
PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Disclaimer: I have collected or made up these problems from various books and other sources for

the purpose of giving to students in a first course in measure theoretical probability. In many cases

I have forgotten where I took them from or modified them from the original, and even those that I

thought up myself are probably to be found in some book1. If anyone feels that specific problems

require citation, I am happy to consider.

Problem 1. Let F be a σ-algebra of subsets of Ω.

(1) Show that F is closed under countable intersections (
⋂
n
An), under set differences (A \B),

under symmetric differences (A∆B).

(2) If An is a countable sequence of subsets of Ω, the set lim supAn (respectively lim inf An) is

defined as the set of all ω ∈ Ω that belongs to infinitely many (respectively, all but finitely

many) of the sets An.

If An ∈ F for all n, show that lim supAn ∈ F and lim inf An ∈ F . [Hint: First express

lim supAn and lim inf An in terms of Ans and basic set operations].

(3) If A1 ⊆ A2 ⊆ A3 ⊆ . . ., what are lim supAn and lim inf An?

Problem 2. Let (Ω,F) be a set with a σ-algebra.

(1) Suppose P is a probability measure on F . If An ∈ F and An increase to A (respectively,

decrease to A), show that P(An) increases to (respectively, decreases to) P(A).

(2) Suppose P : F → [0, 1] is a function such that (a) P(Ω) = 1, (b) P is finitely additive, (c) if

An, A ∈ F and Ans increase to A, then P(An) ↑ P(A). Then, show that P is a probability

measure on F .

Date: December 1, 2024.
1Here is a partial list of books that I have used at some time or another: Feller’s An introduction to probability

theory and its applications: vol. 2, Dudley’s Analysis and probability, Khoshnevisan’s Probability, Kallenberg’s Foun-

dations of modern probability, Durrett’s Probability: Theory and examples, Uspensky’s Introduction to mathematical

probability, Pollard’s A user’s guide to measure theoretic probability, Williams’ Probability with martingales, Chaumont

and Yor’s Exercises in probability. Possibly also Billingsley’s Probability and measure and Convergence of probability

measures, Grimmett and Stirzaker’s Probability and random processes and K. R. Parthasarathy’s Probability measures

on metric spaces. I have also used from memory various problems from courses of Aldous and Peres that I sat in a

long time ago (some are available on their homepages) as well as prelim/qualifier exams in multiple universities.
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Problem 3. Suppose S is a π-system and is further closed under complements (A ∈ S implies

Ac ∈ S). Show that S is an algebra.

Problem 4. Let P be a p.m. on a σ-algebra F and suppose S ⊆ F be a π-system. If Ak ∈ S for

k ≤ n, write P(A1 ∪A2 ∪ . . . ∪An) in terms of probabilities of sets in S.

Problem 5. Let (Ω,F ,P) be a probability space. Let G = {A ∈ F : P(A) = 0 or 1}. Show that

G is a σ-algebra.

Problem 6. Suppose σ(S) = F and P,Q are two probability measure on F . If P(A) = Q(A) for

all A ∈ S, is it necessarily true that P(A) = Q(A) for all A ∈ F? If yes, prove it. If not, give a

counterexample.

Problem 7. Suppose F = σ(S) and P(A) ∈ {0, 1
2 , 1} for all A ∈ S.

(1) If S is a π-system, show that P(A) ∈ {0, 1
2 , 1} for all A ∈ F .

(2) If S is not a π-system, show that it is possible to have P(A) 6∈ {0, 1
2 , 1} for some A ∈ F .

[Note: Think of other sets that can take the place of {0, 1
2 , 1}]

Problem 8. Let F be a sigma-algebra on N that is strictly smaller than the power set. Show that

there exist m 6= n such that elements of F do not separate m and n (i.e., any A ∈ F either contains

both m,n or neither). Is the same conclusion valid if N is replaced by any set Ω?

Problem 9. Let P,Q be two Borel probability measures on R2. If P(A) = Q(A) for all A ∈ S,

can you conclude that P = Q. Deal with following cases:

(1) S = {(a, b]× (c, d] : a < b and c < d}.

(2) S = {(−∞, b]× (−∞, d] : b, d ∈ R}.

(3) S = {(a, b]× R : a < b} ∪ {R ∪ (c, d] : c < d}.

Problem 10. (1) Let B be the Borel sigma-algebra of R. Show that B contains all closed sets,

all compact sets, all intervals of the form (a, b] and [a, b).

(2) Show that there is a countable family S of subsets of R such that σ(S) = BR.

(3) Let K be the 1/3-Cantor set. Show that µ∗(K) = 0.
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Problem 11. Show that each of the following collection of subsets of Rd generate the same sigma-

algebra (which we call the Borel sigma-algebra).

(1) {(a, b] : a < b}.

(2) {[a, b] : a ≤ b and a, b ∈ Q}.

(3) The collection of all open sets.

(4) The collection of all compact sets.

Problem 12. (1) Let X be an arbitrary set. Let S be the collection of all singletons in Ω.

Describe σ(S).

(2) Let S = {(a, b]∪ [−b,−a) : a < b are real numbers}. Show that σ(S) is strictly smaller than

the Borel σ-algebra of R.

(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set

in S either contains a and b both, or contains neither. Let F = σ(S). Show that any set in

F has the same property (either contains both a and b or contains neither).

Problem 13. Let Ω be an infinite set and let A = {A ⊆ Ω : A is finite or Ac is finite }. Define

µ : A → R+ by µ(A) = 0 if A is finite and µ(A) = 1 if Ac is finite.

(1) Show that A is an algebra and that µ is finitely additive on A.

(2) Under what conditions does µ extend to a probability measure on F = σ(A)?

Problem 14. On N = {1, 2, . . .}, let Ap denote the subset of numbers divisible by p. Describe

σ({Ap : p is prime}) as explicitly as possible.

Problem 15. If G ⊆ F are sigma algebras on Ω and F is countably generated (i.e., there is a

countable collection of sets that generates the sigma-algebra), then is it necessarily true that G is

countably generated?

Problem 16. Let F = σ{Ai : i ∈ I} where Ai, i ∈ I, are subsets of Ω. Given B ∈ F , show that

there is a countable subset J ⊆ I such that B ∈ σ{Ai : i ∈ J}.

Problem 17. Let E = R[0,1] be the space of all functions from [0, 1] to R. Let F be the cylinder

sigma-algebra on E (cylinders are sets of the form {f ∈ E : f(ti) ∈ Bi, 1 ≤ i ≤ n} for some

t1 < . . . < tn and some Bi ∈ BR).

(1) Show that if A ∈ F , then there is a countable set {ti} ⊆ [0, 1] such that membership in A

is determined by the values of a function on the subset {ti}.
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(2) Show that C[0, 1] is not a measurable subset of E.

[Remark: The gist is that E is not a good space to model random functions]

Problem 18. On C[0, 1], show that the Borel sigma-algebra and the cylinder sigma-algebra are

the same.

Here Borel sigma-algebra is w.r.t. the topology induced by the sup-norm metric. And cylinder

sets are those of the form {f ∈ C[0, 1] : f(ti) ∈ Bi, 1 ≤ i ≤ n} for some 0 ≤ t1 < . . . < tn ≤ 1 and

some Bi ∈ BR.

Problem 19. Percolation is a “random graph” described as follows: At each vertex of Zd, a p-coin

is tossed to decide whether the vertex is open (heads) or closed (tails). We consider the random

graph with all vertices, but edges only between adjacent pairs of open vertices.

(1) Write the probability space to capture this random experiment (at least write the sample

space and sigma-algebra).

(2) Show that the set A := {x ∈ E : Gx has an infinite connected component} is measurable.

Problem 20. Let (X,F) and (Y,G) be measure spaces. If T : X → Y is a function, show that

(1) {T−1B : B ∈ G} is a sigma algebra on X and

(2) {B ∈ G : T−1B ∈ F} is sigma-algebra on Y .

Problem 21. Let (X,F) and (Y,G) be measure spaces and T : X → Y . Assume that G = σ(S)

for some collection S of subsets of Y . Decide true or false:

If T−1(B) ∈ F for all B ∈ S, then T is measurable.

Problem 22. Let A1, A2, . . . be a finite or countable partition of a non-empty set Ω (i.e., Ai are

pairwise disjoint and their union is Ω). What is the σ-algebra generated by the collection of subsets

{An}? What is the algebra generated by the same collection of subsets?

Problem 23. On [0, 1], let A be the algebra generated by finite unions of left-open, right-closed

intervals and let B be the Borel sigma-algebra. Define µ : A → [0, 1] by µ(A) = 1 if A ⊇ (0, ε) for

some ε > 0 and µ(A) = 0 otherwise.

Show that µ is a finitely additive measure on A but that it does not extend to a measure on B.

Why does this not contradict the Carathèodory extension theorem?

Problem 24. Let X = [0, 1]N be the countable product of copies of [0, 1]. We define two sigma

algebras of subsets of X.
4



(1) Define a metric on X by d(x, y) =
∑

n |xn − yn|2−n. Let BX be the Borel sigma-algebra of

(X, d). [Note: For those who know topology, it is better to define BX as the Borel sigma

algebra for the product topology on X. The point is that the metric is flexible. We can

take many or other things (but not d(x, y) = supn |xn − yn| !!). What matters is only the

topology on X.]

(2) Let CX be the sigma-algebra generated by the collection of all cylinder sets. Recall that

cylinder sets are sets of the form A = U1 × U2 × . . .× Un ×R×R× . . . where Ui are Borel

subsets of [0, 1].

Show that BX = CX .

Problem 25. Let µ be the Lebesgue p.m. on the Cartheodary σ-algebra B̄ and let µ∗ be the

corresponding outer Lebesgue measure defined on all subsets of [0, 1]. We say that a subset N ⊆
[0, 1] is a null set if µ∗(N) = 0. Show that

B̄ = {B ∪N : B ∈ B and N is null}

where B is the Borel σ-algebra of [0, 1].

[Note: The point of this exercise is to show how much larger is the Lebesgue σ-algebra than

the Borel σ-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is

a Borel set. However, cardinality-wise, there is a difference. The Lebesgue σ-algebra is in bijection

with 2R while the Borel σ-algebra is in bijection with R.]

Problem 26. Suppose (Ω,F ,P) is a probability space. Say that a subset N ⊆ Ω is P-null if there

exists A ∈ F with P(A) = 0 and such that N ⊆ A. Define G = {A ∪N : A ∈ F and N is null}.
(1) Show that G is a σ-algebra.

(2) For A ∈ G, write A = B ∪N with b ∈ F and a null set N , and define Q(A) = P(B). Show

that Q is well-defined, that Q is a probability measure on G and Q
∣∣∣
F

= P.

[Note: G is called the P-completion of F . It is a cheap way to enlarge the σ-algebra and

extend the measure to the larger σ-algebra. Another description of the extended σ-algebra is

G = {A ⊆ Ω : ∃B,C ∈ F such that B ⊆ A ⊆ C and P(B) = P(C)}. Combined with the previous

problem, we see that the Lebesgue σ-algebra is just the completion of the Borel σ-algebra under

the Lebesgue measure. However, note that completion depends on the probability measure (for

a discrete probability measure on R, the completion will be the power set σ-algebra!). For this

reason, we prefer to stick to the Borel σ-algebra and not bother to extend it.]

Problem 27. Follow these steps to obtain Sierpinski’s construction of a non-measurable set. Here

µ∗ is the outer Lebesgue measure on R.

(1) Regard R as a vector space over Q and choose a basis H (why is it possible?).
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(2) Let A0 = H ∪ (−H) = {x : x ∈ H or −x ∈ H}. For n ≥ 1, define An := An−1−An−1 (may

also write An = An−1 + An−1 since A0 is symmetric about 0). Show that
⋃
n≥0

⋃
q≥1

1
qAn = R

where 1
qAn is the set {xq : x ∈ An}.

(3) Let N := min{n ≥ 0 : µ∗(An) > 0} (you must show that N is finite!). If AN is measurable,

show that ∪n≥N+1An = R.

(4) Get a contradiction to the fact thatH is a basis and conclude that AN cannot be measurable.

[Remark: If you start with H which has zero Lebesgue measure, then N ≥ 1 and A := EN−1 is

a Lebesgue measurable set such that A+A is not Lebesgue measurable! That was the motivation

for Sierpinski. To find such a basis H, show that the Cantor set spans R and then choose a basis

H contained inside the Cantor set.]

Problem 28. For any ε > 0, show that there is a closed, totally disconnected set A ⊆ [0, 1] such

that λ(A) > 1 − ε. Can you find such a set with λ(A) = 1? [Note: Totally disconnected means

that the set contains no interval of positive length]

Problem 29. We saw that for a Borel probability measure µ on R, the pushforward of Lebesgue

measure on [0, 1] under the map F−1
µ : [0, 1]→ R (as defined in lectures) is precisely µ. This is also

a practical tool in simulating random variables. We assume that a random number generator gives

us uniform random numbers from [0, 1]. Apply the above idea to simulate random numbers from

the following distributions (in matlab/mathematica or a program of your choice) a large number

of times and compare the histogram to the actual density/mass function.

(1) Uniform distribution on [a, b], (2) Exponential(λ) distribution, (3) Cauchy distribution,

(4) Poisson(λ) distribution. What about the normal distribution?

Problem 30. Let Ω = X = R and let T : Ω → X be defined by T (x) = x. We give a pair of

σ-algebras, F on Ω and G on X by taking F and G to be one of 2R or BR or {∅,R}. Decide for

each of the nine pairs, whether T is measurable or not.

