PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Disclaimer: I have collected or made up these problems from various books and other sources for
the purpose of giving to students in a first course in measure theoretical probability. In many cases
I have forgotten where I took them from or modified them from the original, and even those that I
thought up myself are probably to be found in some book'. If anyone feels that specific problems

require citation, I am happy to consider.

Problem 1. Let F be a o-algebra of subsets of (2.
(1) Show that F is closed under countable intersections ([ A,,), under set differences (A \ B),

under symmetric differences (AAB). !

(2) If A, is a countable sequence of subsets of 2, the set limsup A,, (respectively liminf A4,,) is
defined as the set of all w € 2 that belongs to infinitely many (respectively, all but finitely
many) of the sets A,,.

If A, € F for all n, show that limsup A,, € F and liminf 4,, € F. [Hint: First express
limsup 4,, and liminf A,, in terms of A,s and basic set operations].

(3) If Ay C Ay C A3 C ..., what are limsup 4,, and liminf A, 7

Problem 2. Let (£2, F) be a set with a o-algebra.

(1) Suppose P is a probability measure on F. If 4, € F and A,, increase to A (respectively,
decrease to A), show that P(A4,,) increases to (respectively, decreases to) P(A).

(2) Suppose P : F — [0, 1] is a function such that (a) P(2) = 1, (b) P is finitely additive, (c) if
A, A € F and Ays increase to A, then P(4,) T P(A). Then, show that P is a probability

measure on F.

Date: December 1, 2024.
Here is a partial list of books that I have used at some time or another: Feller’s An introduction to probability

theory and its applications: vol. 2, Dudley’s Analysis and probability, Khoshnevisan’s Probability, Kallenberg’s Foun-
dations of modern probability, Durrett’s Probability: Theory and examples, Uspensky’s Introduction to mathematical
probability, Pollard’s A user’s guide to measure theoretic probability, Williams’ Probability with martingales, Chaumont
and Yor’s Ezercises in probability. Possibly also Billingsley’s Probability and measure and Convergence of probability
measures, Grimmett and Stirzaker’s Probability and random processes and K. R. Parthasarathy’s Probability measures
on metric spaces. 1 have also used from memory various problems from courses of Aldous and Peres that I sat in a
long time ago (some are available on their homepages) as well as prelim/qualifier exams in multiple universities.
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Problem 3. Suppose S is a w-system and is further closed under complements (A € S implies
A¢ € S). Show that S is an algebra.

Problem 4. Let P be a p.m. on a c-algebra F and suppose S C F be a m-system. If Ay € § for
k <n, write P(A; U Ay U...UA,) in terms of probabilities of sets in S.

Problem 5. Let (2, F,P) be a probability space. Let G = {A € F: P(A) =0 or 1}. Show that
g is a o-algebra.

Problem 6. Suppose ¢(S) = F and P, Q are two probability measure on F. If P(4) = Q(A) for
all A € S, is it necessarily true that P(A) = Q(A) for all A € F? If yes, prove it. If not, give a

counterexample.

Problem 7. Suppose F = o(S) and P(4) € {0, 3,1} forall A € S.

(1) If S is a m-system, show that P(A) € {0, 3,1} for all A € F.
(2) If S is not a w-system, show that it is possible to have P(A) ¢ {0, 5,1} for some A € F.

[Note: Think of other sets that can take the place of {0, 3,1}]

Problem 8. Let F be a sigma-algebra on N that is strictly smaller than the power set. Show that
there exist m # n such that elements of F do not separate m and n (i.e., any A € F either contains
both m,n or neither). Is the same conclusion valid if N is replaced by any set Q7

Problem 9. Let P, Q be two Borel probability measures on R2. If P(A) = Q(A) for all A € S,
can you conclude that P = Q. Deal with following cases:

(1) S ={(a,b] x (¢,d] : a <band ¢ < d}.
(2) § ={(—00,b] x (—o0,d] : b,d € R}.
(3) S={(a,b] xR:a< b} U{RU (c,d]:c<d}.

Problem 10. (1) Let B be the Borel sigma-algebra of R. Show that B contains all closed sets,
all compact sets, all intervals of the form (a,b] and [a,b).

(2) Show that there is a countable family S of subsets of R such that o(S) = Bg.
(3) Let K be the 1/3-Cantor set. Show that p.(K) = 0.



Problem 11. Show that each of the following collection of subsets of R? generate the same sigma-

algebra (which we call the Borel sigma-algebra).
(1) {(a,b] : a < b}.
(2) {la,b] :a <band a,b e Q}.
(3) The collection of all open sets.
(4)

4) The collection of all compact sets.

Problem 12. (1) Let X be an arbitrary set. Let S be the collection of all singletons in €.
Describe o(5).

(2) Let S = {(a,b]U[—b,—a) : a < b are real numbers}. Show that o(S) is strictly smaller than
the Borel o-algebra of R.

(3) Suppose S is a collection of subsets of X and a,b are two elements of X such that any set
in S either contains a and b both, or contains neither. Let 7 = ¢(.5). Show that any set in

F has the same property (either contains both a and b or contains neither).

Problem 13. Let © be an infinite set and let A = {A C Q: A is finite or A is finite }. Define
w:A— Ry by p(A) =0if Ais finite and p(A) =1 if A€ is finite.
(1) Show that A is an algebra and that p is finitely additive on A.

(2) Under what conditions does p extend to a probability measure on F = o(A)?

Problem 14. On N = {1,2,...}, let A, denote the subset of numbers divisible by p. Describe
o({4, : p is prime}) as explicitly as possible.

Problem 15. If G C F are sigma algebras on {2 and F is countably generated (i.e., there is a
countable collection of sets that generates the sigma-algebra), then is it necessarily true that G is
countably generated?

Problem 16. Let F = o{A; : ¢ € I} where A;, i € I, are subsets of Q. Given B € F, show that
there is a countable subset J C I such that B € o{A4; :i € J}.

Problem 17. Let E = R be the space of all functions from [0,1] to R. Let F be the cylinder
sigma-algebra on E (cylinders are sets of the form {f € E: f(t;) € B;, 1 < i < n} for some
t1 < ... <ty and some B; € Bg).

(1) Show that if A € F, then there is a countable set {¢;} C [0, 1] such that membership in A

is determined by the values of a function on the subset {t;}.
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(2) Show that C[0,1] is not a measurable subset of E.

[Remark: The gist is that F is not a good space to model random functions]

Problem 18. On C]0, 1], show that the Borel sigma-algebra and the cylinder sigma-algebra are
the same.

Here Borel sigma-algebra is w.r.t. the topology induced by the sup-norm metric. And cylinder
sets are those of the form {f € C[0,1]: f(t;) € B;, 1 <i <n} for some 0 <t <...<t, <1 and
some B; € Bg.

Problem 19. Percolation is a “random graph” described as follows: At each vertex of Z%, a p-coin
is tossed to decide whether the vertex is open (heads) or closed (tails). We consider the random

graph with all vertices, but edges only between adjacent pairs of open vertices.

(1) Write the probability space to capture this random experiment (at least write the sample

space and sigma-algebra).

(2) Show that the set A := {z € E : G, has an infinite connected component} is measurable.

Problem 20. Let (X, F) and (Y, G) be measure spaces. If T': X — Y is a function, show that
(1) {T~'B: B € G} is a sigma algebra on X and

(2) {B€G:T 'B e F} is sigma-algebra on Y.

Problem 21. Let (X,F) and (Y,G) be measure spaces and T : X — Y. Assume that G = o(S)
for some collection & of subsets of Y. Decide true or false:
If T=1(B) € F for all B € S, then T is measurable.

Problem 22. Let A;, Ay, ... be a finite or countable partition of a non-empty set Q (i.e., A; are
pairwise disjoint and their union is 2). What is the o-algebra generated by the collection of subsets
{A,}? What is the algebra generated by the same collection of subsets?

Problem 23. On [0, 1], let A be the algebra generated by finite unions of left-open, right-closed
intervals and let B be the Borel sigma-algebra. Define p: A — [0,1] by u(A) =11if A D (0,¢) for
some € > 0 and pu(A) = 0 otherwise.

Show that y is a finitely additive measure on A but that it does not extend to a measure on B.
Why does this not contradict the Caratheodory extension theorem?

Problem 24. Let X = [0,1]Y be the countable product of copies of [0,1]. We define two sigma
algebras of subsets of X.



(1) Define a metric on X by d(z,y) =Y, |2n —yn|27". Let Bx be the Borel sigma-algebra of
(X,d). [Note: For those who know topology, it is better to define Bx as the Borel sigma
algebra for the product topology on X. The point is that the metric is flexible. We can
take many or other things (but not d(x,y) = sup,, |zn — yn| !!). What matters is only the
topology on X.]

(2) Let Cx be the sigma-algebra generated by the collection of all cylinder sets. Recall that
cylinder sets are sets of the form A =Uy x Uy x ... x U, Xx R xR x ... where U; are Borel
subsets of [0, 1].

Show that Bx = Cx.

Problem 25. Let i be the Lebesgue p.m. on the Cartheodary o-algebra B and let u, be the
corresponding outer Lebesgue measure defined on all subsets of [0,1]. We say that a subset N C
[0,1] is a null set if p(N) = 0. Show that

B={BUN :Be€Band N is null}

where B is the Borel o-algebra of [0, 1].

[Note: The point of this exercise is to show how much larger is the Lebesgue o-algebra than
the Borel g-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is
a Borel set. However, cardinality-wise, there is a difference. The Lebesgue g-algebra is in bijection
with 28 while the Borel o-algebra is in bijection with R.]

Problem 26. Suppose (2, F,P) is a probability space. Say that a subset N C Q is P-null if there
exists A € F with P(A) = 0 and such that N C A. Define G = {AUN : A € F and N is null}.

(1) Show that G is a o-algebra.

(2) For A € G, write A= BUN with b € F and a null set N, and define Q(A) = P(B). Show
that Q is well-defined, that Q is a probability measure on G and Q 2= P.

