 1 and let [n] := {1, 2, . . . ,n}. Let µn be the uniform probability measure on
[n], i.e., µn{k} = 1/n for all k ∈ [n]. Then, the function ν : [n] → R can be considered a random
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variable, and we can ask about the behaviour of these random variables. Below, we write En to
denote expectation w.r.t µn.

Theorem 13: Hardy-Ramanujan

With the above setting, for any δ > 0, as n→∞we have

(9) µn

{
k ∈ [n] :

∣∣∣ ν(k)

log logn
− 1

∣∣∣ > δ}→ 0.

Proof. (Turan). Fix n and for any prime p define Xp : [n] → R by Xp(k) = 1p|k. Then,
ν(k) =

∑
p6k

Xp(k). We define ψ(k) :=
∑

p6 4√
k

Xp(k). Then, ψ(k) 6 ν(k) 6 ψ(k) + 4 since there can

be at most four primes larger than 4√
k that divide k. From this, it is clearly enough to show (9) for

ψ in place of ν (why?).

We shall need the first two moments of ψ under µn. For this we first note that En[Xp] =
bnpc
n

and En[XpXq] =
b npqc
n . Observe that 1

p − 1
n 6

bnpc
n 6 1

p and 1
pq − 1

n 6
b npqc
n 6 1

pq .
By linearity En[ψ] =

∑
p6 4√n

E[Xp] =
∑

p6 4√n

1
p +O(n− 3

4 ). Similarly

Varn[ψ] =
∑
p6 4√n

Var[Xp] +
∑

p6=q6 4√n

Cov(Xp,Xq)

=
∑
p6 4√n

(
1
p
−

1
p2 +O(n−1)

)
+

∑
p6=q6 4√n

O(n−1)

=
∑
p6 4√n

1
p
−
∑
p6 4√n

1
p2 +O(n− 1

2 ).

We make use of the following two facts. Here, an ∼ bn means that an/bn → 1.∑
p6 4√n

1
p

∼ log logn
∞∑
p=1

1
p2 <∞.

The second one is obvious, while the first one is not hard, (see exercise 18 below)). Thus, we get
En[ψ] = log logn+O(n− 3

4 ) and Varn[ψ] = log logn+O(1). Thus, by Chebyshev’s inequality,

µn

{
k ∈ [n] :

∣∣∣ ψ(k) − En[ψ]
log logn

∣∣∣ > δ} 6 Varn(ψ)
δ2(log logn)2

= O

(
1

log logn

)
.

From the asymptotics En[ψ] = log logn+O(n− 3
4 ) we also get (for n large enough)

µn

{
k ∈ [n] :

∣∣∣ ψ(k)

log logn
− 1

∣∣∣ > δ} 6 Varn(ψ)
δ2(log logn)2

= O

(
1

log logn

)
.�
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Exercise 18∑
p6 4√n

1
p ∼ log logn. [Note: This is not trivial although not too hard.]

5. Connectivity of a random graph

The complete graph Kn has vertex set [n] = {1, 2, . . . ,n} and edge set E = {{i, j} : 1 6 i < j 6 n}.
We now define a random graph model as a random sub-graph of Kn. This model has been studied
extensively by probabilists in the last fifty years.

Definition 16: Erdös-Rényi random graph

Fix 0 < p < 1. Let Xi,j, 1 6 i < j 6 n, be i.i.d. Ber(p) random variables. Let G be the graph
with vertex set [n] and edge-set {{i, j} : Xi,j = 1}. Then G is called the Erdös-Rényi random
graph with parameters n and p and denoted G(n,p).

There are many interesting questions about G(n,p). Here we ask only one: Is G(n,p) connected?
If p = 1, the answer is clearly yes, and if p = 0, the answer is clearly no. It is not hard to see that
(use coupling!) to show that the probability that G(n,p) is connected increases with p. What is
surprising is that for large n, the change from disconnected to connected happens over a short
range of p around the point logn/n.

Theorem 14: Connectivity threshold for Erdös-Renyi random graph

Fix δ > 0 and let p±n = (1± δ) logn
n . Then, as n→∞,

P{G(n,p+n) is connected }→ 1 and P{G(n,p−n) is connected }→ 0.

Unlike in the other problems, here the second moment method is easier, because we show dis-
connection by showing that there is at least one isolated vertex ( i.e., a vertex that is not connected
to any other vertex). To show connectedness, we must go over all proper subsets of vertices.

Proof that G(n,p−n) is unlikely to be connected. Let Y be the number of isolated vertices, i.e.,
Y =
∑n
i=1 Yi, where Yi is the indicator of the event that vertex i is not connected to any other vertex.

Then,

E[Y] =
n∑
i=1

E[Yi] = n(1 − p)n−1 > ne−np−np
2
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if p < 1
2 (so that 1 − p > e−p−p

2). Further, YiYj = 1 if and only if all the 2n − 3 edges coming out
of i or j (including the one connecting i and j) are absent (i.e., Xi,k,Xj,k are all 0). Therefore,

E[Y2] =

n∑
i=1

E[Yi] + 2
∑
i<j

E[Yi]E[Yj]

= n(1 − p)n−1 + n(n− 1)(1 − p)2n−3

6 ne−p(n−1) + n2e−(2n−3)p.

When p = p−n , by the second moment method that

P{Y > 1} > E[Y]2

E[Y2]
>

n2e2np−2np2

ne−p(n−1) + n2e−(2n−3)p =
e−2np2

1
ne
p(n+1) + e3p

which goes to 1 as n→∞ (as pn → 0 and 1
ne
npn → 0). As G(n,p−n) is disconnected, when Y > 1,

this completes the proof. �

Of course, just using the first moment E[Y] = n(1 − p)n−1 which goes to zero if p = p+n , we
see by the first moment method that at p+n , there are no isolated vertices (with probability tending
to 1). But this is not in itself of much use because absence of isolated vertices does not mean that
the graph is connected. A more involved argument is needed to show that the expected number
of connected components (of any size strictly smaller than n) goes to zero.

Proof that G(n,p+n) is unlikely to be disconnected. We get a crude estimate as follows. Sup-
pose A ⊆ [n]. Then A is disconnected from Ac if and only if Xi,j = 0 for all i ∈ A and all j ∈ Ac.
This has probability (1 − p)|A|(n−|A|). If the graph is disconnected, then there must be some such
set A with |A| 6 n/2. Thus, by the union bound,

P{G(n,p) is not connected} 6
bn/2c∑
k=1

(
n

k

)
(1 − p)k(n−k).

Now, we set p = p+n and divide the sum into k 6 εn and k > εn.
In the second sum, we use the simple bounds

(
n
k

)
6 2n and k(n − k) > ε(1 − ε)n2. Since

1 − p 6 e−p, and there are at most n terms, we get (recall the definition of p+n)∑
k>εn

(
n

k

)
(1 − p)k(n−k) 6 n2ne−ε(1−ε)n2p

= n2ne−ε(1−ε)(1+δ)n logn when p = p+n .

Obviously this goes to zero as n→∞ (for any choice of ε > 0, which will be made later).
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The sum over k 6 εn is handled by using the bounds
(
n
k

)
6 nk and 1 − p 6 e−p. We get∑

16k6εn

(
n

k

)
(1 − p)k(n−k) 6

∑
k6εn

e−k[(n−k)p−logn]

6
∑

16k6εn
e−k logn[(1+δ)(1− k

n )−1] ( when p = p+n)

6
∞∑
k=1

e−k logn[(1+δ)(1−ε)−1].

If ε > 0 is chosen small enough that (1 + δ)(1 − ε) − 1 > 1
2δ, then the above sum is bounded by a

geometric series (with terms e− 1
2kδ logn) whose sum is at most

e−
1
2δ logn

1 − e−
1
2δ logn

=
n−δ/2

1 − n−δ/2 .

Thus, P{G(n,p+n) is connected}→ 1 as n→∞. �

6. A probabilistic version of Fermat’s last theorem*

Fermat’s last theorem is the statement that there are no strictly positive integers a,b, c such that
ap + bp = cp, if p > 3 is an integer. For p = 2 there are solutions of course, e.g., 3, 4, 5. What is the
intuition behind why it fails for larger p? There are more squares than cubes than fourth powers
and so on (in the sense that the number of p-th powers below N grows like N1/p). In a sparser
sequence, there should be less coincidences of the kind where sum of two terms is another term.
Here is a way to make a random version of the question that shows that p = 3 is precisely where
there is a change of behaviour!

Fix α > 0 and let ξn ∼ Ber(n−α) be independent. This gives us a random subset of positive
integers Sα = {n : ξn = 1}. By considering the summability of P{ξn = 1}, from the Borel-Cantelli
lemmas we see that Sα is a finite set w.p.1. if and only if α > 1. Hence let us fix α 6 1 and observe
that |Sα ∩ [N]| = ξ1 + . . . + ξN. Therefore,

E[|Sα ∩ [N]|] =

N∑
k=1

1
kα

∼


1

1−αN
1−α if α < 1,

logN if α = 1.

The number of p-th powers below N grows like N1/p. Comparing to the above, we see that p > 3
corresponds to α > 2

3 .

Theorem 15: Erdös–Ulam
If α < 2

3 , then with probability 1, there are at most finitely many triples (a,b, c) ∈ S3
α such

that a < b < c and a + b = c. If α > 2
3 , then with probability 1, there are infinitely many

such triples.
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Just to avoid some computations, we have not allowed a = b in our solution space. It does
not make a difference to the result if allowed. The proof will proceed by computing the first and
second moment of the random variable TN denoting the number of solution triples (a,b, c) with
c 6 N.

Proof. Fix any 1 6 a < b < c with c = (a + b). The probability that (a,b, c) is in S3
α is

1/(ab(a+ b))α. As a+ b >
√
ab,

E[TN] 6
∑

16a<b<N

1
(ab)

3α
2

(because a+ b >
√
ab)

6

( ∞∑
k=1

1
k

3α
2

)2

This sum finite if α > 2
3 . Since the total number of solutions T is the increasing limit of TN, MCT

shows that E[T ] <∞ and hence T <∞ a.s. This proves the first statement.
For the second statement, we work out the case α = 2

3 and leave α < 2
3 as an (easier) exercise.

E[TN] =
N∑
c=1

1
c

2
3

∑
a< c2

1
(a(c− a))

2
3
.

The inner sum can be written as
1
c

1
3
× 1
c

∑
a< c2

1
(ac (1 − a

c ))
2
3
∼

1
c

1
3

∫ 1/2

0

dx

x
2
3 (1 − x)

2
3
.

for c large. Denoting the integral as C (and a small argument needed to ignore small c), we get
E[TN] ∼ C

∑N
c=1

1
c ∼ C logN. This expectation goes to infinity and hence E[T ] =∞. But to say that

T is infinite a.s., we compute the second moment of TN.

E[T 2
N] =

N∑
c,c ′=1

∑
a6c, a ′6c ′

E[ξaξc−aξcξa ′ξc ′−a ′ξc ′ ].

When the two triples are disjoint, the expectations factor and hence we can write

E[T 2
N] = E[TN]2 +

∑
∗

E[ξaξc−aξcξa ′ξc ′−a ′ξc ′ ] − E[ξaξc−aξc]E[ξa ′ξc ′−a ′ξc ′ ]

6 E[TN]2 +
∑
∗

E[ξaξc−aξcξa ′ξc ′−a ′ξc ′ ]

where the asterisk indicates summing over pairs of triples such that {a, c−a, c}∩{a ′, c ′−a ′, c ′} 6= ∅.
We show that this entire sum is O(logN), which then shows that the standard deviation of TN is
O(
√

logN). As E[TN] ∼ C logN, by Chebyshev inequality we get

P{TN 6 (1 − δ)C logN} 6
Var(TN)
C2δ2 log2N

→ 0
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as N→∞. This shows that T =∞ a.s. and in fact gives a more quantitative statement about how
many solutions there are.

It remains to show that the asterisked sum isO(logN). Now we must divide into several cases.
To complete �

7. Random series

Let Xn be independent random variables. The event that the series
∑
n
Xn converges is clearly

a tail event, hence has probability zero or one. Is it zero or one? Depends on the variables.

Example 20

Let Xn ∼ Ber(pn). Then the series converges if and only if Xn = 0 for all but finitely many n.
By the Borel-Cantelli lemmas, the event {Xn = 1 i.o.} has probability zero or one according as∑
n
pn converges or diverges. Thus, the series

∑
n Xn converges almost surely if

∑
n pn <∞

and diverges almost surely if
∑
n pn =∞.

Since pn = E[Xn] in this example, this may give the impression that what matters is the sum of
expectations. Not entirely correct. For example, let Xn be independent with P{Xn = 1} = P{Xn =

−1} = pn/2 and P{Xn = 0} = 1−pn. Then again, the random series converges if and only if Xn 6= 0
only finitely often. Again by Borel-Cantelli lemma, this is equivalent to the convergence of

∑
n pn.

Here E[Xn] = 0 for all n, what pn measures is the variance. Khinchine showed that this holds in
great generality.

Theorem 16: Khinchine
Let Xn be independent random variables with zero means and finite variances. Assume that∑
nVar(Xn) <∞. Then

∑
Xn converges, a.s.

Proof. A series converges if and only if it satisfies Cauchy criterion. A sequence (xn)n is not
Cauchy if and only if there is some ε > 0 such that for any N > 1, there exists k > 1 such that
|xN+k − xN| > ε. Translated into symbols, this means that the event E that (Sn)n is not Cauchy is
given by

E :=
⋃
m>1

⋂
N>1

⋃
k>1

{
|SN+k − SN| >

1
m

}
.
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Thus, P(E) = 0 if and only if
⋂
N>1

⋃
k>1
{
|SN+k − SN| >

1
m

}
has zero probability for eachm. The

intersection is smaller than each of the sets in the intersection, hence it suffices to show that

0 = lim
N→∞P

⋃
k>1

{|SN+k − SN| >
1
m

}


= lim
N→∞ lim

M→∞P{|SN+k − SN| >
1
m

for some 1 6 k 6M}.

Kolmogorov’s maximal inequality (Lemma 16) gives

P{|SN+k − SN| >
1
m

for some 1 6 n 6M} 6 m2
N+M∑
k=N+1

Var(Xk)→ m2
∞∑
k=N

Var(Xk)

as M → ∞. The last quantity is the tail of a convergent series and hence goes to zero as N → ∞.
That is precisely what we wanted to show, and the proof is complete. �

What to do if the assumptions are not exactly satisfied? First, suppose that
∑
nVar(Xn) is

finite but E[Xn] may not be zero. Then, we can write
∑
Xn =

∑
(Xn −E[Xn]) +

∑
E[Xn]. The first

series on the right satisfies the assumptions of Theorem 16 and hence converges a.s. Therefore, if
the deterministic series

∑
n E[Xn] converges, then

∑
n Xn converges a.s. Observe that we are not

asking for the absolute convergence of the series of expectations.
Next, suppose we drop the assumption that Xn has finite mean or variance. Now Xn are arbi-

trary independent random variables. We reduce to the previous case by truncation. Suppose we
could find some A > 0 such that P(|Xn| > A) is summable. Then set Yn = Xn1|Xn|6A. By Borel-
Cantelli, almost surely, Xn = Yn for all but finitely many n and hence

∑
Xn converges if and only

if
∑
Yn converges. Note that Yn has finite variance. If

∑
n E[Yn] converges and

∑
nVar(Yn) <∞,

then it follows from the argument in the previous paragraph and Theorem 16 that
∑
Yn converges

a.s. Thus we have proved

Theorem 17: Kolmogorov’s three series theorem - part 1

SupposeXn are independent random variables. Suppose for someA > 0, the following hold
with Yn := Xn1|Xn|6A.

(a)
∑
n

P(|Xn| > A) <∞. (b)
∑
n

E[Yn] converges. (c)
∑
n

Var(Yn) <∞.

Then,
∑
n
Xn converges, almost surely.

Kolmogorov showed the converse too! That is, if
∑
n Xn converges a.s., then for any A > 0,

the three series (a), (b) and (c) must converge. We skip the proof of this converse implication
(but the necessity of convergence of the series (a) is a simple exercise). Although it is of great
satisfaction to have found the precise conditions, the useful part is the direction that we showed,
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since it allows us to show the almost sure convergence of a random series by checking convergence
of three (non-random) numerical series. But we make two remarks on the necessity part.

8. Random series of functions*

One can similarly ask about convergence of
∑
n Xnun, whereXn are independent random vari-

ables and un are elements of a Banach space. In particular, let fn : [0, 1] 7→ R be given continuous
functions and consider the series

∑
n Xnfn(t). The following events are clearly tail events.

• The event C that the series converges uniformly on [0, 1].

• The event ND that the sum is a nowhere differentiable function (it makes sense to ask this
only if P(C) = 1).

Again, whether these events have probability 0 or 1 depends on the variablesXns and the functions
fns. For example, if fn(t) = sin(πnt)/n andXn are i.i.d. N(0, 1), then Wiener showed thatP(C) = 1
and P(ND) = 1.

We shall see this in the next part of the course on Brownian motion. For now, you may sim-
ply compare it with Weierstrass’ nowhere differentiable function

∑
n sin(3nπt)/3n. In contrast, the

random series does not require such rapid increase of frequencies. However, althoughP(C∩ND) =

1, it is not easy to produce a particular sequence xn ∈ R such that the function
∑
n xn

sin(πnt)
n con-

verges uniformly but gives a nowhere differentiable function!

9. Random power series

Let Xn be i.i.d. Exp(1). As a special case of the previous examples, consider the random
power series

∑∞
n=0 Xn(ω)zn. For fixed ω, we know that the radius of convergence is R(ω) =

(lim sup |Xn(ω)|1/n)−1. Since this is a tail random variable, by Kolmogorov’s zero-one law, it must
be constant. In other words, there is a number r0 such that R(ω) = r0 a.s.

But what is the radius of convergence? It cannot be determined by the zero-one law. We may
use Borel-Cantelli lemma to determine it. Observe that P(|Xn|

1
n > t) = e−t

n for any t > 0. If
t = 1 + ε with ε > 0, this decays very fast and is summable. Hence, |Xn|

1
n 6 1 + ε a.s.. and hence

R 6 1 + ε a.s. Take intersection over rational ε to get R 6 1 a.s.. For the other direction, if t < 1,
then e−tn → 1 and hence

∑
n e

−tn =∞. Since Xn are independent, so are the events {|Xn|
1
n > t}.

By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n
such that |Xn|

1
n > 1 − ε. Again, take intersection over rational ε to conclude that R > 1 a.s. This

proves that the radius of convergence is equal to 1 almost surely.
In a homework problem, you are asked to show the same for a large class of distributions and

also to find the radius of convergence for more general random series of the form
∑∞
n=0 cnXnz

n.
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10. Growth of a supercritical branching process*

We showed that a super-critical branching process survives with strictly positive probability.
One can ask how the generation sizes Zn grow when the branching is supercritical. An important
theorem of Kesten and Stigum asserts that under the extra condition that E[L log+ L] < ∞, the
generation sizes grow exponentially in the sense that

P
{

lim sup Zn
mn

> 0
}

= P{non-extinction}.

Actually it says that with limZn/m
n in place of lim sup (the existence of the limit must be proved,

of course), but we stick to the above form. Obviously the event on the left is contained in the event
on the right, hence the asserion is really that whenever non-extinction occurs, it occurs by the Zn
grown exponentially fast.

We prove a very special case of this, as the main goal here is to illustrate the tools introduced
in the previous chapter. Recall that the off-spring variable L has distribution pk = P{L = k} and
m =

∑
k kpk is its mean.

Theorem 18: Growth of supercritical branching process

Assume that p0 = 0 andm > 1 and that σ2 := Var(L) <∞. Then, lim supm−nZn > 0 a.s.

Proof. Under the assumption that p0 = 0, extinction never occurs. Further, if
Let Wn = Zn/m

n and let W = lim supWn. Also recall the way we constructed a branching
process from i.i.d. random variables Ln,k, n,k > 1 by using Ln,1,Ln,2 . . . to determine the numbers
of offsprings of those individuals in the (n− 1)st generation.

First we claim that P{W > 0} > 0.
The same proof that we used (second moment method) to show that non-extinction has strictly

positive probability in fact shows that

lim inf P
{
Zn >

1
2
mn
}
>

1
4 + 4σ2

m−1
.

Now let W = lim supZn/mn and let NE be the event of non-extinction. Clearly {W > 0} ⊆ NE.
What we need to show is that P{W > 0} = P{NE}, which then implies that P{{W > 0} ∩NE} = 0 as
claimed.

First we claim that P{W > 0} > 0. As {W < ε} ⊆ ∪N ∩n>N {Zn < εmn}, it follows that if
P{W > 0} = 0, then for any ε > 0, there is someN <∞ such thatP{Zn > εmn for some n > N} < ε.
�
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11. Random walk on a graph

Let Xi be i.i.d. Ber±(1/2) and let Sn = X1 + . . . + Xn for n > 1 and S0 = 0 (S = (Sn) is called
simple, symmetric random walk on integers). Let A be the event that the random walk returns to the
origin infinitely often, i.e., A = {ω : Sn(ω) = 0 infinitely often}. Pólya showed that

P(A) = 1.(10)

Observe that A is not a tail event. Indeed, suppose Xk(ω) = (−1)k for k > 2. Then, if X1(ω) = −1,
the event A occurs (i.e., A 3 ω) while if X1(ω) = +1, then A does not occur (i.e., A 63 ω). This
proves that A 6∈ σ(X2,X3, . . .) and hence, it is not a tail event. Therefore Kolmogorov’s zero-one
law is inapplicable. Nevertheless, P(A) = 1 as we shall show now.