Problem 31. (1) Define T : Ω → Rn by T (ω) = (1A1(ω), . . . ,1An(ω)) where A1, . . . , An are

given subsets of Ω. What is the smallest σ-algebra on Ω for which T becomes a random

variable?

(2) Suppose (Ω,F ,P) is a probability space and assume that Ak ∈ F . Describe the push-

forward measure P ◦ T−1 on Rn.
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Problem 32. For k ≥ 0, define the functions rk : [0, 1) → R by writing [0, 1) =
⊔

0≤j<2k
I

(k)
j where

I
(k)
j is the dyadic interval [j2−k, (j + 1)2−k) and setting

rk(x) =

−1 if x ∈ I(k)
j for odd j,

+1 if x ∈ I(k)
j for even j.

Fix n ≥ 1 and define Tn : [0, 1)→ {−1, 1}n by Tn(x) = (r0(x), . . . , rn−1(x)). Find the push-forward

of the Lebesgue measure on [0, 1) under Tn

Problem 33. (1) If T : Rn → Rm, show that T is Borel measurable if it is (a) continuous or

(b) right continuous or (c) lower semicontinuous or (d) non-decreasing (take m = n = 1 for

the last one).

(2) If Rn and Rm are endowed with the Lebesgue sigma-algebra, show that even if T is contin-

uous, it need not be measurable! Just do this for n = m = 1.

Problem 34. Show that composition of random variables is a random variable. Show that real-

valued random variables on a given (Ω,F) are closed under linear combinations, under multiplica-

tion, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

Problem 35. Let µn = 1
n

n∑
k=1

δk/n and let µ be the uniform p.m. on [0, 1]. Show directly by

definition that d(µn, µ)→ 0 as n→∞.

Problem 36. Show that each of the following is a metric that is equivalent to the Lévy metric on

P(Rd) (in the sense that µn → µ in one metric if and only if in the others).

(1) inf{u > 0 : Fµ(x+ au1) + bu ≥ Fν(x), Fν(x+ au1) + bu ≥ Fµ(x) ∀x ∈ Rd} where a, b > 0

are fixed.

(2) inf{u+ v : u, v > 0 and Fµ(x+ u1) + v ≥ Fν(x), Fν(x+ u1) + v ≥ Fµ(x) ∀x ∈ Rd}.

Problem 37 (Change of variable for densities). (1) Let µ be a p.m. on R with density f

by which we mean that its CDF Fµ(x) =
∫ x
−∞ f(t)dt (you may assume that f is continuous,

non-negative and the Riemann integral
∫
R f = 1). Then, find the (density of the) push

forward measure of µ under (a) T (x) = x + a (b) T (x) = bx (c) T is any increasing and

differentiable function.

(2) If X has N(µ, σ2) distribution, find the distribution of (X − µ)/σ.
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Problem 38. (1) Let X = (X1, . . . , Xn). Show that X is an Rd-valued r.v. if and only if

X1, . . . , Xn are (real-valued) random variables. How does σ(X) relate to σ(X1), . . . , σ(Xn)?

(2) Let X : Ω1 → Ω2 be a random variable. If X(ω) = X(ω′) for some ω, ω′ ∈ Ω1, show that

there is no set A ∈ σ(X) such that ω ∈ A and ω′ 6∈ A or vice versa. [Extra! If Y : Ω1 → Ω2

is another r.v. which is measurable w.r.t. σ(X) on Ω1, then show that Y is a function of

X].

Problem 39. The support of a probability measure µ on Rd is defined to be the smallest (inclusion-

order) closed set C having µ(C) = 1.

Show that the support is well-defined and is equal to {x ∈ Rd : µ(B(x, r)) > 0 for all r > 0}.

Problem 40 (Lévy metric). (1) Show that the Lévy metric on P(Rd) defined in class is

actually a metric.

(2) Show that under the Lévy metric, P(Rd) is a complete and separable metric space.

Problem 41. Show that each of the following is a metric that is equivalent to the Lévy metric (in

the sense that µn → µ in one metric if and only if in the others).

(1) inf{u > 0 : Fµ(x+ au1) + bu ≥ Fν(x), Fν(x+ au1) + bu ≥ Fµ(x) ∀x ∈ Rd} where a, b > 0

are fixed.

(2) inf{u+ v : u, v > 0 and Fµ(x+ u1) + v ≥ Fν(x), Fν(x+ u1) + v ≥ Fµ(x) ∀x ∈ Rd}.

Problem 42. Let µ, ν be probability measures on R. Let C be the collection of all probability

measures on R2 whose marginals are µ and ν. Show that C is tight in the space of probability

measures on R2.

Problem 43 (Lévy-Prohorov metric). If (X, d) is a metric space, let P(X) denote the space

of Borel probability measures on X. For µ, ν ∈ P(X), define

D(µ, ν) = inf{r ≥ 0 : µ(Ar) + r ≥ ν(A) and ν(Ar) + r ≥ µ(A) for all closed sets A}.

Here Ar = {y ∈ X : d(x, y) ≤ r for some x ∈ A} is the closed r-neighbourhood of A.

(1) Show that D is a metric on P(X).

(2) When X is Rd, show that this agrees with the definition of Lévy metric given in class (i.e.,

for any µn, µ, we have that µn → µ in both metrics or neither).
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Problem 44 (Lévy metric). Let P([−1, 1]) ⊆ P(R) be the set of all Borel probability measures

µ such that µ([−1, 1]) = 1. For ε > 0, find a finite ε-net for P([−1, 1]). [Note: Recall that an ε-net

means a subset such that every element of P([−1, 1]) is within ε distance of some element of the

subset. Since P([−1, 1]) is compact, we know that a finite ε-net exists for all ε > 0.]

Problem 45. Consider C[0, 1] with the sup-norm metric and endowed with the Borel sigma-

algebra. Let X is a C[0, 1]-valued random variable on Ω (then X is called a stochastic process or

a random function). Show that the following are random variables: (a) U(ω) = maxt∈[0,1]Xt(ω),

(b) V (ω) = λ{t ∈ [0, 1] : Xt(ω) > 0} (here λ is the Lebesgue measure on [0, 1] as usual), (c) L(ω) =

max{t ≤ 1 : Xt(ω) = 0}.

Problem 46. Let K be the collection of non-empty compact subsets of Rd. The Hausdorff metric

on K is defined by d(K,L) = inf{r > 0 : K(r) ⊇ L, L(r) ⊇ K} where K(r) =
⋃
x∈K B(x, r).

Correspondingly, there is a Borel sigma-algebra on K.

If X is a K-valued random variable (called a random set), then show that the following are

random variables: (a) U(ω) = area(X(ω)), (b) V (ω) = 1X(ω)∩A=∅ where A is a fixed compact

subset of Rd, (c) W (ω) = diameter(X(ω)).

Problem 47. Using the Lévy metric, we can define a Borel sigma-algebra on P(R). Hence we can

talk of random variables on (Ω,F ,P) taking values in P(R) (called random probability measure).

If X1, X2, . . . are real-valued random variables on (Ω,F ,P), show that Ln(ω) = 1
n(δX1(ω) + . . .+

δXn(ω)) is a random probability measure, for any n ≥ 1.

Problem 48. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two binary

expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 49 (Coin tossing space). Continuing with the previous example, consider the mapping

X : [0, 1] → {0, 1}N defined by X(t) = (X1(t), X2(t), . . .). With the Borel σ-algebra on [0, 1] and

the σ-algebra generated by cylinder sets on {0, 1}N, show that X is a random variable and find the

push-foward of the Lebesue measure under X.
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Problem 50 (Equivalent conditions for weak convergence). Show that the following state-

ments are equivalent to µn
d→ µ (you may work in P(R)).

(1) lim sup
n→∞

µn(F ) ≤ µ(F ) if F is closed.

(2) lim inf
n→∞

µn(G) ≥ µ(G) if G is open.

(3) lim sup
n→∞

µn(A) = µ(A) if A ∈ F and µ(∂A) = 0.

Problem 51. Fix µ ∈ P(R). For s ∈ R and r > 0, let µr,s ∈ P(R) be defined as µr,s(A) =

µ(rA + s) where rA + s = {rx + s : x ∈ A}. For which R ⊆ (0,∞) and S ⊆ R is it true that

{µr,s : r ∈ R, s ∈ S} a tight family? [Remark: If not clear, just take µ to be the Lebesgue measure

on [0, 1].]

Problem 52. Let µn = 2
n(n+1)

n∑
k=1

kδk/n. Then µn
d→ µ as n→∞ for some µ ∈ P(R) (which you

must identify explicitly).

Problem 53. (1) Show that the family of Normal distributions {N(µ, σ2) : µ ∈ R and σ2 > 0}
is not tight.

(2) For what A ⊆ R and B ⊆ (0,∞) is the restricted family {N(µ, σ2) : µ ∈ A and σ2 ∈ B}
tight?

Problem 54. (1) Show that the family of exponential distributions {Exp(λ) : λ > 0} is not

tight.

(2) For what A ⊆ R is the restricted family {Exp(λ) : λ > 0} tight?

Problem 55. Suppose µn, µ ∈ P(R) and that Fµ is continuous. If µn
d→ µ, show that Fµn(t) −

Fµ(t) → 0 uniformly over t ∈ R. [Restatement: When Fµ is continuous, convergence to µ in

Lévy-Prohorov metric also implies convergence in Kolmogorov-Smirnov metric.]

Problem 56. Show that the statement in the previous problem cannot be quantified. That is,

Given any εn ↓ 0 (however fast) and δn ↓ 0 (however slow), show that there is some µn, µ with

Fµ continuous, such that dLP (µn, µ) ≤ εn and dKS(µn, µ) ≥ δn.

Problem 57. Let µn, µ ∈ P(R) and assume that Fµn(x)→ Fµ(x) for all x ∈ D, a countable dense

subset of R. Does it follow that µn
d→ µ?

10



Problem 58. Consider the family of Normal distributions, {N(µ, σ2) : µ ∈ R, σ2 > 0}. Show that

the map (µ, σ2)→ N(µ, σ2) from R×R+ to P(R) is continuous. (Complicated way of saying that

if (µn, σ
2
n)→ (µ, σ2), then N(µn, σ

2
n)

d→ N(µ, σ2)).

Do the same for other natural families if distributions, (1) Exp(λ), (2) Uniform[a, b], (3) Bin(n, p)

(fix n and show continuity in p), (4) Pois(λ).

Problem 59. Suppose µn, µ are discrete probability measures supported on Z having probability

mass functions (pn(k))k∈Z and (p(k))k∈Z. Show that µn
d→ µ if and only if pn(k) → p(k) for each

k ∈ Z.

Problem 60. Which of the following sets are dense in P(R)?

(1) The set of probability measures with finite support (those of the form p1δx1 + . . .+ pkδxk).

(2) The set of probability measures having density.

(3) The set of probability measures with a symmetric density (f(x) = f(−x)).

(4) The set of probability measures having a bounded smooth density and all moments finite

(densities f ∈ C∞ with
∫
x2kf(x)dx <∞ for all k).

(5) The set of probability measures with a unimodal density (x 7→ f(x) is increasing up to some

x0 and then decreasing).

Problem 61. Given a Borel p.m. µ on R, show that it can be written as a convex combination

αµ1 + (1− α)µ2 with α ∈ [0, 1], where µ1 is a purely atomic Borel p.m and µ2 is a Borel p.m with

no atoms.

Problem 62. Let F be the CDF of a Borel probability measure µ on the line.

(1) Show that F is continuous at x if and only if µ({x}) = 0.

(2) Show that F can have at most countably many discontinuities.

(3) Show that given any countable set {x1, x2, . . .} and any number p1, p2, . . . such that
∑

i pi ≤
1, there is a probability measure whose CDF has a jump of magnitude pi at xi for each i,

and no other discontinuities.

Problem 63. Let F be a CDF on R. If
∑

x∈R(F (x) − F (x−))2 = 1, show that the measure is

degenerate.

Problem 64. Let X be a random variable with distribution µ and Xn are random variables defined

as follows. If µn is the distribution of Xn, in each case, show that µn
d→ µ as n→∞.
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(1) (Truncation). Xn = (X ∧ n) ∨ (−n).

(2) (Discretization). Xn = 1
nbnXc.

Problem 65. Consider the space X = [0, 1]N := {x = (x(1), x(2), . . .) : 0 ≤ x(i) ≤ 1 for each i ∈
N}. Define the metric d(x,y) = supi

|x(i)−y(i)|
i .

(1) Show that xn → x in (X, d) if and only if xn(i)→ x(i) for each i, as n→∞.

[Note: What matters is this pointwise convergence criterion, not the specific metric.

The resulting topology is called product topology. The same convergence would hold if we

had defined the metric as d(x,y) =
∑

i 2−i|x(i)− y(i)| or d(x,y) =
∑

i i
−2|x(i)− y(i)| etc.,

But not the metric supi |x(i)− y(i)| as convergence in this metric is equivalent to uniform

convergence over all i ∈ N].

(2) Show that X is compact.

[Note: What is this problem doing here? The purpose is to reiterate a key technique we used in

the proof of Helly’s selection principle!]

Problem 66. For ε > 0, find an ε-net for the space of probability measures supported on [0, 1].

Problem 67. Find infinitely many measurable functions fn : [0, 1]→ [0, 1] such that λ ◦ f−1
n = λ.