[Note: G is called the P-completion of F. It is a cheap way to enlarge the o-algebra and
extend the measure to the larger o-algebra. Another description of the extended o-algebra is
G={ACQ:3B,C € Fsuch that BC AC C and P(B) = P(C)}. Combined with the previous
problem, we see that the Lebesgue o-algebra is just the completion of the Borel o-algebra under
the Lebesgue measure. However, note that completion depends on the probability measure (for
a discrete probability measure on R, the completion will be the power set o-algebral!). For this

reason, we prefer to stick to the Borel o-algebra and not bother to extend it.]

Problem 27. Follow these steps to obtain Sierpinski’s construction of a non-measurable set. Here

1y is the outer Lebesgue measure on R.

(1) Regard R as a vector space over Q and choose a basis H (why is it possible?).
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(2) Let A= HU(—H)={z:2€ Hor —x € H}. Forn > 1, define A4,, :== A,_1 — A,—1 (may

also write A,, = A,,_1 + A,_1 since Ay is symmetric about 0). Show that J %An =R
n>0q>1

where éAn is the set { : w € An}.

(3) Let N :=min{n > 0: u.(Ay) > 0} (you must show that N is finite!). If Ay is measurable,
show that UnZN—i—lAn =R.

(4) Get a contradiction to the fact that H is a basis and conclude that Ay cannot be measurable.

[Remark: If you start with H which has zero Lebesgue measure, then N > 1 and A := Ey_; is
a Lebesgue measurable set such that A + A is not Lebesgue measurable! That was the motivation
for Sierpinski. To find such a basis H, show that the Cantor set spans R and then choose a basis
H contained inside the Cantor set.]

Problem 28. For any ¢ > 0, show that there is a closed, totally disconnected set A C [0,1] such
that A(A) > 1 —e. Can you find such a set with A\(A) = 1?7 [Note: Totally disconnected means

that the set contains no interval of positive length]

Problem 29. We saw that for a Borel probability measure p on R, the pushforward of Lebesgue
measure on [0, 1] under the map F,~ 1:]0,1] = R (as defined in lectures) is precisely . This is also
a practical tool in simulating random variables. We assume that a random number generator gives
us uniform random numbers from [0, 1]. Apply the above idea to simulate random numbers from
the following distributions (in matlab/mathematica or a program of your choice) a large number
of times and compare the histogram to the actual density/mass function.

(1) Uniform distribution on [a,b], (2) Exponential(\) distribution, (3) Cauchy distribution,
(4) Poisson(\) distribution. What about the normal distribution?

Problem 30. Let @ = X = R and let 7' : © — X be defined by T(x) = z. We give a pair of
o-algebras, F on 2 and G on X by taking F and G to be one of 2% or Bg or {§), R}. Decide for
each of the nine pairs, whether T' is measurable or not.

Problem 31. (1) Define T': © — R" by T(w) = (14, (w),...,14,(w)) where Ay,..., A, are
given subsets of 2. What is the smallest o-algebra on €2 for which T" becomes a random

variable?

(2) Suppose (£, F,P) is a probability space and assume that Ay € F. Describe the push-
forward measure P o T~ on R".



Problem 32. For k£ > 0, define the functions 7 : [0,1) — R by writing [0,1) = || I( ) where
0<j<2k

Ij(k) is the dyadic interval [j27%, (j + 1)27%) and setting

~1 ifz e I for odd j,

rr(z) =
+1 ifze I](-k) for even j.

Fix n > 1 and define T}, : [0,1) — {—1,1}" by T,,(z) = (r0(z), ..., n—1(x)). Find the push-forward

of the Lebesgue measure on [0,1) under T,

Problem 33. (1) f T : R — R™, show that T is Borel measurable if it is (a) continuous or
(b) right continuous or (c¢) lower semicontinuous or (d) non-decreasing (take m = n =1 for
the last one).

(2) If R™ and R™ are endowed with the Lebesgue sigma-algebra, show that even if T is contin-

uous, it need not be measurable! Just do this for n = m = 1.

Problem 34. Show that composition of random variables is a random variable. Show that real-
valued random variables on a given (2, F) are closed under linear combinations, under multiplica-

tion, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

n
Problem 35. Let p, = 2 3 0r/n and let p be the uniform p.m. on [0,1]. Show directly by
k=1

definition that d(p,, pu) — 0 as n — oo.

Problem 36. Show that each of the following is a metric that is equivalent to the Lévy metric on
P(R?) (in the sense that p,, — p in one metric if and only if in the others).
(1) inf{u > 0: Fy(x + aul) + bu > F,(z), F,(x + aul) + bu > F,(z) Vx € R?} where a,b > 0
are fixed.

(2) inf{u+v:u,v>0and F,(z+ul) +v > F,(2), F,(z +ul) +v > F,(z) Vz € R}.

Problem 37 (Change of variable for densities) (1) Let g be a p.m. on R with density f
by which we mean that its CDF F),( f f(t)dt (you may assume that f is continuous,
non-negative and the Riemann mtegral Jg f =1). Then, find the (density of the) push
forward measure of p under (a) T'(z) =z +a (b) T'(x) = br (c) T is any increasing and
differentiable function.

(2) If X has N(p,0?) distribution, find the distribution of (X — p)/o.



Problem 38. (1) Let X = (X1,...,X,). Show that X is an Révalued r.v. if and only if
X1,...,X, are (real-valued) random variables. How does o(X) relate to o(X1),...,0(Xy)?

(2) Let X : Q1 — Q9 be a random variable. If X(w) = X(w') for some w,w’ € Q1, show that
there is no set A € 0(X) such that w € A and ' ¢ A or vice versa. [Extra! If Y : Q) — Q9
is another r.v. which is measurable w.r.t. o(X) on €, then show that Y is a function of
X].

Problem 39. The support of a probability measure p on R? is defined to be the smallest (inclusion-
order) closed set C' having u(C) = 1.
Show that the support is well-defined and is equal to {x € R? : u(B(z,7)) > 0 for all r > 0}.

Problem 40 (Lévy metric). (1) Show that the Lévy metric on P(R?) defined in class is
actually a metric.

(2) Show that under the Lévy metric, P(R%) is a complete and separable metric space.

Problem 41. Show that each of the following is a metric that is equivalent to the Lévy metric (in
the sense that p, — p in one metric if and only if in the others).

(1) inf{u > 0: F,(x + aul) + bu > F,(z), F,(x + aul) + bu > F,(z) Vx € R?} where a,b > 0

are fixed.

(2) inf{u+v:u,v>0and F,(z+ul) +v > F,(x), F,(z +ul) +v > F,(z) Vz € R}.

Problem 42. Let u,v be probability measures on R. Let C be the collection of all probability
measures on R? whose marginals are 4 and v. Show that C is tight in the space of probability

measures on R2.

Problem 43 (Lévy-Prohorov metric). If (X,d) is a metric space, let P(X) denote the space
of Borel probability measures on X. For u,v € P(X), define

D(u,v) =inf{r >0: u(A,) +7r>v(A) and v(A,) +r > u(A) for all closed sets A}.
Here A, = {y € X : d(z,y) < r for some x € A} is the closed r-neighbourhood of A.
(1) Show that D is a metric on P(X).

(2) When X is R, show that this agrees with the definition of Lévy metric given in class (i.e.,
for any gy, 1, we have that u, — p in both metrics or neither).



Problem 44 (Lévy metric). Let P([—1,1]) C P(R) be the set of all Borel probability measures
w such that p([—1,1]) = 1. For € > 0, find a finite e-net for P([—1, 1]). [Note: Recall that an e-net
means a subset such that every element of P([—1,1]) is within ¢ distance of some element of the
subset. Since P([—1,1]) is compact, we know that a finite e-net exists for all £ > 0.]

Problem 45. Consider C]0, 1] with the sup-norm metric and endowed with the Borel sigma-
algebra. Let X is a C[0,1]-valued random variable on €2 (then X is called a stochastic process or
a random function). Show that the following are random variables: (a) U(w) = max¢[g 1] Xt(w),
(b) V(w) = Mt €]0,1] : X¢(w) > 0} (here X is the Lebesgue measure on [0, 1] as usual), (¢) L(w) =
max{t <1: X;(w) = 0}.

Problem 46. Let K be the collection of non-empty compact subsets of R4, The Hausdorff metric
on K is defined by d(K,L) = inf{r > 0: K O L, L D K} where K = (J,; B(z, 7).
Correspondingly, there is a Borel sigma-algebra on K.

If X is a K-valued random variable (called a random set), then show that the following are
random variables: (a) U(w) = area(X(w)), (b) V(w) = 1x(,)na—p where A is a fixed compact
subset of R?, (c) W(w) = diameter(X (w)).

Problem 47. Using the Lévy metric, we can define a Borel sigma-algebra on P(R). Hence we can
talk of random variables on (9, F,P) taking values in P(R) (called random probability measure).

If X1, Xy,... are real-valued random variables on (2, F, P), show that L, (w) = %(6X1(w) +...+
0X,(w)) s a random probability measure, for any n > 1.

Problem 48. On the probabiity space ([0, 1], B, 1), for k > 1, define the functions

P
0 ifte U [3,2ZH.
— J=0
Al = 2T gih1 2440
1 ifte U [BF, 2P ort=1
§=0

(1) For any n > 1, what is the distribution of X,,?

(2) For any fixed n > 1, find the joint distribution of (Xi,...,X,).

[Note: Xj(t) is just the i th digit in the binary expansion of . Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at ¢ = 1)].

Problem 49 (Coin tossing space). Continuing with the previous example, consider the mapping
X :[0,1] — {0,1}" defined by X (t) = (X;(t), X2(t),...). With the Borel o-algebra on [0, 1] and
the o-algebra generated by cylinder sets on {0, 1}, show that X is a random variable and find the
push-foward of the Lebesue measure under X.



Problem 50 (Equivalent conditions for weak convergence). Show that the following state-
. d .
ments are equivalent to p, — p (you may work in P(R)).
(1) limsup pn(F) < p(F) if F is closed.

n—oo

(2) liminf 4, (G) > u(G) if G is open.

n—

(3) limsup pn(A) = p(A) if A € F and p(0A) =0.

n—oo

Problem 51. Fix p € P(R). For s € R and r > 0, let y, s € P(R) be defined as p,s(A) =
u(rA+ s) where rA+s = {re +s:x € A}. For which R C (0,00) and S C R is it true that
{trs: 7 € R, s € S} a tight family? [Remark: If not clear, just take u to be the Lebesgue measure
on [0,1].]

n
Problem 52. Let u, = n(%ﬂ) > kdpn- Then puy, LA uas n — oo for some p € P(R) (which you
k=1

must identify explicitly).