Proof of the claim. Let pk = P(Sk = 0). It is easy to see that pk = 0 for odd k and pk =
(
k
k/2
) 1

2k

for even k. By Stirling’s formula, one can check that c√
k
6 p2k 6

c ′√
k

for some c, c ′.
Let Rn =

∑2n
k=0 1S2k=0 be the number of times the random walk visits the origin in the first 2n

steps. We see that

E[Rn] =
n∑
k=0

p2k > c
n∑
k=1

1√
k
> c ′′

√
n.

On the other hand,

E[R2
n] =

n∑
k=0

n∑
`=0

P{S2k = 0,S2` = 0} =

n∑
k=0

p2k + 2
n−1∑
k=0

n∑
`=k+1

p2kp2(`−k)

= E[Rn] + 2
n−1∑
k=0

n−k∑
j=1

p2kp2j 6 E[Rn] + E[Rn]2.

Therefore, E[R2
n]

E[Rn]2
→ 1 as n → ∞. By the second moment method, we see that P{Rn > r} → 1 as

n→∞, for any r. But {Rn > r} ↑ {R∞ > r}. Hence P{R∞ > r} = 1 for all r, which is another way of
saying that the random walk returns to the origin infinitely many times, almost surely. �
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Remark 17
If you examine the proof, you see that the specifics of the random walk was not used. Al-
though we wrote E[Rn] > c

√
n, that was used only to say that E[Rn]→∞.

If (Sn)n>0 is a random walk on any graph (or even a general Markov chain) started at a
vertex 0, write pk = P{Sk} = 0 and Rn =

∑n
k=0 1Sk = 0. Following the same reasoning as

above,

E[Rn] =
n∑
k=0

pk, E[R2
n] 6 E[Rn] + E[Rn]2.

Thus, the second moment method shows that if E[Rn]→∞, then the random walk eventu-
ally returns to the starting point, almost surely.
On the other hand, if E[Rn] stays bounded, then

∑∞
k=0 pk < ∞. Fund N such that∑∞

k=N pk < 1. This shows that P{Sk = 0 for some k > N} < 1 or equivalently, there is a
positive probability for the random walk to return only finitely many times.

12. Ramsey numbers

A well-known riddle asks for a proof that among 6 people, there are three who know each
other or there are three none of whom knows the other two. To generalize, let us fix n > k > 3.
Let G be a graph with vertex set [n]. Let G† denote the complementary graph: {i, j} is an edge in
G† if and only if {i, j} is not an edge in G. The question is: Is there necessarily a clique of size k in
at least one of G and G†.

The smallest numbern for which the answer is “Yes” for every possible graphG on [n], is called
the kth Ramsey number, R(k). Beyond a few small values of k, the value of R(k) is not known, even
approximately or asymptotically for large k. Erdös used probability to get a lower bound:

R(k) >
k

2e
2k/2.

The key conclusion is that R(k) grows exponentially fast in k.

Erdös’ proof. Pick the graph G uniformly at random from the set of all graphs with vertex set
[n]. This is done by sampling i.i.d. Ber(1/2) random variables Xi,j, 1 6 i < j 6 n and setting the
edge set of G to be the set of all {i, j} with Xi,j = 1. The edges of G† are those {i, j} with i < j for
which Xi,j = 0.

Take any subset S ⊆ [n] with |S| = k. The chance that S is a clique in G is 2−(
k
2). The chance

that S is a clique in G† is the same. Summing these and summing over all S, we see by the union
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bound that the chance that some k-element subset of [n] forms a clique in one ofG orG† is at most

2
(
n

k

)
2−(

k
2) 6

nk

k! 2 1
2k(k−1)−1

.

Therefore, if nk < k!2 1
2k(k−1)−1, then the above probability is less than 1. Therefore, there is a

positive probability that there is no k-element subset that is a clique of either G or of G†. Hence
there must be at least one such graph G. Therefore, R(k) > (k!2 1

2k(k−1)−1)
1
k > k

2e2k/2 as k! >
(k/e)k. �

Although the conclusion has nothing to do with probability, the probabilistic method was used.
Can you do without it? All you have to do is to construct an explicit graph on ck vertices (for some
c > 1) such that no clique of size k exists in the graph or its complement. Apparently, no one has
found such an explicit example to date! This is not an uncommon occurrence3.

13. Percolation

Let G = (V ,E) be an infinite connected graph. For 0 6 p 6 1 and let Xe, e ∈ E, be i.i.d. Ber(p)
random variables. These random variables give rise to a random subgraph Gp = (V ,E), where
E = {e : Xe = 1}. Percolation is the study of connectivity properties of this random subgraph. In
particular, one is interested in

(1) α(p), the probability that Gp has an infinite connected component.

(2) θo(p), the probability that the vertex o is in an infinite connected component in Gp.

The following seems intuitively obvious, but try proving it before reading the proof!

Claim 3
α(p) and θo(p) are increasing functions of p.

Indeed, if p1 < p2, we should expect more edges in Gp2 than in Gp1 , hence it seems that we
must have α(p2) > α(p1). But how to prove it? If there were a formula for α(p) or θo(p), we could
write the formula and analytically check. But that is not the case. Fortunately, there is a beautiful
probabilistic way out!

Proof. Let Ue, e ∈ E, be i.i.d. Unif[0, 1] random variables. For each p ∈ [0, 1], define the graph
Hp as having vertex set V and edge set {e ∈ E : Ue 6 p}. Then Hp has the same distribution as Gp,
for fixed p. Therefore

P{Hp has an infinite cluster} = P{Gp has an infinite cluster} = α(p).

3The famous book The probabilistic method by Alon and Spencer has many such uses of probability.
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ButHp are all constructed on the same probability space (“coupled”) in such a way that the set of
edges of Hp1 is a subset of the set of edges of Hp2 , if p1 < p2.

Therefore, if the event “Hp1 has an infinite cluster” occurs, so does the event “Hp2 has an infinite
cluster”. Hence α(p1) 6 α(p2). Similarly, if the event “o is in an infinite cluster of Hp1” occurs, so
does the event “o is in an infinite cluster of Hp2”. Hence θ0(p1) 6 θo(p2). �

There is another surprise now.

Claim 4
α(p) is 0 or 1, for any p.

After reading the proof below, think why it does not apply to θo(p).

Proof. Arrange the edges of G in a sequence e1, e2, . . .. Then Xp1 ,Xp2 , . . . are independent ran-
dom variables, hence any tail event has probability 0 or 1, by Kolmogorov’s law. But the event that
Gp has an infinite cluster is a tail event, since changing the status of finitely many edges cannot
create or destroy and infinite component. Therefore, α(p) ∈ {0, 1}. �

When one combines the two claims, it follows that there must be some pc ∈ [0, 1] (that may
depend on the graph G) such that α(p) = 0 if p ∈ [0,pc) and α(p) = 1 for p ∈ (pc, 1]. In many
graphs (including Zd for any d > 2), one can show4 that pc is strictly between 0 and 1. This is very
interesting and raised many questions, including what the value of pc is for specific graphs and
what is the value of α(pc), etc.

But the most interesting take-away for now is that something discontinuous has popped up
from a model where no discontinuity was thrown into the definition. There are phenomena in
physics called phase transitions that are points of discontinuity of some quantity. For example, when
ice changes to water or water changes to steam, there is a drastic and sudden change in the inter-
molecular distances. How can mathematics lead to discontinuous phenomena, unless it is already
built into the model definition? Percolation probability α(p) shows us that it is indeed possible!
The study of phase transitions is a very active area of research in probability today.

14. Cycles in a random permutation

This section can be said to be an application of coupling, but in a somewhat different sense
than we did before. The point we wish to convey is that building a random object using appropri-
ate independent random variables illuminates the random object and makes many computations
easier. The random object we choose to illustrate this is a random permutation.

4While not too difficult, this is a digression that we don’t take now. What it entails is showing that α(p) = 0 for
sufficiently small p > 0 and that α(p) > 0 for sufficiently large p < 1.
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Let Sn denote the set of permutations of [n]. Let Π ∼ Unif(Sn) denote a uniformly sampled
random permutation. One can ask many questions about Π, we stick to the following one: How
many cycles does Π typically have?

It is possible to approach this question in many ways, using recursions, generating functions,
etc. You are encouraged to try your hand at it. The method below is exquisitely beautiful and
depends on building Π using independent random variables in an ingenious way.

The Chinese restaurant process of Dubins and Pitman: Imagine a restaurant with infinitely
many circular tables numbered 1, 2, 3 . . .. Initially, all tables are empty. People P1,P2, . . . enter the
restaurant one after another and sit as follows.

• P1 sits at table V1 = 1.

• For k > 2, when Pk arrives, she picks a number Vk ∼ Unif{1, 2, . . . , k} (independently of
V1, . . . ,Vk−1). If Vk = j < k, then Pk sits to the immediate left of the person Pj (if Pi is
already sitting to the left of Pj, then Pk sits between Pi and Pj). But if Vk = k, then Pk sits
in the first vacant table available.

• Interpret each table as a cycle going clockwise. For example, if a table has P4,P7,P11,P12

seated clocwise in that order, we interpret it as the cycle (4, 7, 11, 12). Taking the different
tables as a product of disjoint cycles, we get a permutation Π.

For example, if (V1, . . . ,V9) = (1, 1, 2, 1, 5, 4, 7, 7, 6), then Π = (1, 9, 6, 4, 2, 3)(5)(7, 8).

Claim 5
After n people arrive, the permutation Πn built from the Chinese restaurant process has
uniform distribution on Sn.

Proof. V = (V1, . . . ,Vn) has uniform distribution on the set Ŝn := [1]× [2]× . . .× [n]. Further,
the CRP sets up a bijection V ↔ Π between Ŝn and Sn. Hence Πn ∼ Unif(Sn). �

How is this useful? Let us address the above question on the number of cycles Cn of Πn.
Observe that

Cn =

n∑
k=1

1Vk=k

since a new table is started by Pk if and only if Vk = k (and Cn is just the number of tables occupied
after n people have arrived). From this we immediately arrive at

E[Cn] =
n∑
k=1

P{Vk = 1} =

n∑
k=1

1
k
= logn+O(1).
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Thus, a random permutation has about logn number of cycles in expectation. Observe that the
independence of Vks was not used, just the linearity of expectation. Using independence, one can
show that typically (not just on average) the number of cycles is close to logn.

Exercise 19
Calculate Var(Cn) and show that P {(1 − δ) logn 6 Cn 6 (1 + δ) logn}→ 1 as n→∞.

Remark 18
The Chinese restaurant way is particularly suited to study the cycle structure of a random
permutation. For example one can use it to study the distribution of the cycle sizes. It is not
well-suited if one is interested in some other feature such as the number of descents or the
length of the longest increasing subsequence (both have been studied by combinatorists and
probabilists). One can try to find other ways of constructing or representingΠ to study such
features, but there is no guarantee that so illuminating a representation exists!
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CHAPTER 5

Laws of large numbers

The time it takes to drive from Bangalore to Dharwad is fairly stable, although the details of
traffic is different every day. How many passengers will board the metro in a day is also fairly
stable, which allows the planning of frequency of trains. It is possible to predict with great certainty
how long 2 grams of a radio active material is reduced to 1 gram of it, although it is impossible to
predict when a particular atom will decay and the best model is that it is a random variable with
an exponential distribution.

In the broadest sense, a law of large numbers is the phenomenon of deterministic behaviour
emerging from the combination of many random ingredients. In this chapter we shall see a few
theorems that try to capture this in simple, yet important, situations.

1. Weak law of large numbers

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close
to 50. What do we mean by that, for after all the number of heads could be any number between 0
and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The
weak law of large numbers expresses precisely this.

Here and in the rest of the course Sn will denote the partial sum X1 + . . . + Xn. If we have
several sequences (Xn), (Yn) etc., we shall distinguish them by writing SXn, SYn and so on.

Theorem 19: Kolmogorov’s weak law of large numbers

Let X1,X2 . . . be i.i.d random variables. If E[|X1|] <∞, then for any δ > 0,

P
{ ∣∣∣ 1
n
Sn − E[X1]

∣∣∣ > δ}→ 0 as n→∞.

Let us introduce some terminology. If Yn, Y are random variables on a probability space and
P{|Yn − Y| > δ} → 0 as n → ∞ for every δ > 0, then we say that Yn converges to Y in probability
and write Yn

P→ Y. In this language, the conclusion of the weak law of large numbers is that
1
nSn

P→ E[X1] (the limit random variable happens to be constant).

Proof. Step 1: First assume that Xi have finite variance σ2. Without loss of generality, let
E[X1] = 0 (or else replace Xi by Xi − E[X1]). By Chebyshev’s inequality, P(|n−1Sn| > δ) 6
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n−2δ−2Var(Sn). By the independence of Xis, we see that Var(Sn) = nσ2. Thus, P(|Snn | > δ) 6 σ2

nδ2

which goes to zero as n→∞, for any fixed δ > 0.
Step 2: Now let Xi have finite expectation (which we assume is 0), but not necessarily any higher
moments. Fix n and write Xk = Yk +Zk, where Yk := Xk1|Xk|6An and Zk := Xk1|Xk|>An for some
An to be chosen later. Then, Yi are i.i.d, with some mean µn := E[Y1] = −E[Z1] that depends on
An and goes to zero asAn →∞. Fix δ > 0 and choose n0 large enough so that |µn| < δ for n > n0.

As |Y1| 6 An, we get Var(Y1) 6 E[Y2
1 ] 6 AnE[|X1|]. By the Chebyshev bound that we used in

the first step,

(11) P
{ ∣∣∣ SYn

n
− µn

∣∣∣ > δ} 6 Var(Y1)

nδ2 6
AnE[|X1|]

nδ2 .

Ifn > n0 then |µn| < δ and hence if | 1
nS
Z
n+µn| > δ, then at least one ofZ1, . . . ,Znmust be non-zero.

P
{ ∣∣∣ SZn

n
+ µn

∣∣∣ > δ} 6 nP(Z1 6= 0)

= nP(|X1| > An).

Thus, writing Xk = (Yk − µn) + (Zk + µn), we see that

P
{ ∣∣∣ Sn

n

∣∣∣ > 2δ
}
6 P
{ ∣∣∣ SYn

n
− µn

∣∣∣ > δ}+ P
{ ∣∣∣ SZn

n
+ µn

∣∣∣ > δ}
6
AnE[|X1|]

nδ2 + nP(|X1| > An)

6
AnE[|X1|]

nδ2 +
n

An
E[|X1| 1|X1|>An ].

Now, we take An = αn with α := δ3E[|X1|]
−1. The first term clearly becomes less than δ. The

second term is bounded by α−1E[|X1| 1|X1|>αn], which goes to zero as n→∞ (for any fixed choise
of α > 0). Thus, we see that

lim sup
n→∞ P

{ ∣∣∣ Sn
n

∣∣∣ > 2δ
}
6 δ

which gives the desired conclusion. �

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to
say that Var(SYn) = nVar(Y1) for which it suffices if Yi were uncorrelated. In particular, if
we assume that Xi pairwise independent, identically distributed and have finite mean, then
the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with den-
sity 1

π(1+t2)
. Observe that E[|X|p] < ∞ for all p < 1 but not p = 1. It is a fact (we shall
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probably see this later, you may try proving it yourself!) that 1
nSn has exactly the same

distribution as X1. There is no chance of convergence in probability to a constant!

(3) The proof under finite variance assumption is the most useful one, as the minimality of
assumptions is less important than the strength of the conclusion. For example, if we
assume that Xi have exponential moments, one can get the deviation probability to decay
exponentially. We shall see this later under the heading “concentration of measure”.

(4) If Xk are i.i.d. random variables (possibly with E[|X1|] = ∞), let us say that weak law of
large numbers is valid if there exist (non-random) numbers an such that 1

nSn −an
P→ 0.

When Xi have finite mean, this holds with an = E[X].
It turns out that a necessary and sufficient condition for the existence of such an is

that tP{|X| > t}→ 0 as t→∞ (in which case, the weak law holds with an = E[X1|X|6n]).
Note that the Cauchy distribution violates this condition.

Exercise 20
Find a distribution which satisfies the condition tP{|X| > t} → 0 but does not have
finite expectation.

2. Applications of weak law of large numbers

We give three applications, two “practical” and one theoretical.

2.1. Bernstein proof of Weierstrass approximation theorem. Recall the Weierstrass’ approx-
imation theorem.

Theorem 20: Weierstrass’ approximation theorem

The set of polynomials is dense in the space of continuous functions (with the sup-norm
metric) on an interval of the line.

Proof (Bernstein). Let f ∈ C[0, 1]. For anyn > 1, we define the Bernstein polynomialsQf,n(p) :=∑n
k=0 f

(
k
n

) (
n
k

)
pk(1 − p)n−k. We show that ‖Qf,n − f‖ → 0 as n → ∞, which is clearly enough.

To achieve this, we observe that Qf,n(p) = E[f(n−1Sn)], where Sn has Bin(n,p) distribution. Law
of large numbers enters, because Binomial may be thought of as a sum of i.i.d Bernoullis.
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For p ∈ [0, 1], consider X1,X2, . . . i.i.d Ber(p) random variables. For any p ∈ [0, 1], we have∣∣∣Ep [f(Sn
n

)]
− f(p)

∣∣∣ 6 Ep
[∣∣∣ f(Sn

n

)
− f(p)

∣∣∣]
= Ep

[∣∣∣ f(Sn
n

)
− f(p)

∣∣∣ 1|Snn −p|6δ

]
+ Ep

[∣∣∣ f(Sn
n

)
− f(p)

∣∣∣ 1|Snn −p|>δ

]
6 ωf(δ) + 2‖f‖Pp

{ ∣∣∣ Sn
n

− p
∣∣∣ > δ}(12)

where ‖f‖ is the sup-norm of f and ωf(δ) := sup{|f(x) − f(y)| : |x − y| < δ} is the modulus of
continuity of f. Observe that Varp(X1) = p(1 − p) to write

Pp
{ ∣∣∣ Sn

n
− p

∣∣∣ > δ} 6 p(1 − p)

nδ2 6
1

4δ2n
.

Plugging this into (12) and recalling that Qf,n(p) = Ep
[
f
(
Sn
n

)]
, we get

sup
p∈[0,1]

∣∣∣Qf,n(p) − f(p) ∣∣∣ 6 ωf(δ) + ‖f‖
2δ2n

Since f is uniformly continuous (which is the same as saying that ωf(δ) ↓ 0 as δ ↓ 0), given
any ε > 0, we can take δ > 0 small enough that ωf(δ) < ε. With that choice of δ, we can choose n
large enough so that the second term becomes smaller than ε. With this choice of δ and n, we get
‖Qf,n − f‖ < 2ε. �

Remark 19
It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but
the Chebyshev bound. The main point is that the Bin(n,p) probability measure puts almost
all its mass between np(1− δ) and np(1+ δ) (in fact, in a window of width

√
n around np).

Nevertheless, WLLN makes it transparent why this is so.

2.2. Monte Carlo method for evaluating integrals. Consider a continuous function f : [a,b]→
R whose integral we would like to compute. Quite often, the form of the function may be suf-
ficiently complicated that we cannot analytically compute it, but is explicit enough that we can
numerically evaluate (on a computer) f(x) for any specified x. Here is how one can evaluate the
integral by use of random numbers.

Suppose X1,X2, . . . are i.i.d uniform([a,b]). Then, Yk := f(Xk) are also i.i.d with E[Y1] =∫b
a f(x)dx. Therefore, by WLLN,

P

(∣∣∣ 1
n

n∑
k=1

f(Xk) −

∫b
a

f(x)dx
∣∣∣ > δ)→ 0.

Hence if we can sample uniform random numbers from [a,b], then we can evaluate 1
n

∑n
k=1 f(Xk),

and present it as an approximate value of the desired integral!
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In numerical analysis one uses the same idea, but with deterministic points. The advantage of
random samples is that it works irrespective of the niceness of the function. The accuracy is not
great, as the standard deviation of 1

n

∑n
k=1 f(Xk) is Cn−1/2, so to decrease the error by half, one

needs to sample four times as many points.

Exercise 21

Since π =
∫1

0
4

1+x2dx, by sampling uniform random numbers Xk and evaluating
1
n

∑n
k=1

4
1+X2

k

we can estimate the value of π! Carry this out on the computer to see how
many samples you need to get the right value to three decimal places.

2.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such
as “do you support the war in Iraq?”. The poll may be conducted across continents, and one is
sometimes dismayed to see that the pollsters asked a 1000 people in France and about 1800 people
in India (a much much larger population). Should the sample sizes have been proportional to the
size of the population?

Behind the survey is the simple hypothesis that each person is a Bernoulli random variable
(1=‘yes’, 0=‘no’), and that there is a probability pi (or pf) for an Indian (or a French person) to
have the opinion yes. Are different peoples’ opinions independent? Definitely not, but let us make
that hypothesis. Then, if we sample n people, we estimate p by X̄n where Xi are i.i.d Ber(p). The
accuracy of the estimate is measured by its mean-squared deviation

√
Var(X̄n) =

√
p(1 − p)n− 1

2 .
Note that this does not depend on the population size, which means that the estimate is about as
accurate in India as in France, with the same sample size! This is all correct, provided that the
sample size is much smaller than the total population. Even if not satisfied with the assumption of
independence, you must concede that the vague feeling of unease about relative sample sizes has
no basis in fact...

3. Strong law of large numbers

If Xn are i.i.d with finite mean, then the weak law asserts that n−1Sn
P→ E[X1]. The strong law

strengthens it to almost sure convergence.

Theorem 21: Kolmogorov’s strong law of large numbers

Let Xn be i.i.d with E[|X1|] <∞. Then, as n→∞, we have Snn
a.s.→ E[X1].