(In terms of random variables, if U ∼ Unif[0, 1], then we want fn(U) ∼ Unif[0, 1] for all n.

Problem 68. Consider ([0, 1],B) and let T : [0, 1] → [0, 1] be defined by T (x) = 1
x − b

1
xc. Show

that T preserves (i.e., µ ◦ T−1 = µ) the probability measure with density c
1+x (where c = 1/ log 2)

on [0, 1]. [Note: The sequence of integers (b 1
xc, b

1
T (x)c, b

1
T (T (x))c . . .) is called the continued fraction

expansion of x]

Problem 69. Recall the Cantor set C =
⋂
nKn where K0 = [0, 1], K1 = [0, 1/3] ∪ [2/3, 1], etc. In

general, Kn =
⋃

1≤j≤2n [an,j , bn,j ] where bn,j − an,j = 3−n for each j.

(1) Let µn be the uniform probability measure on Kn. Describe its CDF Fn.

(2) Show that Fn converges uniformly to a CDF F .

(3) Let µ be the probability measure with CDF equal to F . Show that µ(C) = 1.

Problem 70. Let µ ∈ P(R).

(1) For any n ≥ 1, define a new probability measure by µn(A) = µ(n.A) where n.A = {nx : x ∈
A}. Does µn converge as n→∞?

12



(2) Let µn be defined by its CDF

Fn(t) =


0 if t < −n,

F (t) if − n ≤ t < n,

1 if t ≥ n.

Does µn converge as n→∞?

(3) In each of the cases, describe µn in terms of random variables. That is, if X has distribution

µ, describe a transformation Tn(X) that has the distribution µn.

Problem 71. Let µn = 1
Zn

∑n
k=1 f

(
k
n

)
δk/n, where f : [0, 1] → R is a Borel measurable function.

Show that µn
d→ µ where µ = λ ◦ f−1.

Work out the special case when f(x) = xp, p ∈ N.

Problem 72. In each case, decide if µ� ν and if so, compute the Radon-Nikodym derivative.

(1) µ = Bin(n, p) and ν = Bin(n′, p′).

(2) µ = Pois(λ) and ν = Pois(λ′).

(3) µ = N(µ, σ2) and ν = N(0, 1).

(4) µ = Exp(1) and ν = N(0, 1).

Problem 73. (Bernoulli convolutions) For any θ > 1, define Xθ : [0, 1] → R by Xθ(ω) =∑∞
k=1 θ

−kXk(ω). Check that Xθ is measurable, and define µθ = µX−1
θ . Show that for any θ > 2,

show that µθ is singular w.r.t. Lebesgue measure.

Problem 74. Let (Ω,F ,P) be a probability space. Let X,Y be bounded positive random variables

on Ω and define two measures µ(A) = E[X1A] and ν(A) = E[Y 1B] for any A ∈ F (i.e., dµ = XdP

and dν = Y dP).

What should be the relationship between X and Y to ensure that (a) µ ⊥ ν? (b) µ� ν?

Problem 75. For p = 1, 2,∞, check that ‖X−Y ‖p is a metric on the space Lp := {[X] : ‖X‖p <∞}
(here [X] denotes the equivalence class of X under the above equivalence relation).

Problem 76. (1) Find a sequence of r.v.s Xn such that lim inf E[Xn] < E[lim inf Xn].

(2) Find a sequence of r.v.s Xn such that Xn
a.s.→ X, E[Xn] = 1, but E[X] = 0.

13



Problem 77. Let X1, . . . , Xn be random variables on a common probability space. Define Mn =

max{X1, . . . , Xn} and Mn,β = 1
β log(eβX1 + . . . + eβXn). Show that E[Mn,β] → E[Mn] as β → ∞.

[Remark: Mn is got by applying a non-smooth function to Xis, but it can be approximated by

Mn,β which is a smooth function of Xis]

Problem 78. (Alternate construction of Cantor measure) Let K1 = [0, 1/3] ∪ [2/3, 1],

K2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1], etc., be the decreasing sequence of compact sets

whose intersection is K. Observe that Kn is a union of 2n intervals each of length 3−n. Let µn be

the p.m. which is the “renormalized Lebesgue measure” on Kn. That is, µn(A) := 3n2−nµ(A∩Kn)

for A ∈ BR. Then each µn is a Borel p.m. Show that µn
d→ µ, the Cantor measure (which was

defined differently in class).

Problem 79. (A quantitative characterization of absolute continuity) Suppose µ � ν.

Then, show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε. (The

converse statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 80. Let µ be a probability measure on R such that µ(a, b) ≤M(b− a) for some M <∞
and all a < b. Show that µ has a bounded density.

Problem 81. If µ ∈ P(Rd) has density f , show that
∫
Rd g(x)dµ(x) =

∫
Rd g(x)f(x)dx (the latter is

integral w.r.t. Lebesgue measure on Rd). [Note: A more general question is in Problem 89 below.

The point is that if X ∼ µ, then we can compute E[g(X)] directly from the density of X]

Problem 82. Let µ, ν ∈ P(R) and let θ = 1
2µ+ 1

2ν.

(1) Show that µ� θ and ν � θ.

(2) If µ ⊥ ν, describe the Radon Nikodym derivative of µ w.r.t. θ.

Problem 83. Let µi, i ∈ I, be probability measures on R.

(1) If I is countable, show that there is a θ ∈ P(R) such that µi � θ for all i.

(2) If I is uncountable, show that the conclusion of the first part may fail.

Problem 84. Let µ and ν be Borel probability measures on R. Suppose there exists a probability

measure θ on R2 having marginals θ ◦ Π−1
1 = µ and θ ◦ Π−1

2 = ν such that θ{(x, x) : x ∈ R} > 0.

Then show that µ and ν cannot be singular.

[ In the language of random variables, the hypothesis says that we can couple X ∼ µ and Y ∼ ν
such that X = Y with positive probability.]
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Problem 85. (Requires product measure) Decide true or false and justify. Take µi, νi to be

probability measures on (Ωi,Fi).
(1) If µ1 ⊗ µ2 � ν1 ⊗ ν2, then µ1 � ν1 and µ2 � ν2.

(2) If µ1 � ν1 and µ2 � ν2, then µ1 ⊗ µ2 � ν1 ⊗ ν2.

Problem 86. (Requires knowledge of infinite product measure) Decide whether the following pairs

of measures on RN (with the product sigma-algebra) are singular or absolutely continuous to one

another? In each case, µ = µ1 ⊗ µ2 ⊗ . . . and ν = ν1 ⊗ ν2 ⊗ . . ..
(1) µi = Ber(1/2) and νi = Ber(p) for all i, for some p ∈ [0, 1].

(2) µi = N(0, 1) and νi = N(α, 1) for all i, where α ∈ R.

(3) µi = Ber(1/2) and νi = Ber(pi) for all i, where pi = 1/2 for i > 100.

(4) µi = N(0, 1) and νi = N(αi, 1) for all i, where αi = 0 for i > 1000.

Problem 87. Suppose f : [a, b] → R is a Borel measurable function. Then, show that g(x) :=∫ x
0 f(u)du is a continuous function on [0, 1]. [Note: It is in fact true that g is differentiable at almost

every x and that g′ = f a.s., but that is a more sophisticated fact, called Lebesgue’s differentiation

theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be

covered in your measure theory class].

Problem 88. (Differentiating under the integral). Let f : [a, b]×R→ R, satisfy the following

assumptions.

(1) x→ f(x, θ) is Borel measurable for each θ.

(2) θ → f(x, θ) is continuously differentiable for each x.

(3) f(x, θ) and ∂f
∂θ (x, θ) are uniformly bounded functions of (x, θ).

Then, justify the following “differentiation under integral sign” (including the fact that the integrals

here make sense).

d

dθ

∫ b

a
f(x, θ)dx =

∫ b

a

∂f

∂θ
(x, θ) dx

[Hint: Remember that derivative is the limit of difference quotients, h′(t) = limε→0
h(t+ε)−h(t)

ε .

Problem 89. Let X ≥ 0 be a r.v on (Ω,F ,P) with 0 < E[X] < ∞. Then, define Q(A) =

E[X1A]/E[X] for any A ∈ F . Show that Q is a probability measure on F . Further, show that for

any bounded random variable Y , we have EQ[Y ] = E[Y X]
E[X] .
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Problem 90. If µ and ν are Borel probability measures on the line with continuous densities f

and g (respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that µ has a

density w.r.t ν? In that case, what is that density?

Problem 91. For p = 1, 2,∞, check that ‖X−Y ‖p is a metric on the space Lp := {[X] : ‖X‖p <∞}
(here [X] denotes the equivalence class of X under the equivalence relation X ∼ Y if P(X = Y ) =

1).

Problem 92. If X is an integrable random variable, show that there are bounded random variables

Xn such that E[|Xn −X|]→ 0 as n→∞.

Problem 93. Let 0 < p < q.

(1) If X ∈ Lq, show that X ∈ Lp.

(2) If E[|Xn|q]→ 0 show that E[|Xn|p]→ 0.

Problem 94. Find integrable random variables Xn, X for each of the following situations.

(1) Xn → X a.s. but E[Xn] 6→ E[X].

(2) Xn → X a.s. and E[Xn]→ E[X] but there is no dominating integrable random variable Y

for the sequence {Xn}.
[Remark: That is, the domination condition cannot be removed but can perhaps be weakened.]

Problem 95. Let X be a non-negative random variable.

(1) Show that E[X] =
∫∞

0 P{X > t}dt (in particular, if X is a non-negative integer valued,

then E[X] =
∑∞

n=1 P(X ≥ n)).

(2) Show that E[Xp] =
∫∞

0 ptp−1P{X ≥ t}dt for any p > 0.

(3) Show that E[eθX ] =
∫
θeθtP{X ≥ t}dt for any θ ∈ R.

Problem 96. For any integrable random variable X having CDF F , show that

E[X] =

∫ ∞
0

(1− F (x) + F (−x))dx.

Problem 97. Let X be a non-negative random variable. If E[X] is finite, show that
∑∞

n=1 P{X ≥
an} is finite for any a > 0. Conversely, if

∑∞
n=1 P{X ≥ an} is finite for some a > 0, show that

E[X] is finite.
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Problem 98. Decide true or false: A random variable X has finite kth moment if and only if

Q(X) has finite expectation for some polynomial of degree k.

Problem 99. Suppose µ ∈ P(R) satisfies µ(a, b) ≤ C(b − a)p for all a < b for some p > 0 and

C < ∞. Assume that µ is compactly supported (so that the issues here are not at what happens

near ∞)

(1) Show that 1
|x−a|q is integrable w.r.t. µ for any q < p.

(2) Show that log |x− a| is integrable w.r.t. µ for any a ∈ R.

[Remark: Note that p ≤ 1 necessarily]

Problem 100. Is there any probability distribution µ on R such that for every a ∈ R, the function
1

x−a is integrable w.r.t. µ? [Equivalent form: Does there exist a random variable X such that

E
[

1
|X−a|

]
<∞ for all a ∈ R?]

Problem 101. Let X be an random variable with mean µ and finite variance σ2 and a median M

(there can be multiple medians). Show that |µ−M | ≤
√

2σ.

Problem 102. Let Ψ : R+ → R+ be an increasing, convex and bijective. Fix a probability space

(Ω,F ,P) and for a random variable X, define ‖X‖Ψ := inf{b > 0 : E[Ψ(|X|/b)] ≤ 1} (the infimum

of empty set is +∞). Let LΨ = {X : ‖X‖Ψ <∞}.
(1) Show that ‖ · ‖Ψ is a pseudo-norm on LΨ (it becomes a norm on the space of equivalence

classes).

(2) What choice of Ψ gives Lp norm for 1 ≤ p <∞?

Problem 103. Show that the values E[f ◦X] as f varies over the class of all smooth (infinitely

differentiable), compactly supported functions determine the distribution of X.

Problem 104. (i) Express the mean and variance of of aX + b in terms of the same quantities for

X (a, b are constants).

(ii) Show that Var(X) = E[X2]−E[X]2.

Problem 105. Compute mean, variance and moments (as many as possible!) of the Normal(0, 1),

exponential(1), Beta(p, q) distributions.
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Problem 106. Consider a probability density f on R that is symmetric and log-concave, i.e.,

f(x) = e−ϕ(x) where ϕ is an even convex function.

(1) Show that f has moments of all orders.

(2) Show that there are universal constants a, b such that a ≤ f(0)σ2 ≤ b where σ2 is the

variance.

Problem 107. If µ and ν are probability measures on a finite set A, then the relative entropy of µ

w.r.t. ν is defined as D(µ‖ν) =
∑
a∈A

µ(a) log µ(a)
ν(a) . The quantity H(µ) :=

∑
a∈A

µ(a) log 1
µ(a) is called

the entropy of µ.

(1) Show that D(µ‖ν) ≥ 0 with equality if and only if µ = ν.

(2) Show that 0 ≤ H(µ) ≤ log |A|. When are the inequalities attained?

[Clarification: When µ(a) = 0 the sumand is taken to be 0 but when µ(a) > 0 but ν(a) = 0, it is

taken to be +∞.].

Problem 108. For two probability densities f, g on R, the relative entropy of the first with respect

to the second is defined as D(f‖g) =
∫
R f(x) log f(x)

g(x)dx. Show that D(f‖g) ≥ 0 with equality if and

only if f = g a.e. [Clarification: When f(x) = 0 the integrand is taken to be 0 but when f(x) > 0

but g(x) = 0, it is taken to be +∞.]