Problem 53. (1) Show that the family of Normal distributions {N(u,0?) : 4 € R and o2 > 0}
is not tight.

(2) For what A C R and B C (0,00) is the restricted family {N(u,02) : u € A and o2 € B}
tight?

Problem 54. (1) Show that the family of exponential distributions {Exp(\) : A > 0} is not
tight.

(2) For what A C R is the restricted family {Exp(A) : A > 0} tight?

Problem 55. Suppose i, p € P(R) and that F), is continuous. If py, A u, show that F), (t) —
F,(t) — 0 uniformly over ¢ € R. [Restatement: When F), is continuous, convergence to p in

Lévy-Prohorov metric also implies convergence in Kolmogorov-Smirnov metric.]

Problem 56. Show that the statement in the previous problem cannot be quantified. That is,
Given any ¢, | 0 (however fast) and d,, | 0 (however slow), show that there is some p,, u with
F}, continuous, such that drp(n, 1) < e, and dgs(pin, i) > .

Problem 57. Let puy,, u € P(R) and assume that F}, (x) — F,(z) for all x € D, a countable dense

subset of R. Does it follow that p, LN w?
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Problem 58. Consider the family of Normal distributions, {N(u,0?) : p € R,0? > 0}. Show that
the map (p,02) = N(u,0?) from R x R, to P(R) is continuous. (Complicated way of saying that
if (tn, 02) = (1, 0%), then N(un, 02) % N(p,0%)).

Do the same for other natural families if distributions, (1) Exp(A), (2) Uniform|a, b, (3) Bin(n, p)
(fix n and show continuity in p), (4) Pois(\).

Problem 59. Suppose u,, 1 are discrete probability measures supported on Z having probability
mass functions (p,(k))kez and (p(k))kez. Show that u, 4 w if and only if p, (k) — p(k) for each
keZ.

Problem 60. Which of the following sets are dense in P(R)?
(1) The set of probability measures with finite support (those of the form pi6,, + ...+ prds, ).
(2
(
(

) The set of probability measures having density.
3) The set of probability measures with a symmetric density (f(z) = f(—x)).
)

4) The set of probability measures having a bounded smooth density and all moments finite
(densities f € C* with [ 2?*f(x)dx < oo for all k).

(5) The set of probability measures with a unimodal density (x +— f(x) is increasing up to some
xo and then decreasing).

Problem 61. Given a Borel p.m. p on R, show that it can be written as a convex combination
apr + (1 — a)pe with a € [0, 1], where py is a purely atomic Borel p.m and pg is a Borel p.m with

no atoms.

Problem 62. Let F' be the CDF of a Borel probability measure p on the line.
(1) Show that F'is continuous at z if and only if u({z}) = 0.

(2) Show that F' can have at most countably many discontinuities.

(3) Show that given any countable set {z1,z2, ...} and any number pq,pa, ... such that ) p; <
1, there is a probability measure whose CDF has a jump of magnitude p; at z; for each i,

and no other discontinuities.

Problem 63. Let F be a CDF on R. If 3 p(F(z) — F(z—))? = 1, show that the measure is
degenerate.

Problem 64. Let X be a random variable with distribution p and X,, are random variables defined

as follows. If p, is the distribution of X,,, in each case, show that u, i> [ as n — o0.
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(1) (Truncation). X,, = (X An)V (—n).
(2) (Discretization). X, = 1[nX].

Problem 65. Consider the space X = [0,1]Y := {x = (2(1),2(2),...): 0 < x(i) < 1 for each i €
N}. Define the metric d(x,y) = sup; M .
(1) Show that x, — x in (X, d) if and only if 2, (i) — (i) for each i, as n — oo.
[Note: What matters is this pointwise convergence criterion, not the specific metric.
The resulting topology is called product topology. The same convergence would hold if we
had defined the metric as d(x,y) = >, 27¢|z(i) — y(i)| or d(x,y) = >, i 2|z (i) — y(i)| etc.,
But not the metric sup; |z(i) — y(7)| as convergence in this metric is equivalent to uniform

convergence over all i € NJ.

(2) Show that X is compact.

[Note: What is this problem doing here? The purpose is to reiterate a key technique we used in
the proof of Helly’s selection principle!]

Problem 66. For ¢ > 0, find an e-net for the space of probability measures supported on [0, 1].

Problem 67. Find infinitely many measurable functions f,, : [0,1] — [0, 1] such that Ao £, 1 = \.
(In terms of random variables, if U ~ Unif[0, 1], then we want f,,(U) ~ Unif[0, 1] for all n.

Problem 68. Consider ([0,1],8) and let T : [0,1] — [0,1] be defined by T'(z) = X — [1]. Show

that T preserves (i.e., poT~! = p) the probability measure with density i1z (where ¢ =1/log2)

on [0,1]. [Note: The sequence of integers (| 1], Lﬁj, L%J ...) is called the continued fraction

expansion of z

Problem 69. Recall the Cantor set C' =, K, where Koy = [0,1], K1 =[0,1/3] U [2/3,1], etc. In
general, K,, = U1§j§2” [an,j, by ;| where by, ; — ay ; = 37" for each j.

(1) Let g, be the uniform probability measure on K,,. Describe its CDF F,.
(2) Show that F,, converges uniformly to a CDF F.
(3) Let p be the probability measure with CDF equal to F'. Show that u(C) = 1.

Problem 70. Let € P(R).

(1) For any n > 1, define a new probability measure by p,(A) = u(n.A) where n.A = {nz : x €

A}. Does p, converge as n — co?
12



(2) Let p, be defined by its CDF

0 if t < —n,
Fo(t)=q F(t)if —n<t<n,

—

if t >n.
Does p,, converge as n — oo?

3) In each of the cases, describe p,, in terms of random variables. That is, if X has distribution
1
, describe a transformation 7,,(X) that has the distribution .

Problem 71. Let p, = Zin el f (%) O/, where f :[0,1] — R is a Borel measurable function.

Show that i, A p where ;1 = Ao f71.
Work out the special case when f(x) = 2P, p € N.

Problem 72. In each case, decide if u < v and if so, compute the Radon-Nikodym derivative.
(1) = Bin(n,p) and v = Bin(n/, p’).
(2) pu = Pois(A) and v = Pois(\).
(3) = N(u,0?%) and v = N(0,1).
(4) p=Exp(1l) and v = N(0,1).

Problem 73. (Bernoulli convolutions) For any 6 > 1, define Xy : [0,1] — R by Xp(w) =
S22, 075X (w). Check that Xy is measurable, and define py = ,LLX9_1. Show that for any 6 > 2,
show that g is singular w.r.t. Lebesgue measure.

Problem 74. Let (2, 7, P) be a probability space. Let X, Y be bounded positive random variables
on 2 and define two measures p(A) = E[X14] and v(A) = E[Y'1p] for any A € F (i.e., du = XdP
and dv = YdP).

What should be the relationship between X and Y to ensure that (a) u L v? (b) p < v?

Problem 75. For p = 1,2, 00, check that || X —Y||,, is a metric on the space L” := {[X] : || X ||, < oo}
(here [X] denotes the equivalence class of X under the above equivalence relation).

Problem 76. (1) Find a sequence of r.v.s X, such that liminf E[X,,] < E[liminf X,].
(2) Find a sequence of r.v.s X,, such that X,, % X, E[X,,] = 1, but E[X] = 0.

13



Problem 77. Let Xq,..., X, be random variables on a common probability space. Define M,, =
max{Xi,...,X,} and M, g = %log(eﬁx1 + ...+ ePXn). Show that E[M, ] — E[M,] as 8 — oo.
[Remark: M, is got by applying a non-smooth function to X;s, but it can be approximated by
M, 3 which is a smooth function of X;s]

Problem 78. (Alternate construction of Cantor measure) Let K; = [0,1/3] U [2/3,1],
Ky =[0,1/9] U[2/9,3/9] U [6/9,7/9] U [8/9,1], etc., be the decreasing sequence of compact sets
whose intersection is K. Observe that K, is a union of 2" intervals each of length 3=". Let u, be
the p.m. which is the “renormalized Lebesgue measure” on K,,. That is, un(A4) := 3"27"u(ANK,)
for A € Bgr. Then each p, is a Borel p.m. Show that u, 4 i, the Cantor measure (which was
defined differently in class).

Problem 79. (A quantitative characterization of absolute continuity) Suppose p < v.
Then, show that given any ¢ > 0, there exists ¢ > 0 such that v(A) < ¢ implies pu(A) < e. (The
converse statement is obvious but worth noticing). [Hint: Argue by contradiction)].

Problem 80. Let u be a probability measure on R such that u(a,b) < M(b—a) for some M < 0o
and all @ < b. Show that p has a bounded density.

Problem 81. If 4 € P(R?) has density f, show that [p, g(z)du(z) = [pa 9(z)f(z)dz (the latter is
integral w.r.t. Lebesgue measure on R%). [Note: A more general question is in Problem 89 below.
The point is that if X ~ u, then we can compute E[g(X)] directly from the density of X]

Problem 82. Let u,v € P(R) and let 6 = Ju + 4v.
(1) Show that 4 < 6 and v < 6.

(2) If u L v, describe the Radon Nikodym derivative of u w.r.t. 6.

Problem 83. Let p;, i € I, be probability measures on R.
(1) If I is countable, show that there is a 6 € P(R) such that p; < 6 for all i.

(2) If I is uncountable, show that the conclusion of the first part may fail.

Problem 84. Let i and v be Borel probability measures on R. Suppose there exists a probability
measure  on R? having marginals § o TI;* = p and 6 o TI,* = v such that 6{(z,2) : « € R} > 0.
Then show that p and v cannot be singular.