The proof of this theorem is somewhat complicated. First of all, we should ask if WLLN implies
SLLN? From Lemma 8 we see that this can be done if P

(
|n−1Sn − E[X1]| > δ

)
is summable, for

every δ > 0. Even assuming finite variance Var(X1) = σ2, Chebyshev’s inequality only gives a
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bound of σ2δ−2n−1 for this probability and this is not summable. Since this is at the borderline of
summability, if we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that α4 := E[X4

1] < ∞ (of course 4 is not the smallest number bigger
than 2, but how do we compute E[|Sn|p] in terms of moments of X1 unless p is an even integer?).
Then, we may compute that (assume E[X1] = 0 without loss of generality)

E
[
S4
n

]
= n2(n− 1)2σ4 + nα4 = O(n2).

Thus P
(
|n−1Sn| > δ

)
6 n−4δ−4E[S4

n] = O(n−2) which is summable, and by Lemma 8 we get the
statement of SLLN under fourth moment assumption. This can be further strengthened to prove
SLLN under the second moment assumption, which we first present since there is one idea (of
working with subsequences) that will also be used in the proof of the general SLLN1.

Theorem 22: SLLN under second moment assumption

Let Xn be i.i.d with E[X2
1] <∞. Then, Snn

a.s.→ E[X1] as n→∞.

Proof. Assume E[X1] = 0 without loss of generality and let σ2 = Var(X1). By Chebyshev’s
inequality, P{| 1

nSn| > t} 6
σ2

nt2 since Var(Sn) = nσ2. Now consider the sequence nk = k2. The
bounds σ2

tn2
k

are summable, hence by the first Borel-Cantelli lemma, we see that | 1
nk
Snk | 6 δ for all

but finitely many k, almost surely. If this even be denoted Eδ, then P(Eδ) = 1, hence ∩δ∈Q+Eδ also
has probability one, which is another way of saying that 1

nk
Snk

a.s.→ 0.
This can be applied to the i.i.d. sequence X+

n and the i.i.d. sequence X−
n (that two sequences

are not independent of each other is irrelevant) to see that
1
nk
Unk → E[X+

1 ] and 1
nk
Vnk → E[X−

1 ], a.s.(13)

where Un,Vn are partial sums of X+
i and X−

i , respectively.
Now for any n, let k be such that nk 6 n < nk+1. Clearly Unk 6 Un < Unk+1 and Vnk 6 Vn <

Vnk+1 , since the summands are non-negative (a similar assertion is false for Sn, which is why we
break into positive and negative parts). Thus,

1
nk+1

Unk 6
1
n
Un 6

1
nk
Unk+1

and the analogous statement for V . Now, nk+1/nk → 1, hence rewriting the above as
nk
nk+1

1
nk
Unk 6

1
n
Un 6

nk+1
nk

1
nk+1

Unk+1 ,

1The idea of proving SLLN this way was told to me by Sourav Sarkar who came up with the idea when he was a
B.Stat student. I have not seen it any book, although it is likely that the observation has been made before.
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we see that on the event in (13), we also have 1
nUn → E[X+

1 ] and 1
nVn → E[X−

1 ]. Putting these
together with the almost sure assertion of (13), and recalling that Sn = Un−Vn, we conclude that
1
nSn

a.s.→ E[X+
1 ] − E[X−

1 ] = E[X1]. �

Now we return to the more difficult question of proving the strong law under first moment
assumptions. We give two proofs, one in this section and one in the next2.

In the first proof, we shall reuse the idea from the previous proof of (1) proving almost sure
convergence along a subsequence {nk} and then (2) getting a conclusion about the whole sequence
from the subsequence for positive random variables. However, since we do not have second mo-
ment, we cannot use Chebyshev to take the sequence nk = k2 in the first step. In fact, we shall
have to take an exponentially growing sequence nk = αk, where α > 1. But this is a problem for
the second step, since nk+1/nk → αwhereas the proof above works only if we have nk+1/nk → 1.
Fortunately, we shall be able to take α arbitrarily close to 1 and thus bridge this gap! As before,
using positive random variables is necessary to be able to sandwich Sn between Snk and Snk+1 .
This will also feature in the proof below.

Proof of Theorem 21. Step 1: It suffices to prove the theorem for integrable non-negative random
variable, because we may write X = X+ − X− and it is true that Sn = S+n − S−n where S+n =

X+
1 + . . . + X+

n and S−n = X−
1 + . . . + X−

n . Henceforth, we assume that Xn > 0 and µ = E[X1] < ∞
(Caution: Don’t also assume zero mean in addition to non-negativity!). One consequence of non-
negativity is that

(14)
SN1

N2
6
Sn

n
6
SN2

N1
if N1 6 n 6 N2.

Step 2: The second step is to prove the following claim. To understand the big picture of the proof,
you may jump to the third step where the strong law is deduced using this claim, and then return
to the proof of the claim.

Claim 6

Fix any λ > 1 and define nk := bλkc. Then, Snknk
a.s.→ E[X1] as k→∞.

Proof of the claim Fix j and for 1 6 k 6 nj write Xk = Yk + Zk where Yk = Xk1Xk6nj and
Zk = Xk1Xk>nj (why we chose the truncation at nj is not clear at this point). Then, let Jδ be large
enough so that for j > Jδ, we have E[Z1] 6 δ. Let SYnj =

∑nj
k=1 Yk and SZnj =

∑nj
k=1 Zk. Since

2The proof given in this section is due to Etemadi. Most books in probability give this proof. The presentation is
adapted from a blog article of Terence Tao.
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Snj = S
Y
nj

+ SZnj and E[X1] = E[Y1] + E[Z1], we get

P
{ ∣∣∣ Snj

nj
− E[X1]

∣∣∣ > 2δ
}
6 P

{ ∣∣∣ SYnj
nj

− E[Y1]
∣∣∣+ ∣∣∣ SZnj

nj
− E[Z1]

∣∣∣ > 2δ

}

6 P

{ ∣∣∣ SYnj
nj

− E[Y1]
∣∣∣ > δ}+ P

{ ∣∣∣ SZnj
nj

− E[Z1]
∣∣∣ > δ}

6 P

{ ∣∣∣ SYnj
nj

− E[Y1]
∣∣∣ > δ}+ P

{
SZnj
nj
6= 0

}
.(15)

We shall show that both terms in (15) are summable over j. The first term can be bounded by
Chebyshev’s inequality

(16) P

{ ∣∣∣ SYnj
nj

− E[Y1]
∣∣∣ > δ} 6 1

δ2nj
E[Y2

1 ] =
1
δ2nj

E[X2
11X16nj ].

while the second term is bounded by the union bound

(17) P

{
SZnj
nj
6= 0

}
6 njP(X1 > nj).

The right hand sides of (16) and (17) are both summable. To see this, observe that for any positive
x, there is a unique k such that nk < x 6 nk+1, and then∞∑

j=1

1
nj
x21x6nj 6 x

2
∞∑

j=k+1

1
λj

= x2 Cλ
λk+1 6 Cλx,

∞∑
j=1

nj1x>nj 6
k∑
j=1

λj 6 λk
∑
j>0

1
λj
6 Cλx.

Here, we may take Cλ =
∑
j>0 λ

−j = λ
λ−1 , but what matters is that it is some constant depending

on λ (but not on x). We have glossed over the difference between bλjc and λj but you may check
that it does not matter (perhaps by replacing Cλ with a larger value). Setting x = X1 in the above
inequalities (a) and (b) and taking expectations, we get∞∑

j=1

1
nj

E[X2
11X16nj ] 6 CλE[X1] and

∞∑
j=1

njP(X1 > nj) 6 CλE[X1].

As E[X1] <∞, the probabilities on the left hand side of (16) and (17) are summable in j, and hence
it also follows that P

{ ∣∣∣ Snjnj − E[X1]
∣∣∣ > 2δ

}
is summable. This happens for every δ > 0 and hence

Lemma 8 implies that
Snj
nj

a.s.→ E[X1] a.s. This proves the claim.
Step 3: Fix λ > 1. Then, for any n, find k such that λk < n 6 λk+1, and then, from (14) we get

1
λ
E[X1] 6 lim inf

n→∞ Sn

n
6 lim sup

n→∞
Sn

n
6 λE[X1], almost surely.

Take intersection of the above event over all λ = 1 + 1
m ,m > 1 to get lim

n→∞ Snn = E[X1] a.s. �
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4. Another proof of the SLLN via a maximal inequality

Here we give another proof of the SLLN, much shorter and involving hardly any technicalities3.
But the techniques used in the first proof are useful and worth keeping in mind.

Lemma 17: A maximal inequality

Let Xk be i.i.d. random variables with finite expectation. Then, for any t > 0,

P
{

sup
n

1
n
Sn > t

}
6

1
t
E[|X1|].

The proof will assume that we know the SLLN for bounded i.i.d. random variables. Indeed,
we do know a simple proof under the fourth moment assumption by a direct application of the
first Borel-Cantelli lemma.

Proof of SLLN assuming Lemma 17. FixA > 0 and define Yn = Xn1|Xn|6A andZn = Xn1|Xn|>A,
so that Xn = Yn + Zn and SXn = SYn + SZn. The two sums can be controlled separately as follows.

(1) 1
nS
Y
n
a.s.→ E[X11|X1|6A] by the SLLN for bounded random variables

(2) For any ε > 0, by Lemma 17,

P
{

lim sup 1
n
SZn > ε

}
6 P
{

sup
n

1
n
SZn > ε

}
6

1
ε
E[|X1|1|X1|>A]

Putting these together, we have

lim sup
n→∞

SXn
n
6 lim sup

n→∞
SYn
n

+ lim sup
n→∞

SZn
n

6 E[X11|X1|6A] + ε w.p. > 1 −
1
ε
E[|X1|1|X1|>A].

Now letA→∞ and then ε ↓ 0 (and note thatE[X11|X1|6A]→ E[X1] andE[X11|X1|>A]→ 0 by DCT)
to get lim sup S

X
n

n 6 0 a.s. Applying the same to −Xi gives lim inf S
X
n

n > 0 a.s. Hence Snn
a.s.→ E[X1].

�

It remains to prove the maximal inequality.

Proof of Lemma 17. Define

Mn = max{0,X1,X1 + X2, . . . ,X1 + . . . + Xn},

M ′n = max{0,X2,X2 + X3, . . . ,X2 + . . . + Xn+1}.

3Sauditya Jaiswal suggested that we could prove the SLLN on these lines, using the maximal inequality. When he
asked me about it, my first response was that we shall see this proof when we study reverse martingales. That is true,
but then I found that Michael Steele has a beautiful exposition (Explaining a mysterious maximal inequality—and a path to

the law of large numbers. Amer. Math. Monthly 122 (2015), no. 5, 490–494.) that gives an elementary proof of the maximal
inequality and deduces the SLLN from it. It seems nice enough to include here.
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Observe that these quantities are positive. On the event {Mn > 0}, we can drop the zero from the
maximum and write

Mn = max{X1,X1 + X2, . . . ,X1 + . . . + Xn}

= X1 + max{0,X2, . . . ,X2 + . . . + Xn}

6 X1 +M
′
n.

Hence, Mn −M ′n 6 X1 on the event Mn > 0. On the event Mn = 0 we have the trivial bound
Mn −M ′n 6 0 (sinceM ′n > 0 anyway). Putting them together,Mn −M ′n 6 X11Mn>0.

If Xk are i.i.d. with finite mean, we haveMn
d
=M ′n and hence have the same expectation (why

does E[Mn] exist?). Hence E[X11Mn>0] > 0.
Fix t > 0 and apply this to the variablesXi−t. The corresponding quantitiesMn,t,M ′n,t satisfy

Mn,t 6 (Mn − t)+ andM ′n,t 6 (M ′n − t)+. Therefore,

E[(X1 − t)1Mn>t] > E[(X1 − t)1Mn,t>0] > 0.

Therefore, E[X11Mn>t] > tP{Mn > t}, and the left side is clearly bounded by E[|X1|]. This gives
the inequality

P{Mn > t} 6
1
t
E[|X1|].

Let n→∞ and note thatMn ↑ sup
n

Sn
n to get the statement of the Lemma. �

5. Beyond the law of large numbers

There are multiple ways in which we can go beyond the laws of large numbers. In particular,
there are two directions, both of which could be made precise in different ways. Overall, the interest
is in getting stronger conclusions by making stronger assumptions as necessary.

Let X1,X2, . . . be i.i.d. random variables with zero means.

(1) For what α does Snnα
a.s.→ 0 or Snnα

P→ 0? Clearly if α > 1, these are true, but the interest is in
0 < α < 1. This leads to what is known as the law of iterated logarithm.

(2) We know that P{|Snn | > t} → 0 for any t > 0? Can we say more? One may ask for upper
bounds valid for all n and t or one may ask for the rate at which the probability goes to
zero as n→∞. The first (exact bounds) kind are called concentration inequalities and the
second kind (asymptotic rate) are called large deviations.

5.1. The law of iterated logarithm. For simplicity, assume that Xi are bounded random vari-
ables with mean zero. Say |Xk| 6 B a.s. Then Hoeffding’s inequality says that

P{|Sn| > u} 6 2e−
u2

2B2n
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for any n > 1 and any u > 0. Clearly this goes to zero if u = un and un√
n
→ ∞. Thus, for any

such un, we get Snun
P→ 0. In particular, this holds for un = nα with α > 1

2 , but one can also
take un =

√
nh(n), where h(n) → ∞ arbitrarily slowly. When we prove CLT, it will be clear that

the probability does not go to zero if h(n) stays bounded. So we have a complete answer for the
convergence in probability question.

The story is a little more interesting when it comes to almost sure convergence. Now we should
ask for summability of the deviation probabilities. If u = un where un = B

√
2(1 + ε)n logn, then

e
− u2

2B2n = e−(1+ε) logn =
1

n1+ε

which is summable. Therefore, lim sup Sn√
n logn

6 B
√

2 a.s. In particular, if we takeun = h(n)
√
n logn

where h(n)→∞ as n→∞, then Sn√
n lognh(n)

a.s.→ 0. However, this is not the optimal answer. The
precise answer is given by the following theorem, first proved by Khinchine for Bernoulli distribu-
tion, and extended by Komogorov and then Hartman and Wintner to more general distributions.

Theorem 23: Law of iterated logarithm

Let X1,X2, . . . be i.i.d. random variables with zero means and unit variances. Then

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

This is the sharp answer, as dividing by anything growing faster than
√
n log logn will obvi-

ously give zero in the limit.
This cannot be proved by a naive application of Borel-Cantelli lemmas. We know that ifAn are

independent events, then P{An i.o.} is 0 or 1 according as
∑
n P(An) is finite or infinite. However,

for non-independent events, only one side of the implication is correct. Consider the following
example.

Example 21: Borel-Cantelli after blocking

Let An be independent events in a probability space and let B1 = A1, B2 = B3 = A2,
B4 = B5 = B6 = A3 and so on (n many Bis are equal to An). To show that only finitely
many Bns occur a.s., if we apply Borel-Cantelli lemma naively, we get the sufficient condi-
tion
∑
nP(An) <∞. This is clearly foolish, as the event {Bn i.o.} is the same as {An i.o.}, and

the latter has zero probability whenever
∑

P(An) <∞, a much weaker condition!

Although the situation in the example may look artificial, it is the general nature of things.
Often we have a sequence of events B1,B2, . . . where Bn and Bn+1 are very nearly the same event,
but Bn and Bm are nearly independent if |n −m| is large. This is clearly so for Bn = {Sn > g(n)}

for some smooth, polynomially growing function. Khinchine’s idea is that there is some way to
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make them into blocks Ck = ∪nk6n<nk+1Bn, so that Ck are nearly independent, Ck is almost the
same as Bnk . This way, the event {Bn i.o} is nearly the same as {Ck i.o} and that has (nearly) zero
or one probability according as

∑
k P(Bnk) converges or diverges. There are many details glossed

over here, but the key point is that of applying Borel-Cantelli lemma after appropriate blocking.
We give proof of the upper bound in LIL in Section 2.

5.2. Large deviations and concentration inequalities. Now we come to the second question of
getting bounds for deviation probabilities P{|Snn | > t}. We already know that if the Xk are bounded
by B and have zero means, then Hoeffding’s inequality gives

P{|Sn| > tn} 6 2e−
t2

2B2 .

Such inequalities are called concentration inequalities. Recall that the starting point of the proof of
Hoeffding’s inequality was the application of Markov’s inequality to eθSn :

P{Sn > tn} 6 e−θntE[eθSn ] = e−θntE[eθX1 ]n

= e−cn

where c = θt + logE[eθX1 ]. Similar, but weaker polynomially decaying bounds can be derived
assuming only a few moments for the Xks. All these are concentration inequalities.

If we are interested in the asymptotics of the deviation probabilities as n → ∞, more precise
things can be said.

Assume that X1,X2, . . . are i.i.d. random variables such that ψ(θ) = E[eθX1 ] < ∞ for all θ ∈ R
(satisfied by bounded random variables, for example). Then we take the bound obtained above

P{Sn > tn} 6 e−n[θt−logψ(θ)].

For fixed t > 0, the best bound is got by optimizing over θ. Let I(t) = supθ(θt − logψ(θ)). The
supremum can be shown to be finite by some convexity observations, but just assume it for now.
Then we get

P{Sn > tn} 6 e−nI(t).

This is still valid for all n and t > 0. What is remarkable is that the bound becomes tight as n→∞,
at least on the logarithmic scale.

Theorem 24: Cramer’s theorem
Let X1,X2, . . . be i.i.d. random variable with ψ(θ) <∞ for all θ ∈ R. Then

1
n

logP{Sn/n > t} = −I(t) for any t > 0.

Because we take logarithms and divide by n, this statement is not saying that we can reverse
the upper bound and write P{Sn > tn} 6 ce−nI(t) for some constant. In fact, it could be well be
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that P{Sn > tn} 6 1
n10 e

−nI(t). But on the log-scale, asymptotically, we get a sharp estimate for the
probability of deviation.

We have already proved the upper bound. We shall not prove the lower bound here. We work
it out for the special case of Bernoulli random variables, where precise computations are possible.

5.3. Bernoulli random variables. Let Xi be i.i.d. Ber(1/2) random variables. Then Sn has the
transformed Binomial distribution

pn(k) := P{Sn = k} =

(
n

k

)
1

2n
0 6 k 6 n.

By Stirling’s formula, we have the following estimate when n as well as k and n− k are large:

pn(k) ∼
nn+

1
2

2nkk+ 1
2 (n− k)n−k+

1
2
√

2π

=
nn

2nkk(n− k)n−k

√
n√

2π
√
k(n− k)

=

√
n√

2π
√
k(n− k)

exp
{
−n

[
log 2 +

k

n
log k

n
+
n− k

n
log n− k

n

]}
=

√
n√

2π
√
k(n− k)

e−nI(k/n)

where I(x) = log 2+x log x+(1−x) log(1−x) for x ∈ [0, 1] (with the interpretation that 0 log 0 = 0,
by continuity). is called the Shannon entropy function. The precise meaning of the approximation
in the first line is that given ε > 0, there exist N and K such that for all n > N and K 6 k 6 N− K,
we have

(1 − ε)

2
√
n
e−nI(k/n) 6 pn(k) 6 (1 + ε)e−nI(k/n).(18)

where we used the fact that k(n−k) is largest when k = n/2 and smallest when k = 1 (we anyway
have k > K) to to simplify the form of the bounds.

The properties of x 7→ I(x) play a key role in the estimates for the probabilities. It is symmetric
about x = 1/2, attains its minimum value of 0 uniquely at x = 1/2, is convex, and is bounded
between the parabolas 2(x− 1

2)
2 6 I(x) 6 3(x− 1

2)
2 for 0 6 x 6 1.

Large deviations: If x > 1
2 , then take ε = 1/2 (or any fixed number in (0, 1)) and use (18) to get

P{Sn > nx} > pn(dnxe) >
1

4
√
n
e−nI(x),

P{Sn > nx} =
∑
k>nx

pn(k) 6 ne−nI(x).

In the second line, we bounded all terms by the largest one (i.e., pn(dnxe) and used the fact that
I(x) is increasing on [1/2, 1]. As I(x) > 0 for x > 1

2 , the polynomial factors outside are negligible
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Figure 1. Graph of the function x 7→ I(x)

compared to the exponential term and we can simply write P{Sn > nx} ≈ e−nI(x) in the sense that

lim
n→∞ 1

n
logP{Sn > nx} = −I(x).

This is the statement of the large deviation principle for Bernoullis.

Concentration inequalities: From the estimate above and the fact that I(x) > 2(x− 1
2)

2, we get

P{Sn > nx} 6 ne−nI(x) 6 ne−2n(x− 1
2 )

2

We can get rid of the polynomial factor below and rewrite this as

P{Sn > nx} 6 Cεe(2−ε)n(x−
1
2 )

2

for any ε > 0 and Cε < ∞ (required to take care of the case of small n). With more care, one can
derive the following inequality of Bernstein

P{Sn > nx} 6 2e−2(x− 1
2 )

2

6. Empirical distribution converges to true distribution*

Let X1,X2, . . . be i.i.d. real-valued random variables with distribution µ. The empirical distribu-
tion based on the first n samples is defined as the random probability measure

Ln =
1
n
(δX1 + . . . + δXn).

118



This is the probability distribution whose CDF FLn has jumps of size 1
n at each of the sample points

Xk, k 6 n, counted with multiplicity (meaning that if a particular value occurs p times, then the
jump at that location if pn). Thus for a fixed x ∈ R, we see that

FLn(x) =
1
n

n∑
k=1

1Xk6x
a.s.→ Fµ(x)

by SLLN, since 1Xk6x are i.i.d. with Ber(Fµ(x)) distribution. If D is any countable dense set such
as rationals, we can take the intersection of the almost sure event above and say that

FLn(x)→ Fµ(x) for all x ∈ D, a.s.(19)

Pay attention to the placement of the “a.s.”; for example, it is not evident that we can write the
above statement with “for all x ∈ R” as it involves taking uncountable intersection. Nevertheless,
the above statement is sufficient to say that Ln

d→ µ. This is because (it was an exercise in the
problem set), convergence of the CDF at a countable dense set of points implies convergence in
distribution. Applying this to eachω in the good set in (19), we get that4 Ln

d→ µ a.s.
But in fact, the convergence holds in the stronger Kolmogorov-Smirnov metric! In particular,

that implies that in (19)one can write “for all x ∈ R”.