Problem 109. Find D(f‖g) if

(1) f is the N(µ, σ2) density and g is the N(0, 1) density.

(2) f is the standard Cauchy density and g is the N(0, 1) density.

Problem 110. Let θp = pδ1 + (1− p)δ0 for 0 ≤ p ≤ 1. Let µn,p = ⊗nk=1θp. Find D(µn,p‖µn 1
2
) and

analyse what happens as n→∞.

Problem 111. Let µ, ν ∈ P(R) be measures without atoms (so their CDFs are continuous). Let

D = {(x, x) : x ∈ R} be the diagonal. Show that (µ⊗ ν)(D) = 0.

Problem 112. If X,Y are independent random variables with continuous distributions, then

P{X = Y } = 0. [Remark: This is a restatement of the previous exercise in terms of random

variables]

Problem 113. Let X ∼ µ and Y ∼ ν be independent random variables and let θ be the distribution

of X + Y . Decide True/False and justify.
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(1) If µ and ν are both discrete, then so is θ.

(2) If µ and ν are both absolutely continuous, then so is θ.

(3) If µ is discrete and ν is absolutely continuous, then θ is absolutely continuous.

Problem 114. Drop the assumption of independence in the previous problem (answers may

change!).

Problem 115. Let X1, . . . , Xn be positive random variables on a common probability space. Show

that

E[max{X1, . . . , Xn}] ≤
n∑
k=1

E[Xk] ≤ E[max{X1, . . . , Xn}] +
∑
i<j

E[min{Xi, Xj}].

Problem 116. (1) If Xn ≥ 0 and Xn → X a.s. If E[Xn]→ E[X], show that E[|Xn−X|]→ 0.

(2) If E[|X|] <∞, then E[|X|1|X|>A]→ 0 as A→∞.

Problem 117. (1) Suppose (X,Y ) has a continuous density f(x, y). Find the density of X/Y .

Apply to the case when (X,Y ) has the standard bivariate normal distribution with density

f(x, y) = (2π)−1 exp{−x2+y2

2 }.

(2) Find the distribution of X + Y if (X,Y ) has the standard bivariate normal distribution.

(3) Let U = min{X,Y } and V = max{X,Y }. Find the density of (U, V ).

Problem 118. Let µn, µ ∈ P(Rn). Show that µn
d→ µ if and only if

∫
fdµn →

∫
fdµ for every

f ∈ Cb(R). What if we only assume
∫
fdµn →

∫
fdµ for all f ∈ Cc(Rn) - can we conclude that

µn
d→ µ?

Problem 119. Let µn, µ ∈ P(Rn) having densities fn, f with respect to Lebesgue measure. If

fn → f a.e. (w.r.t. Lebesgue measure), show that µn
d→ µ.

Problem 120 (Moment matrices). Let µ ∈ P(R) and let αk =
∫
xkdµ(x) (assume that all

moments exist). Then, for any n ≥ 1, show that the matrix (αi+j)0≤i,j≤n is non-negative definite.

[Suggestion: First solve n = 1].

Problem 121. Let X ≥ 0 and let mp = E[Xp]. If 1 ≤ p1 < p2 < p3, show that mp2 ≤ ma
p1 ×m

b
p3

for some a, b that depend on pis but not on the distribution of X.
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Problem 122. Let X be a non-negative random variable with all moments (i.e., E[Xp] < ∞ for

all p <∞). Show that log E[Xp] is a convex function of p.

Problem 123. (1) Let µn, µ ∈ P(Rd). Assume that µn has density fn and µ has density f

w.r.t Lebesgue measure on Rn. If fn(t)→ f(t) for all t, then show that µn
d→ µ.

(2) Show that N(µn, σ
2
n)

d→ N(µ, σ) if and only if µn → µ and σ2
n → σ2.

Problem 124. (1) Let X ∼ Γ(α, 1) and Y ∼ Γ(α′, 1) be independent random variables on a

common probability space. Find the distribution of X
X+Y .

(2) If U, V are independent and have uniform([0,1]) distribution, find the distribution of U+V .

Problem 125. Let Ω = {1, 2, . . . , n}. For a probability measure P on Ω, we define it “entropy”

H(P) := −
∑n

k=1 pk log pk where pk = P{k} and it is understood that x log x = 0 if x = 0. Show

that among all probability measures on Ω, the uniform probability measure (the one with pk = 1
n

for each k) is the unique maximizer of entropy.

Problem 126. (1) If µn � ν for each n and µn
d→ µ, then is it necessarily true that µ � ν?

If µn ⊥ ν for each n and µn
d→ µ, then is it necessarily true that µ ⊥ ν? In either case,

justify or give a counterexample.

(2) Suppose X,Y are independent (real-valued) random variables with distribution µ and ν

respectively. If µ and ν are absolutely continuous w.r.t Lebesgue measure, show that the

distribution of X + Y is also absolutely continuous w.r.t Lebesgue measure.

Problem 127. Suppose {µα : α ∈ I} and {νβ : α ∈ J} are two families of Borel probability

measures on R. If both these families are tight, show that the family {µα ⊗ νβ : α ∈ I, β ∈ J} is

also tight.

Problem 128. Let X be a non-negative random variable. If E[X] ≤ 1, then show that E[X−1] ≥ 1.

Problem 129. Suppose X,Y are independent random variables and X+Y has finite expectation.

Then show that X has finite expectation. [Hint: Assume that Y has symmetric distribution to get

a possibly simpler version of the problem]
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Problem 130. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two binary

expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 131. If A ∈ B(R2) has positive Lebesgue measure, show that for some x ∈ R the set

Ax := {y ∈ R : (x, y) ∈ A} has positive Lebesgue measure in R.

Problem 132 (A quantitative characterization of absolute continuity). Suppose µ � ν.

Then, show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε. (The

converse statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 133. For µ, ν ∈ P(R), a budding probabilist asserts that ν � µ provided ν(I) = 0 for

all intervals for which µ(I) = 0. Will he or she bud or wither? What if intervals are replaced by

compact sets?

Problem 134. Let Z1, . . . , Zn be i.i.dN(0, 1) and write Z for the vector with components Z1, . . . , Zn.

Let A be an m × n matrix and let µ be a vector in Rm. Then the m-dimensional random vector

X = µ+AZ is said to have distribution Nm(µ,Σ) where Σ = AAt (‘Normal distribution with mean

vector µ and covariance matrix Σ’).

(1) If m ≤ n and A has rank m, show that X has density (2π)−
m
2 exp{−1

2xtA−1x} w.r.t

Lebesgue measure on Rm. In particular, note that the distribution depends only on µ and

AAt. ( Note: If m > n or if rank(A) < m, then satisfy yourself that X has no density w.r.t

Lebesgue measure on Rm - you do not need to submit this).

(2) Check that E[Xi] = µi and Cov(Xi, Xj) = Σi,j .

(3) What is the distribution of (i) (X1, . . . , Xk), for k ≤ n? (ii) BX, where B is a p×m matrix?

(iii) X1 + . . .+Xm?

Problem 135. (1) If X,Y are independent random variables, show that Cov(X,Y ) = 0.

(2) Give a counterexample to the converse by giving an infinite sequence of random variables

X1, X2, . . . such that Cov(Xi, Xj) = 0 for any i 6= j but such that Xi are not independent.
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(3) Suppose (X1, . . . , Xm) has (joint) normal distribution (see the first question). If Cov(Xi, Xj) =

0 for all i ≤ k and for all j ≥ k + 1, then show that (X1, . . . , Xk) is independent of

(Xk+1, . . . , Xm).

Problem 136. Decide whether the following are true or false and explain why.

(1) If X is independent of itself, X is constant a.s.

(2) If X is independent X2 then X is a constant a.s.

(3) If X,Y,X + Y are independent, then X and Y are constants a.s.

(4) If X and Y are independent and also X + Y and X − Y are independent, then X and Y

must be constants a.s.

Problem 137. If X ∼ Exp(1), show that bXc and X − bXc are independent. Give examples of

distributions other than Exponential for which the same independence holds.

Problem 138. Let X,Y be independent random variables such that P{X ≤ Y } = 1. Show that

there exists some t ∈ R such that P{X ≤ t} = 1 and P{Y ≥ t} = 1.

Problem 139. (1) Suppose 2 ≤ k < n. Give an example of random variables X1, . . . , Xn such

that any subset of k of these random variables are independent but no subset of k + 1 of

them is independent.

(2) Suppose (X1, . . . , Xn) has a multivariate Normal distribution. Show that if Xi are pairwise

independent, then they are independent.

Problem 140. Let Ω = {0, 1}n with its power set sigma-algebra and uniform distribution P. Show

that it is not possible to define n+ 1 non-constant random variables that are independent. [Hint:

First show that it is not possible to get n+1 independent Ber(pi) random variables with 0 < pi < 1]

Problem 141. Show that it is not possible to define uncountably many independent Ber(1/2)

random variables on the probability space ([0, 1],B, λ).

Problem 142. Let Ω = {1, 2, . . . , n} with the power set sigma-algebra and uniform probability

measure. Let Xp(k) = 1p divides k. Are X2 and X3 independent? [Note: The answer may depend

on n.]
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Problem 143. Suppose N ≥ 2 distinguishable balls are thrown into m ≥ 2 labelled bins, uniformly

at random.

(1) Show that Xis are not independent.

(2) If N is itself a random number from Pois(λ) distribution (and then the assignment of balls

to bins is independent of N), show that Xis are independent and find their distributions.

Problem 144. For a real valued random variable X, its concentration function is defined as

QX(t) = sup{P{X ∈ [a, a + t] : a ∈ R}, for t ≥ 0 (so QX(0) is the largest atom size in the

distribution of X). If X,Y are independent and Z = X + Y , show that QX+Y (t) ≤ QX(t) for all

t ≥ 0.

Problem 145. Let Un, Vn, n ≥ 1 be i.i.d. Unif[0, 1] random variables. Let Xk = 1Uk≤V1 and

Yk = 1Uk<Vk and Zk = 1Uk<minj≤k Vj .

Which of the collections {Xn}, {Yn}, {Zn} are (A) Independent? (B) Identically distributed?

Problem 146. Pick a permutation Π ∈ Sn uniformly at random. Let Xk be the indicator of the

event that k is the smallest element in its cycle (in the cycle decomposition of Π). Show that

X1, . . . , Xn are independent and that Xk ∼ Ber(1/k).

Problem 147. Pick a permutation Π ∈ Sn uniformly at random. Let Yk be the number of j < k for

which Π(k) < Π(j). Show that Y1, . . . , Yn are independent and that Yk ∼ Uniform{0, 1, . . . , k− 1}.

Problem 148. Let Xi, i ≥ 1 be random variables on a common probability space. Let f : RN → R
be a measurable function (with product sigma algebra on RN and Borel sigma algebra on R) and

let Y = f(X1, X2, . . .). Show that the distribution of Y depends only on the joint distribution

of (X1, X2, . . .) and not on the original probability space. [Hint: We used this to say that if Xi

are independent Bernoulli random variables, then
∑

i≥1Xi2
−i has uniform distribution on [0, 1],

irrespective of the underlying probability space.]

Problem 149. Let (Ω1,F1, µ), (Ω2,F2, ν) be probability spaces and let θ be a probability measure

on (Ω = Ω1 × Ω2,F1 ⊗F2). We write z ∈ Ω as z = (x, y) (i.e., x = Π1(z) and y = Π2(z)).

(1) Show that θ has marginals µ and ν if and only if,∫
Ω

(f(x) + g(y))dθ(z) =

∫
Ω1

fdµ+

∫
Ω2

gdν.

for every f, g bounded random variables on Ω1 and Ω2 respectively.
23



(2) Show that θ = µ⊗ ν if and only if∫
Ω
f(x)g(y)dθ(z) =

(∫
Ω1

fdµ

)
×
(∫

Ω2

gdν

)
for every f, g bounded random variables on Ω1 and Ω2 respectively.

Problem 150. Let X be a random variable taking values in {0, 1, . . . , n} with pk = P{X = k}.
Let P (t) = p0 + p1t + . . . + pnt

n be the generating function of X. Show that the following are

equivalent:

(1) All roots of P are real.

(2) X has the same distribution as a sum of n independent (not necessarily identical) Bernoulli

random variables.

Problem 151. Suppose (X1, . . . , Xn) has density f (w.r.t Lebesgue measure on Rn).

(1) If f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some one-variable functions gk, k ≤ n.

Then show that X1, . . . , Xn are independent. (Don’t assume that gk is a density!)

(2) If X1, . . . , Xn are independent, then f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some

one-variable densities g1, . . . , gn.

Problem 152. (1) Let S be the set of all x ∈ [0, 1] whose base b-expansion contains all the

digits 0, 1, . . . , b−1, for every b ∈ {2, 3, 4 . . .}. Show that λ(S) = 1, where λ is the Lebesgue

measure on [0, 1].

(2) Let S be the set of all points in R2 that can be written as a convex combination of two

rational points (a rational point is one whose co-ordinates are all rational numbers). Show

that S has zero Lebesgue measure.

Problem 153. Let X = (Xi,j)i,j≤n where Xi,j are i.i.d. N(0, 1) random variables and let A =

(X +Xt)/
√

2 (a random symmetric matrix). Let λ1 ≤ . . . ≤ λn be the eigenvalues of A (repeated

with multiplicity). Let J ∼ Unif[n] independent of Xi,js. Let λ = λJ (a uniformly randomly chosen

eigenvalue of A).