[ In the language of random variables, the hypothesis says that we can couple X ~ pand Y ~ v

such that X =Y with positive probability.]
14



Problem 85. (Requires product measure) Decide true or false and justify. Take p;,v; to be
probability measures on (£;, F;).

(1) If g @ po € v1 @ vo, then puy < v1 and pe < vo.

(2) If py < g and pg < v, then py ® pe <K 1) ® vy,

Problem 86. (Requires knowledge of infinite product measure) Decide whether the following pairs
of measures on RY (with the product sigma-algebra) are singular or absolutely continuous to one
another? In each case, y =1 QU2 ® ... and v =1, Q1L R ....

(1) pi = Ber(1/2) and v; = Ber(p) for all 4, for some p € [0, 1].

2 N(0,1) and v; = N(a, 1) for all 7, where a € R.

(2) p
(3) pi = Ber(1/2) and v; = Ber(p;) for all 4, where p; = 1/2 for i > 100.
(4) p

N(0,1) and v; = N(«y, 1) for all i, where «; = 0 for 7 > 1000.

Problem 87. Suppose f : [a,b] — R is a Borel measurable function. Then, show that g(z) :=
fo u)du is a continuous function on [0, 1]. [Note: It is in fact true that g is differentiable at almost
every x and that ¢’ = f a.s., but that is a more sophisticated fact, called Lebesgue’s differentiation
theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be
covered in your measure theory class].

Problem 88. (Differentiating under the integral). Let f : [a,b] x R — R, satisfy the following
assumptions.

(1) = — f(x,0) is Borel measurable for each 6.

(2) 0 — f(z,0) is continuously differentiable for each x.

(3) f(z,0) and %(az, 6) are uniformly bounded functions of (x, ).
Then, justify the following “differentiation under integral sign” (including the fact that the integrals

d [ o)
d@/a f(:r:,H)d:U:/a a—g(wﬁ) dz

[Hint: Remember that derivative is the limit of difference quotients, h'(t) = lim._g

here make sense).

h(t+e)—h(t) '

Problem 89. Let X > 0 be a r.v on (Q,F,P) with 0 < E[X] < oo. Then, define Q(A) =

E[X14]/E[X] for any A € F. Show that Q is a probability measure on F. Further, show that for

any bounded random variable Y, we have Eq[Y] = EEE}[/)?]( L.
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Problem 90. If ;4 and v are Borel probability measures on the line with continuous densities f
and g (respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that p has a
density w.r.t v? In that case, what is that density?

Problem 91. For p = 1,2, 00, check that || X —Y ||, is a metric on the space L? := {[X] : | X||, < oo}
(here [X] denotes the equivalence class of X under the equivalence relation X ~ Y if P(X =Y) =

1).

Problem 92. If X is an integrable random variable, show that there are bounded random variables
X, such that E[|X,, — X|] — 0 as n — oc.

Problem 93. Let 0 < p < q.
(1) If X € L9, show that X € LP.

(2) If E[|X,|? — 0 show that E[|X,,|P] — 0.

Problem 94. Find integrable random variables X,,, X for each of the following situations.
(1) X, —» X as. but E[X,] A E[X].

(2) X, — X a.s. and E[X,,] — E[X] but there is no dominating integrable random variable Y
for the sequence {X,,}.

[Remark: That is, the domination condition cannot be removed but can perhaps be weakened.]

Problem 95. Let X be a non-negative random variable.
(1) Show that E[X] = [[P{X > t}dt (in particular, if X is a non-negative integer valued,
then E[X] =577, P(X > n)).

(2) Show that E[X?] = [[° ptP~'P{X > t}d¢ for any p > 0.
(3) Show that E[e?X] = [0/ P{X > t}dt for any 0 € R.

Problem 96. For any integrable random variable X having CDF F'| show that

E[X] = /000(1 — F(x)+ F(—x))dz.

Problem 97. Let X be a non-negative random variable. If E[X] is finite, show that > >, P{X >
an} is finite for any a > 0. Conversely, if > 2 P{X > an} is finite for some a > 0, show that
E[X] is finite.
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Problem 98. Decide true or false: A random variable X has finite kth moment if and only if
Q(X) has finite expectation for some polynomial of degree k.

Problem 99. Suppose pu € P(R) satisfies p(a,b) < C(b— a)P for all a < b for some p > 0 and
C < 0o. Assume that p is compactly supported (so that the issues here are not at what happens

near oo)

(1) Show that —L is integrable w.r.t. p for any q < p.

|x—ale
(2) Show that log |z — a| is integrable w.r.t. p for any a € R.
[Remark: Note that p < 1 necessarily]

Problem 100. Is there any probability distribution g on R such that for every a € R, the function
1

is integrable w.r.t. u? [Fquivalent form: Does there exist a random variable X such that

a
E | xlg | < oo for all a € RY)

Problem 101. Let X be an random variable with mean p and finite variance o2 and a median M
(there can be multiple medians). Show that | — M| < v/20.

Problem 102. Let ¥ : Ry — R, be an increasing, convex and bijective. Fix a probability space
(Q,F,P) and for a random variable X, define || X ||y := inf{b > 0 : E[¥(|X|/b)] < 1} (the infimum
of empty set is +00). Let LY = {X : || X|lg < oo}.

(1) Show that || - ||y is a pseudo-norm on LY (it becomes a norm on the space of equivalence

classes).

(2) What choice of ¥ gives LP norm for 1 < p < 0o?

Problem 103. Show that the values E[f o X| as f varies over the class of all smooth (infinitely
differentiable), compactly supported functions determine the distribution of X.

Problem 104. (i) Express the mean and variance of of aX + b in terms of the same quantities for
X (a,b are constants).
(ii) Show that Var(X) = E[X?] — E[X]%.

Problem 105. Compute mean, variance and moments (as many as possible!) of the Normal(0, 1),

exponential(1), Beta(p, ¢) distributions.
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Problem 106. Consider a probability density f on R that is symmetric and log-concave, i.e.,

f(z) = e=¥®) where ¢ is an even convex function.
(1) Show that f has moments of all orders.

(2) Show that there are universal constants a,b such that a < f(0)o? < b where o2 is the

variance.

Problem 107. If ;s and v are probability measures on a finite set A, then the relative entropy of

w.r.t. v is defined as D(u|v) = Z w(a) ula ; The quantity H(p) := Y. u(a) logﬁ is called
acA

the entropy of u.
(1) Show that D(u|lv) > 0 with equality if and only if ;1 = v.

(2) Show that 0 < H(u) < log|.A|. When are the inequalities attained?

[Clarification: When p(a) = 0 the sumand is taken to be 0 but when p(a) > 0 but v(a) = 0, it is
taken to be +00.].

Problem 108. For two probability densities f, g on R, the relative entropy of the first with respect
to the second is defined as D(f||g) = [ f(z)log f(xg dx. Show that D(f|lg) > 0 with equality if and
only if f = g a.e. [Clarification: When f(z) = 0 the integrand is taken to be 0 but when f(z) >0
but g(z) = 0, it is taken to be +o0.]

Problem 109. Find D(f||g) if
(1) f is the N(u,0?) density and g is the N(0,1) density.

(2) f is the standard Cauchy density and g is the N(0,1) density.

Problem 110. Let 6, = pé1 + (1 —p)dp for 0 < p < 1. Let pinp = @} _,0p. Find D(pn p||p,,1) and
2
analyse what happens as n — oo.

Problem 111. Let u,v € P(R) be measures without atoms (so their CDFs are continuous). Let
D = {(z,z) : € R} be the diagonal. Show that (u ® v)(D) = 0.

Problem 112. If X,Y are independent random variables with continuous distributions, then
P{X =Y} = 0. [Remark: This is a restatement of the previous exercise in terms of random

variables]

Problem 113. Let X ~ pand Y ~ v be independent random variables and let 6 be the distribution

of X +Y. Decide True/False and justify.
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(1) If p and v are both discrete, then so is 6.
(2) If p and v are both absolutely continuous, then so is 6.

(3) If p is discrete and v is absolutely continuous, then € is absolutely continuous.

Problem 114. Drop the assumption of independence in the previous problem (answers may

change!).

Problem 115. Let X1, ..., X, be positive random variables on a common probability space. Show
that

Emax{Xy,...,X,}] <) E[X}] < E[max{Xy,...,X,}]+ > E[min{X;, X;}].

k=1 1<j

Problem 116. (1) If X;, > 0 and X,, — X a.s. If E[X,,] — E[X], show that E[|X,, — X|] — 0.
(2) If E[|X]] < oo, then E[|X[1x54] — 0 as A — oc.

Problem 117. (1) Suppose (X,Y) has a continuous density f(x,y). Find the density of X/Y.
Apply to the case when (X,Y) has the standard bivariate normal distribution with density
2 2
fla,y) = (2m) " exp{ -5},
(2) Find the distribution of X 4+ Y if (X,Y’) has the standard bivariate normal distribution.

(3) Let U = min{X,Y} and V = max{X,Y}. Find the density of (U, V).

Problem 118. Let p,, n € P(R™). Show that pu, A p if and only if [ fdu, — [ fdp for every
[ € Cy(R). What if we only assume [ fdu, — [ fdu for all f € C.(R™) - can we conclude that

d
P —> p?

Problem 119. Let p,,p € P(R™) having densities f,, f with respect to Lebesgue measure. If
fn — [ ae. (wr.t. Lebesgue measure), show that g, LA 1.

Problem 120 (Moment matrices). Let 1 € P(R) and let o = [2¥du(z) (assume that all

moments exist). Then, for any n > 1, show that the matrix (a;;) is non-negative definite.

0<4,j<n
[Suggestion: First solve n = 1].

Problem 121. Let X > 0 and let m, = E[X?]. If 1 < p; < pa < ps3, show that m,, < my, X mg3

for some a, b that depend on p;s but not on the distribution of X.
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Problem 122. Let X be a non-negative random variable with all moments (i.e., E[X?] < oo for
all p < 00). Show that log E[X?] is a convex function of p.

Problem 123. (1) Let pn,pn € P(RY). Assume that p, has density f, and u has density f
w.r.t Lebesgue measure on R™. If f,,(t) — f(¢) for all ¢, then show that p, L\ 1.