Theorem 25: Glivenko-Cantelli
Let X1,X2, . . . be i.i.d. random variables with distribution µ. Then

‖FLn − Fµ‖sup
a.s.→ 0.

Proof. First let us do it assuming that µ = λ is the uniform distribution on [0, 1]. Fix integer
M > 1 and let N(ω) be such that |FLn(ω)(k/M) − (k/M)| 6 ε for all k ∈ {0, 1, . . . ,M} for all
n > N(ω). SLLN shows that N(ω) < ∞ a.s., for any M < ∞. But then, for any x ∈ [0, 1], we can
find k such that kM 6 x 6

k+1
M and then

FLn(ω)(x) − Fλ(x) 6 FLn(ω)(
k+ 1
M

) − Fλ(
k

M
)

= FLn(ω)(
k+ 1
M

) −
k+ 1
M

+
1
M
6 ε+

1
M

.

Similarly

Fλ(x) − FLn(ω)(x) 6
k+ 1
M

− FLn(ω)(
k

M
)

=
k

M
− FLn(ω)(

k

M
) +

1
M
6 ε+

1
M

.

4Be careful in reading this statement. What it means is that for almost every ω, the sequence of measures Ln(ω)

converge to µ in the Lévy metric.
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Together, this shows that ‖FLn(ω) − Fλ‖sup 6 ε + 1
M for all n > N(ω). As ε > 0 and M < ∞ are

arbitrary, we see that ‖FLn − Fλ‖sup → 0 a.s.
Now if µ is a general distribution, without loss of generality, we assume that Xk = Gµ(Uk),

where Uk are i.i.d. Unif[0, 1] and Gµ is the generalized inverse of Fµ that satisfies

Gµ(u) 6 x if and only if u 6 Fµ(x)

for u ∈ (0, 1) and x ∈ R. Therefore 1Xk6x = 1Uk6Fµ(x), and hence FLn(x) = FL ′n(Fµ(x)), where L ′n
is the empirical distribution of U1, . . . ,Un. Therefore (as Fλ(Fµ(x)) = Fµ(x) for all x),

‖FLn − Fµ‖sup = ‖FL ′n − Fλ‖sup

and we have shown that the latter goes to 0 almost surely, as n→∞. �

Observe that the key element in the proof was applying SLLN to Bernoulli random variables.
We have already seen in that case how the closeness of the sample mean to expectation can be
strengthened using Bernstein’s/Hoeffding’s inequality. Following it up, one can strengthen the
Glivenko-Cantelli theorem to show that

np‖FLn − Fµ‖sup
a.s.→ 0

provided p < 1
2 . We leave this as exercise.

7. Using characteristic functions to prove laws of large numbers

LetX1,X2, . . . be i.i.d. with finite expectationµ. Letψ(t) = E[eitX1 ] be the characteristic function
of Xks. Then,

E[eit
Sn
n ] =

n∏
k=1

E[eitXk/n] = ϕ(t/n)n.

AsE[X1] exists, by Theorem 39 in the appendix, it follows thatϕ isC1-smooth andϕ ′(t) = E[iX1e
itX1 ].

Therefore, using the Taylor expansion ofϕ near 0, we getϕ(u) = 1+iµu+o(u) asu→ 0. Therefore,
for fixed t,

E[eit
Sn
n ] =

(
1 + iµ

t

n
+ o(1/n)

)n
→ eiµt

as n→∞. But t 7→ eiµt is the characteristic function of δµ. Lévy’s continuity theorem implies that
Sn
n

d→ δµ. As the limiting distribution is degenerate, it follows that Snn
P→ µ. Thus we have proved

WLLN under first moment assumption.
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Assume that µ = 0 and that E[X2
1] < ∞, so that ϕ(u) = 1 + O(u2) as u → 0. Let hn → ∞ as

n→∞ and consider Sn/hn. Its characteristic function is

E[eitSn/hn ] =
n∏
k=1

E[eitXk/hn ] = ϕ(t/hn)n

=
(

1 +O(1/h2
n)
)n
→ 1

if nh−2
n → 0. As the constant function 1 is the characteristic function of the zero random variable,

by Lévy’s continuity theorem we get Snhn
d→ 0. As the limit is constant, Snhn

P→ 0 for any hn such that
h2
n/n→∞.

This finishes alternate proofs of several WLLN type results we had seen earlier. I am not aware
of any approach to the strong laws using characteristic functions.

8. Strong law for certain non-independent random variables

The techniques that we used allow us to prove strong law for certain sequences of random vari-
ables even if there is no independence. Such questions may arise in contexts that have no explicit
mention of probability. For example, in analysis, the sequence (sin(nθ))n looks like a sequence of
random numbers (for a.e. θ, it fails spectacularly if you take θ = π/2 for example). In number
theory, many arithmetical sequences like the Möbius function may satisfy laws of large numbers
(on average equal number of zeros and ones occur in the sequence).

For example, let Xn = αn for n > 0, where α is picked uniformly at random from the unit
circle S1 = {z ∈ C : |z| = 1} (this just means that α = e2πiV where V ∼ Unif[0, 1]). Clearly, Xn are
not independent. But we can still see that

1
N

N∑
k=1

Xk =


1−αN+1

N(1−α) if α 6= 1,

1 if α = 1.

As |1 − αN+1| 6 2, it follows that 1
N

∑N
k=1 Xk → 0 for all α 6= 1. Extending this, we can see that if

α is not a root of unity, then 1
N

∑N
k=1 X

p
k → 0 for all p > 1. In particular

1
N

N∑
k=1

X
p
k

a.s.→ 0 for all p > 1.

What is n1 < n2 < n3 < . . . is a fixed sequence. Is it true that 1
N

∑N
k=1 X

p
nk

a.s.→ 0? The geometric
series formula does not apply, and the answer is not clear. It suffices to take p = 1 (just replace α
by αp which is also uniform on S1). We show that it is true5.

5Abhishek Khetan raised this question to me, and while we were both certain it must be somewhere in the literature,
we could not locate a proof. We worked out for ourselves the proof given here.
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Theorem 26

Let n1 < n2 < n3 < . . .. Then 1
N

∑N
k=1 Xnk

a.s.→ 0.

Now we do not have independence. But the random variables (complex-valued, but that is
no big deal6) are bounded. The more basic techniques based on Chebyshev inequality are more
amenable, as they only require pairwise correlations, and it is easy to see that

E[XnX̄m] =

∫ 2π

0
e2πi(n−m)vdv

2π
=

0 ifm 6= n,

1 ifm = n.

Proof. Let YN = 1
N

∑N
k=1 Xk. Then E[YN] = 0 and E[|YN|2] = 1

N . Therefore,

P{|YN| > δ} 6
E[|YN|2]
δ2 6

1
Nδ2 .

This is summable, for any δ > 0, over the subsequence Nk = k2. Therefore, by Borel-Cantelli we
see that Yk2

a.s.→ 0.
For general n, find k such that k2 6 n < (k+ 1)2 and observe that

|Yn| 6
∣∣ 1
n

k2∑
j=1

Xj
∣∣+ 1

n

n∑
j=k2+1

|Xj|

6 |Yk2 |+
2k+ 1
n

.

This shows that Yn
a.s.→ 0 as n→∞. �

Notice the similarity to the proof of SLLN under second moment assumption that we gave
earlier. The difference is that there we used the positivity of Xjs to sandwich Sn between Sk2 and
S(k+1)2 but here we used the boundedness of Xjs to get that control.

6If X = X1 + iX2 is a complex valued random variable, then E[X] just means E[X1] + iE[X2] etc. No new definitions
are needed and we can write everything in terms of real-valued random variables. It is just that the complex notation
could be more convenient.

122



CHAPTER 6

Central limit theorems

Laws of large numbers apply when there is deterministic behaviour arising out of randomness.
As we saw, this happens when the system size goes to infinity. But at any finite size of the system,
there are fluctuations from the deterministic behaviour, and they may be important.

For example, traveling to the airport may take 60 minutes on average, but one must make al-
lowance for random happenstances that increase the time above average. In planning frequency
of buses or trains, average numbers of passengers is a key input, but the system for allow for more
or less people showing up at a particular time and day. A dangerous chemical may be packed in a
tight container, but some of the molecules are sure to leak out by chance - how many and is it safe?

Central limit theorems (or more general convergence in distribution statements) describe such
fluctuations. A one line summary would be that in laws of large numbers, all probabilities of
interest are close to 0 or to 1, whereas in central limit behaviour, events of all probabilities between
0 and 1 feature. Nevertheless, there is a remarkable regularity or universality in that while there are
a great many different ways to change the “microscopic details” (the random variables that make
up the system), but only a few distinct behaviours for the fluctuations. We shall see a few theorems
about sums of random variables, in most of which the fluctuations turn out to be Gaussian or
Poisson, even though the model description does not have anything to do with these distributions!

1. Central limit theorem - statement, heuristics and discussion

If Xi are i.i.d with zero mean and finite variance σ2, then we know that E[S2
n] = nσ

2, which can
roughly be interpreted as saying that Sn ≈

√
n (That the sum of n random zero-mean quantities

grows like
√
n rather than n is sometimes called the fundamental law of statistics). The central limit

theorem makes this precise, and shows that on the order of
√
n, the fluctuations (or randomness)

of Sn are independent of the original distribution of X1! We give the precise statement and some
heuristics as to why such a result may be expected.

Theorem 27: Central limit theorem for i.i.d. variables

Let Xn be i.i.d with mean µ and finite variance σ2. Then, Sn−nµ
σ
√
n

d→ N(0, 1).
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Informally, letting Z denote a standard Normal variable, we may write Sn ≈ nµ+σ
√
nZ. More

precisely, P{Sn 6 nµ+σ
√
nt}→ P{Z 6 t} for any t ∈ R. This means, the distribution of Sn is hardly

dependent on the distribution of X1 that we started with, except for the two parameters - mean and
variance. This is a statement about a remarkable symmetry, where replacing one distribution by
another makes no difference to the distribution of the sum. This feature that the behaviour of
a large yet random system does not depend on the details of the microscopic parts that go into
building it, is called universality and is a major theme of modern probability.

In the rest of the section, we discuss various aspects of the theorem, and in later sections we
give proofs of this and even more general central limit theorems.

Why scale by
√
n? Without loss of generality, let us take µ = 0 and σ2 = 1. First point to note is

that the standard deviation of Sn/
√
n is 1, which gives hope that in the limit we may get a non-

degenerate distribution. Indeed, if the variance were going to zero, then we could only expect the
limiting distribution to have zero variance and thus be degenerate. Further, since the mean is zero
and the variance is bounded above, it follows that the distributions of Sn/

√
n form a tight family.

Therefore, there are at least subsequences that have distributional limits.

Why Normal distribution? Let us make a leap of faith and assume that the entire sequence
Sn/
√
n converges in distribution to some Y. If so, what can be the distribution of Y? Observe

that (2n)− 1
2S2n

d→ Y and further,
X1 + X3 + . . . + X2n−1√

n

d→ Y, X2 + X4 + . . . + X2n√
n

d→ Y.

But (X1,X3, . . .) is independent of (X2,X4, . . .). Therefore (this was an exercise earlier), we also get(
X1 + X3 + . . . + X2n−1√

n
, X2 + X4 + . . . + X2n√

n

)
d→ (Y1, Y2)

where Y1, Y2 are i.i.d copies of Y. But then, (yet another exercise), we get
S2n√

2n
=

1√
2

(
X1 + X3 + . . . + X2n−1√

n
+
X2 + X4 + . . . + X2n√

n

)
d→ Y1 + Y2√

2

Thus we must have Y1 + Y2
d
=
√

2Y. If Y1 ∼ N(0,σ2), then certainly it is true that Y1 + Y2
d
=
√

2Y. We
claim that N(0,σ2) are the only distributions that have this property. If so, then it gives a strong
heuristic that the central limit theorem is true. The claim itself is not trivial, we discuss it in the
section on the Gaussian distribution.

Justification by examples: Assuming that Sn/
√
n has a distributional limit, we have justified that

the limit must be Gaussian. There are specific examples where one may easily verify the statement
of the central limit theorem directly (indeed, that was how the theorem was arrived at).

One is of course the Demoivre-Laplace limit theorem (CLT for Bernoulli random variables),
which is well known and we omit it here. We just recall that sums of independent Bernoullis have
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binomial distribution, with explicit formula for the probability mass function and whose asymp-
totics can be calculated using Stirling’s formula.

Instead, let us consider the slightly less familiar case of exponential distribution. If Xi are i.i.d
Exp(1) so that E[X1] = 1 and Var(X1) = 1. Then Sn ∼ Gamma(n, 1) and hence Sn−n√

n
has density

fn(x) =
1
Γ(n)

e−n−x
√
n(n+ x

√
n)n−1√n

=
e−nnn−

1
2

Γ(n)
e−x
√
n

(
1 +

x√
n

)n−1

→ 1√
2π
e−

1
2x

2

by elementary calculations (use Stirling’s approximation for Γ(n) and for terms involving x write
the exponent as −x

√
n+ log(1 + x/

√
n) and use the Taylor expansion of logarithm). By an earlier

exercise (Scheffe’s lemma) convergence of densities implies convergence in distribution and thus
we get CLT for sums of exponential random variables.

Exercise 22
Prove the CLT for for the following distributions of Xis. (1) Ber(p). (2) Bin(k,p).
(3) Poisson(λ). (4) Geometric(p).

The special feature of these cases is that we can explicitly work out the distribution of Sn. This is
not the case in general, and in fact one of the uses of central limit theorem (for example, in statistics)
goes the other way. We use the Normal distribution as an approximation to the distribution of Sn.

Justification under stronger hypotheses Lastly, we show how the CLT can be derived under strong
assumptions by the method of moments. As justifying all the steps here would take time, let us
simply present it as a heuristic for CLT for Bernoulli random variables. Let Xi be i.i.d. Ber±(1/2).
Then Sn has a symmetric distribution and hence all odd moments are zero (but first, |Sn| 6 n,
hence all moments exist). For even moments,

E[S2p
n ] =

∑
16ki6n

E[Xk1 . . .Xkn ].

Fix k = (k1, . . . ,k2p) and consider the corresponding summand. The expectation factors as a prod-
uct of E[X`i ], 1 6 i 6 n, where `i is the number of j for which kj = i. Unless each `i is even, the
summand vanishes and if each `i = 1. The terms for which each `i contribute 1 each, and these
terms may be divided into two parts.

First, those in which each `i is 0 or 2. The number of ways to ways to choose the p indices i for
which `i = 2 is n(n− 1) . . . (n− p+ 1), and the number of ways that these indices may be chosen
is (2p− 1)(2p− 3) . . . (3)(1).
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Next those terms in which at least one `i is equal to 4. Then there are at most p − 1 distinct
indices, and they can be chosen in at most np−1 ways. The number of ways of choosing `is is itself
a number that depends only on p, say Cp.

2. Gaussian distribution

We collect some basic facts about the Gaussian distribution here. The standard Gaussian mea-
sure is denoted γ, its density is denoted ϕ and its distribution function is denote Φ. The density
of N(µ,σ2) is then σ−1ϕ((x − µ)/σ). We also use the notation pt(·) for the density of N(0, t). We
usually write Z,Z1,Z2, . . . for standard Gaussian random variables.

2.1. Heat equation. Consider pt(x) = 1√
2πte

− x2
2t for t > 0 and x ∈ R. Differentiation gives(

∂

∂t
−

1
2
∂2

∂x2

)
pt(x) = 0.

In other words, pt(x) is a solution to the heat equation. This is the single most important fact about
the Gaussian distribution.

2.2. Integration by parts formula. Let f : R → R be a smooth function such that |x|jf(k)(x) ∈
L1(γ) for any j,k (we need much less below). Then, as

∫
f(x/
√
t)pt(x)dx = E[f(Z)] for any t,

differentiating w.r.t. t under the integral, we get

0 =
d

dt

∫
R
f(x/
√
t)pt(x)dx

= −
1

2t3/2

∫
R
f ′(x/

√
t)xpt(x)dx+

1
2

∫
R
f(x/
√
t)p ′′t (x)dx (by heat equation)

= −
1

2t3/2

∫
R
f ′(x/

√
t)xpt(x)dx+

1
2t

∫
R
f ′′(x/

√
t)pt(x)dx (integration by parts)

from which, setting t = 1, we arrive at the Gaussian integration by parts formula

E[Zf ′(Z)] = E[f ′′(Z)].(20)

We leave it as an exercise to justify the differentiation under integral and the integration by parts.
If we set h = f ′, then (20) transforms to

E[Zh(Z)] = E[h ′(Z)],(21)
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which is often called Stein’s identity1. With a bit more care, one can prove that (21) holds for any
h : R → R that is absolutely continuous with h ′ ∈ L1(γ) (this means that h(x) − h(0) =

∫x
0 g(t)dt

for some g ∈ L1(γ), which is then called the derivative of h and denoted as h ′).

2.3. Moments. The odd moments are zero by symmetry, while the even moments can be got
by a direct integration. Alternately, use integration by parts formula (20) with f(x) = x2p we get
E[Z2p] = (2p− 1)E[Z2p−2], from which it follows that

E[Z2p] = (2p− 1)× (2p− 3)× . . .× 3× 1.

2.4. Characteristic function. Formally one can see that E[eitZ] = e−
1
2t

2 by substituting it in
the moment generating function. That can be made into an honest proof by first arguing that
w 7→ E[ewZ] is an entire function (which is equal to the characteristic function on the imaginary
axis and equal to the moment generating function on the real axis). Two entire functions that agree
on the real line must agree everywhere, hence the claim follows.

Another way (avoiding complex analysis) is to apply the integration by parts formula to f(x) =
eitx to get E[itZeitZ] = −t2E[eitZ]. Settingϕ(t) = E[eitZ] we see (again, differentiating under the
expectation) that ϕ ′(t) = −tϕ(t), for which the unique solution satisfying ϕ(0) = 1 is

ϕ(t) = e−
1
2t

2 .

2.5. Characterizations of Gaussian distribution. A feature of a probability distribution that is
not shared by any other probability distribution is called a characterization of the said distribution.
For example, the characteristic function determines the distribution, hence is always a characteri-
zation. Any distribution µwith finite moment generating function (i.e.,

∫
etxdµ(x) <∞ for |t| < δ

for some δ > 0) is characterized by its moment sequence.
In particular, the Gaussian distribution is characterized by its moments, i.e., no other distribu-

tion has the same moments as the standard Gaussian distribution. The identities (20) and (21)
are also characterizations of the standard Gaussian distribution. This means that if E[h ′(W)] =

E[Wh(W)] for a large enough class of functions h, then W ∼ N(0, 1). For instance, we saw that
applying it to h = et one can derive that the characteristic function ofN(0, 1) is e−t2/2, but one can
also consider other classes of functions (e.g., C1

c(R)) that do not contain ets. Yet another character-
ization is the stability property that we used earlier: If W,W ′ are i.i.d. and W +W ′

d
=
√

2W, then
W ∼ N(0,σ2) for some σ2 > 0. To see this, suppose ψ(·) denotes the characteristic function of W,

1As Arka Das pointed out in class, (21) can be got directly by writing E[f ′(Z)] =
∫
f ′(x)ϕ(x)dx and integrating

by parts. We gave a more roundabout derivation to emphasize its connection with the heat equation. In addition, the
dynamical viewpoint of considering pt, t > 0, is of great importance. The identity (20) is related to the Ornstein-
Uhlenbeck process, a Markov process with stationary distribution N(0, 1).
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then

ψ(t) = E
[
eitW

]
= E

[
e
it(W+W ′)√

2

]2
= ψ

(
t√
2

)2
.

From this, by standard methods (note that characteristic functions are necessarily continuous), one
can deduce that ψ(t) = e−at2 for some a > 0. Therefore,W ∼ N(0, 2a).

3. Strategies of proof of central limit theorem

To show that a random variable W ∼ N(0, 1), it suffices to show that it has any one of the
characterizing properties of the standard Gaussian distribution. In the context of CLT, we have a
sequence Wn = Sn/

√
n that we must show converges to N(0, 1) in distribution. Hence we wish

to know ifWn approximately has a characterizing property (and the approximation gets better as
n → ∞), does it mean that Wn

d→ N(0, 1)? Here are the essential statements that give a positive
answer, hence each of them provides a possible route to showing thatWn

d→ N(0, 1).

Theorem 28
Let µn,µ ∈ P(R) and let Wn ∼ µn and W ∼ µ. Each of the following is equivalent to
Wn

d→W.

(1) E[f(Wn)]→ E[f(W)] for all f ∈ C(∞)
b (R) (i.e., f(j) ∈ Cb(R) for all j).

(2) E[et(Wn)]→ E[et(W)] for all t ∈ R.

If µ = γ, then the following statement also implies thatWn
d→ N(0, 1): E[|Wn|] <∞ and

E[h ′(Wn)] − E[Wnh(Wn)]→ 0 if h ∈ C1
b(R).

The second statement is known as Levy’s continuity theorem and is proved in the section on
characteristic functions. Further, what we need is the conclusion that Wn

d→ W, so we prove the
relevant one-way implications in the first and third statements.

Proof. (1) Fix t and for k > 1 find fk ∈ C∞ such that 1(−∞,t] 6 fk 6 1(−∞,t+ 1
k ]

. Taking
expectations, we see that

P{Wn 6 t} 6 E[fk(Wn)]→ E[fk(W)] 6 P{W 6 t+
1
k
}.