(1) Show that E[λp] = 0 if p is odd.

(2) Show that E[λ2] = 1 and E[λ4] = 2.

[Much more difficult: Find E[λp] for larger even numbers, p = 6, 8, . . .]

Problem 154. Let X,Y be random variables on a common probability space. Assume that both

X and Y have finite variance.
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(1) Show that E[(X − a)2] is minimized uniquely at a = E [X].

(2) Find values of a, b that minimize f(a, b) = E
[
(Y − a− bX)2

]
. Are they unique?

(3) Suppose P(X = k) = 1
10 for k = 1, 2 . . . , 10. At what value(s) of a is E [|X − a|] minimized?

Is the minimizer unique?

Problem 155. Let X1, . . . , Xn be i.i.d. random variables with a common distribution function F .

Assume that F has a density f . Let X(k) be the kth order statistic, i.e., the kth smallest among

X1, . . . , Xn (e.g., X(n) = maxi≤nXi). Show that X(k) has a density given by

gk(x) =
n!

(k − 1)!(n− k)!
F (x)k−1(1− F (x))n−kf(x).

Problem 156. If Xi are i.i.d. Unif[0, 1], identify the distribution of X(k), the kth order statistic.

Find E[X(k)] and Var(X(k)).

Problem 157. There are n machines and n jobs. Machine i can do job j at a cost of ξi,j . The

optimal assignment is to pair machines with jobs so that the total cost is minimized. Let ξi,j

be i.i.d. Exp(1) random variables and let Cn be the cost of the optimal assignment. Show that

E[Cn] = O(log n). [Note: In fact, it is known that E[Cn] = 1+ 1
22

+ . . .+ 1
n2 which remains bounded!

But that is more involved. Look up random assignment problem to know more]

Problem 158. Among all n! permutations of [n], pick one at random with uniform probability.

Show that the probability that this random permutation has no fixed points is at most 1
2 for any

n.

Problem 159. Suppose each of r = λn balls are put into n boxes at random (more than one ball

can go into a box). If Nn denotes the number of empty boxes, show that for any δ > 0, as n→∞,

P

(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 160. Let Xn be i.i.d random variables such that E[|X1|] <∞. Define the random power

series f(z) =
∑∞

k=0Xnz
n. Show that almost surely, the radius of convergence of f is equal to 1.

[Note: Recall from Analysis class that the radius of convergence of a power series
∑
cnz

n is given

by (lim sup |cn|
1
n )−1].

Problem 161. (1) Let X be a real values random variable with finite variance. Show that

f(a) := E[(X − a)2] is minimized at a = E[X].
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(2) What is the quantity that minimizes g(a) = E[|X−a|]? [Hint: First consider X that takes

finitely many values with equal probability each].

Problem 162. If X is a positive random variable, show that E[Xp]
1
p is increasing in p ∈ [0,∞).

Problem 163. Let f : R+ → R+ be a decreasing, continuous probability density function and let

mp =
∫∞

0 xpf(x)dx be its pth moment. Show that ((p+ 1)mp)
1
p+1 is increasing in p ∈ [0,∞).

[Hint: Consider a measure ν such that ν[x,∞) = f(x) and relate mp to ν.]

Problem 164 (Existence of Markov chains). Let S be a countable set (with the power set

sigma algebra). Two ingredients are given: A transition matrix, that is, a function p : S×S → [0, 1]

be a function such that p(x, ·) is a probability mass function on S for each x ∈ S. (1) An initial

distribution, that is a probability mass function µ0 on S.

For n ≥ 0 define the probability measure νn on Sn+1 (with the product sigma algebra) by

νn(A0 ×A1 × . . .×An) =
∑

(x0,...,xn)∈A0×...×An

µ0(x0)
n−1∏
j=0

p(xj , xj+1).

Show that νn form a consistent family of probability distributions and conclude that a Markov

chain with initial distribution µ0 and transition matrix p exists.

Problem 165. Show that it is not possible to define uncountably many independent Ber(1/2)

random variables on the probability space ([0, 1],B, λ).

Problem 166. Let (Ωi,Fi,Pi), i ∈ I, be probability spaces and let Ω = ×iΩi with F = ⊗iFi and

P = ⊗iPi. If A ∈ F , show that for any ε > 0, there is a cylinder set B such that P(A∆B) < ε.

Problem 167. Let A1, A2, . . . be a sequence of events in (Ω,F ,P). Let pk be the probability that

at least one of the events Ak, Ak+1, . . . occurs.

(1) If inf
k
pk > 0, then show that An occurs infinitely often, w.p.1.

(2) If pk → 0, then show that only finitely many An occur, w.p.1.

Problem 168. Let An be events in a probability space such that
∑

n P(An∆Bn) < ∞ for

some sequence of independent events Bn. Show that P(An i.o.) is 0 if
∑

n P (An) < ∞ and 1

if
∑

n P(An) =∞.
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Problem 169. Show that there is no function ϕ : [0, 1] → [0, 1] such that ϕ(x) → 0 as x → 0 for

which
∑

n ϕ(P(An)) = ∞ implies P(An i.o.) > 0. [Remark: This is to emphasize that the second

Borel-Cantelli cannot be got some independence assumption. For example, even if
∑

n P(An)10 =

∞, we may still have P(An i.o.) = 0.]

Problem 170. Let An be events in a probability space.

(1) If there exist 1 = N1 < N2 < . . . → ∞ such that if Bk = ANk ∪ . . . ∪ ANk+1−1 satisfy∑
k P(Bk) <∞, then P(An i.o.) = 0.

(2) Is the converse true? If P(An i.o.) = 0, must there exist (Nk) such that
∑

k P(Bk) <∞?

Problem 171. Let ξ, ξn be i.i.d. random variables with E[log+ ξ] <∞ and P(ξ = 0) < 1.

(1) Show that lim sup
n→∞

|ξn|
1
n = 1 a.s.

(2) Let cn be (non-random) complex numbers. Show that the radius of convergence of the

random power series
∑∞

n=0 cnξnz
n is almost surely equal to the radius of convergence of the

non-random power series
∑∞

n=0 cnz
n.

Problem 172. Let (Xn)n be a sequence of random variables such that {X2n : n ≥ 1} are inde-

pendent and {X2n−1 : n ≥ 1} are independent. Does it follow that the tail sigma algebra of the

sequence (Xn)n is trivial?

Problem 173. Let Xn be independent random variables with Xn ∼ Ber(pn). For k ≥ 1, find a

sequence (pn) so that almost surely, the sequence X1, X2, . . . has infinitely many segments of ones

of length k but only finitely many segments of ones of length k + 1. By a segment of length k we

mean a consecutive sequence Xi, Xi+1, . . . , Xi+k−1.

Problem 174. Let `n be numbers in [0, 2π). Let θ1, θ2, . . . be i.i.d. Unif[0, 2π] and let Jk be the

arc of the unit circle S1 = {eit : 0 ≤ t < 2π} with center eiθk and having length `k. Let J = ∪kJk.
Show that the following are equivalent:

(1) S1 \ J has zero Lebesgue measure in S1, a.s.

(2)
∑

n `n =∞.

[Hint: First fix x ∈ S1 and consider the event that x is covered by infinitely many Jn.]

Problem 175. (Ergodicity of product measure). This problem guides you to a proof of a different

zero-one law.
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(1) Consider the product measure space (RZ,B(RZ),⊗Zµ) where µ ∈ P(R). Define τ : RZ → RZ

by (τω)n = ωn+1. Let I = {A ∈ B(RZ) : τ(A) = A}. Then, show that I is a sigma-algebra

(called the invariant sigma algebra) and that every event in I has probability equal to 0 or

1.

(2) Let Xn, n ≥ 1 be i.i.d. random variables on a common probability space. Suppose f : RN →
R is a measurable function such that f(x1, x2, . . .) = f(x2, x3, . . .) for any (x1, x2, . . .) ∈ RN.

Then deduce from the first part that the random variable f(X1, X2, . . .) is a constant, a.s.

[Hint: Approximate A by cylinder sets. Use translation by τm to show that P(A) = P(A)2.]

Problem 176. Let v1, . . . , vn be unit vectors in Rn. Show that there exist ε, ε′ ∈ {−1,+1}n such

that

(1) ‖ε1v1 + . . .+ εnvn‖ ≤
√
n,

(2) ‖ε′1v1 + . . .+ ε′nvn‖ ≥
√
n.

[Hint: Probabilistic method]

Problem 177. If X and Y are i.i.d. random variables, show that the (closed) support of the

distribution of X − Y contains 0.

Problem 178. If X ≥ 0 and E[X] = m, then show that P{X ≤ m} > 0. Is there is an absolute

lower bound (meaning, the bound does not depend on X) for P{X ≤ m}?

Problem 179. Assume σ2 := Var(X) <∞ and E[X] = 0. Show that P{X ≥ t} ≤ σ2

σ2+t2
for t > 0.

[Hint: Consider (X − t)±.].

[Note: Compare with direct application of Chebyshev’s inequality. ]

Problem 180. If X ≥ 0 has finite second moment, show that P{X = 0} ≤ Var(X)
E[X2]

.

Problem 181. Let X be a random variable with mean 0. Assume that τ = ‖X‖4 and let σ = ‖X‖2
are finite. Let γ = τ/σ. Show that

P{|X| ≥ kσ} ≤

 1
k2

for any k ≥ 1,

γ4−1
γ4+k4−2k2

if k ≥ γ2.

[Remark: Strengthening of Chebyshev for high deviations, assuming 4th moment. ]

Problem 182. (Chung-Erdös inequality).
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(1) Let Ai be events in a probability space. Show that

P

{
n⋃
k=1

Ak

}
≥

(
∑n

k=1 P(Ak))
2∑n

k,`=1 P(Ak ∩A`)

(2) Place rm balls in m bins at random and count the number of empty bins Zm. Fix δ > 0.

If rm > (1 + δ)m logm, show that P(Zm > 0)→ 0 while if rm < (1− δ)m logm, show that

P(Zm > 0)→ 1.

Problem 183. Let µ ∈ P(R) and assume that it has finite mean M and variance σ2. If M ∈ [a, b]

and µ(a, b) = 0, then show that σ2 ≥ (M − a)(b−M).

Problem 184. Give example of an infinite sequence of pairwise independent random variables for

which Kolmogorov’s zero-one law fails.

Problem 185. Let X1, . . . , Xn be random variables with E[Xi] = 0 and |Xi| ≤ Bi a.s. Assume

that E[Xi1 . . . Xik ] = 0 for any 1 ≤ i1 < i2 < . . . < ik ≤ n. Check that the proof of Hoeffding’s

inequality goes through for Sn = X1 + . . .+Xn.

Problem 186. Let X1, . . . , Xn be independent random variables with E[Xk] = 0 and E[X2
k ] = σ2

k.

Let Sk = X1 + . . . + Xk (so S0 = 0) and let S∗n = max
0≤k≤n

|Sk|. Show that E[S∗n] ≤ 2τn where

τ2
n = σ2

1 + . . .+ σ2
n.

Problem 187. Suppose Xn are independent random variables and
∑
n
Xn converges a.s. Show that∑

n
P{|Xn| > A} <∞ for any A > 0.

Problem 188. LetXn ∼ Unif[−an, an] be independent. If
∑
n
a2
n converges, show that

∏∞
n=1(1+Xn)

converges a.s.

Problem 189. Let F (s) =
∏
p(1 − Xpp

−s)−1 where the product is over all prime numbers and

Xp are i.i.d. Ber±(1/2) random variables. Show that F (s) converges a.s. for s > 1
2 . [Remark:

Compare this with the famous discovery of Euler that
∏
p(1−p−s)−1 =

∑
n≥1 n

−s, which converges

for s > 1]

Problem 190. Let Xi, i ∈ I be random variables on a probability space. Suppose that for some

p > 0 and M < ∞ we have E[|Xi|p] ≤ M for all i ∈ I. Show that the family {Xi : i ∈ I} is tight

(by which we mean that {µXi : i ∈ I} is tight, where µXi is the distribution of Xi).
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Problem 191. Let Xi be i.i.d. random variables with zero mean and finite variance. Let Sn =

X1 + . . .+Xn. Show that the collection { 1√
n
Sn : n ≥ 1} is tight. [Note: Tightness is essential for

convergence in distribution. In the case at hand, convergence in distribution to N(0, 1) is what is

called central limit theorem. We shall see it later.]

Problem 192. Suppose each of r = λn balls are put into n boxes at random (more than one ball

can go into a box). If Nn denotes the number of empty boxes, show that for any δ > 0, as n→∞,

P

(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 193. Let ξ1, . . . , ξn be i.i.d. tosses of a p-coin. If ξk+1 = ξk+1 = . . . = ξk+m = 1 but

ξk = ξk+m+1 = 0, we say that (k, . . . , k + m + 1) is a run of heads of length exactly equal to m.

Let Tn,m denote the number of runs of length exactly equal to m.

(1) For fixed m, show that
Tn,m
n

P→ q2pm as n→∞.

(2) Does your proof work for m = mn increasing with n? If so how fast can it grow?

Problem 194. A random graph Gn with vertex set [n] = {1, . . . , n} is built by connecting every

pair of distinct vertices with probability pn. Show that for any ε > 0,

P{Gn has an isolated vertex} →

1 if pn < (1− ε) logn
n

0 if pn > (1 + ε) logn
n .

[Hint: Consider the number of isolated vertices.]