(2) Show that N(pn,02) LA N(p, o) if and only if u, — p and 02 — o2

Problem 124. (1) Let X ~ (e, 1) and Y ~ I'(e/,1) be independent random variables on a

X
X+Y"

(2) If U,V are independent and have uniform([0,1]) distribution, find the distribution of U 4 V.

common probability space. Find the distribution of

Problem 125. Let Q@ = {1,2,...,n}. For a probability measure P on €2, we define it “entropy”
H(P) := —>"}_, prlog pr, where pr = P{k} and it is understood that zlogz = 0 if z = 0. Show
1

that among all probability measures on €2, the uniform probability measure (the one with p; = -

for each k) is the unique maximizer of entropy.

Problem 126. (1) If p, < v for each n and puy, LA 1, then is it necessarily true that p < v?
If p, L v for each n and p, LA u, then is it necessarily true that p L v? In either case,

justify or give a counterexample.

(2) Suppose X,Y are independent (real-valued) random variables with distribution p and v
respectively. If u and v are absolutely continuous w.r.t Lebesgue measure, show that the
distribution of X + Y is also absolutely continuous w.r.t Lebesgue measure.

Problem 127. Suppose {yq:a € I} and {vg:a € J} are two families of Borel probability
measures on R. If both these families are tight, show that the family {yu, ® vg:a € I, g € J} is
also tight.

Problem 128. Let X be a non-negative random variable. If E[X] < 1, then show that E[X '] > 1.

Problem 129. Suppose X, Y are independent random variables and X + Y has finite expectation.
Then show that X has finite expectation. [Hint: Assume that Y has symmetric distribution to get
a possibly simpler version of the problem]
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Problem 130. On the probabiity space ([0, 1], B, 1), for k > 1, define the functions

2]671_1 ) )
0 ifte U [Z. %5,
o =0
Al = 2 i 2j4n
1 ifte U [ ZE)ort=1
j=0

(1) For any n > 1, what is the distribution of X,,?

(2) For any fixed n > 1, find the joint distribution of (Xi,...,X,).

[Note: Xi(t) is just the kth digit in the binary expansion of ¢. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at ¢t = 1)].

Problem 131. If A € B(R?) has positive Lebesgue measure, show that for some 2 € R the set
A :={y € R: (z,y) € A} has positive Lebesgue measure in R.

Problem 132 (A quantitative characterization of absolute continuity). Suppose u < v.
Then, show that given any ¢ > 0, there exists ¢ > 0 such that v(A4) < ¢ implies pu(A) < e. (The
converse statement is obvious but worth noticing). [Hint: Argue by contradiction)].

Problem 133. For u,v € P(R), a budding probabilist asserts that v < p provided v(I) = 0 for
all intervals for which (1) = 0. Will he or she bud or wither? What if intervals are replaced by

compact sets?

Problem 134. Let Z1, ..., Z, bei.id N(0,1) and write Z for the vector with components Z1, ..., Z, .}
Let A be an m x n matrix and let u be a vector in R”. Then the m-dimensional random vector
X = p+ AZ is said to have distribution N, (u, ) where ¥ = AA* (‘Normal distribution with mean
vector p and covariance matrix 7).
(1) If m < n and A has rank m, show that X has density (27)" 2 exp{—3x"A71x} w.r.t
Lebesgue measure on R™. In particular, note that the distribution depends only on p and
AA!. ( Note: If m > n or if rank(A4) < m, then satisfy yourself that X has no density w.r.t

Lebesgue measure on R™ - you do not need to submit this).

(2) Check that E[Xl] = u; and COV(Xi, Xj) = EiJ'

(3) What is the distribution of (i) (X1, ..., Xg), for k <n? (ii) BX, where B is a p X m matrix?
(i) X1+ ...+ Xm?

Problem 135. (1) If X,Y are independent random variables, show that Cov(X,Y) = 0.

(2) Give a counterexample to the converse by giving an infinite sequence of random variables

X1, Xo, ... such that Cov(X;, X;) =0 for any ¢ # j but such that X; are not independent.
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(3) Suppose (X7, ..., Xy,) has (joint) normal distribution (see the first question). If Cov(X;, X;) =|}
0 for all i < k and for all j > k + 1, then show that (Xi,...,X}) is independent of
(Xk-i-la s 7Xm)

Problem 136. Decide whether the following are true or false and explain why.

(1) If X is independent of itself, X is constant a.s.

(2) If X is independent X2 then X is a constant a.s.

(3) If X, Y, X +Y are independent, then X and Y are constants a.s.
(4)

4) If X and Y are independent and also X +Y and X — Y are independent, then X and Y
must be constants a.s.

Problem 137. If X ~ Exp(1), show that | X | and X — | X | are independent. Give examples of
distributions other than Exponential for which the same independence holds.

Problem 138. Let X,Y be independent random variables such that P{X <Y} = 1. Show that
there exists some ¢ € R such that P{X <t} =1and P{Y > ¢} =1.

Problem 139. (1) Suppose 2 < k < n. Give an example of random variables X1, ..., X,, such
that any subset of k£ of these random variables are independent but no subset of k + 1 of

them is independent.

(2) Suppose (X1,...,X,) has a multivariate Normal distribution. Show that if X; are pairwise
independent, then they are independent.

Problem 140. Let Q = {0, 1}" with its power set sigma-algebra and uniform distribution P. Show
that it is not possible to define n + 1 non-constant random variables that are independent. [Hint:
First show that it is not possible to get n+1 independent Ber(p;) random variables with 0 < p; < 1]

Problem 141. Show that it is not possible to define uncountably many independent Ber(1/2)
random variables on the probability space ([0, 1], B, A).

Problem 142. Let © = {1,2,...,n} with the power set sigma-algebra and uniform probability
measure. Let Xp,(k) = 1, givides k- Are X and X3 independent? [Note: The answer may depend

on n.|
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Problem 143. Suppose N > 2 distinguishable balls are thrown into m > 2 labelled bins, uniformly

at random.

(1) Show that X;s are not independent.

(2) If N is itself a random number from Pois(\) distribution (and then the assignment of balls
to bins is independent of N), show that X;s are independent and find their distributions.

Problem 144. For a real valued random variable X, its concentration function is defined as
Qx(t) = sup{P{X € [a,a+t]:a € R}, for t > 0 (so @x(0) is the largest atom size in the
distribution of X). If X,Y are independent and Z = X + Y, show that Qx+y(t) < Qx(t) for all
t>0.

Problem 145. Let U,,V,, n > 1 be iid. Unif[0,1] random variables. Let X} = 1y,<y;, and

Yi = 1y, <v, and Z = 1y, <min;<, V; -
Which of the collections {X,,}, {Yn}, {Z.} are (A) Independent? (B) Identically distributed?

Problem 146. Pick a permutation II € S,, uniformly at random. Let X} be the indicator of the
event that k is the smallest element in its cycle (in the cycle decomposition of II). Show that
Xi,...,X, are independent and that X ~ Ber(1/k).

Problem 147. Pick a permutation Il € §,, uniformly at random. Let Y3 be the number of j < k for
which II(k) < II(j). Show that Yi,...,Y, are independent and that Yj; ~ Uniform{0,1,...,k—1}.

Problem 148. Let X;, i > 1 be random variables on a common probability space. Let f : RN — R
be a measurable function (with product sigma algebra on RN and Borel sigma algebra on R) and
let Y = f(X;,Xo,...). Show that the distribution of ¥ depends only on the joint distribution
of (X1, Xo,...) and not on the original probability space. [Hint: We used this to say that if X;
are independent Bernoulli random variables, then .., X;27% has uniform distribution on [0, 1],

irrespective of the underlying probability space.]

Problem 149. Let (Q1, F1, 1), (Q2, F2,v) be probability spaces and let 6 be a probability measure
on (2 =0 x Ny, F1 ® Fa). We write z € Q as z = (x,y) (i.e., z =1I;(z) and y = IIz(2)).

(1) Show that € has marginals x4 and v if and only if,

[0+ gnane) = [ gau+ [ gav
Q 1951 Qo

for every f, g bounded random variables on €2y and 25 respectively.
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(2) Show that # = ® v if and only if

| st = ( [ | ran) = ([ 2 o

for every f, g bounded random variables on 21 and )y respectively.

Problem 150. Let X be a random variable taking values in {0,1,...,n} with p, = P{X = k}.
Let P(t) = po + pit + ... + ppt™ be the generating function of X. Show that the following are

equivalent:

(1) All roots of P are real.

(2) X has the same distribution as a sum of n independent (not necessarily identical) Bernoulli

random variables.

Problem 151. Suppose (Xi,...,X,) has density f (w.r.t Lebesgue measure on R").

1) If f(x1,...,2,) can be written as [[}_; gr(xx) for some one-variable functions g, k¥ < n.
k=1
Then show that Xj,..., X,, are independent. (Don’t assume that g is a density!)

(2) If X1,..., X, are independent, then f(z1,...,z,) can be written as [[}_; gx(xx) for some
one-variable densities g1, ..., gn-

Problem 152. (1) Let S be the set of all z € [0,1] whose base b-expansion contains all the
digits 0,1,...,b—1, for every b € {2,3,4...}. Show that A(S) = 1, where X is the Lebesgue
measure on [0, 1].

(2) Let S be the set of all points in R? that can be written as a convex combination of two
rational points (a rational point is one whose co-ordinates are all rational numbers). Show
that S has zero Lebesgue measure.

Problem 153. Let X = (X, ;)i j<n where X;; are i.i.d. N(0,1) random variables and let A =
(X + X% /+/2 (a random symmetric matrix). Let A\; < ... < )\, be the eigenvalues of A (repeated
with multiplicity). Let J ~ Unif[n| independent of X js. Let A = A (a uniformly randomly chosen
eigenvalue of A).

(1) Show that E[AP] =0 if p is odd.

(2) Show that E[A\?] =1 and E[\] = 2.
[Much more difficult: Find E[NP] for larger even numbers, p = 6,8, .. ]

Problem 154. Let X,Y be random variables on a common probability space. Assume that both

X and Y have finite variance.
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(1) Show that E[(X — a)?] is minimized uniquely at a = E [X].
(2) Find values of a, b that minimize f(a,b) =E [(Y —a — bX)?]. Are they unique?