Let k→∞ to get lim sup Fµn(t) 6 Fµ(t). Similarly,

P{Wn 6 t+
1
k
} > E[fk(Wn)]→ E[fk(W)] > P{W 6 t}.

Replace t by t− 1
k and let k→∞ to get lim inf Fµn(t) > Fµ(t−).

(2)
�
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3.1. Outline of three proofs of CLT. We present three proofs of the central limit theorem.

(1) Using characteristic functions: In this proof we show that E[et(Sn/
√
n)]→ e−t

2/2 for all
t ∈ R. The reason that the characteristic function is so effective is that for sums of inde-
pendent random variables, the characteristic function will be a product of the individual
characteristic functions. Additional ingredients are basic facts about characteristic func-
tions, which imply that if E[et(X1/

√
n)] ≈ 1 − t2

2n if E[X1] = 0 and E[X2
1] = 1. Hence

E[et(Sn/
√
n)] ≈ (1− t2

2n)
n ≈ e−t2/2. A little work is needed to make the approximations

precise.

(2) Using Lindeberg’s replacement principle: In this proof, along with Xi, we construct inde-
pendent standard GaussiansZis on the same probability space, and show thatE[f(SXn/

√
n)] ≈

E[f(SZn/
√
n)]. As the latter is the same as E[f(Z)], CLT follows. To show the closeness of

expectations, the idea is to go from SXn to SZn in n steps, by replacing each Xi by Zi, one
after another. The heart of the proof is in showing that the difference in expectations in
each step is o(1/n).

(3) Using Stein’s method: This proof works by showing thatWn = Sn/
√
n satisfies the Stein

identity approximately.

To not obfuscate the main ideas with less important technicalities, we present the first two proofs as-
suming that the third moment ofXis is finite. Then we shall in fact state the more general Lindeberg-
Feller central limit theorem and prove it under minimal conditions, thereby also proving the standard
CLT under second moment assumption. The proof by Stein’s method is given thereafter.

4. Central limit theorem - two proofs assuming third moments

We give two proofs of the following slightly weaker version of CLT.

Theorem 29
Let Xn be i.i.d with finite third moment, and having zero mean and unit variance. Then, Sn√

n

converges in distribution to N(0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume
Theorem 27.

4.1. Proof via characteristic functions. We shall need the following facts.

Exercise 23
Let zn be complex numbers such that nzn → z. Then, (1 + zn)

n → ez.
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Proof of Theorem 29. By Lévy’s continuity theorem (Lemma ??), it suffices to show that the
characteristic functions of n− 1

2Sn converge to the characteristic function of N(0, 1). The character-
istic function of Sn/

√
n is ψn(t) := E

[
eitSn/

√
n
]
. Writing Sn = X1 + . . . + Xn and using indepen-

dence,

ψn(t) = E

[
n∏
k=1

eitXk/
√
n

]

=

n∏
k=1

E
[
eitXk/

√
n
]

= ψ

(
t√
n

)n
where ψ denotes the characteristic function of X1.

Use Taylor expansion to third order for the function x→ eitx to write,

eitx = 1 + itx−
1
2
t2x2 −

i

6
t3eitx

∗
x3 for some x∗ ∈ [0, x] or [x, 0].

Apply this with X1 in place of x and tn−1/2 in place of t. Then take expectations and recall that
E[X1] = 0 and E[X2

1] = 1 to get

ψ

(
t√
n

)
= 1 −

t2

2n
+ Rn(t), where Rn(t) = −

i

6n 3
2
t3E

[
eitX

∗
1X3

1

]
.

Clearly, |Rn(t)| 6 Ctn−3/2 for a constant Ct (that depends on t but not n). Hence nRn(t)→ 0 and
by Exercise 23 we conclude that for each fixed t ∈ R,

ψn(t) =

(
1 −

t2

2n
+ Rn(t)

)n
→ e−

t2
2

which is the characteristic function of N(0, 1). �

4.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we
observe that the central limit theorem is trivial for (Y1+ . . .+Yn)/

√
n, if Yi are independentN(0, 1)

random variables. The key idea of Lindeberg is to go from X1 + . . . + Xn to Y1 + . . . + Yn in steps,
replacing each Xi by Yi, one at a time, and arguing that the distribution does not change much!

Proof. We assume, without loss of generality, that Xi and Yi are defined on the same probabil-
ity space, are all independent, Xi have the given distribution (with zero mean and unit variance)
and Yi have N(0, 1) distribution.

Fix f ∈ C(3)
b (R) and let

√
nUk =

∑k−1
j=1 Xj +

∑n
j=k+1 Yj and

√
nVk =

∑k
j=1 Xj +

∑n
j=k+1 Yj for

0 6 k 6 n and empty sums are regarded as zero. Then, V0 = SYn/
√
n and Vn = SXn/

√
n. Also,
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SYn/
√
n has the same distribution as Y1. Thus,

E
[
f

(
1√
n
SXn

)]
− E[f(Y1)] =

n∑
k=1

E [f (Vk) − f (Vk−1)]

=

n∑
k=1

E [f (Vk) − f (Uk)] −

n∑
k=1

E [f (Vk−1) − f (Uk)] .

By Taylor expansion, we see that

f(Vk) − f(Uk) = f
′(Uk)

Xk√
n
+ f ′′(Uk)

X2
k

2n
+ f ′′′(U∗k)

X3
k

6n 3
2
,

f(Vk−1) − f(Uk) = f
′(Uk)

Yk√
n
+ f ′′(Uk)

Y2
k

2n
+ f ′′′(U∗∗k )

Y3
k

6n 3
2
.

Take expectations and subtract. A key observation is that Uk is independent of Xk, Yk. Therefore,
E[f ′(Uk)Xpk] = E[f ′(Uk)]E[Xpk] etc. Consequently, using equality of the first two moments ofXk, Yk,
we get

E[f(Vk) − f(Vk−1)] =
1

6n 3
2

{
E[f ′′′(U∗k)X3

k] + E[f ′′′(U∗∗k )Y3
k]
}

.

Now, U∗k and U∗∗k are not independent of Xk, Yk, hence we cannot factor the expectations. We put
absolute values and use the bound on derivatives of f to get∣∣∣E[f(Vk)] − E[f(Vk−1)]

∣∣∣ 6 1
n

3
2
Cf

{
E[|X1|

3] + E[|Y1|
3]
}

.

Add up over k from 1 to n to get∣∣∣E [f( 1√
n
SXn

)]
− E[f(Y1)]

∣∣∣ 6 1
n

1
2
Cf

{
E[|X1|

3] + E[|Y1|
3]
}

which goes to zero asn→∞. Thus, E[f(Sn/
√
n)]→ E[f(Y1)] for any f ∈ C(3)

b (R) and consequently,
by Lemma ?? we see that 1√

n
Sn

d→ N(0, 1). �

5. Central limit theorem for triangular arrays

The CLT does not really require the third moment assumption, and we can modify the above
proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where
we don’t have one infinite sequence, but the random variables that we add to get Sn depend on n
themselves. Further, observe that we assume independence but not identical distributions in each
row of the triangular array.
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Theorem 30: Lindeberg-Feller CLT

Suppose Xn,k, k 6 n, n > 1, are random variables. We assume that

(1) For eachn, the random variablesXn,1, . . . ,Xn,n are defined on the same probability
space, are independent, and have finite variances.

(2) E[Xn,k] = 0 and
∑n
k=1 E[X2

n,k]→ σ2, as n→∞.

(3) For any δ > 0, we have
∑n
k=1 E[X2

n,k1|Xn,k|>δ]→ 0 as n→∞.

Then, Xn,1 + . . . + Xn,n
d→ N(0,σ2) as n→∞.

First we show how this theorem implies the standard central limit theorem under second mo-
ment assumptions.

Proof of Theorem 27 from Theorem 30. Let Xn,k = n− 1
2Xk for k = 1, 2, . . . ,n. Then, E[Xn,k] =

0 while
∑n
k=1 E[X2

n,k] =
1
n

∑n
k=1 E[X2

1] = σ
2, for eachn. Further,

∑n
k=1 E[X2

n,k1|Xn,k|>δ] = E[X2
11|X1|>δ

√
n]

which goes to zero as n → ∞ by DCT, since E[X2
1] < ∞. Hence the conditions of Lindeberg Feller

theorem are satisfied and we conclude that Sn√
n

converges in distribution to N(0, 1). �

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-
Feller CLT. We consider some examples.

Example 22

Let Xk ∼ Ber(pk) be independent random variables with 0 < pk < 1. Is Sn asymptotically
normal? By this we mean, does (Sn −E[Sn])/

√
Var(Sn) converge in distribution toN(0, 1)?

Obviously the standard CLT does not apply.
To fit it in the framework of Theorem 30, define Xn,k = Xk−pk

τn
where τ2

n =
∑n
k=1 pk(1−pk)

is the variance of Sn. The first assumption in Theorem 30 is obviously satisfied. Further,
Xn,k has mean zero and variance pk(1 − pk)/τ

2
n which sum up to 1 (when summed over

1 6 k 6 n). As for the crucial third assumption, observe that 1|Xn,k|>δ = 1|Xk−pk|>δτn . If
τn ↑ ∞ as n → ∞, then the indicator becomes zero (since |Xk − pk| 6 1). This shows that
whenever τn →∞, asymptotic normality holds for Sn.
If τn does not go to infinity, there is no way CLT can hold. We leave it for the reader to
think about, just pointing out that in this case, X1 has a huge influence on (Sn − E[Sn])/τn.
ChangingX1 from 0 to 1 or vice versa will induce a big change in the value of (Sn−E[Sn])/τn
from which one can argue that the latter cannot be asymptotically normal.

The above analysis works for any uniformly bounded sequence of random variables. Here is a
generalization to more general, independent but not identically distributed random variables.
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Exercise 24: Lyapunov’s central limit theorem

Suppose Xk are independent random variables and E[|Xk|2+δ] 6 M for some δ > 0 and
M <∞. If Var(Sn)→∞, show that Sn is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 23

If Xn are i.i.d (mean zero and unit variance) random variable, what can we say about the
asymptotics of Tn := X1 + 2X2 + . . . + nXn? Clearly E[Tn] = 0 and E[T 2

n] =
∑n
k=1 k

2 ∼ n3

3 .
Thus, if we expect any convergence to Gaussian, then it must be that n− 3

2 Tn
d→ N(0, 1/3).

To prove that this is indeed so, write n− 3
2 Tn =

∑n
k=1 Xn,k, where Xn,k = n− 3

2kXk. Let us
check the crucial third condition of Theorem 30.

E[X2
n,k1|Xn,k|>δ] = n

−3k2E[X2
k1|Xk|>δk−1n3/2 ]

6 n−1E[X21|X|>δ√n] (since k 6 n)

which when added over k givesE[X21|X|>δ√n]. SinceE[X2] <∞, this goes to zero asn→∞,
for any δ > 0.

Exercise 25
Let 0 < a1 < a2 < . . . be fixed numbers and let Xk be i.i.d. random variables with zero mean
and unit variance. Find simple sufficient conditions on ak to ensure asymptotic normality
of Tn :=

∑n
k=1 akXk.

6. Two proofs of the Lindeberg-Feller CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with
the earlier proofs and see where some modifications are required.

6.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a
product to an exponential.

Exercise 26

If zk,wk ∈ C and |zk|, |wk| 6 θ for all k, then
∣∣∣ n∏
k=1

zk −
n∏
k=1

wk

∣∣∣ 6 θn−1
n∑
k=1

|zk −wk|.

Proof of Theorem 30. The characteristic function of Sn = Xn,1 + . . .+Xn,n is given byψn(t) =
n∏
k=1

E
[
eitXn,k

]
. Again, we shall use the Taylor expansion of eitx, but we shall need both the second
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and first order expansions.

eitx =

1 + itx− 1
2t

2x2 − i
6t

3eitx
∗
x3 for some x∗ ∈ [0, x] or [x, 0].

1 + itx− 1
2t

2eitx
+
x2 for some x+ ∈ [0, x] or [x, 0].

Fix δ > 0 and use the first equation for |x| 6 δ and the second one for |x| > δ to write

eitx = 1 + itx−
1
2
t2x2 +

1|x|>δ
2

t2x2(1 − eitx
+
) −

i1|x|6δ
6

t3x3eitx
∗ .

Apply this with x = Xn,k, take expectations and write σ2
n,k := E[X2

n,k] to get

E[eitXn,k ] = 1 −
1
2
σ2
n,kt

2 + Rn,k(t)

where, Rn,k(t) := t2

2 E
[
1|Xn,k|>δX

2
n,k

(
1 − eitX

+
n,k
)]

− it3

6 E
[
1|Xn,k|6δX

3
n,ke

itX∗n,k
]
. We can bound

Rn,k(t) from above by using |Xn,k|
31|Xn,k|6δ 6 δX

2
n,k and |1 − eitx| 6 2, to get

(22) |Rn,k(t)| 6 t
2E
[
1|Xn,k|>δX

2
n,k

]
+

|t|3δ

6
E
[
X2
n,k

]
.

We want to apply Exercise 26 to zk = E
[
eitXn,k

]
and wk = 1 − 1

2σ
2
n,kt

2. Clearly |zk| 6 1 by
properties of c.f. If we prove that max

k6n
σ2
n,k → 0, then it will follow that |wk| 6 1 and hence with

θ = 1 in Exercise 26, we get

lim sup
n→∞

∣∣∣ n∏
k=1

E
[
eitXn,k

]
−

n∏
k=1

(
1 −

1
2
σ2
n,kt

2
) ∣∣∣ 6 lim sup

n→∞
n∑
k=1

|Rn,k(t)|

6
1
6
|t|3σ2δ (by 22)

To see that max
k6n

σ2
n,k → 0, fix any δ > 0 note that σ2

n,k 6 δ
2 + E

[
X2
n,k1|Xn,k|>δ

]
from which we get

max
k6n

σ2
n,k 6 δ

2 +

n∑
k=1

E
[
X2
n,k1|Xn,k|>δ

]
→ δ2.

As δ is arbitrary, it follows that max
k6n

σ2
n,k → 0 as n→∞. As δ > 0 is arbitrary, we get

(23) lim
n→∞

n∏
k=1

E
[
eitXn,k

]
= lim
n→∞

n∏
k=1

(
1 −

1
2
σ2
n,kt

2
)

.

For n large enough (and fixed t), max
k6n

t2σ2
n,k 6

1
2 and then

e−
1
2σ

2
n,kt

2− 1
4σ

4
n,kt

4
6 1 −

1
2
σ2
n,kt

2 6 e−
1
2σ

2
n,kt

2
.

Take product over k 6 n, and observe that
∑n
k=1 σ

4
n,k → 0 (why?). Hence,

n∏
k=1

(
1 −

1
2
σ2
n,kt

2
)
→ e−

σ2t2
2 .

From 23 and Lévy’s continuity theorem, we get
∑n
k=1 Xn,k

d→ N(0,σ2). �
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6.2. Proof of Lindeberg-Feller CLT by replacement method.

Proof. As before, without loss of generality, we assume that on the same probability space as
the random variables Xn,k we also have the Gaussian random variables Yn,k that are independent
among themselves and independent of all the Xn,ks and further satisfy E[Yn,k] = E[Xn,k] and
E[Y2

n,k] = E[X2
n,k].

Similarly to the earlier proof of CLT, fix n and define Uk =
∑k−1
j=1 Xn,j +

∑n
j=k+1 Yn,j and

Vk =
∑k
j=1 Xn,j+

∑n
j=k+1 Yn,j for 0 6 k 6 n. Then, V0 = Yn,1+. . .+Yn,n andVn = Xn,1+. . .+Xn,n.

Also, Vn ∼ N(0,σ2). Thus,

E [f (Vn)] − E[f(V0)] =

n∑
k=1

E [f (Vk) − f (Vk−1)](24)

=

n∑
k=1

E [f (Vk) − f (Uk)] −

n∑
k=1

E [f (Vk−1) − f (Uk)] .

We expand f(Vk) − f(Uk) by Taylor series, both of third order and second order and write

f(Vk) − f(Uk) = f
′(Uk)Xn,k +

1
2
f ′′(Uk)X

2
n,k +

1
6
f ′′′(U∗k)X

3
n,k,

f(Vk) − f(Uk) = f
′(Uk)Xn,k +

1
2
f ′′(U#

k)X
2
n,k

where U∗k and U#
k are between Vk and Uk. Write analogous expressions for f(Vk−1) − f(Uk) (ob-

serve that Vk−1 = Uk + Yn,k) and subtract from the above to get

f(Vk) − f(Vk−1) = f
′(Uk)(Xn,k − Yn,k) +

1
2
f ′′(Uk)(X

2
n,k − Y

2
n,k) +

1
6
(f ′′′(U∗k)X

3
n,k − f

′′′(U∗∗k )Y3
n,k),

f(Vk) − f(Vk−1) = f
′(Uk)(Xn,k − Yn,k) +

1
2
(f ′′(U#

k)X
2
n,k − f

′′(U##
k )Y2

n,k).

Use the first one when |Xn,k| 6 δ and the second one when |Xn,k| > δ and take expectations to get

|E[f(Vk)] − E[f(Vk−1)]| 6
1
2
E[|f ′′(Uk)|]

∣∣∣E[X2
n,k1|Xn,k|6δ] − E[Y2

n,k1|Yn,k|6δ]
∣∣∣(25)

+
1
2

∣∣∣E[|f ′′(U#
k)|X

2
n,k1|Xn,k|>δ]

∣∣∣+ 1
2

∣∣∣E[|f ′′(U##
k )|Y2

n,k1|Yn,k|>δ]
∣∣∣(26)

+
1
6

∣∣∣E[|f ′′′(U∗k)||Xn,k|
31|Xn,k|6δ]

∣∣∣+ 1
6

∣∣∣E[|f ′′′(U∗∗k )||Yn,k|
31|Yn,k|6δ]

∣∣∣(27)

Since E[X2
n,k] = E[Y2

n,k], the term in the first line (25) is the same as 1
2E[|f

′′(Uk)|]
∣∣E[X2

n,k1|Xn,k|>δ]−

E[Y2
n,k1|Yn,k|>δ]

∣∣which in turn is bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y2

n,k1|Yn,k|>δ]}.

The terms in (26) are also bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y2

n,k1|Yn,k|>δ]}.
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To bound the two terms in (27), we show how to deal with the first.∣∣∣E[|f ′′′(U∗k)||Xn,k|
31|Xn,k|6δ]

∣∣∣ 6 CfδE[X2
n,k].

The same bound holds for the second term in (27). Putting all this together, we arrive at

|E[f(Vk)] − E[f(Vk−1)]| 6 Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y2

n,k1|Yn,k|>δ]}+ δ{E[|X
2
n,k] + E[Y2

n,k]}.

Add up over k and use (24) to get∣∣∣E [f (Vn)] − E[f(V0)]
∣∣∣ 6 δ n∑

k=1
E[|X2

n,k] + E[Y2
n,k]

+ Cf

n∑
k=1

E[|X2
n,k1|Xn,k|>δ] + E[Y2

n,k1|Yn,k|>δ].

As n → ∞, the first term on the right goes to 2δσ2. The second term goes to zero. This follows
directly from the assumptions for the terms involving Xwhereas for the terms involving Y (which
are Gaussian), it is a matter of checking that the same conditions do hold for Y.

Consequently, we get lim sup
∣∣E[f(V0)] − E[f(Vn)]

∣∣ 6 2σ2δ. As δ is arbitrary, we have shown
that for any f ∈ C(3)

b (R), we have

E[f(Xn,1 + . . . + Xn,n)]→ E[f(Z)]

where Z ∼ N(0,σ2). This completes the proof that Xn,1 + . . . + Xn,n
d→ N(0,σ2). �

7. Sums of more heavy-tailed random variables

Let Xi be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see
that the sums Sn converge to Gaussian distribution after shifting (by nE[X1]) and scaling (by

√
n).

What if we drop the assumption of second moments? Let us first consider the case of Cauchy
random variables to see that such results may be expected in general.

Example 24

Let Xi be i.i.d Cauchy(1), with density 1
π(1+x2)

. Then, one can check that Snn has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write Snn
d→ C1.

If Xi were i.i.d with density a
π(a2+(x−b)2)

(which can be denoted Ca,b with a > 0, b ∈ R),
then Xi−b

a are i.i.d C1, and hence, we get
Sn − nb

an

d→ C1.

This is the analogue of CLT, except that the location change is nb instead of nE[X1], scaling
is by n instead of

√
n and the limit is Cauchy instead of Normal.

This raises the following questions.
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(1) For general i.i.d sequences, how are the location and scaling parameter determined, so
that b−1

n (Sn − an) converges in distribution to a non-trivial measure on the line?

(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what
distributions on X1 do we get b−1

n (Sn − an)
d→ C1?

For simplicity, let us restrict ourselves to symmetric distributions, i.e., X d
= −X. Then, clearly no

shifting is required, an = 0. Let us investigate the issue of scaling and what might be the limit.
Symmetric α-stable distributions Fix α > 0. Do there exist i.i.d. random variables X, Y such that
X + Y

d
= 2 1

αX? When α = 2, centered Gaussian distributions satisfy the distributional equation,
and when α = 1, the symmetric Cauchy distributions do. What about other α?

From the distributional identity, if X, Y ∼ µ are i.i.d., then the characteristic function µ̂ satisfies
µ̂(21/αt) = µ̂(t)2. As µ̂ is continuous, real-valued and symmetric, it is not hard to see that µ̂(t) =
e−c|t|

α . Of course, we don’t know if this is a valid characteristic function, i.e., if such a distribution
µ exists. This is answered in the following theorem.

Theorem 31: Symmetric stable distributions

The symmetric α-stable distribution exists if and only if 0 < α 6 2.

The proof that e−|t|α is a valid characteristic function for 0 < α 6 2 is explained in Example ??.
That it fails to be a characteristic function for α > 2 is explained in Example ??. Let us give a second
proof of the latter fact.