Problem 195. A box contains n distinct pairs of gloves. Two gloves are drawn at random and then

returned to the box. Repeat this till each pair of gloves has been drawn at least once. If Tn is the

number of draws, then can you find a deterministic sequence an such that P{1−ε ≤ Tn
an
≤ 1+ε} → 1

as n→∞, for any ε > 0? (in language to be introduced later, we write this as Tn
an

P→ 1).

Problem 196. Repeat the previous problem for a box containing 2n hats. Again hats are drawn,

two at a time, till every pair is seen. (The difference is that hats don’t come in natural pairs).

Problem 197. Let Gn,p be the random graph with vertex set [n] and edge set {{i, j} : Xi,j = 1},
where Xi,j , i < j, are i.i.d. Ber(p). Let R be the size of the largest clique in Gn,p (a clique is

a subset S of vertices such that every pair of vertices in S is connected by an edge). Show that

P{a log n ≤ Rn ≤ b log n} → 1 as n→∞, for some 0 < a < b <∞.
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Problem 198. Consider a Galton-Watson tree T with offspring variable L with P{L = k} = pk,

k ≥ 0. Let L1, L2, . . . be i.i.d. copies of L and let τ be the first time that the random walk

Sn =
∑n

j=1(Lj − 1) hits the level −1. Show that for any k ≥ 1,

P{|T | = k} = P{τ = k}.

Problem 199. Consider Galton-Watson tree with offspring distribution Pois(λ). For λ < 1, show

that P{|T | ≥ k} ≤ e−ck for all k, for some c > 0 (that may depend on λ). [Remark: Not only is T
finite, it is highly unlikely to be large.]

Problem 200. Let A1, A2, . . . be i.i.d. uniform random subsets of [n] (i.e., P(A1 = S) = 2−n for

each S ⊆ [n]). Imagine sampling A1, A2, . . . suvvessively and let Tn be the first time when we have

two subsets that are disjoint from each other. Show that Tn ≈ (2/
√

3)n in the sense that

P

{
Tn ≥

(
2√
3

)n
hn

}
→

0 if hn →∞,

1 if hn → 0.

Problem 201. Same setting as the previous problem, but now let Tn be the first time some subset

contains another. Analyse Tn as in that problem.

Problem 202. Let Xn be i.i.d random variables such that E[|X1|] <∞. Define the random power

series f(z) =
∑∞

k=0Xnz
n. Show that almost surely, the radius of convergence of f is equal to 1.

[Note: Recall from Analysis class that the radius of convergence of a power series
∑
cnz

n is given

by (lim sup |cn|
1
n )−1].

Problem 203. Let X1, X2, . . . be i.i.d. fair coin tosses. Let Ln be the length of the longest run of

heads in X1, . . . , Xn (a run is a segment of consecutive tosses). Show that for any ε > 0,

P{(1− ε) log2 n ≤ Ln ≤ (1 + ε) log2 n} → 1.

Problem 204. Let Xn ∼ Ber(n−α) be independent, α > 0. What is the largest k for which the

sequence X1, X2, X3, . . . contains a sequence of k ones, almost surely?

Problem 205. How does the analysis in the coupon collector problem change if one waits till each

coupon is seen at least two times?
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Problem 206. Let F,G be CDFs such that F (t) ≤ G(t) for all t ∈ R (we say that F stochastically

dominates G). Show that there exists a probability space and random variables X,Y on it such

that X ∼ F , Y ∼ G and X ≥ Y a.s.

Problem 207. Let Xn, Yn be random variables on a common probability space such that P{|Xn−
Yn| ≥ 1

n2 } ≤ 1
n2 . If

∑
n
Xn converges a.s., show that

∑
n
Yn converges a.s.

Problem 208. Let Xn ∼ Ber(1
2) be i.i.d. and let Yn ∼ Ber(1

2 + 1
2n2 ) be independent. Let

X = (X1, X2, . . .) and Y = (Y1, Y2, . . .). If A is a Borel subset of RN, then show that P{X ∈ A} > 0

if and only if P{Y ∈ A} > 0. [Hint: Use coupling]

Problem 209. (1) Let X be a real values random variable with finite variance. Show that

f(a) := E[(X − a)2] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X−a|]? [Hint: First consider X that takes

finitely many values with equal probability each].

Problem 210. Let Xi be i.i.d. Cauchy random variables with density 1
π(1+t2)

. Show that 1
nSn

fails the weak law of large numbers by completing the following steps.

(1) Show that tP{|X1| > t} → c for some constant c.

(2) Show that if δ > 0 is small enough, then P{| 1
n−1Sn−1| ≥ δ}+ P{| 1nSn| ≥ δ} does not go to

0 as n→∞ [Hint: Consider the possibility that |Xn| > 2δn].

(3) Conclude that 1
nSn does not converge t0 0 in probability. [Extra: With a little more

effort, you can try showing that there does not exist deterministic numbers an such that
1
nSn − an

P→ 0].

Problem 211. Let Xn, X be random variables on a common probability space.

(1) If Xn
P→ X, show that some subsequence Xnk

a.s.→ X.

(2) If every subsequence of Xn has a further subsequence that converges almost surely to X,

show that Xn
P→ X.

Problem 212. For Rd-valued random vectors Xn, X, the notions of convergence almost surely, in

probability and in distribution are well-defined. If Xn = (Xn,1, . . . , Xn,d) and X = (X1, . . . , Xd),

which of the following is true? Justify or give counterexamples.

(1) Xn
a.s.→ X if and only if Xn,k

a.s.→ Xk for 1 ≤ k ≤ d.
32



(2) Xn
P→ X if and only if Xn,k

P→ Xk for 1 ≤ k ≤ d.

(3) Xn
d→ X if and only if Xn,k

d→ Xk for 1 ≤ k ≤ d.

Problem 213. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn +

bYn
P→ aX + bY and XnYn

P→ XY . [Hint: You could try showing more generally that

f(Xn, Yn)→ f(X,Y ) for any continuous f : R2 → R.]

Problem 214. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) Suppose that Xn is independent of Yn for each n (no assumptions about independence

across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U

d
= X, V

d
= Y and

U, V are independent. Further, aXn + bYn
d→ aU + bV .

(2) Give counterexample to show that the previous statement is false if the assumption of

independence of Xn and Yn is dropped.

Problem 215. If Xn are independent random variables and Xn
P→ X. Show that X is a constant

random variable.

Problem 216. If Xn, Yn are independent for each n and Xn + Yn
P→ 0. Show that there are

numbers yn such that Xn + yn
P→ 0.

Problem 217. Let an, a ∈ R and an → a. Let µn = 1
n(δa1 + . . .+ δan) be the probability measure

that puts mass 1
n at each ak, k ≤ n (with appropriate multiplicity). Show that µn converges in

distribution and find the limit.

Problem 218. Let µn = 1
n−1

∑n−1
k=1 δf( k

n
), where f : (0, 1)→ R is some continuous function. Show

that µn converges in distribution and describe the limit. Find the limit explicitly when f(x) = xp.

Problem 219. Suppose µn
d→ µ. Let cn,k ≥ 0 for 1 ≤ k ≤ n such that cn,1 + . . .+ cn,n = 1 for each

n and such that cn,j → 0 as n→∞ for each j. Let νn = cn,1µ1 + . . .+ cn,nµn. Show that νn
d→ µ.

Problem 220. Suppose Xn
P→ X. Let cn,k ≥ 0 for 1 ≤ k ≤ n such that cn,1 + . . . + cn,n = 1 for

each n and such that cn,j → 0 as n → ∞ for each j. Let Yn = cn,1X1 + . . . + cn,nXn. Show that

Yn
P→ X.
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Problem 221. Suppose Xn
P→ X. Use the previous exercise to deduce the following.

(1) The Cesàro sums 1
n(X1 + . . .+Xn)

P→ X as n→∞.

(2) The Abelian sums 1
1−r

n∑
k=0

rkXk
P→ X as r ↑ 1 (if you prefer, take a sequence rn ↑ 1).

Problem 222. For Rd-valued random vectors Xn, X, we say that Xn
P→ X if P(‖Xn−X‖ > δ)→ 0

for any δ > 0 (here you may take ‖ · ‖ to denote the usual norm, but any norm on Rd gives the

same definition).

(1) If Xn
P→ X and Yn

P→ Y , show that (Xn, Yn)
P→ (X,Y ).

(2) If Xn
P→ X and Yn

P→ Y , show that Xn + Yn
P→ X + Y and 〈Xn, Yn〉

P→ XY . [Hint:

Show more generally that f(Xn, Yn)
P→ f(X,Y ) for any continuous function f by using the

previous problem for random vectors].

Problem 223. (1) If Xn, Yn are independent random variables on the same probability space

and Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U

d
= X, V

d
= Y and U, V are

independent.

(2) If Xn
d→ X and Yn −Xn

P→ 0, then show that Yn
d→ X.

Problem 224. Let Yn = |Xn|
1+|Xn| . Show that Xn

P→ 0 if and only if Yn
L1

→ 0.

Problem 225. Let Xn be a sequence of random variables on a common probability space. Show

that there exists a (non-random) sequence of real numbers an such that anXn
a.s.→ 0.

Problem 226. Show that the the following are equivalent conditions for tightness of a sequence

{Xn}.

(1) cnXn
P→ 0 whenever cn → 0.

(2) P{|Xn| > Mn} → 0 whenever Mn →∞.

Problem 227. Show that the the following are equivalent conditions for uniform integrability of

a sequence {Xn}.

(1) cnXn
L1

→ 0 whenever cn → 0.

(2) E[|Xn|1|Xn|>Mn
]→ 0 whenever Mn →∞.
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Problem 228. Two common ways to check uniform integrability of a family of random variables

are (1) Domination by an integrable random variable, (2) Lp-boundedness for some p > 1. Show

that neither condition implies the other.

Problem 229. Let Xi ∼ µ be i.i.d. If Sn converge a.s., show that µ = δ0.

Problem 230. Let µn, µ ∈ P(R) and let f : R → R be a Borel measurable function. Show that∫
fdµn →

∫
fdµ if the sequence {fdµn} is tight (i.e., given ε > 0, there is some M <∞ such that∫

[−M,M ]c |f |dµn ≤ ε for all n).

Problem 231. Let αn be a sequence of real numbers. Assume that for each n, there is a µn ∈ P(R)

such that
∫
xkdµn(x) = αk for 1 ≤ k ≤ n. Show that there is a µ ∈ P(R) such that

∫
xkdµ(x) = αk

for all k ≥ 1.

Problem 232. For each mode of convergence (almost sure, in probability, in distribution, in

Lp), decide whether the following statement is true: “If Xn → X then 1
nSn → X”, where Sn =

X1 + . . .+Xn.

[Remark: The question is motivated by the analogous fact for convergence of numbers.]

Problem 233. Let X1, X2, . . . be i.i.d from µ. For each n, define the random probability measure

µn = 1
n(δX1 + . . .+ δXn). If Fn, F are the cumulative distribution functions of µn and µ, show that

for any x ∈ R, we have Fn(x)
a.s.→ F (x).

Problem 234. Let Xn be independent with Xn ∼ Poisson(λn). Let Sn = X1 + . . .+Xn.

(1) If λn = 1 + 1
nb

for some b > 0, show that Sn
n

P→ 1.

(2) If λn = 1 + 1
nb

for some b > 1, show that Sn
n

a.s.→ 1.

Problem 235. Let X1, X2, . . . be i.i.d. random variables with finite expectation m. Show that

E

[∣∣Sn
n
−m

∣∣]→ 0.

Problem 236. Let X1, X2, . . . be i.i.d. random variables. Let Gn be the geometric mean of

X1, . . . , Xn. In each of the following cases, show that Gn converges almost surely to a constant and

find the constant. (a) X1 ∼ Unif[0, 1], (b) X1 ∼ Exp(1).
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Problem 237. Suppose Xn are i.i.d with E[|X1|4] < ∞. Show that there is some constant C

(depending on the distribution of X1) such that P
(
|n−1Sn −E[X1]| > δ

)
≤ Cn−2. (What is your

guess if we assume E[|X1|6] <∞? You don’t need to show this in the homework).

Problem 238. (1) (Skorokhod’s representation theorem) If Xn
d→ X, then show that

there is a probability space with random variables Yn, Y such that Yn
d
= Xn and Y

d
= X

and Yn
a.s.→ Y . [Hint: Try to construct Yn, Y on the canonical probability space ([0, 1],B, µ)]

(2) If Xn
d→ X, and f : R → R is continuous, show that f(Xn)

d→ f(X). [Hint: Use the first

part]

Problem 239. Suppose Xi are i.i.d with the Cauchy distribution (density π−1(1 + x2)−1 on R).

Note that X1 is not integrable. Then, show that Sn
n does not converge in probability to any

constant. [Hint: Try to find the probability P(X1 > t), and then use it].

Problem 240. Let X1, X2, . . . be i.i.d. random variables with symmetric Pareto distribution with

density 1
2x2

for |x| > 1.

(1) Show that |Xn| ≥ n for infinitely many n, almost surely.

(2) Deduce that Sn
n does not converge, a.s. Why does this not contradict SLLN?

Problem 241. Let Xn be i.i.d. positive random variables and let Mn = max{X1, . . . , Xn}.

(1) If E[X1] <∞, show that Mn
Sn

P→ 0.

(2) Give an example of a distribution with E[X1] =∞ for which Mn
Sn

does not converge to 0 in

probability.

(3) Is there any distribution with E[X1] =∞ for which we do have Mn
Sn

P→ 0?