(3) Suppose P(X = k) = {5 for k =1,2...,10. At what value(s) of a is E [| X — a[] minimized?

Is the minimizer unique?

Problem 155. Let Xq,..., X, beii.d. random variables with a common distribution function F'.
Assume that F' has a density f. Let X(;) be the kth order statistic, i.e., the kth smallest among
X1y, Xy (€8, X(p) = max;<p, X;). Show that Xy has a density given by

n!

9) = i = R

F(a)" (1= F(x)" " f(2).

Problem 156. If X; are i.i.d. Unif|0, 1], identify the distribution of X4y, the kth order statistic.
Find E[X ;)] and Var(X,).

Problem 157. There are n machines and n jobs. Machine 7 can do job j at a cost of & ;. The
optimal assignment is to pair machines with jobs so that the total cost is minimized. Let §; ;
be i.i.d. Exp(1l) random variables and let C, be the cost of the optimal assignment. Show that
E[C,] = O(logn). [Note: In fact, it is known that E[C,] = 1+ 2% +...+ # which remains bounded!
But that is more involved. Look up random assignment problem to know more]

Problem 158. Among all n! permutations of [n], pick one at random with uniform probability.
Show that the probability that this random permutation has no fixed points is at most % for any

n.

Problem 159. Suppose each of 7 = An balls are put into n boxes at random (more than one ball
can go into a box). If N,, denotes the number of empty boxes, show that for any § > 0, as n — oo,

P(‘Nn—e_)“>6>—>0
n

Problem 160. Let X, be i.i.d random variables such that E[|X1|] < co. Define the random power
series f(z) = > 72y Xn2z". Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series > ¢, 2" is given

. 1.
by (limsup |e,|=) 1.

Problem 161. (1) Let X be a real values random variable with finite variance. Show that

f(a) := E[(X — a)?] is minimized at a = E[X].
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(2) What is the quantity that minimizes g(a) = E[|X —a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 162. If X is a positive random variable, show that E[X p]% is increasing in p € [0, c0).

Problem 163. Let f: Ry — R, be a decreasing, continuous probability density function and let
1
mp = [y @ f(x)dx be its pth moment. Show that ((p 4+ 1)m,)»+T is increasing in p € [0, 00).
[Hint: Consider a measure v such that v[z,00) = f(z) and relate my, to v.]

Problem 164 (Existence of Markov chains). Let S be a countable set (with the power set
sigma algebra). Two ingredients are given: A transition matriz, that is, a function p : S xS — [0, 1]
be a function such that p(z,-) is a probability mass function on S for each x € S. (1) An initial
distribution, that is a probability mass function pg on S.

For n > 0 define the probability measure v, on S"*! (with the product sigma algebra) by

n—1
I/n(Ao X A1 X ... X An) = Z HO(xO) Hp(l'j,l'j+1).
($O7"'7x7L)€AO><.--XA7L ]:0

Show that v, form a consistent family of probability distributions and conclude that a Markov

chain with initial distribution pg and transition matrix p exists.

Problem 165. Show that it is not possible to define uncountably many independent Ber(1/2)
random variables on the probability space ([0, 1], B, A).

Problem 166. Let (9;, F;,P;), i € I, be probability spaces and let Q = x;§; with F = ®;F; and
P =®;P;. If A€ F, show that for any £ > 0, there is a cylinder set B such that P(AAB) < e.

Problem 167. Let Ay, Ag, ... be a sequence of events in (2, F,P). Let py be the probability that

at least one of the events Ay, Api1, ... occurs.

(1) If ir’ifpk > 0, then show that A, occurs infinitely often, w.p.1.

(2) If pr — 0, then show that only finitely many A,, occur, w.p.1.

Problem 168. Let A, be events in a probability space such that )  P(A,AB,) < oo for
some sequence of independent events B,. Show that P(A, i.0.) is 0 if )  P(A,) < oo and 1
if 3, P(Ay) = oo.
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Problem 169. Show that there is no function ¢ : [0,1] — [0, 1] such that ¢(x) — 0 as © — 0 for
which ), p(P(A,)) = oo implies P(A,, i.0.) > 0. [Remark: This is to emphasize that the second
Borel-Cantelli cannot be got some independence assumption. For example, even if ) P(A,)"Y =

oo, we may still have P(A4,, i.0.) = 0.]

Problem 170. Let A, be events in a probability space.

(1) If there exist 1 = Ny < N < ... — oo such that if By = Ay, U...U A, , 1 satisfy
> P(Bi) < 00, then P(4, i.0.) =0.

(2) Is the converse true? If P(A, i.0.) = 0, must there exist (/Vj) such that ), P(Bj) < 0o?

Problem 171. Let &, &, be i.i.d. random variables with E[log, £] < oo and P(§ = 0) < 1.
(1) Show that limsup lénﬁ =1 a.s.

n—oo
(2) Let ¢, be (non-random) complex numbers. Show that the radius of convergence of the
random power series Y~ ¢,&n2" is almost surely equal to the radius of convergence of the

non-random power series » > ¢, 2",

Problem 172. Let (X,,), be a sequence of random variables such that {Xs, : n > 1} are inde-
pendent and {X9,_1 : n > 1} are independent. Does it follow that the tail sigma algebra of the

sequence (X, ) is trivial?

Problem 173. Let X,, be independent random variables with X,, ~ Ber(p,). For k > 1, find a
sequence (py) so that almost surely, the sequence X1, Xo, ... has infinitely many segments of ones
of length k£ but only finitely many segments of ones of length k£ + 1. By a segment of length k we
mean a consecutive sequence X;, X;y1,..., Xitk—1-

Problem 174. Let ¢, be numbers in [0,27). Let 61,602, ... be i.i.d. Unif[0, 27] and let J be the
arc of the unit circle S' = {e : 0 < t < 27} with center e* and having length ;. Let J = UpJy.
Show that the following are equivalent:

(1) S\ J has zero Lebesgue measure in S!, a.s.

2) 3, by = co.

[Hint: First fix 2 € S! and consider the event that x is covered by infinitely many .J,,.]

Problem 175. (Ergodicity of product measure). This problem guides you to a proof of a different

zero-one law.
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(1) Consider the product measure space (R%, B(RZ), ®zu) where u € P(R). Define 7 : RZ — RZ
by (Tw)n = wna1. Let T = {A € B(R?) : 7(A) = A}. Then, show that Z is a sigma-algebra
(called the invariant sigma algebra) and that every event in Z has probability equal to 0 or
1.

(2) Let X,,,n > 1 bei.i.d. random variables on a common probability space. Suppose f : RN —
R is a measurable function such that f(x1,z2,...) = f(x2,23,...) for any (21, 29,...) € RY.
Then deduce from the first part that the random variable f(X;, X»,...) is a constant, a.s.

[Hint: Approximate A by cylinder sets. Use translation by 7 to show that P(A) = P(4)2 ]

Problem 176. Let v1,...,v, be unit vectors in R™. Show that there exist e, € {—1,+1}" such
that

(1) |letvr + ... + e < Vn,

(2) |lEhvr + ... + Lol > Vn.
[Hint: Probabilistic method]

Problem 177. If X and Y are i.i.d. random variables, show that the (closed) support of the
distribution of X —Y contains 0.

Problem 178. If X > 0 and E[X| = m, then show that P{X < m} > 0. Is there is an absolute
lower bound (meaning, the bound does not depend on X) for P{X < m}?

Problem 179. Assume 02 := Var(X) < oo and E[X] = 0. Show that P{X >t} < % fort > 0.
[Hint: Consider (X —t)+.].
[Note: Compare with direct application of Chebyshev’s inequality. ]

Problem 180. If X > 0 has finite second moment, show that P{X = 0} < \/]v;%g?.

Problem 181. Let X be a random variable with mean 0. Assume that 7 = || X||4 and let 0 = || X||2
are finite. Let v = 7/0. Show that
=
k
P{X|> ko) <,
TR

for any k > 1,
if k> ~2.

[Remark: Strengthening of Chebyshev for high deviations, assuming 4th moment. |

Problem 182. (Chung-Erdés inequality).
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(1) Let A; be events in a probability space. Show that

! (X P(AR)?
’ {kL:Jl Ak} - > ke=1 P(Ar N Ay)

(2) Place ry, balls in m bins at random and count the number of empty bins Z,,. Fix § > 0.
If rpy, > (14 6)mlogm, show that P(Z,, > 0) — 0 while if r,, < (1 — 0)mlogm, show that
P(Z, >0)— 1

Problem 183. Let ;1 € P(R) and assume that it has finite mean M and variance o2. If M € [a, b]
and p(a,b) = 0, then show that o2 > (M — a)(b — M).

Problem 184. Give example of an infinite sequence of pairwise independent random variables for
which Kolmogorov’s zero-one law fails.

Problem 185. Let X;,..., X, be random variables with E[X;] = 0 and |X;| < B; a.s. Assume
that E[X;, ... X;,] = 0 for any 1 < ¢; < ig < ... < i < n. Check that the proof of Hoeffding’s
inequality goes through for S, = X1 + ...+ X,,.

Problem 186. Let Xi,..., X, be independent random variables with E[X}] = 0 and E[X?] = o}.
Let Sy = X1+ ...+ X, (so Sp = 0) and let S} = [nax |Sk|. Show that E[S}] < 27, where
SKSn

7‘,%:0‘%4-...4-0’721.

Problem 187. Suppose X, are independent random variables and »  X,, converges a.s. Show that
n

> P{|X,| > A} < oo for any A > 0.

Problem 188. Let X,, ~ Unif[—ay, a,] be independent. If > a? converges, show that [[0; (1+X,,)
n

converges a.s.