Proof of non-existence for α > 2. If α > 2, then t 7→ e−|t|α is a C2 function, with a maximum
at 0. If a probability measure µα with characteristic function e−|t|α were to exist, it would have
finite variance and zero mean. But taking variance of both sides in the identity X + Y

d
= 21/αX

where X, Y are i.i.d. µα, we see that 2Var(X) = 22/αVar(X). Either Var(X) = 0, in which case X = 0
a.s., or α = 2, in which case X ∼ N(0,σ2) for some σ > 0. �

Henceforth, we shall write µα for the distribution with characteristic function e−|t|α , for 0 <
α < 2 (our convention is to keep the α = 2 case of Gaussian outside the class of stable distribu-
tions). These distributions are heavy tailed. The proof above in fact shows that none of them can
have finite variance.

Theorem 32: Moments of symmetric stable distributions

Let 0 < α < 2. Then
∫
|x|pdµα(x) <∞ if p < α and

∫
|x|pdµα(x) =∞ if p > α.
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Proof. In the chapter on characteristic functions in the appendix, the following estimate is
proved:

µ([−2M, 2M]c) 6M
∫ 1/M

−1/M
(1 − µ̂(t))dt.

Applying this to µα and using the fact that 1 − e−|t|α ∼ |t|α as t → 0, we get µα([−2M, 2M]c) 6

CM× 1
M1+α = CM−α. Now, ∫

|x|pdµα(x) =

∫∞
0
µα{|x|

p > t}dt

6 C(1 +

∫∞
1
t−α/pdt)

which is finite if p < α.
To write: Proof that moments above α do not exist �

Domains of attraction of symmetric stable distributions Let µα be the symmetric α-stable distri-
bution with characteristic function e−|t|α , where 0 < α < 2. If Xi ∼ µα, then it is easy to see that
Sn/n

1/α has the same distribution as X1, in particular n− 1
αSn

d→ µα. The question is, what are
the other distributions for which Sn (with the same scaling or different) have the same limit. For
α = 2, all we needed for the CLT was that Xi have zero mean and unit variance.

We stick to symmetric distributions here. Nevertheless, it is not sufficient to ask for Xi to have
finite moments of order up to α and infinite moments beyond. A certain regularity in the tail
behaviour of the distribution is needed. The regularity is stated in terms of the important concept
of slowly varying functions. We say that L : (0,∞)→ (0,∞) is slowly varying if L(at)L(t) → 1 as t→∞,
for any a > 0. Examples are log t, powers and iterates of logarithm. Observe that tε is not slowly
varying if ε 6= 0.

Theorem 33: Convergence to symmetric stable distributions

Let Xi be i.i.d. with symmetric distribution µ. Assume that tαµ([−t, t]c) is a slowly varying
function. Define b(u) = inf{t : µ([−t, t]c) = u}. Then

Sn

b(1/n)
d→ µα.

What is the scaling b(1/n) here? If µ([−t, t]c) ∼ Ct−α, then b(1/n) � n1/α. But if µ([−t, t]c) ∼
Ct−α log t, thenb(1/n) � n 1

α (logn) 1
α and ifµ([−t, t]c) ∼ Ct−α/ log t, thenb(1/n) � n 1

α (logn)− 1
α .

Thus the exact scaling depends on the correction to t−α in the tail of µ. The limit distribution does
not.

The proof of the above theorem requires another limit theorem that is of fundamental impor-
tance in itself.
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7.1. Poisson limit theorems. We know that Bin(n, λ/n) d→ Pois(λ) as n → ∞. Like the de
Moivre Laplace theorem, this is just a baby version of a rather widespread phenomenon. Here is
one particular version of it.

Theorem 34: Poisson convergence of sums of independent Bernoullis

Let ξn,j ∼ Ber(pn,j), 1 6 j 6 n, be a triangular array of Bernoulli random variables such
that (1) For each n, the variables ξn,1, . . . , ξn,n are independent, (2) pn,1 + . . . + pn,n → λ

as n → ∞, (3) p∗n := max
j6n

pn,j → 0 as n → ∞. Then Sn := ξn,1 + . . . + ξn,n converges in

distribution to Pois(λ).

Proof. By a direct calculation,

P{Sn = `} =
∑

j1<...<j`6n

∏̀
i=1

pn,ji
∏

i 6∈{j1,...,j`}

(1 − pn,j)

=

n∏
i=1

(1 − pn,j)
∑

j1<...<j`

∏̀
r=1

pn,jr
1 − pn,jr

.

From the inequality e−x > 1 − x > e−x−x
2 (valid when |x| 6 1

2), for large enough n,

e−
∑n
j=1(pn,j+p

2
n,j) 6

n∏
i=1

(1 − pn,j) 6 e
−
∑n
j=1 pn,j ,

ep
∗
n 6

1
1 − pn,jr

6 ep
∗
n(1+p∗n).

Thus,

e−
∑n
j=1(pn,j+p

2
n,j)ep

∗
n

∑
j1<...<j`

∏̀
r=1

pn,jr 6 P{Sn = `} 6 e−
∑n
j=1 pn,jep

∗
n(1+p∗n)

∑
j1<...<j`

∏̀
r=1

pn,jr

Now,
∑n
j=1 pn,j → λ and

∑n
j=1 p

2
n,j 6 p

∗
n

∑n
j=1 pn,j → 0. Thus the exponential factors outside the

sum on both left and right converge to e−λ. Further,

∑
j1<...<j`

∏̀
r=1

pn,jr =
1
`!


 n∑
j=1

pn,j

` − ∗∑
j1,...,j`

∏̀
r=1

pn,jr


where the second sum is over tuples (j1, . . . , j`) of which at least two are equal. The first term inside
the brackets converges to λ`. As

∑
j1=j2

∏̀
r=1

pn,jr 6

∑
j

p2
n,j

∑
j

pn,j

`−2

→ 0,
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and the same is true of the other
(
`
2
)

possible pairs of equal (jr, js), we conclude that∑
j1<...<j`

∏̀
r=1

pn,jr →
1
`!
λ`.

In summary, P{Sn = `}→ e−λ λ
`

`! for ` ∈ N, and thus Sn
d→ Pois(λ). �

Alternate proof. For t ∈ R,

E[eitSn ] =
n∏
k=1

(1 − pn,j + pn,je
it).

By Exercise 26,∣∣E[eitSn ] − n∏
j=1

e−pn,j+pn,je
it∣∣ 6 n∑

j=1

∣∣e−pn,j+pn,je
it

− (1 − pn,j + pn,je
it)
∣∣

6 C
n∑
j=1

p2
n,j

which converges to 0. As
∏n
j=1 e

−pn,j+pn,je
it → e−λ+λe

it , which is the characteristic function of
Pois(λ), we see that Sn

d→ Pois(λ). �

7.2. Proof of Theorem 33. The proof is very different from all the proofs of central limit the-
orem, because the underlying phenomena are themselves different. In CLT, all the variables con-
tribute about the same, but for the heavy tailed variables under consideration, the sum Sn essen-
tially comes from the largest few Xis.

For example, if P{X1 > x} ∼ Cx−α, then the expected number of X1, . . . ,Xn that are above x
is Cnx−α, which shows that the maximum Mn = max{X1, . . . ,Xn} is not likely to be significantly
more than n1/α. By the second moment method, one can show that Mn is of the order of n1/α,
which is also the order of magnitude of Sn (as the statement of Theorem 33 asserts). Contrast this
with the Gaussian case, where the maximum is of order

√
lognwhile the sum is of order

√
n.

First we prove a Theorem that is in the same spirit as Theorem 33, but technically much simpler.

Theorem 35: Poissonized version of convergence to symmetric stable distributions

Let Xi be i.i.d. with symmetric distribution µ and let Kn ∼ Pois(n) be independent of Xis.
Assume that tαµ([−t, t]c) is a slowly varying function. Define b(u) = inf{t : µ([−t, t]c) 6 u}.
Then

SKn
b(1/n)

d→ µα.

Proof. The advantage of considering SKn instead of Sn is that its characteristic function can be
written in a form similar to that of µα. Define the measure µn by µn(J) = 2nµ(anJ) for J ∈ BR and
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let an = b(1/n). We claim that

E
[
eitSKn/an

]
= exp

{∫∞
0
(cos(tu) − 1)dµn(u)

}
.(28)

To see this2, let Mn = δX1/an + . . . + δXKn/an , a random measure, in terms of which a−1
n SKn =∫

tdMn(t). For δ > 0, let Ij,δ = (jδ, (j + 1)δ] and ϕδ =
∑
j>1 jδ(1Ij,δ − 1−Ij,δ). Then ϕδ(t) → t as

δ ↓ 0, and |ϕδ(t)| 6 t. Hence, by DCT,

SKn
an

= lim
δ↓0

∞∑
j=1

jδMn(Ij,δ) −

∞∑
j=1

jδMn(−Ij,δ) a.s.

If J1, . . . , Jk are pairwise disjoint intervals, thenMn(J1), . . . ,Mn(Jk) are independent random vari-
ables withMn(J) ∼ Pois(nµ(anJ)). This is a well-known fact about thinning of Poissons. Thus, for
fixed δ > 0, the quantity on the right is a weighted sum of independent Poisson random variables,
hence it has characteristic function (using the symmetry µ(Ij,δ) = µ(−Ij,δ))

exp


∞∑
j=1

nµ(Ij,δ)(e
itjδ + e−itjδ − 1)

 = exp


∞∑
j=1

2nµ(Ij,δ)(cos(jδ) − 1)

 .

The exponent is 2
∫∞

0 (cos(ϕδ(t))−1)dµn(t), hence it converges to 2
∫∞

0 (cos t−1)dµn(t) by another
application of DCT. This proves (28).

Now we need to let n→∞. For any s > 0,

µn[s,∞) = nµ[an,∞)× µ[san,∞)

µ[an,∞)
→ 1

2sα

as nµ[an,∞) = 1/2 by choice of an, and using the fact that sαµ[san,∞) is slowly varying. This is
almost like saying thatµn (restricted to (0,∞)) converges in distribution to the measure 1

2αs
−α−1ds.

However the limiting measure here is infinite, and hence we need to justify that

2
∫∞

0
(cos t− 1)dµn(t)→

∫∞
0
(cos t− 1) α

tα+1dt.(29)

Once we justify (29), the proof is complete, as it shows that the characteristic function of SKn/n1/α

converges pointwise to the characteristic function of µα (refer back to the definition of µα). �

To justify (29), we fix ε > 0 and divide the integral over (0, ε), [ε, 1/ε] and (1/ε,∞). Since the
limiting integral is convergent, we can choose ε small enough to make the first and third integrals
smaller than ε. On [ε, 1/ε], the measures are finite, and we can scale and pretend that we are
working with probability measures to conclude that (we leave the details as exercise)

2
∫ 1/ε

ε

(cos t− 1)dµn(t)→
∫ 1/ε

ε

(cos t− 1) α

tα+1dt.

2If you are familiar with Poisson processes, it is possible to see this formula and nod “yes, it is obvious”. The
explanation given is for those who did not nod.
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It only remains to show that the first and third integrals can be made arbitrarily small uniformly
over n, by choosing ε small. As the integrand is bounded by 2, the third integral is bounded by

4µn[1/ε,∞) = 4nµ[an,∞)
µ[an/ε,∞)

µ[an,∞)
∼ 2εα

by the same argument that we used above. This shows that the third integral can be made uni-
formly small by choosing ε small enough. The first integral is to complete
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CHAPTER 7

More about sums of independent random variables

Sums of independent random variables are very important, and have played a central role in
the development of the concepts of probability theory. People have delved far more deeply into
this topic than anyone today wants to know1! In this chapter we give a few isolated snippets. Some
of these are usually taught in probability courses, some not so much.

(1) Law of iterated logarithm.

(2) Cramer’s theorem of large deviations.

(3) Anti-concentration inequalities.

(4) Error estimates in the central limit theorem.

1. The law of iterated logarithm

If an ↑∞ is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup Snan
is constant a.s. What is this constant?

If Xi have finite mean and an = n, the strong law tells us that the constant is zero. What if
we divide by something smaller, such as nα for some α < 1? To probe this question further, let us
assume that Xi are i.i.d. Ber±(1/2) random variables. Then using higher moments (just as we did
in proving strong law under fourth moment assumption), we can get better results. For example,
from the fact that E[S4

n] = n + 3n(n − 1) (check!), we can see that lim sup Snan = 0 a.s. if an = nα

with α > 3
4 . More generally, we reason as follows. For a positive integer p,

P{Sn > tn} 6 E[S2p
n ]t−2p

n 6 Cpn
pt−2p
n

where we used the fact thatE[S2p
n ] 6 Cpnp for a constantCp. Assuming this, we see that if tn = nα

with α > 1
2 , then we can choose a p large enough to make the probabilities summable. By Borel-

Cantelli it follows that n−αSn
a.s.→ 0 as n→∞.

To see that E[S2p
n ] 6 Cpnp, expand S2p

n as a sum of monomial terms Xk1
1 . . .Xknn where ki are

non-negative integers that sum to 2p. When we take expectations, this factors as E[Xk1
1 ] . . .E[Xknn ].

If any ki is odd, then the product is zero. If all kis are even, the product is 1. We need to count the

1A great deal of it was developed in the Soviet union. One particular reference is Petrov’s Sums of independent random

variables
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number of monomials of the latter type: Since each ki is even, there are at most p of them that are
not zero. The subset of such indices can be chosen in

(
n
p

)
6 np ways. Once the indices are chosen,

the number of monomials are at most the number of ways to distribute 2p balls into p bins. Let
this number be Cp. With all the overcounting, we still get E[S2p

n ] 6 Cpnp, as claimed.
Instead of using moments, one may use Hoeffding’s inequality to see that lim sup Snan = 0 even

if an = hn
√
n logn for any sequence hn → ∞. In the converse direction, one can show that

lim sup Sn√
n

= +∞, a.s. (let us accept this without proof for now). This motivates the question of
what is the right order of (limsup) growth of Sn? In other words, we want a deterministic sequence
an such that lim supSn/an is finite and strictly positive. Since the lim sup is a constant a.s., we can
scale by that and reformulate the question as follows.

Question: Let Xi be i.i.d Ber±(1/2) random variables. Find an so that lim sup Snan = 1 a.s.
The sharp answer, due to Khinchine is one of the great results of probability theory.

Theorem 36: Khinchine’s law of iterated logarithm

Let Xi be i.i.d. Ber±(1/2) random variables. Then,

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

By symmetry, the liminf of Sn/
√

2n log logn is equal to −1 almost surely. From these two,
one can also deduce (since the difference between successive terms is 1/

√
2n log logn that goes to

zero) that the set of all limit points of the sequence {Sn/
√

2n log logn} is equal to [−1, 1], almost
surely.

The law of iterated logarithms was extended to general distributions with finite variance by
Hartman and Wintner (with intermediate improvements by Kolmogorov and perhaps others).
Here we only prove the theorem for Bernoullis (the general case is more complicated and a clean
way to do it is via Brownian motion in the next course).

Result 1: Hartman-Wintner law of iterated logarithm

Let Xi be i.i.d. with mean µ and finite, non-zero variance σ2. Then,

lim sup
n→∞

Sn − nµ

σ
√

2n log logn
= 1 a.s.
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2. Proof of LIL for Bernoulli random variables

Let X1,X2, . . . be i.i.d. Ber±(1/2) random variables. Theorem 36 follows from the following two
statements. For any δ > 0, we have

lim sup
n→∞

Sn√
2n log logn

6 1 + δ a.s.(30)

lim sup
n→∞

Sn√
2n log logn

> 1 − δ a.s.(31)

Taking intersection over countably many values of δ, e.g., δ = 1
k , k > 1, we get the statement of

LIL. To motivate the principal idea in the proof, consider the following toy situation.

Example 25: Borel-Cantelli after blocking

Let Bn be events in a probability space and let A1 = B1, A2 = A3 = B2, A4 = A5 = A6 = B3

and so on (nmanyAis are equal toBn). To show that only finitely manyAns occur a.s., if we
apply Borel-Cantelli lemma to Ans naively, we get the sufficient condition

∑
nP(Bn) < ∞.

This is clearly foolish, as the event {An i.o.} is the same as {Bn i.o.}, and the latter has zero
probability whenever

∑
P(Bn) <∞, a much weaker condition!

What this suggests is that when we have a sequence ofAns and want to show that P{An i.o.} =
0, it may be good to combine together those Ais that are close to each other. For example, we can
take a subsequence 1 = n1 < n2 < . . . and set Ck to be the union of Ans with nk 6 n < nk+1.
If only finitely many Cks occur, the only finitely many Ans occur, and thus it suffices to show that∑
k P(Ck) < ∞. The naive union bound P(Ck) 6

∑nk+1
n=nk

P(An) takes us back to the condition∑
n P(An) <∞, but the point is that there may be better bounds for P(Cn) than the union bound.

Proof of the upper bound (30). Write an =
√

2n log logn. We want to show that only finitely
many of the events An = {Sn > an(1 + δ)} occur, a.s. We use blocking as follows. Fix λ > 1 and
set nk = bλkc. Define the events

Ck =

nk+1−1⋃
n=nk

An = {Sn > an(1 + δ) for some nk 6 n < nk+1},

Dk =

nk+1−1⋃
n=nk

An = {Sn > ank(1 + δ) for some nk 6 n < nk+1}.

Then Ck ⊆ Dk as an is increasing in n. Thus if we show that
∑
k P(Dk) < ∞, it follows that only

finitely many Cn occur a.s. and hence only finitely many An occur a.s. We claim that

P(Dk) 6 Cλk−(1+δ)2/λ where Cλ <∞ for any λ > 1.(32)
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Granting this, it is clear that choosing 1 < λ < (1+δ)2 ensures summability of P(Dk). We give two
proofs of the inequality (32) below, which completes the proof. �

Proof of (32) via the reflection principle: The following lemma is of interest in itself and useful.

Lemma 18: Reflection principle/Ballot problem

Let Xk be i.i.d. Ber±(1/2) random variables. Then for any integer a > 0, we have

2P{Sn > a} 6 P{max{S0, . . . ,Sn} > a} 6 2P{Sn > a}.

Equality holds if n and a have opposite parity.

Chapter-3 of Feller’s vol-1 is highly recommended for more such beautiful combinatorial facts
about simple symmetric random walks.

Proof. Break the event max{S0, . . . ,Sn} > a as a union of pairwise disjoint events

Ak = {S0 < a, . . . ,Sk−1 < a,Sk = a}, k = 1, . . . ,n.

By the symmetry of Sn − Sk and its independence from Ak,

P({Sn > a} ∩Ak) = P({Sn − Sk > 0} ∩Ak)

= P{Sn − Sk > 0}P{Ak} >
1
2
P(Ak).(33)

Sum over k. On the right we get 1
2P{max{S0, . . . ,Sn} > a} while on the left we get P{Sn > a} (since

{Sn > a} ⊆ A1 ∪ . . . ∪ An). Hence the second inequality is proved. To prove the first inequality,
using the same idea, write

P({Sn > a} ∩Ak) = P({Sn − Sk > 0} ∩Ak)

= P{Sn − Sk > 0}P{Ak} 6
1
2
P(Ak).(34)

Add up over k to get 2P{Sn > a} 6 P{max{S0, . . . ,Sn} > a}.
If n has the opposite parity, then P{Sn = a} = 0, hence all three probabilities in the statement

are equal. �

Returning to the proof of (32), ifDk occurs, then there is some n 6 nk+1 (in fact some n > nk)
such that Sn > ank(1 + δ). The reflection principle in Lemma 18 applies to give the bound

P(Dk) 6 2P{Snk+1 > ank(1 + δ)}

6 2e−
(1+δ)2a2

nk
2nk+1 (by Hoeffding’s inequality).
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The exponent is (omitting integer part for simplicity of notation)
(1 + δ)22λk log log λk

2λk+1 =
(1 + δ)2

λ
log(k log λ)(35)

from which (32) immediately follows. �

Proof of (32) via the modified Markov inequality (??): Let Xk =
∑nk+1−1
n=nk

1Sn>ank(1+δ), so that
Dk is the event that Xk > 1. Apply the strengthened form of Markov’s inequality (??) to write

P(Dk) = P{Xk > 1} 6 E[Xk]
E[Xk | Xk > 1]

.

What we need is an upper bound for the numerator and a lower bound for the denominator.
To get an upper bound for E[Xk], use Hoeffding’s inequality to write

E[Xk] =
nk+1−1∑
n=nk

P{Sn > ank(1 + δ)} 6
nk+1−1∑
n=nk

exp

{
−
a2
nk

(1 + δ)2

2n

}

6 (nk+1 − nk) exp

{
−
a2
nk

(1 + δ)2

2nk+1

}
where we bounded all terms by the largest one (which is the last one).

Next we claim that c(nk+1 − nk) (for some c > 0) is a lower bound for E[Xk
∣∣ Xk > 1]. The

heuristic idea is that if Xk > 1, there is some (random)N ∈ [nk,nk+1) for which SN > ank(1+ δ).
If we fix that N and regard it as given, then Sn − SN has a symmetric distribution about 0 for any
n, hence P{Sn − SN > 0} > 1

2 , which would imply that E[Xk | Xk > 1] > 1
2(nk+1 − nk). This

reasoning is faulty, as the way we chooseN (which is a random variable) may invalidate the claim
that Sn − SN has a symmetric distribution.

To make the reasoning precise, write Xk = Yk+Zk where Yk is the number of n in the first half
of the interval [nk,nk+1) for which Sn > ank(1+δ) andZk is the analogous number for the second
half of [nk,nk+1). Then Xk1Xk>1 >

1
2(Yk1Zk>1 + Zk1Yk>1) and {Xk > 1} ⊆ {Yk > 1} ∪ {Zk > 1}.