[Remark: When this fails, it means that one of X1, . . . , XN is as large as their sum. With light

tailed random variables, no single term contributes too much to the total]

Problem 242. Let U ∼ Uniform[0, 1] and Xn = sin(nU). Show that Xn converges in distribution

and find the limit.

Problem 243. Let X1, X2, . . . be i.i.d. Unif[0, 1] random variables and let X(1) < X(2) < . . . < X(n)

denotes the order statistics (i.e., X(k) is the kth smallest among Xis, e.g., X(1) = minXi).

(1) Show that nX(1)
d→ Exp(1) as n→∞.
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(2) For any fixed k ≥ 1 show that (nX(1), n(X(2) −X(1)), . . . , n(X(k) −X(k−1)))
d→ (ξ1, . . . , ξn),

where ξj are i.i.d. Exp(1) random variables. [Remark: This required convergence in distri-

bution in higher dimensions. If not clear what that is, omit the problem]

Problem 244. Repeat the previous problem if Xi are i.i.d. from a probability density f on R+

with f(0) > 0 (the exponentials will change parameters).

Problem 245. Let Xi are i.i.d. from density pxp−1 on [0, 1], for some p > 0. Find an appropriate

limiting law for X(1) as in the previous problem (note that if p 6= 1, the density vanishes at 0 or is

infinite).

Problem 246. LetX1, X2, . . . be i.i.d. standard Cauchy random variables and letMn = max{X1, . . . , Xn}.
Show that n

Mn

d→ Exp(1).

Problem 247. Suppose 0 ≤ X1 ≤ X2 ≤ . . .. Assume that E[Xn]
nα → A and Var(Xn) ≤ Bn2β for

some 0 < A,B <∞ and 0 < β < α <∞. Show that Xn
n

a.s.→ A.

Problem 248. Let G1, G2, . . . be i.i.d Geometric(p) random variables (this means P(G1 = k) =

p(1 − p)k−1 for k ≥ 1). Let X1, X2, . . . be i.i.d random variables with E [|X1|] < ∞. Define

Nk := G1 +G2 + . . .+Gk. Show that as k →∞,

X1 +X2 + . . .+XNk

k

P→ 1

p
E [X1]

Problem 249. Let X1, X2, . . . , Xn be i.i.d. points sampled uniformly from the unit disk D ⊆ R2.

Let Rn = min1≤k≤n ‖Xk‖.

(1) Show that
√
nRn

d→ R where R has the Rayleigh density xe−x
2

on R+.

(2) How do things change if Xi are uniform on the unit ball in R3?

Problem 250. Show that for any p ≥ 1,

lim
n→∞

∫
[0,1]n

xp1 + . . .+ xpn
x1 + . . .+ xn

dx1 . . . dxn =
2

p+ 1
.

[Hint: Do it without having to flex your muscles too much. Use probability!]
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Problem 251. Let f : R→ R be continuous and 1-periodic (f(t+ 1) = f(t) for all t). Show that

for a.e. x ∈ [0, 1],

lim
n→∞

1

n

n∑
k=1

f(kx)→
∫ 1

0
f(t)dt.

where ȳ = y (mod 1).

Problem 252. Let Ωn = {x = (x1, . . . , xn) : 0 ≤ xi ∈ Z, x1 + . . .+xn = kn}, a finite subset of Zn.

Assume that kn
n → α > 0. Let Xn = (Xn,1, . . . , Xn,n) be uniformly randomly sampled from Ωn.

(1) Show that Xn,1
d→ Geo(p) for some p and find p in terms of α.

(2) For any k ≥ 1, show that (Xn,1, . . . , Xn,k)
d→ (ξ1, . . . , ξk), where ξj are i.i.d. Geo(p) random

variables.

Problem 253. Fix α > 0 and let Ωn = {x = (x1, . . . , xn) : xi > 0, x1 + . . .+xn = αn}, a bounded

open set in Rn. Let Xn = (Xn,1, . . . , Xn,n) ∼ Unif(Ωn) (normalized Lebesgue measure).

(1) Show that Xn,1
d→ Exp(1/α).

(2) For any k ≥ 1, show that (Xn,1, . . . , Xn,k)
d→ (ξ1, . . . , ξk), where ξj are i.i.d. Exp(1/α)

random variables.

Problem 254. Let {Xi}i∈I be a family of r.v on (Ω,F ,P).

(1) If {Xi}i∈I is uniformly integrable, then show that supi E|Xi| <∞. Give a counterexample

to the converse statement.

(2) Suppose h : R+ → R+ such that h(x) → ∞ as x → ∞. If supi E[|Xi|h(|Xi|)] < ∞, show

that {Xi}i∈I is uniformly integrable. In particular, if supi E[|Xi|p] < ∞ for some p > 1,

then {Xi} is uniformly integrable.

Problem 255. Let Xn be a sequence of random variables with zero means, unit variances. Assume

that |Cov(Xn, Xm)| ≤ δ(|n−m|) where δ(k)→ 0 as k →∞. Show that 1
nSn

P→ 0.

How to modify the conclusion if we change the unit variance assumption to “E[X2
n] = σ2

n”?

Problem 256. Let Xn be i.i.d with P(X1 = +1) = P(X1 = −1) = 1
2 . Show that for any γ > 1

2 ,

Sn
nγ

a.s.→ 0.

[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you write the

proof correctly, it should go for any random variable which has moments of all orders. You do not

need to show this for the homework].
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Problem 257. Let Xk be independent random variables with P{Xk = ka} = P{Xk = −ka} = 1
2

for some a ≥ 0. Show that Sn
n

P→ 0 if and only if a < 1
2 .

Problem 258. Let An be events in a common probability space such that P(An) ≥ p for all n.

Show that P{An i.o.} ≥ p.

Problem 259. Let An be events in a common probability space. Assume that for some n1 < n2 <

. . . we have P
(⋃nk+1

n=nk+1An
)
≥ p for all k. Show that P{An i.o.} ≥ p.

Problem 260. Let Xn be independent real-valued random variables.

(1) Show by example that the event {
∑
Xn converges to a number in [1,3]} can have probabil-

ity strictly between 0 and 1.

(2) Show that the event {
∑
Xn converges to a finite number} has probability zero or one.

Problem 261. Let Xn be i.i.d exponential(1) random variables.

(1) If bn is a sequence of numbers that converge to 0, show that lim sup bnXn is a constant

(a.s.). Find a sequence bn so that lim sup bnXn = 1 a.s.

(2) Let Mn be the maximum of X1, . . . , Xn. If an → ∞, show that lim sup Mn
an

is a constant

(a.s.). Find an so that lim sup Mn
an

= 1 (a.s.).

[Remark: Can you do the same if Xn are i.i.d N(0,1)? Need not show this for the homework,

but note that the main ingredient is to find a simple expression for P(X1 > t) asymptotically as

t→∞].

Problem 262. Let Xk be non-degenerate i.i.d. random variables with E|X1|δ <∞ for some δ > 0.

(1) Show that Xn
Sn

P→ 0.

(2) Give counterexample to show that Xn
Sn

need not converge to 0 a.s.

Problem 263. Let Xn be i.i.d real valued random variables with common distribution µ. For each

n, define the random probabilty measure µn as µn := 1
n

∑n
k=1 δXk . Let Fn be the CDF of µn. Show

that

sup
x∈R
|Fn(x)− F (x)| a.s.→ 0 a.s.
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Problem 264. Let X1, X2, . . . be i.i.d. with distribution µ ∈ P(R). Recall that the support of µ

is the smallest closed set K with µ(K) = 1. Show that {X1, X2, . . .} = K a.s. (the left side is the

closure of the set {Xn})

Problem 265. Let Xn be independent and P(Xn = na) = 1
2 = P(Xn = −na) where a > 0 is

fixed. For what values of a does the series
∑
Xn converge a.s.? For which values of a does the

series converge absolutely, a.s.?

Problem 266. Let U1, U2, . . . be i.i.d. Unif[0, 1] random variables. Let ξi,j = 1Ui<Uj . Show that

σ({ξi,j}) = σ({Uk}). [Note: That is, we can recover the actual values of Uks by just knowing the

relative ordering among them!]

Problem 267. (Random series) Let Xn be i.i.d N(0, 1) for n ≥ 1.

(1) Show that the random series
∑
Xn

sin(nπt)
n converges a.s., for any t ∈ R.

(2) Show that the random series
∑
Xn

tn√
n!

converges for all t ∈ R, a.s.

[Note: The location of the phrase “a.s” is all important here. Let At and Bt denote the event that

the series converges for the fixed t in the first or second parts of the question, respectively. Then,

the first part is asking you to show that P(At) = 1 for each t ∈ R, while the second part is asking

you to show that P(∩t∈RBt) = 1. It is also true (and very important!) that P(∩t∈RAt) = 1 but

showing that is not easy.]

Problem 268. Suppose Xn are i.i.d random variables with finite mean. Which of the following

assumptions guarantee that
∑
Xn converges a.s.?

(1) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ 1] <∞.

(2) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ |Xn|] <∞.

Problem 269. (Large deviation for Bernoullis). Let Xn be i.i.d Ber(1/2). Fix p > 1
2 .

(1) Show that P(Sn > np) ≤ e−npλ
(
eλ+1

2

)n
for any λ > 0.

(2) Optimize over λ to get P(Sn > np) ≤ e−nI(p) where I(p) = −p log p − (1 − p) log(1 − p).
(Observe that this is the entropy of the Ber(p) measure introduced in the first class test).

(3) Recall that Sn ∼ Binom(n, 1/2), to write P(Sn = dnpe) and use Stirling’s approximation

to show that

P(Sn ≥ np) ≥
1√

2πnp(1− p)
e−nI(p).
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(4) Deduce that P(Sn ≥ np) ≈ e−nI(p) for p > 1
2 and P(Sn < np) ≈ e−nI(p) for p < 1

2 where the

notation an ≈ bn means log an
log bn

→ 1 as n→∞ (i.e., asymptotic equality on the logarithmic

scale).

Problem 270. Carry out the same program for i.i.d exponential(1) random variables and deduce

that P(Sn > nt) ≈ e−nI(t) for t > 1 and P(Sn < nt) ≈ e−nI(t) for t < 1 where I(t) := t− 1− log t.

Problem 271. Let V = 1√
n

(Z1, . . . , Zn)t where Z1, . . . , Zn are i.i.d. N(0, 1) random variables.

Show that

P{|‖V ‖ − 1| ≥ t} ≤ 2e−c
t2

n

for some c > 0 and all t > 0.

Problem 272. Let Y1, . . . , Yn be independent random variables. A random variable τ taking values

in {1, 2, . . . , n} is called a stopping time if the event {τ ≤ k} ∈ σ (Y1, . . . , Yk) for all k (equivalently

{τ = k} ∈ σ (Y1, . . . , Yk) for all k).

(1) Which of the following are stopping times? τ1 := min{k ≤ n : Sk ∈ A} (for some fixed

A ⊆ R). τ2 := max{k ≤ n : Sk ∈ A}. τ3 := min{k ≤ n : Sk = max
j≤n

Sj}. In the first two

cases set τ = n if the desired event does not occur.

(2) Assuming each Xk has zero mean, show that E[Sτ ] = 0 for any stopping time τ . Assuming

that each Xk has zero mean and finite variance, show that E[S2
1 ] ≤ E[S2

τ ] ≤ E[S2
n] for any

stopping time τ .

(3) Give examples of random τ that are not stopping times and for which the results in the

second part of the question fail.

Problem 273. For each of the following statements, state whether they are true or false, and

justify or give counterexample accordingly.

(1) If
∑
n
Xn converges a.s. and P(Yn = Xn) = 1− 1

n2 . Then
∑
n
Yn converges a.s.

(2) If {Xn} is an L2 bounded sequence of random variables, and E[Xn] = 1 for all n, then Xn

cannot converge to zero in probability.

(3) If Xn
d→ X, then X2

n
d→ X2.

(4) Suppose Xn are independent with E[Xn] = 0 and
∑

Var(Xn) = ∞. Then, almost surely∑
Xn does not converge.

(5) Suppose Xn, Yn are random variables such that |Xn| ≤ |Yn| for all n. If
∑
Yn converges

almost surely, then
∑
Xn converges almost surely.
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Problem 274. Let Xk be independent random variables with zero mean and unit variance. Assume

that E[|Xk|2+δ] ≤M for some δ < 0 and M <∞. Show that Sn is asymptotically normal.

Problem 275. Let Xn be independent random variables with Xn = ±
√
n with probability 1/2.

Show that Sn satisfies the central limit theorem but not the law of large numbers.

Problem 276. A manufacturer of nails packages them in boxes that say “1000 nails”. On average

5 out of 1000 nails are defective and customers complain if there are fewer than 1000 non-defective

nails in the box. To reduce the complaints to below 1% of the customers, the manufacturer puts

m extra nails in each box. What is the minimum vale of m?

(1) Do it using CLT.

(2) Do it using just Chebyshev inequality.

Problem 277. Fix α > 0.

(1) If X,Y are i.i.d. random variables such that X+Y

2
1
α

d
= X, then show that X must have

characteristic function ϕX(λ) = e−c|λ|
α

for some constant c.

(2) Show that for α = 2 we get N(0, σ2) and for α = 1 we get symmetric Cauchy.

[Note: Only for 0 < α ≤ 2 is e−c|λ|
α

a characteristic function. Hence a distribution with the desired

property exists only for this range of α].

Problem 278. Suppose X,Y are i.i.d. and X+Y
21/α

d
= X.