Problem 189. Let F(s) = [[,(1 — X,p~*)~! where the product is over all prime numbers and
X, are iid. Bery(1/2) random variables. Show that F(s) converges a.s. for s > 1. [Remark:
Compare this with the famous discovery of Euler that [[ (1—-p~* )y l= > n>1 7%, which converges
for s > 1]

Problem 190. Let X;, i € I be random variables on a probability space. Suppose that for some
p > 0and M < oo we have E[|X;[P] < M for all i € I. Show that the family {X; : i € I'} is tight

(by which we mean that {ux, : 7 € I} is tight, where py, is the distribution of X;).
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Problem 191. Let X; be i.i.d. random variables with zero mean and finite variance. Let S,, =
X1 +...4+ X,,. Show that the collection {ﬁSH :n > 1} is tight. [Note: Tightness is essential for
convergence in distribution. In the case at hand, convergence in distribution to N(0,1) is what is
called central limit theorem. We shall see it later.]

Problem 192. Suppose each of » = An balls are put into n boxes at random (more than one ball
can go into a box). If N,, denotes the number of empty boxes, show that for any § > 0, as n — oo,

N,

Problem 193. Let &, ...,§, be i.i.d. tosses of a p-coin. If {1 = &ky1 = ... = Epm = 1 but
&k = &ktm+1 = 0, we say that (k,...,k+ m + 1) is a run of heads of length exactly equal to m.

Let T}, ,, denote the number of runs of length exactly equal to m.

(1) For fixed m, show that % Lt ¢*p™ as n — oo.

(2) Does your proof work for m = m,, increasing with n? If so how fast can it grow?

Problem 194. A random graph G,, with vertex set [n] = {1,...,n} is built by connecting every
pair of distinct vertices with probability p,. Show that for any € > 0,

n

1 ifp, < (1—g)lsn

g
P{G, has an isolated vertex} — o
0 ifp,>(1+4e)*2

n
n °

[Hint: Consider the number of isolated vertices.]

Problem 195. A box contains n distinct pairs of gloves. Two gloves are drawn at random and then
returned to the box. Repeat this till each pair of gloves has been drawn at least once. If T), is the
number of draws, then can you find a deterministic sequence a,, such that P{1—¢ < Z—Z <l4e}—1

as n — oo, for any € > 07 (in language to be introduced later, we write this as Z—Z L 1).

Problem 196. Repeat the previous problem for a box containing 2n hats. Again hats are drawn,
two at a time, till every pair is seen. (The difference is that hats don’t come in natural pairs).

Problem 197. Let G, be the random graph with vertex set [n] and edge set {{7,j} : X;; = 1},
where X; ;, i < j, are i.i.d. Ber(p). Let R be the size of the largest clique in G, (a clique is
a subset S of vertices such that every pair of vertices in S is connected by an edge). Show that
P{alogn < R, <blogn} — 1 as n — oo, for some 0 < a < b < 0.
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Problem 198. Consider a Galton-Watson tree 7 with offspring variable L with P{L = k} = py,
k > 0. Let Li,Ls,... be i.i.d. copies of L and let 7 be the first time that the random walk
Sp = >_5_1(Lj — 1) hits the level —1. Show that for any k > 1,

P{|T| =k} =P{r =k}.

Problem 199. Consider Galton-Watson tree with offspring distribution Pois(\). For A\ < 1, show
that P{|7| > k} < e~ for all k, for some ¢ > 0 (that may depend on \). [Remark: Not only is T
finite, it is highly unlikely to be large.]

Problem 200. Let Aj, Ao, ... be i.i.d. uniform random subsets of [n] (i.e., P(A; =5) = 27" for
each S C [n]). Imagine sampling A;, Ag, ... suvvessively and let T;, be the first time when we have
two subsets that are disjoint from each other. Show that 7T}, ~ (2/4/3)" in the sense that

2 \" 0 if hy — oo,
P{T, > < hn p —
V3 1 ifh, — 0.

Problem 201. Same setting as the previous problem, but now let T}, be the first time some subset
contains another. Analyse T}, as in that problem.

Problem 202. Let X,, be i.i.d random variables such that E[|X;|] < co. Define the random power
series f(z) = > 7oy Xn2". Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series > ¢, 2" is given
by (lim sup |cn]%)_1].

Problem 203. Let X, Xs,... be i.i.d. fair coin tosses. Let L, be the length of the longest run of
heads in Xi,..., X, (arun is a segment of consecutive tosses). Show that for any ¢ > 0,

P{(1—-¢)loggn < L, < (1+¢)logyn} — 1.

Problem 204. Let X,, ~ Ber(n™%) be independent, o > 0. What is the largest k for which the
sequence X1, X9, X3,... contains a sequence of k ones, almost surely?

Problem 205. How does the analysis in the coupon collector problem change if one waits till each
coupon is seen at least two times?
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Problem 206. Let F,G be CDFs such that F(t) < G(t) for all t € R (we say that F' stochastically
dominates G). Show that there exists a probability space and random variables X,Y on it such
that X ~ F, Y ~G and X > Y a.s.

Problem 207. Let X,,,Y,, be random variables on a common probability space such that P{|X,, —
Yo > #} < # If > X,, converges a.s., show that Y], converges a.s.
n n

Problem 208. Let X, ~ Ber(}) be i.i.d. and let Y, ~ Ber(3 + 5i7) be independent. Let

X = (X1,Xo,...)and Y = (Y1, Ys,...). If A is a Borel subset of RY, then show that P{X € A} > 0
if and only if P{Y € A} > 0. [Hint: Use coupling]

Problem 209. (1) Let X be a real values random variable with finite variance. Show that
f(a) := E[(X — a)?] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X —a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 210. Let X; be i.i.d. Cauchy random variables with density m Show that %Sn
fails the weak law of large numbers by completing the following steps.

(1) Show that tP{|X;| > t} — ¢ for some constant c.

(2) Show that if 6 > 0 is small enough, then P{|-1-5,_1| > 6} + P{|25,| > §} does not go to
0 as n — oo [Hint: Consider the possibility that | X,| > 2dn].

(3) Conclude that %Sn does not converge t0 0 in probability. [Eztra: With a little more
effort, you can try showing that there does not exist deterministic numbers a,, such that
%Sn — ay, LS 0].

Problem 211. Let X,,, X be random variables on a common probability space.

(1) If X, 5B x , show that some subsequence X,,, “3 X.

(2) If every subsequence of X,, has a further subsequence that converges almost surely to X,
show that X, —P> X.

Problem 212. For R%valued random vectors X,,, X, the notions of convergence almost surely, in
probability and in distribution are well-defined. If X,, = (Xp1,...,Xpq) and X = (X1,..., Xg),
which of the following is true? Justify or give counterexamples.

(1) X, % X if and only if X, “3 X}, for 1 <k < d.
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(2) X, 2 X if and only if X, LS X for1 <k <d.

(3) X, % X if and only if X,,j, % X, for 1 < k < d.

Problem 213. Let X,,Y,, X,Y be random variables on a common probability space.

(1) If X, 2 X and Y, Ry (all r.v.s on the same probability space), show that aX, +
bY, B oax 4+ bY and X,Y, 2 xv. [Hint: You could try showing more generally that
f(Xn, Y,) — f(X,Y) for any continuous f : R? — R.]

Problem 214. Let X,,,Y,, X,Y be random variables on a common probability space.
(1) Suppose that X,, is independent of Y,, for each n (no assumptions about independence
across n). If X, % X and V,, % Y, then (X,,Y,) % (U,V) where U £ X, V £ Y and
U,V are independent. Further, aX,, + bY,, AU + bV.

(2) Give counterexample to show that the previous statement is false if the assumption of
independence of X,, and Y,, is dropped.

Problem 215. If X,, are independent random variables and X, £> X. Show that X is a constant

random variable.

Problem 216. If X,,,Y,, are independent for each n and X,, + Y, £ 0. Show that there are
numbers ¥, such that X,, + y, £> 0.

Problem 217. Let an,a € R and a, — a. Let u, = %(6@ + ...+ dg,) be the probability measure
that puts mass % at each ay, k < n (with appropriate multiplicity). Show that p, converges in
distribution and find the limit.

Problem 218. Let u, = ﬁ Zz;ll (Sf(ﬁ), where f : (0,1) — R is some continuous function. Show

that p, converges in distribution and describe the limit. Find the limit explicitly when f(x) = 2P.

Problem 219. Suppose u, i> p. Let ¢ > 0 for 1 < k < n such that ¢, 1 +...+¢cpn = 1 for each
n and such that ¢, ; — 0 as n — oo for each j. Let v, = ¢, 101 + ... + ¢y ppin. Show that v, i -

Problem 220. Suppose X, £> X. Let ¢y > 0 for 1 < k < n such that ¢, 1 +... 4+ ¢,y = 1 for
each n and such that ¢, ; — 0 as n — oo for each j. Let Y, = ¢, 1 X1 + ... + ¢y nX,. Show that

v, & x.
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Problem 221. Suppose X, B X. Use the previous exercise to deduce the following.
(1) The Cesaro sums (X1 + ...+ Xp,) 5 X asn — 0.

1—r

n
(2) The Abelian sums - > 7¥ X, B Xasr 1 1 (if you prefer, take a sequence r,, 1 1).
k=0

Problem 222. For R%-valued random vectors X,,, X, we say that X, 5 x ifP()| X,,—X|| >9) =0
for any 6 > 0 (here you may take || - || to denote the usual norm, but any norm on R? gives the
same definition).

(1) If X, 5 X and V,, 5 Y, show that (X,,Y,) 5 (X,Y).
2) If X, 5 X and Y, 5 Y, show that X, + Y, 5 X +Y and (X,,Y,) & XV. [Hint:
Show more generally that f(X,,Y,) L f(X,Y) for any continuous function f by using the

previous problem for random vectors].

Problem 223. (1) If X,,Y,, are independent random variables on the same probability space
and X, % X and Y, % Y, then (X,,V,) % (U,V) where U £ X, V £ Y and U,V are
independent.

(2) If X, 4 X and Y, — X, L 0, then show that Y, 4 x.

Problem 224. Let ¥, = (&L Show that X,, 5 0 if and only if ¥, % 0.

Problem 225. Let X,, be a sequence of random variables on a common probability space. Show

that there exists a (non-random) sequence of real numbers a,, such that a, X, %0.