Consequently,

E[Xk | Xk > 1] =
E[Xk1Xk>1]

P{Xk > 1}
>

1
2
E[Yk1Zk>1] + E[Zk1Yk>1]

P{Zk > 1}+ P{Yk > 1}

>
1
2

min
{
E[Yk1Zk>1]

P{Zk > 1}
,
E[Zk1Yk>1]

P{Yk > 1}

}
=

1
2

min{E[Yk | Zk > 1],E[Zk | Yk > 1]}.

In the second line we used the elementary inequality a+b
c+d > min{ac , bd } valid for any non-negative

numbers a,b, c,d. Now consider the second term inside the minimum. Since Yk > 1, condition on
the location N in the first half of [nk,nk+1) where Sn > ank(1 + δ) and use the fact that Sn − SN,
n > N, is still a simple symmetric random walk, and hence for any n in the second half, has
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probability 1/2 or more to be non-negative. Therefore, E[Zk | Yk > 1] > 1
4(nk+1 − nk). Similarly

(considering the random walk in backwards direction starting from nk+1), reason that E[Yk | Zk >
1] > 1

4(nk+1 − nk). Putting all this together, E[Xk | Xk > 1] > 1
8(nk+1 − nk).

Thus,

P(Dk) 6
(nk+1 − nk) exp

{
−
a2
nk

(1+δ)2

2nk+1

}
1
8(nk+1 − nk)

6 8e−
a2
nk

(1+δ)2

2nk+1 .

By the computation shown in (35), this is of the form given in (32). �

2.1. Proof of the lower bound (31). Again we choose a subsequence nk = bλkc, the difference
being that we shall choose λ to be a large constant in the end. It suffices to show for any δ > 0 that

P{Snk > (1 − 2δ)ank i.o.} = 1(36)

where an =
√

2n log logn as before. By the upper bound and the symmetry of Sn, we know that
almost surely, Snk > −2ank for all but finitely many k. Also, ank 6 ank+1/

√
λ, hence

Snk+1 > Snk+1 − Snk −
2√
λ
ank+1

for all but finitely many k, a.s. Therefore, (36) follows if we choose λ > 4/δ2 and show that

P{Snk+1 − Snk > (1 − δ)ank+1 i.o.} = 1.

These events are independent across k, and hence a good lower bound on the individual probabil-
ities is sufficient. The one given below in Claim 7 gives

P{Snk+1 − Snk > (1 − δ)ank+1} >

√
2√

π(nk+1 − nk)
exp

{
−
(1 − δ)2a2

nk+1

2(nk+1 − nk)

}

=

√
2√

πnk+1(1 − 1
λ)

exp

{
−
(1 − δ)2 log lognk+1

1 − 1
λ

}

Claim 7: An estimate for binomial coefficients
If n,k→∞ in such a way that |k− 1

2n| 6 n
2/3, then(

n
n+k

2

)
1

2n
∼

√
2√
πn
e−

k2
2n .

In particular, for such k, we have

P{Sn > k} > e−
1
2
k2
2n

In a basic probability class you may have seen the de Moivre-Laplace theorem that compares
binomial coefficients to the Gaussian density. This one is almost the same, except that in the de
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Moivre-Laplace theorem one only needs k = 1
2n+x

√
nwith fixed x, while here we allow x to grow

like O(n1/6).

Proof. The first one is just by Stirling’s approximation. �

3. Law of iterated logarithm for general i.i.d. random variables

Hartman and Wintner showed in that if Xk are i.i.d. with zero mean and unit variance, then

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

This extends Khinchine’s LIL for Bernoulli random variables. It also immediately implies that the
lim inf of the same quantities is−1 and that the set of limit points of the sequence {Sn/

√
2n log logn}

is equal to [−1, 1] a.s. The easiest way to prove this is using Brownian motion. For now, we present
an earlier law of iterated logarithm due to Kolmogorov, which is restrictive in asking for the Xk to
be bounded, but relaxes the requirement of identical distribution.

Theorem 37: Kolmogorov (1929)

Let Xk be independent random variables with E[Xk] = 0, Var(Xk) = σ2
k and |Xk| 6 Bk

a.s. Let τ2
n = σ2

1 + . . . + σ2
n and assume that (1) τ2

n → ∞ as n → ∞ and (2) Bn =

o(τ2
n/
√

log log τn). Then,

lim sup
n→∞

Sn√
2τ2
n log log τn

= 1 a.s.

The excuse for discussing this theorem is to show the techniques. In particular, pay attention to
how Kolmogorov finds substitutes for the estimates that were easily obtained for Bernoulli random
variables, some of which look delicate and not easy to generalize. These are (1) Bernstein like
estimate for the probability that Sn is large. (2) Corresponding lower bound of Gaussian type.
(3) Reflection principle that allowed to control the maximum of Sk, k 6 n, by Sn.

The key probability estimates are in the following lemma.

Lemma 19: Gaussian tail bounds analogue

Let Xk be as in the statement of Theorem 37. Fix n > 1. Let B∗n = max
k6n

Bk.

(1) Upper bound:

P{Sn > t} 6

e
−(1−ε) t2

2τ2
n for t 6 ε τ

2
n

B∗n
, where ε 6 1.

e
− t

4B∗n for t > τ2
n

B∗n
.

(2) P{Sn > t} > e
−(1+ε) t2

2τ2
n for aετn 6 t 6 bε τ

2
n

Bn
where aε → ∞ and bε → 0 as ε ↓ 0.

In fact, we may take bε = Θ(ε2) and aε = Θ( 1
ε2 log 1

ε).
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Let S∗n = max{S0,S1, . . . ,Sn}.

Lemma 20: Reflection principle analogue

P{S∗n > t} 6 2P{Sn > t−
√

2τn}.

Proof. Let J = min{k 6 n : Sk > t}, which is well-defined on the event {S∗n > t}. Conditional
on J = j, we know that Sj 6 t + Bj. By Chebyshev’s inequality, Sn − Sj > −

√
2(τn − τj) with

probability at least 1
2 . Thus P{Sn > t+Bj−

√
2(τn− τj)

∣∣∣∣∣∣ J = j} > 1
2 . Dropping the Bj+

√
2τj term

which is positive, P{Sn > t−
√

2τn
∣∣∣∣∣∣ J = j} > 1

2 . Multiply by P{J = j} and sum over 1 6 j 6 n to get

P{Sn > t−
√

2τn} >
1
2

n∑
j=1

P{J = j} =
1
2
P{S∗n > t}.

This proves the lemma. �

Now we come to the proof of the LIL. Let ϕ(n) =
√

2τn log log τn. The second assumption
can be written as Bnϕ(n)

τ2
n
→ 0.

Proof of the upper bound in the LIL. Fix 0 < δ < 1 and choosen0 >
1
δ such that

√
log log τn0 >

8
δ and 2Bnϕ(n) 6 δτ2

n for n > n0. Then define n0 < n1 < n2 < . . . successively by choosing
nk+1 = b(1 + δ)nkc. The condition δn0 > 1 ensures that nk+1 > nk.

Let En = {Sn > (1 + δ)2ϕ(n)} and let E∗k = ∪nk+1
n=nk+1En. The goal is to show that P(E∗k)

is summable, which implies that only finitely many E∗ks occur a.s., hence only finitely many Ens
occur a.s.

Observe that if E∗k occurs then S∗nk+1
> (1 + δ)2ϕ(nk). By Lemma 20,

P{E∗k} 6 P{Snk+1 > (1 + δ)2ϕ(nk) −
√

2τnk+1}

6 P{Snk+1 > (1 + δ)ϕ(nk+1) −
ϕ(nk+1)√

log log τnk+1

}

6 P{Snk+1 > (1 +
7δ
8
)ϕ(nk+1)}

as
√

log log τn0 >
8
δ . By the first part of Lemma 19, with ε = δ (satisfied by the requirement

2Bnϕ(n) 6 δτ2
n for n > n0), we see that this probability is bounded by

exp

{
−(1 − δ)(1 +

7
8
δ)2
ϕ(nk+1)

2

2τ2
nk+1

}
6 exp{−(1 +

δ

2
) log log τnk+1} (if δ if small enough)

=
1

(log τnk+1)
1+ δ

2
.

As log τnk � k, this is summable. Hence E∗k occurs only finitely many times, a.s. �
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Proof of the lower bound in the LIL. Fix θ > 1 and δ > 0. Inductively choose nk+1 to be the
smallest n > nk so that θτnk 6 τn. Then log τnk ∼ k log θ. By the limsup upper bound and
negating the Xis, we see that Sn > −(1 + δ)ϕ(n) for all large n.

Now fix some k and suppose that Snk > −(1+δ)ϕ(nk). We apply the second part of Lemma 19
with n = nk+1 − nk and t = (1 − δ)ϕ(nk+1). Then

(1) t
τn
> c
√

log log τn →∞ and

(2) t
τ2
n/Bn

6
Bn
√

2 log logτn
τn

→ 0 by assumption.

Therefore, Lemma 19 applies for large enough k, and

P{Snk+1 − Snk > (1 + δ)ϕ(nk+1)} > e
−(1+δ) ϕ(nk+1)

2
2τnk+1−τnk .

The exponent is
τnk+1 log log τnk+1

τnk+1 − τnk
> log k

�

4. Anti-concentration
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CHAPTER 8

Appendix: Characteristic functions and their properties

Definition 17
Let µ ∈ P(R). The function µ̂ : Rd → C defined by µ̂(t) :=

∫
R e
itxdµ(x) is called the

characteristic function or the Fourier transform ofµ. IfX is a random variable whose distribution
is µ, we also refer to µ̂ as the “characteristic function of X” and denote it ψX.

There are various other “integral transforms” of a measure that are closely related to the c.f. For
example, t 7→

∫
etxdµ(x) (if it exists) is called the moment generating function of µ . The probabil-

ity generating function of a probability measure µ supported on N is defined by t 7→
∫
txdµ(x) =∑

k>0 µ{k}t
k (which exists for |t| < 1), and so on. The characteristic function has the advantage

that it exists for all t ∈ R and for all finite measures µ.
The importance of c.f comes from the following facts, which we shall discuss and prove one by

one1.

(A) It transforms well under certain operations, such as shifting, scaling and under convolu-
tions. The last of these makes it a tool of amazing power in studying sums of independent
random variables.

(B) The characteristic function determines the measure. Further, the smoothness of the char-
acteristic function encodes the tail decay of the measure, and vice versa. In general, c.f.
encodes properties of the distribution in a not-so-direct but still tractable manner.

(C) µ̂n(t) → µ̂(t) pointwise, if and only if µn
d→ µ. The forward implication is the key

property that is used in proving central limit theorems.

(D) There exist necessary and sufficient conditions for a complex valued function on the real
line to be the c.f. of a measure. Because of this and part (B), sometimes one defines a
measure by its characteristic function.

0.1. Basic observations. We state some basic properties of characteristic functions.

1In addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is
an excellent resource for the basics of characteristic functions. Our presentation is based on it too.

153



Theorem 38
Let X, Y be random variables with distributions µ,ν respectively.

(1) For any a,b ∈ R, we have ψaX+b(t) = eibtψX(at).

(2) If X, Y are independent, then ψX+Y(t) = ψX(t)ψY(t).

Proof. (1) ψaX+b(t) = E[eit(aX+b)] = E[eitaX]eibt = eibtψX(at).

(2) ψX+Y(t) = E[eit(X+Y)] = E[eitXeitY ] = E[eitX]E[eitY ] = ψX(t)ψY(t). �

Lemma 21
Let µ ∈ P(R). Then, µ̂ is a uniformly continuous function on R with |µ̂(t)| 6 1 for all t with
µ̂(0) = 1. (equality may be attained elsewhere too).

Proof. Clearly µ̂(0) = 1 and |µ̂(t)| 6
∫
|eitx|dµ(x) = 1. Further,

|µ̂(t+ h) − µ̂(t)| 6
∫
|ei(t+h)x − eitx|dµ(x) =

∫
|eihx − 1|dµ(x).

As h → 0, the integrand |eihx − 1| → 0 and is also bounded by 2. Hence by the dominated
convergence theorem, the integral goes to zero as h → 0. The uniformity is clear as there is no
dependence on t. �

Lemma 22: Parseval’s identity

If µ,ν ∈ P(R), then
∫
µ̂ dν =

∫
ν̂ dµ.

Proof. Integrate (x,y) 7→ eixy against µ ⊗ ν in two ways, using Fubini’s theorem. The two
iterated integrals are

∫∫
eixydµ(x)dν(y) =

∫
µ̂dν and

∫∫
eixydν(y)dµ(x) =

∫
ν̂dµ. �

0.2. Decay and smoothness. Smoothness of the characteristic function is related to the tail
decay of the measure and smoothness of the measure is related to the tail decay of the characteristic
function. We give some statements illustrating all four directions of implication.

Theorem 39: Decay of the measure to smoothness of Fourier transform

Let µ ∈ P(R). If
∫
|x|kdµ(x) <∞ for some k ∈ N, then µ̂ ∈ C(k)(R) and

µ̂(k)(t) =

∫
R
(ix)keitxdµ(x).
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Proof. It is a matter of justifying the differentiation w.r.t. tunder the integral µ̂(t) =
∫
eitxdµ(x).

We show it for k = 1 and leave the rest as an exercise. As h−1(ei(t+h)x − eitx)→ ixeitx as h→ 0
and h−1|ei(t+h)x − eitx| 6 |x| by mean value theorem, if

∫
|x|dµ(x) <∞ then DCT justifies

lim
h→0

1
h

∫
(ei(t+h)x − eitx)dµ(x) =

∫
ixeitxdµ(x)

which is the same as µ̂ ′(t) =
∫
ixeitxdµ(x). �

In fact, by expanding eitx in finite order Taylor expansion and applying expectations, one can
write the Taylor expansion for µ̂ with coefficient given by moments of µ.

Theorem 40: Smoothness of measure to decay of Fourier transform

Let µ ∈ P(R). Assume that µ has density fwith respect to Lebesgue measure.

(1) (Riemann-Lebesgue lemma). µ̂(t)→ 0 as t→ ±∞.

(2) If f ∈ C(k), then µ̂(t) = o(|t|−k) as t→ ±∞.

Proof. First assume that f is smooth and that its derivatives are also integrable (and hence
vanish at infinity). Then, integrating by parts, we get

µ̂(t) = −

∫
1
it
eitxf ′(x)dx

which is bounded by 1
|t|‖f‖L1(R). This goes to 0 as |t|→∞. In general, we can approximate f by a

smooth g whose derivatives are integrable so that ‖f − g‖L1(R) 6 ε. Then ‖f̂ − ĝ‖sup 6 ε (we use
f̂(t) for

∫
f(x)eitxdx). Therefore,

lim sup
t→±∞ |f̂(t)| 6 lim sup

t→±∞ |ĝ(t)|+ ε = ε

as ĝ(t)→ 0. This completes the proof of the first part.
Observe that the positivity of f was not used, only its integrability. Hence if f is k times differ-

entiable and f(k) ∈ L1(R), then f̂(k)(t) = o(1) as t → ±∞. Now, integrating by parts we see that
f̂(t) = (−i/t)kf̂(k)(t), which is o(t−k). �

Theorem 41: Smoothness of the characteristic function to the decay of the measure

Let µ ∈ P(R). Then, for anyM > 0,

µ([−2M, 2M]c) 6M
∫M
−M

(1 − µ̂(t))dt.
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Proof. Let δ = 1/M and write∫δ
−δ

(1 − µ̂(t)) dt =

∫δ
−δ

∫
R
(1 − eitx) dµ(x) dt =

∫
R

∫δ
−δ

(1 − eitx) dt dµ(x)

=

∫
R

(
2δ− 2 sin(xδ)

x

)
dµ(x) = 2δ

∫
R

(
1 −

sin(xδ)
xδ

)
dµ(x).

When δ|x| > 2, we have sin(xδ)
xδ 6 1

2 (since sin(xδ) 6 1). Therefore, the integrand is at least 1
2 when

|x| > 2
δ and the integrand is always non-negative since | sin(x)| 6 |x|. Therefore we get∫δ

−δ
(1 − µ̂(t))dt > δµ ([−2/δ, 2/δ]c) .

This is the claim. �

Theorem 42: Decay of the Fourier transform to the smoothness of the measure

If µ̂ ∈ L1(R), then µ has a bounded continuous density f given by

f(x) =
1

2π

∫
e−itxµ̂(t)dt.

If further tkµ̂(t) is integrable over R, then f is k times differentiable.

The first part is proved below under the heading of Fourier inversion formula. Once that is
proved, we have essentially express f as the Fourier transform of µ̂ (except for the negative sign in
the exponent and the factor of 1/2π). Hence, the earlier proof, where we showed that if the kth
moment is finite, then the characteristic function is k times differentiable, applies here with µ̂(t)dt
taking the place of the measure.

0.3. Examples. We give some examples.

(1) If µ = δ0, then µ̂(t) = 1. More generally, if µ = p1δa1 + . . .+ pkδak , then µ̂(t) = p1e
ita1 +

. . . + pkeitak .

(2) If X ∼ Ber(p), then ψX(t) = peit + q where q = 1 − p. If Y ∼ Binomial(n,p), then,
Y
d
= X1 + . . . + Xn where Xk are i.i.d Ber(p). Hence, ψY(t) = (peit + q)n.

(3) Let X,X ′ ∼ unif[−1, 1] be independent and let Y = X+ X ′. The density of X is 1
2 on [−1, 1]

while that of Y is 1
2(1−

1
2 |x|) for |x| 6 2. The characteristic function of X is easily computed

to be sin t/t and hence the characteristic function of Y is (sin t/t)2.

(4) The characteristic function of Pois(λ) distribution is∑
k>0

eikte−λ
λk

k!
= e−λ+λe

it .
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(5) If X ∼ Exp(λ), then ψX(t) =
∫∞

0 λe
−λxeitxdx = λ

λ−it . If Y ∼ Gamma(ν, λ), then if ν is an
integer, then Y d= X1+ . . .+Xν where Xk are i.i.d Exp(λ). Therefore,ψY(t) = λν

(λ−it)ν . This
is true even if ν is not an integer, but the proof would have to be a direct computation.

(6) Laplace distribution having density 1
2e

−|x| on all of R has characteristic function 1
1+t2 .

This is similar to the previous example and left as an exercise.

(7) Y ∼ Normal(µ,σ2). Then, Y = µ + σX, where X ∼ N(0, 1) and by the transofrmatin rules,
ψY(t) = e

iµtψX(σt). Thus it suffices to find the c.f of N(0, 1). Denote it by ψ.

ψ(t) =
1√
2π

∫
R
eitxe−

x2
2 dx = e−

t2
2

(
1√
2π

∫
R
e−

(x−it)2
2 dx

)
.

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of
a normal density with mean it and variance σ2. But if the mean is complex, what does
it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff
inside brackets is indeed equal to 12.

The final conclusion is that N(µ,σ2) has characteristic function eitµ−σ2t2
2 . We gave

an alternate rigorous proof using Stein’s identity in the notes. The idea is that if ψ(t) =
E[eitZ] where Z ∼ N(0, 1), then differentiating under the integral,

ψ ′(t) = E[iZeitZ] = −t2E[eitZ] = −t2ψ(t)

where the second equality uses Stein’s identity (E[Zh(Z)] = E[h ′(Z)] for all reasonable
h). The only solution to this differential equation satisfying ψ(0) = 0 is ψ(t) = e−t2/2.

(8) Letµ be the standard Cauchy measure 1
π(1+x2)

dx. Let t > 0 and considerψ(t) = 1
π

∫
eitx

1+x2dx.
We use contour integration. Let γ(u) = u for −R 6 u 6 R and η(u) = Reis for 0 6 s 6 π.
Then by the residue theorem

1
π

∫
γ

eitz

1 + z2dz+
1
π

∫
η

eitz

1 + z2dz =
1
π
× 2πiRes

(
eitz

1 + z2 , i
)

= e−t.

However, on η, the integrand is bounded by e−t Im z

|1+z2|
6 1
R2−1 , since t > 0. The length of

the contour is πR, hence the total integral over η is O(1/R) as R→∞. Thus, 1
π

∫
γ
eitx

1+x2dx

converges to e−t for t > 0. By the symmetry of the underlying measure, ψ(−t) = ψ(t),
whence we arrive at ψ(t) = e−|t|.

2Here is the argument: Fix R > 0 and let γ(u) = u and η(t) = u + it for −R 6 u 6 R and let η ′x(s) = x + is for
0 6 s 6 t. The integral that we want is the limit of the contour integrals

∫
η
e−

1
2 z

2
dz as R→∞. Since the integrand has

no poles, this is the same as the integral
∫
γ
+
∫
η′
R
−
∫
η′
−R

of e−z2/2. The integral over γ converges to
∫
R e

−x2/2dx which
is
√

2π. The integrals over η ′R and η ′−R converge to zero as R→∞. This is because the absolute value of the integrand is
e−

1
2 (R

2+s2) 6 e−R
2/2 for any 0 6 s 6 t. Thus the two integrals are bounded in absolute value by e−R2/2|t| which goes to

0 as R→∞.
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0.4. Inversion formulas. We now come to one of the most important reasons why character-
istic function is a useful tool. Characteristic function determines the measure and we can write
formulas for recovering a measure from the characteristic function3.

Theorem 43
If µ̂ = ν̂, then µ = ν.