(1) If 0 < Var(X) <∞, show that α = 2 and X ∼ N(0, σ2) for some σ2 ≥ 0.

(2) If X has characteristic function e−c|t|
α

with α > 2, deduce that Var(X) <∞ and conclude

that X = 0 (i.e., Stable-α distributions do not exist for α > 2).

Problem 279. Let Xk be independent Ber(pk) random variables. If Var(Sn) stays bounded, show

that Sn cannot be asymptotically normal.

Problem 280. Let Xn be independent random variables with zero mean and unit variance. If

{X2
n} is uniformly integrable, show that Sn√

n

d→ N(0, 1).

Problem 281. Let U1, U2, . . . be i.i.d. uniform[0, 1] random variables. Fix 0 < q < 1 and let

M
(q)
n be the qth quantile, i.e., the bnqcth largest of the Xis (e.g., if q = 1/2, this is essentially the

median). Show that
√
n(M

(q)
n − q)

d→ N(0, q(1− q)).
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Problem 282. A simple model for grinding particles down: Start with a particle of size 1. After

one cycle of grinding, it breaks into two particles of sizes X and 1 − X, where X ∼ µ, a non-

degenerate probability measure on [0, 1]. Each particle of size s similarly breaks into two particles

of sizes Y s and (1− Y )s, where Y ∼ µ. The random variables indicating the breaking proportion

are assumed independent.

If the particle sizes are Xn,j , j ≤ 2n, after n cycles of grinding, show that the proportion of j for

which
√
n logXn,j ≤ t converges to P{Z ≤ t} where Z ∼ N(0, 1).

[Note: Perhaps easier, show the same for the expected proportion of j for which
√
n logXn,j ≤ t.

This problem is a simplification of a model first proposed by Kolmogorov, where he allows each

particle to subdivide into an arbitrary number of particles.]

Problem 283. Out of the n! permutations of the set [n] = {1, 2, . . . , n}, pick one at random and

call it Π. Let Cn be the number of cycles in the cycle decomposition of Π.

(1) Define Ak be the event that k is the lowest element in its cycle. Show that A1, . . . , An are

independent and that P(Ak) = (n− k + 1)/n.

(2) Show that Cn
logn

P→ 1.

(3) Show that Cn−logn√
logn

d→ N(0, 1).

Problem 284. Out of the n! permutations of the set [n] = {1, 2, . . . , n}, pick one at random and

call it Π. Let In denote the number of inversions of Π, i.e., the number of pairs i < j such that

Π(i) > Π(j). Show that

In − n(n−1)
4√

n3/36

d→ N(0, 1).

Problem 285. Let Xn be independent, and let Xn ∼ (1
2 − 2εn)δ±1 + εnδ±Mn where εn ↓ 0 and

Mn ↑ ∞.

(1) Find a condition on Mn, εn that allows to apply Lindeberg-Feller theorem directly to prove

that Sn√
n

d→ N(0, 1).

(2) If
∑

n εn < ∞, show that Sn√
n

d→ N(0, 1) even if Mn are chosen to violate the condition in

the first part.

Problem 286. Produce an example of independent random variables Xn so that Sn√
n

d→ N(0, 1),

but Var(Sn/
√
n)→ 2. Can you make Var(Sn/

√
n)→∞?

Problem 287. Suppose Xn are independent random variables taking values ±1 with probability

n−b each and taking the value 0 with probability 1− 2n−b. Here b > 0.
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(1) Find the range of b for which
∞∑
n=1

Xn converges almost surely.

(2) Find the range of b for which Sn√
Var(Sn)

d→ N(0, 1).

Problem 288. Let Xn be i.i.d. random variables with zero mean and unit variance. Let εn be

independent of Xjs and among themselves and P{εn = ±1} = 1
2n2 and P{εn = 0} = 1 − 1

n2 . Set

Yn = (1− εn)Xn + εnn.

(1) Show that SYn√
n

d→ N(0, 1) by comparing with SXn .

(2) Show that Var(S
Y
n√
n

)→ 2.

Problem 289. Let Uk, Vk be i.i.d Uniform([0,1]) random variable.

(1) Show that
∑
k

U
1
k
k − V

1
k
k converges a.s.

(2) Let Sn = U1 + U2
2 + . . . + Unn . Show that Sn satisfies a CLT. In other words, find an, bn

such that Sn−an
bn

d→ N(0, 1).

Problem 290 (Weak law using characteristic functions). Let Xk be i.i.d. random variables having

characteristic function ϕ.

(1) If ϕ′(0) = iµ, show that the characteristic function of Sn/n converges to the characteristic

function of δµ. Conclude that weak law holds for Sn/n.

(2) If 1
nSn

P→ µ for some µ, then show that ϕ is differentiable at 0 and ϕ′(0) = iµ.

Problem 291. Find the characteristic functions of the distributions with the given densities.

(1) e−|x| for x ∈ R, (2) 1
2

(
1− |x|2

)
+

.

Problem 292. Find the distributions whose characteristic functions are (1) t 7→ cos(t), (2) t 7→
1

1+it .

Problem 293. Show 1
2sech(πx2 )dx is a probability measure whose characteristic function is sech(t).

Problem 294. Show that the characteristic function of the arcsine measure having density 1
π
√

1−x2

on [−1, 1] is equal to the Bessel function J0(t) =
∫ π
−π e

−it sin θ dθ
2π .
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Problem 295. Use characteristic functions to show that the sum of independent Poisson random

variables is Poisson and other such statements for Binomial, Normal, Exponential/Gamma, Cauchy.

Problem 296. If xn ∈ R and eitxn → 1 for all t ∈ R, then show that xn → 0.

Problem 297. Suppose µ ∈ P(R). Suppose that |µ̂(a)| = 1 for some a 6= 0. Show that there is a

δ > 0 such that µ(δZ) = 1.

Problem 298. If ϕ is a characteristic function, show that the following are also characteristic

functions as a function of t. (1) |ϕ(t)|2, (2) eϕ(t)−1, (3) 1
t

∫ t
0 ϕ(s)ds, (4) ϕ(t)ϕ(2t), (5) 1

1− 1
2
ϕ(t)

.

Problem 299. If ϕ is a smooth characteristic function, show that ϕ′′(0) ≤ 0 (in particular it is

real-valued). Can equality hold?

Problem 300. If µ is a probability measure, show that

µ{x0} = lim
T→∞

1

2T

∫ T

−T
µ̂(t)e−itx0dx.

Problem 301. Suppose µn, µ are probability measures on R with characteristic functions ϕn, ϕ.

If ϕn(t)→ ϕ(t) for all t ∈ Q, is it true that µn → µ weakly?

Problem 302. If ψ is a real-valued characteristic function, show that

1− ψ(2t) ≤ 4(1− ψ(t)).

Deduce that if ϕ is any characteristic function, then

1− |ϕ(2t)| ≤ 8(1− |ϕ(t)|).

Problem 303. A random variable X has characteristic function

exp


n∑
j=1

θj(e
itxj − 1− itxj)


for some xi ∈ R and θi > 0. Describe/construct X in terms of familiar random variables.

Problem 304. Let ψ be the characteristic function of X.

(1) Fix t1, . . . , tn and c1, . . . , cn and find E[|Y |2] where Y = c1e
it1X + . . .+ cne

itnX .
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(2) Use the first part to argue that ψ is positive definite in the sense that the matrix (ψ(tk −
tj))j,k≤n is positive semi-definite, for any t1, . . . tn.

Problem 305. Let µ ∈ P(R) and suppose |µ̂(t0)| = 1 for some t0 6= 0. Then, µ is supported on a

lattice, that is, µ(aZ + b) = 1 for some a, b ∈ R.

Problem 306. Show that ψ(t) = e−|t|
α

is not a characteristic function if α > 2. [Hint: Use the

previous exercise with n = 3 and suitably chosen tjs]

Problem 307. Let ϕ : R→ R+ be a characteristic function that satisfies (a) ϕ(0) = 1, (b) ϕ(t) = 0

for t ≥ 2, (c) ϕ is even, (d) ϕ is linear on [0, 1] and on [1, 2].If t0 ∈ [0, 1], show that the possible

values of ϕ(t0) ≤ 1− t0.

Problem 308. Give another proof that ψ(t) = e−|t|
α

is not a characteristic function if α > 2.

(1) Assuming that ψ is a characteristic function of X, show that Var(X) <∞.

(2) Show that X+Y
21/α

d
= X, where Y is an independent copy of X.

Get a contradiction using these two statements.

Problem 309. Let X ∼ µ be a random variable with characteristic function ϕ. Show that the

following are equivalent.

(1) X
d
= Y1 + Y2 for some i.i.d. random variables Y1, Y2.

(2) ϕ = ψ2 for a characteristic function ψ.

Problem 310. Show that there are independent X,Y, Z such that X +Y
d
= X +Z but Y 6 d= Z (so

you cannot “cancel” X on both sides).

Problem 311. Let µ be a probability measure with non-negative characteristic function µ̂ ≥ 0.

(1) If µ is supported on integers, show that µ{0} ≥ µ{k} for all k ∈ Z.

(2) If µ̂ is integrable, show that the density of µ exists and attains its maximum at 0.

Problem 312. Let U ∼ Unif[−1, 1]. Use your knowledge of its characteristic function and of its

binary digits to show the identity

sin(t)

t
=
∞∏
n=1

cos(t/2n).
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Problem 313. Let ξn be i.i.d. Ber±(1/2) and let Xλ =
∑∞

n=1 ξnλ
n, where 0 < λ < 1.

(1) Show that Xλ has characteristic function ψ(t) =
∏∞
n=1 cos(tλn).

(2) If d(λ−n,Z)→ 0, show that ψ(2π/λn) 6→ 0 and hence deduce that Xλ has no density.

(3) Check that λ = 2
1+
√

5
(satisfies λ−2 − λ−1 − 1 = 0) is one such number.

Problem 314. Here are some integral identities. Prove them using characteristic functions!

(1)
∫
R e
− 1

2
t2 sin t

t dt =
√
π√
2

∫ 1
−1 e

− 1
2
x2dx.

(2)
∫
R

(sin t)2

t2
dt = π.

(3)
∫
R

1
(1+t2)2

dt = π
4 .

Problem 315. Let µn, µ be probability measures. If µ̂n converges uniformly to µ̂, then Fµn → Fµ

uniformly on R. The following steps are suggested.

(1) If Fµ is continuous, see Problem 55.

(2) If µ is discrete (start with µ = δ0), use Problem 300.

(3) For general µ, separate into the discrete and continuous parts.

Problem 316. Let µ be a probability measure with C1 density f . Show that
∫
R |µ̂|

2 < ∞ and

that
∫
R µ̂(t)2dt = π

∫
R f(x)f(−x)dx and

∫
R |µ̂(t)|2dt = π

∫
R f(x)2dx.

Problem 317. Let µ be a probability measure on R. If µ̂(t) ≥ 0 for all t and
∫
|µ̂(t)|dt <∞, then

show that µ has a continuous density f and that sup
x
f(x) = f(0).

Problem 318. Let Xn be i.i.d. random variables with a non-degenerate distribution. If Sn =

X1 + . . .+Xn, show that P{|Sn| ≤M} → 0 for any M <∞.

Problem 319. Let Z ∼ N(0, 1).

(1) Show that E[enZ sin(πmZ)] = 0 for all n, p ∈ Z.

(2) Conclude that if X = eZ and Y = eZ sin(πZ), then E[Xn] = E[Y n] for all n ∈ N.

(3) Show that X and Y do not have the same distribution.

[Note: It may be helpful to write sin in terms of complex exponential. The point is that there are

two random variables with different distributions that have identical moments]
47



Remark (for the next three problems): The characteristic function of a Rd-valued random

vector X is the function u 7→ E[ei〈u,X〉] from Rd → C. Assume the following facts: If X and Y

have the same characteristic functions, then X
d
= Y . If E[ei〈u,Xn〉]→ E[ei〈u,X〉] for all u ∈ Rd, then

Xn
d→ X.

Problem 320. Show that the measures of half-spaces (i.e., P{〈X, v〉 ≤ r}, where v ∈ Rd, r ∈ R)

determine the distribution of X. Similarly, show that if 〈Xn, v〉
d→ 〈X, v〉 for each v ∈ Rd, then

Xn
d→ X.

Problem 321. If Xn are independent random vectors in Rd with E[Xn] = 0 and E[XnX
t
n] = Σ,

then show that Sn√
n

d→ Nd(0,Σ), which is the defined as the distribution with the characteristic

function t 7→ e−
1
2
utΣu.

Problem 322. If Σ is invertible, show that Nd(0,Σ) has density 1

(2π)d/2
√

det(Σ)
e−

1
2
xtΣ−1x.

Problem 323. Let Z(n) = (Z
(n)
1 , . . . , Z

(n)
n ) be a point sampled uniformly from the sphere Sn−1

(this means that P(Z(n) ∈ A) = area(A)/area(Sn−1) for any Borel set A ⊆ Sn−1).

(1) Find the density of Z
(n)
1 .

(2) Using (1) or otherwise, show that
√
nZ

(n)
1

d→ N(0, 1) as n→∞.

[Hint: One way to generate Z(n) is to sample Xk ∼ N(0, 1) i.i.d., and to set Z(n) = 1
‖X‖(X1, . . . , Xn)

where ‖X‖ =
√
X2

1 +X2
2 + . . .+X2

n. You may assume this fact without having to justify it].
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