Proof. Let θσ denote the N(0,σ2) distribution with density ϕσ(x) = 1
σ
√

2πe
−x2/2σ2 and CDF

Φσ(x) =
∫x
−∞ϕσ(u)du and characteristic function θ̂σ(t) = e−σ

2t2/2 denote the density and cdf
and characteristic functions, respectively. Then, by Parseval’s identity, we have for any α,∫

e−iαtµ̂(t)dθσ(t) =

∫
θ̂σ(x− α)dµ(x)

=

√
2π
σ

∫
ϕ 1
σ
(α− x)dµ(x)

where the last line comes by the explicit Gaussian form of θ̂σ. Let fσ(α) := σ√
2π

∫
e−iαtµ̂(t)dθσ(t)

and integrate the above equation to get that for any finite a < b,∫b
a

fσ(α)dα =

∫b
a

∫
R
ϕ 1
σ
(α− x) dµ(x) dα

=

∫
R

∫b
a

ϕ 1
σ
(α− x) dα dµ(x) (by Fubini)

=

∫
R

(
Φ 1
σ
(b− x) −Φ 1

σ
(a− x)

)
dµ(x).

Now, we let σ→∞, and note that

Φ 1
σ
(u)→


0 if u < 0.

1 if u > 0.
1
2 if u = 0.

3The idea behind these arguments may not be clear unless one starts with a simpler situation. Consider a function
f ∈ L1(T), where T = [−π,π] with the measure dθ

2π . Then en(θ) = einθ, n ∈ Z, form an orthonormal basis for L2(T), and
hence we have the L2-expansion f =

∑
n∈Z f̂(n)en, where f̂(n) = 〈f, en〉 =

∫
T f(θ)e

−inθ dθ
2π . If we change the interval to

[−πL,πL] with uniform probability measure, then the orthonormal basis is {en/L : n ∈ Z}. When L→∞, we may expect
to get all {et : t ∈ R}, and try to expand f ∈ L2(R) as a superposition of these complex exponentials. However, et 6∈ L2(R),
and as there are uncountably many, they cannot possibly form an orthonormal basis either. A related point is that there is
no uniform probability distribution on R. However, the fact that 1

2π(2L) limL→∞ ∫L−L et(x)es(x)dx = δt−s can be thought
of as a form of orthonormality. And then we should expect that if f̂(t) =

∫
R f(x)et(x)dx, then f(x) = 1

2π

∫
R f̂(t)et(x)dt.

This is indeed the Fourier inversion formula, but a proper proof will uncover the precise conditions on f and f̂ that
are needed. It is also not easy to justify the interchange the L → ∞ limit with the inversion formula for finite L. The
proofs here in some sense do that, by first multiplying f or f̂ by 1[−L,L], or even better, by multiplying or convolving with
Gaussian.
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Further, Φ 1
σ

is bounded by 1. Hence, by DCT, we get

lim
σ→∞

∫b
a

fσ(α)dα =

∫ [
1(a,b)(x) +

1
2
1{a,b}(x)

]
dµ(x) = µ(a,b) + 1

2
µ{a,b}.

Now we make two observations: (a) that fσ is determined by µ̂, and (b) that the measure µ is
determined by the values of µ(a,b) + 1

2µ{a,b} for all finite a < b. Thus, µ̂ determines µ. �

We can continue the reasoning in the above proof to get a formula for recovering a measure
from its characteristic function.

Corollary 4: Fourier inversion formula

Let µ ∈ P(R).

(1) For all finite a < b, we have

(1) µ(a,b) + 1
2
µ{a}+

1
2
µ{b} = lim

σ→∞ 1
2π

∫
R

e−iat − e−ibt

it
µ̂(t)e

− t2
2σ2 dt

(2) If
∫
R |µ̂(t)|dt <∞, then µ has a continuous density given by

f(x) :=
1

2π

∫
R
µ̂(t)e−ixtdt.

Proof. (1) Recall that the left hand side of (1) is equal to lim
σ→∞

∫b
a fσ where

fσ(α) :=
σ√
2π

∫
e−iαtµ̂(t)dθσ(t).

Writing out the density of θσ we see that∫b
a

fσ(α)dα =
1

2π

∫b
a

∫
R
e−iαtµ̂(t)e

− t2
2σ2 dtdα

=
1

2π

∫
R

∫b
a

e−iαtµ̂(t)e
− t2

2σ2 dα dt (by Fubini)

=
1

2π

∫
R

e−iat − e−ibt

it
µ̂(t)e

− t2
2σ2 dt.

In the second line, Fubini’s theorem was applicable as (t,α) 7→ |µ̂(t)|e
− t2

2σ2 is integrable
over R× [a,b], for σ > 0. Thus, we get the first statement of the corollary.

(2) With fσ as before, we have fσ(α) := 1
2π
∫
e−iαtµ̂(t)e

− t2
2σ2 dt. Note that the integrand con-

verges to e−iαtµ̂(t) as σ → ∞. Further, this integrand is bounded by |µ̂(t)| which is as-
sumed to be integrable. Therefore, by DCT, for any α ∈ R, we conclude that fσ(α)→ f(α)

where f(α) := 1
2π
∫
e−iαtµ̂(t)dt.

Next, note that for any σ > 0, we have |fσ(α)| 6 C for all αwhereC =
∫
|µ̂(t)|dt. Thus,

for finite a < b, using DCT again, we get
∫b
a fσ →

∫b
a f as σ→∞.
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But the proof of Theorem 43 tells us that

lim
σ→∞

∫b
a

fσ(α)dα = µ(a,b) + 1
2
µ{a}+

1
2
µ{b}.

Therefore, µ(a,b) + 1
2µ{a} +

1
2µ{b} =

∫b
a f(α)dα. Fixing a and letting b ↓ a, this shows

that µ{a} = 0 and hence µ(a,b) =
∫b
a f(α)dα. Thus f is the density of µ.

The proof that a c.f. is continuous carries over verbatim to show that f is continuous
(since f is the Fourier transform of µ̂, except for a change of sign in the exponent). �

An application of Fourier inversion formula Recall the Cauchy distribution µ with with density
1

π(1+x2)
whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is

a way to compute this integral).
Consider the seemingly unrelated p.m νwith density 1

2e
−|x| (a symmetrized exponential, this

is also known as Laplace’s distribution). Its c.f is easy to compute and we get

ν̂(t) =
1
2

∫∞
0
eitx−xdx+

1
2

∫ 0

−∞ eitx+xdx =
1
2

(
1

1 − it
+

1
1 + it

)
=

1
1 + t2

.

By the Fourier inversion formula (part (b) of the corollary), we therefore get
1
2
e−|x| =

1
2π

∫
ν̂(t)eitxdt =

1
2π

∫
1

1 + t2
eitxdt.

This immediately shows that the Cauchy distribution has c.f. e−|t| without having to compute the
integral!!

0.5. Continuity theorem. Now we come to the key result that was used in the proof of cen-
tral limit theorems. This is the equivalence between convergence in distribution and pointwise
convergence of characteristic functions.

Theorem 44: Lévy’s continuity theorem

Let µn,µ ∈ P(R).

(1) If µn
d→ µ then µ̂n(t)→ µ̂(t) pointwise for all t.

(2) If µ̂n(t) → ψ(t) pointwise for all t and ψ is continuous at 0, then ψ = µ̂ for some
µ ∈ P(R) and µn

d→ µ.

Observe that in the second statement, we did not a priori assume that ψ is a characteristic
function. It of course implies that if µ̂n → µ̂ pointwise for some µ ∈ P(R), then µn

d→ µ.

Proof. (1) If µn
d→ µ, then

∫
fdµn →

∫
fdµ for any f ∈ Cb(R) (bounded continuous

function). Since x→ eitx is a bounded continuous function for any t ∈ R, it follows that
µ̂n(t)→ µ̂(t) pointwise for all t.
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(2) Now suppose µ̂n(t)→ ψ(t) pointwise for all t andψ is continuous at zero. We first claim
that the sequence {µn} is tight. Assuming this, the proof can be completed as follows.

Let µnk be any subsequence that converges in distribution, say to ν. By tightness,
ν ∈ P(R). Therefore, by the first part, µ̂nk → ν̂ pointwise. But obviously, µ̂nk → µ̂ since
µ̂n → µ̂. Thus, ν̂ = µ̂ which implies that ν = µ. That is, any convergent subsequence of
{µn} converges in distribution to µ. This shows that µn

d→ µ.
It remains to show tightness4. From Lemma 23 below, as n→∞,

µn ([−2/δ, 2/δ]c) 6 1
δ

δ∫
−δ

(1 − µ̂n(t))dt −→
1
δ

δ∫
−δ

(1 −ψ(t))dt

where the last implication follows by DCT (since 1 − µ̂n(t) → 1 − ψ(t) for each t and
also |1 − µ̂n(t)| 6 2 for all t). Further, as δ ↓ 0, we get 1

δ

∫δ
−δ(1 − ψ(t))dt → 0 (be-

cause, 1 − µ̂(0) = 0 and ψ is continuous at 0). Thus, given ε > 0, we can find δ > 0
such that lim supn→∞ µn ([−2/δ, 2/δ]c) < ε. This means that for some finite N, we have
µn ([−2/δ, 2/δ]c) < ε for all n > N. Now, find A > 2/δ such that for any n 6 N, we
get µn ([−2/δ, 2/δ]c) < ε. Thus, for any ε > 0, we have produced an A > 0 so that
µn ([−A,A]c) < ε for all n. This is the definition of tightness. �

Lemma 23
Let µ ∈ P(R). Then, for any δ > 0, we have

µ

([
−

2
δ

, 2
δ

]c)
6

1
δ

δ∫
−δ

(1 − µ̂(t))dt.

Proof. We write ∫δ
−δ

(1 − µ̂(t))dt =

∫δ
−δ

∫
R
(1 − eitx)dµ(x)dt

=

∫
R

∫δ
−δ

(1 − eitx)dtdµ(x)

=

∫
R

(
2δ− 2 sin(xδ)

x

)
dµ(x)

= 2δ
∫
R

(
1 −

sin(xδ)
xδ

)
dµ(x).

4I would like to thank Pablo De Nápoli for pointing out a flaw in the statement and proof of the second part.
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When δ|x| > 2, we have sin(xδ)
xδ 6 1

2 (since sin(xδ) 6 1). Therefore, the integrand is at least 1
2 when

|x| > 2
δ and the integrand is always non-negative since | sin(x)| 6 |x|. Therefore we get∫δ

−δ
(1 − µ̂(t))dt > δµ ([−2/δ, 2/δ]c) . �

From the continuity theorem, it follows that if µ̂n converge to a continuous function, then the
limit is a characteristic function too. Here is an application of this.

Example 26: Symmetric stable distributions

As X ∼ Pois(λ) has characteristic function exp{λ(eit − 1)}, it follows that uX has character-
istic function exp{λ(eiut − 1)}. Adding independent copies of such variables, we see that
exp{
∑N
j=1 λj(e

iujt − 1)} is also a characteristic function for uj ∈ R and λj > 0. As a special
case, take±ujwith equal weight λj to get the characteristic function exp{

∑N
j=1 λj(2 cos(ujt)−

2)}. Taking Riemann sum approximations to the integral and Lévy’s continuity theorem, we
see that for any continuous function λ(·)

exp
{∫∞

0
(cos(ut) − 1)λ(u)du

}
is a characteristic function. Of course, we need the integral inside the exponent to make
sense and be the limit of its Riemann sums. One example is λ(u) = |u|−α−1. Integrability
near ∞ forces α > 0 and integrability near 0 forces α < 2. On the other hand, if I(t) =∫∞

0 (cos(ut) − 1)|u|−α−1du, then by a change of variables I(bt) = bαI(t) for any b > 0.
Therefore, I(t) = C|t|α for C = I(1). We have proved that exp{−|t|α} is a characteristic
function for 0 < α < 2.
For 0 < α < 2, the distribution µα with characteristic function µ̂α(t) = e−|t|α is called the
symmetric α-stable distribution. If we set α = 2, we get the Gaussian distribution. But e−|t|α is
not a characteristic function for α > 2, as we shall see later and in the problem sets.

0.6. Positive semi-definiteness. What functions arise as characteristic functions of probability
measures on R? Ifϕ(t) =

∫
eitxdµ(x) for a probability measure µ, thenϕ(−t) = ϕ(t) for all t ∈ R.

Further, for any m > 1 and any complex numbers c1, . . . , cm and any real numbers t1, . . . tm, we
must have

0 6
∫ ∣∣∣ m∑
k=1

cke
itkx

∣∣∣2dµ(x) =

n∑
k,`=1

ckc`

∫
ei(tk−t`)xdµ(x)

=

n∑
k,`=1

ckc`ϕ(tk − t`).

This motivates the following definition.
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Definition 18: Positive definite functions
A function ϕ : R 7→ R is said to be positive definite if the matrix Mϕ[t1, . . . , tn] := (ϕ(tj −

tk))16j,k6n is Hermitian and positive semi-definite for any n > 1 and any t1, . . . , tn ∈ R.

Before going further, let us see why symmetric α-stable distributions do not exist for α > 2.

Example 27

Suppose X is a random variable with characteristic function e−|t|α . Fix t > 0 and let Y =

2 − e−itX − e−itX. Then
E[|Y|2] = 6 − 8e−tα + 2e−(2t)α

= 6 − 8(1 − tα +O(t2α)) + 2(1 − 2ptp +O(t2α)) (as t→ 0)

= 2(4 − 2α)tp +O(t2α)

Thus if α > 2, then for small enough t we get E[|Y|2] < 0, which is impossible! Hence e−|t|α

is not a characteristic function for α > 2.

Thus characteristic functions are necessarily positive definite functions. We have also seen that
they are continuous and take the value 1 at 0. These are all the properties that it takes to make a
characteristic function.

Theorem 45: Bochner’s theorem
A function ϕ : R 7→ R is a characteristic function of a Borel probability measure on R if and
only if ϕ is continuous, positive definite and ϕ(0) = 1.

Before starting the proof, we make some basic observations about positive definite functions.

• If ϕ is positive definite, then |ϕ| 6 1. Indeed, for any t, the positive semi-definiteness of
Mϕ[0, t] shows that 1 − |ϕ(t)|2 > 0 (note that ϕ(−t) = ϕ(t) is part of the condition of
positive definiteness).

• If ϕ and ψ are positive definite functions and θ(t) = ϕ(t)ψ(t), then θ is also positive
definite. The matrix C = Mθ[t1, . . . , tn] is the Hadamard product (entry-wise product)
of A =Mϕ[t1, . . . , tn] and B =Mψ[t1, . . . , tn]. It is a theorem of Schur that a Hadamard
product of positive semi-definite matrices is also positive demi-definite. It is not hard
to see: As A is positive semi-definite, we can find random variables X1, . . . ,Xn such that
ai,j = E[XiXj]. Similarly B = E[YiYj] for some random variables Y1, . . . ,Yn. We can
construct Xis and Yjs on the same probability space, so that (X1, . . . ,Xn) is independent
of (Y1, . . . ,Yn). Then, the covariance matrix of Zi = XiYi, 1 6 i 6 n, is precisely C. Hence
C is positive semi-definite.
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• For any nice function c : R 7→ C, we have∫∫
c(t)c(s)ϕ(t− s)dtds > 0.(2)

This is just a continuum analogue of
∑
j,k cjckϕ(tj−tk) and can be got by approximating

the integral by sums. We omit details.

Now we come to the proof of Bochner’s theorem. What we need to prove is that given a continuous
positive definite function ϕ satisfying ϕ(0), there is a probability measure whose characteristic
function it is. The idea is the natural one. We have already seen inversion formulas that recover a
measure from its characteristic function. We just apply these inversion formulas to ϕ and then try
to show that the object we get is a probability measure.

Proof of Bochner’s theorem. Let ϕ be continuous, positive-definite and ϕ(0) = 1.

Case: ϕ is absolutely integrable: Taking a cue from the Fourier inversion formula, define

f(x) =
1

2π

∫
R
ϕ(t)e−itxdt.

The integral is well-defined as ϕ is bounded. We want to show that f is a probability density. First
we show that f is non-negative5. Fix an interval IM = [−M,M] and observe that

f(x) =
1

2π(2M)

∫
IM

∫
R
eix(t−s)ϕ(t− s)dtds (the inner integral does not depend on s)

=
1

2π(2M)

∫
IM

∫
IM

eix(t−s)ϕ(t− s)dtds+
1

2π(2M)

∫
IM

∫
IcM

eix(t−s)ϕ(t− s)dtds.

The first integral is positive by (2) (take c(t) = eixt1|t|6M). As for the second integral, we claim
that it goes to zero as M → ∞. Indeed, fix δ > 0 and observe that for |s| 6 (1 − δ)M, the inner
integral is less than cM :=

∫
IδMc

|ϕ(u)|du (as |t− s| > δM for any |s| < (1− δ)M and any |t| > M).
If |s| > (1−δ)M, we just use the trivial bound C :=

∫
R |ϕ| for the inner integral. Overall, the bound

for the second term becomes
1

2π(2M)
(2(1 − δ)McM + CδM) 6 cM + δC.

Let M → ∞ and then δ ↓ 0 (or just take δ = 1√
M

) to see that this goes to zero as M → ∞. This
proves that f(x) > 0 for all x. We now claim that

∫
f(x)dx = 1. To start with, since |f| 6 ‖ϕ‖1, for

5It may be easier to first see the following formal argument. Fix x ∈ R and use c(t) = eixt in (2) to get

0 6
∫∫
eix(t−s)ϕ(t− s)dtds =

∫[∫
eixuϕ(u)du

]
ds

= f(x)

(∫
1ds
)

.

Of course, the integral here is infinite, hence the proof is only formal, but it gives a hint why f(x) > 0. The actual proof
makes this precise by integrating s over a finite interval.
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any σ > 0 we have ∫
R
f(x)e−σ

2x2/2dx =
1

2π

∫
R

∫
R
ϕ(t)eixte−σ

2x2/2dx dt

=
1

2π

∫
R
ϕ(t)

∫
R
eixte−σ

2x2/2dt dx

where the application of Fubini’s theorem is justified because |ϕ(t)|e−σ2x2/2 ∈ L1(R×R). The inner

integral is essentially the Fourier transform of the Gaussian and equal to
√

2πe−
t2

2σ2 . Plugging this
in, we see that ∫

R
f(x)e−σ

2x2/2dx =
1

σ
√

2π

∫
R
ϕ(t)e

− t2
2σ2 dt

The right side is E[ϕ(σZ)] where Z ∼ N(0, 1). By continuity and boundedness of ϕ, DCT implies
that it converges to ϕ(0) = 1 as σ ↓ 0. The integrand on the left side increases (as f > 0) to f(x).
hence by MCT, the limit as σ ↓ 0 of the integral is

∫
R f(x)dx. This shows that f is a probability

density.
As fis integrable, the Fourier inversion formula applies to show that

∫
R f(x)e

−itxdx = ϕ(t) for
all t. Thus, ϕ is the characteristic function of the probability measure f(x)dx.

General case: For any σ > 0, defineϕσ(t) = ϕ(t)e−σ
2t2/2 (the idea behind: Ifϕ is the characteristic

function of a random variable X, then ϕσ would be that of X + σZ, where Z ∼ N(0, 1)). Since ϕ is
bounded,ϕσ is absolutely integrable for any σ > 0. Further,ϕσ is continuous and positive definite
by the Schur product theorem. Thus, by the first case,ϕσ is the characteristic function of a measure
µσ (in fact, dµσ(x) = fσ(x)dx, where fσ(x) = 1

2π
∫
R e

−itxϕσ(t)dt).
ϕσ → ϕ point-wise as σ ↓ 0. By the second part of Lévy’s continuity theorem, we see that

µσ
d→ µ as σ ↓ 0 for some µ ∈ P(R) and that µ̂ = ϕ. �

0.7. Multivariate situation. LetX ∼ µ ∈ P(Rd). Its Fourier transform or characteristic function
is a function µ̂ : Rd → C defined as µ̂(t) =

∫
ei〈t,x〉dµ(x) = E[ei〈t,X〉]. All the theorems proved in

the univariate case go through with the most obvious modifications. In particular, we have

(1) Parseval relation:
∫
Rd µ̂dν =

∫
Rd ν̂dµ.

(2) Fourier inversion formula: If µ̂ = ν̂, then µ = ν. In particular, if µ̂ is integrable, then µ
has bounded continuous density given by f(x) = (2π)−d

∫
Rd µ̂(t)e

i〈t,x〉dt.

(3) Lévy’s continuity theorem: Identical to the one-dimensional case.

(4) Joint moments of Xis are related to partial derivatives of the characteristic function at the
origin.

And these tools can be used to prove CLT just as before.
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Here is an interesting fact that is totally non-trivial if we do not use characteristic functions (I
don’t know any such proof).

Proposition 4: Cramer-Wold device

Suppose µ,ν ∈ P(Rd) have equal 1-dimensional marginals in all directions. Then µ = ν.

To be clear, what the equality of marginals means that if X ∼ µ and Y ∼ ν and 〈X, v〉 d= 〈Y, v〉
for each v ∈ Rd. The conclusion is that X d

= Y. As we know very well, equality of 1-dimensional
marginals in the co-ordinate (or any finite set of) directions is not enough to claim equality of joint
distributions.

Proof. Since 〈X, v〉 d= 〈Y, v〉 for each v, we see thatE[ei〈X,v〉] = E[ei〈Y,v〉], hence the characteristic
functions of X and Y coincide. Therefore, they have the same distribution on Rd. �

Remark 20
Fourier analysis on general locally compact abelian groups goes almost in parallel to that
on the real line. If G is a locally compact abelian group (eg., Rd, (S1)d, Zd, finite abelian
groups, their products), then the set of characters (continuous homomorphisms from G to
S1) form a collection Ĝ called the dual of G. It can be endowed with a topology (basically
of point-wise convergence on G) and these characters form a dense set in L2(G) (w.r.t. Haar
measure). For a measure µ on G, one defines its Fourier transform µ̂ : Ĝ 7→ C by µ̂(χ) =∫
G χ(x)dµ(x). Plancherel’s theorem, Lévy’s theorem, Bochner’s theorem all go through with

minimal modification of languagea.
aA good resource is the book Fourier analysis on groups by Walter Rudin.
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