Problem 226. Show that the the following are equivalent conditions for tightness of a sequence
{Xn}-
(1) enXp £ 0 whenever cn, — 0.

(2) P{|X,| > M,,} — 0 whenever M,, — oo.

Problem 227. Show that the the following are equivalent conditions for uniform integrability of
a sequence {X,}.

1
(1) en Xy, L, 0 whenever cn — 0.

(2) E[|Xn[1x,>Mm,] — 0 whenever M,, — oco.
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Problem 228. Two common ways to check uniform integrability of a family of random variables
are (1) Domination by an integrable random variable, (2) LP-boundedness for some p > 1. Show

that neither condition implies the other.
Problem 229. Let X; ~ p be i.i.d. If S), converge a.s., show that p = dp.

Problem 230. Let py,u € P(R) and let f : R — R be a Borel measurable function. Show that
[ fdpn — [ fdu if the sequence {fdpu,} is tight (i.e., given e > 0, there is some M < oo such that

f}M,M]c |fldp, < € for all n).

Problem 231. Let o, be a sequence of real numbers. Assume that for each n, there is a u,, € P(R)
such that [ z¥du,(z) = ay for 1 < k < n. Show that there is a u € P(R) such that [ z*du(x) = oy,
for all k£ > 1.

Problem 232. For each mode of convergence (almost sure, in probability, in distribution, in
LP), decide whether the following statement is true: “If X,, — X then %Sn — X7, where S, =
X1+ ...+ X,.

[Remark: The question is motivated by the analogous fact for convergence of numbers.]

Problem 233. Let X, Xo,... be i.i.d from p. For each n, define the random probability measure
JES %(5 x, +...+0x,). If F,, F are the cumulative distribution functions of p,, and u, show that

a.s.

for any = € R, we have F,(z) = F(x).

Problem 234. Let X,, be independent with X,, ~ Poisson(\,,). Let S,, = X1 + ... + X,,.
(1) It N\, =1+ ﬁ for some b > 0, show that %” 1.
(2) If A, = 1+ & for some b > 1, show that Sz %3 1,

1
n n

Problem 235. Let X1, Xo,... be i.i.d. random variables with finite expectation m. Show that

E ‘&—m’ — 0.
n

Problem 236. Let X, Xo,... be i.i.d. random variables. Let G, be the geometric mean of
X1,...,X,. In each of the following cases, show that G,, converges almost surely to a constant and
find the constant. (a) X7 ~ Unif[0, 1], (b) X; ~ Exp(1).
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Problem 237. Suppose X,, are i.i.d with E[|X1]*] < oco. Show that there is some constant C
(depending on the distribution of X1) such that P (|n=1S,, — E[X1]| > §) < Cn~2. (What is your
guess if we assume E[|X1]%] < c0? You don’t need to show this in the homework).

Problem 238. (1) (Skorokhod’s representation theorem) If X, LN X, then show that
there is a probability space with random variables Y,,,Y such that Y, 4 X, and Y 4 x
and Y,, “3 Y. [Hint: Try to construct Y;,,Y on the canonical probability space ([0, 1], B, 1)]

(2) If X, %4 X, and f : R — R is continuous, show that f(X,) 4 f(X). [Hint: Use the first
part]

Problem 239. Suppose X; are i.i.d with the Cauchy distribution (density 7=*(1 + z2?)~! on R).
Note that X; is not integrable. Then, show that %” does not converge in probability to any
constant. [Hint: Try to find the probability P(X; > t), and then use it].

Problem 240. Let X, Xo,... be i.i.d. random variables with symmetric Pareto distribution with

density 55 for |z| > 1.

(1) Show that |X,| > n for infinitely many n, almost surely.

(2) Deduce that % does not converge, a.s. Why does this not contradict SLLN?

Problem 241. Let X, be i.i.d. positive random variables and let M,, = max{Xy,..., X, }.
(1) If E[X] < oo, show that ]g—: Bo.
(2) Give an example of a distribution with E[X;] = oo for which ]‘g—: does not converge to 0 in
probability.
(3) Is there any distribution with E[X;] = co for which we do have ]g—: B o2

[Remark: When this fails, it means that one of Xi,..., Xy is as large as their sum. With light
tailed random variables, no single term contributes too much to the total]

Problem 242. Let U ~ Uniform|0, 1] and X,, = sin(nU). Show that X,, converges in distribution
and find the limit.

Problem 243. Let X1, Xp, ... bei.id. Unif[0, 1] random variables and let X 1) < X(9) < ... < X(y)
denotes the order statistics (i.e., X(;) is the kth smallest among X;s, e.g., X(1) = min X;).

(1) Show that nX ) LN Exp(1) as n — oc.
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d
(2) For any fixed k > 1 show that (nX(l),n(X(Q) — X(l))v R ,n(X(k) — X(k—l))) — (fl, N
where &; are i.i.d. Exp(1) random variables. [Remark: This required convergence in distri-
bution in higher dimensions. If not clear what that is, omit the problem]

Problem 244. Repeat the previous problem if X; are i.i.d. from a probability density f on R
with f(0) > 0 (the exponentials will change parameters).

Problem 245. Let X; are i.i.d. from density pzP?~! on [0, 1], for some p > 0. Find an appropriate
limiting law for Xy as in the previous problem (note that if p # 1, the density vanishes at 0 or is
infinite).

Problem 246. Let X1, Xo, ... bei.i.d. standard Cauchy random variables and let M,, = max{Xy,..., X, }}]
Show that 37~ 4 Exp(1).

Problem 247. Suppose 0 < X7 < Xy < .... Assume that EXnl _, A and Var(X,,) < Bn?8 for

no

some 0 < A, B<ocand 0 < 8 < a < oo. Showthat%aij.

Problem 248. Let G1,Ga, ... be i.i.d Geometric(p) random variables (this means P(G; = k) =
p(1 — p)*~1 for k > 1). Let Xj,X,... be i.i.d random variables with E[|X;|] < oco. Define
N :=G1+ Go+ ...+ Gg. Show that as k — oo,

Xi+Xo+...+X 1
1+ 24;{ + Nk_P>7E[X1]
b

Problem 249. Let X1, Xo,..., X, be ii.d. points sampled uniformly from the unit disk D C R2.
Let Rn = minlgkgn HX/CH

(1) Show that \/nR, % R where R has the Rayleigh density ze=" on R..

(2) How do things change if X; are uniform on the unit ball in R3?

Problem 250. Show that for any p > 1,

p p 2
lim mdmlmd%: s
n—o0 Jig,n L1+ ...+ Tp p+1

[Hint: Do it without having to flex your muscles too much. Use probability!]
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Problem 251. Let f: R — R be continuous and 1-periodic (f(t+ 1) = f(¢) for all ¢). Show that
for a.e. z €[0,1],

Y~ !
nlgrolon;f(kx)—)/o f(t)dt.

where § =y (mod 1).

Problem 252. Let Q, = {z = (x1,...,2,): 0< x; € Z, x1+...4+x, = k,}, a finite subset of Z".
Assume that %" — a>0. Let X;, = (Xp1,...,X5,) be uniformly randomly sampled from €2,.

(1) Show that X, 1 LN Geo(p) for some p and find p in terms of a.

(2) For any k > 1, show that (X, 1,..., X k) 4 (&1, .,&k), where &; are i.i.d. Geo(p) random
variables.

Problem 253. Fix a > 0 and let Q,, = {z = (21,...,2,) 1 2; >0, 1 +...+ 2, = an}, a bounded
open set in R". Let X, = (X 1,...,Xpnn) ~ Unif(),) (normalized Lebesgue measure).

(1) Show that X,,.; % Exp(1/a).

(2) For any k > 1, show that (X 1,..., X5 %) A (&1, ..., &), where & are iid. Exp(l/a)

random variables.

Problem 254. Let {X;}icr be a family of r.v on (2, F,P).

(1) If {X;}ies is uniformly integrable, then show that sup,; E|X;| < co. Give a counterexample
to the converse statement.

(2) Suppose h : Ry — Ry such that h(x) — oo as x — oo. If sup; E[|X;|h(|X;])] < oo, show
that {X,}icr is uniformly integrable. In particular, if sup; E[|X;[P] < oo for some p > 1,
then {X;} is uniformly integrable.

Problem 255. Let X, be a sequence of random variables with zero means, unit variances. Assume
that [Cov(Xn, X;n)| < 8(|n — m|) where 6(k) — 0 as k — oo. Show that 15, 5 0.
How to modify the conclusion if we change the unit variance assumption to “E[X2] = ¢2”?

Problem 256. Let X,, be i.i.d with P(X; = +1) = P(X; = —1) = 1. Show that for any v > 3,

S,

== 2%0.

nYy
[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you write the
proof correctly, it should go for any random variable which has moments of all orders. You do not

need to show this for the homework].
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Problem 257. Let X}, be independent random variables with P{X}, = k*} = P{X, = —k°} = 1

for some a > 0. Show that %” £ 0if and only if a < %

Problem 258. Let A,, be events in a common probability space such that P(A,,) > p for all n.
Show that P{A, i.0.} > p.

Problem 259. Let A, be events in a common probability space. Assume that for some n; < ng <
... we have P (54! | A,) > p for all k. Show that P{A, i.0.} > p.

Problem 260. Let X,, be independent real-valued random variables.
(1) Show by example that the event {>_ X,, converges to a number in [1,3]} can have probabil-
ity strictly between 0 and 1.

(2) Show that the event {}_ X,, converges to a finite number} has probability zero or one.

Problem 261. Let X,, be i.i.d exponential(1) random variables.

(1) If b, is a sequence of numbers that converge to 0, show that limsup b,X,, is a constant
(a.s.). Find a sequence b, so that limsup b,X,, =1 a.s.

(2) Let M, be the maximum of Xi,...,X,. If a, — oo, show that lim sup ](\l/[—: is a constant
(a.s.). Find a,, so that lim sup JZI—: =1 (a.s.).

[Remark: Can you do the same if X,, are i.i.d N(0,1)? Need not show this for the homework,
but note that the main ingredient is to find a simple expression for P(X; > t) asymptotically as
t — o).

Problem 262. Let X} be non-degenerate i.i.d. random variables with E|X|° < oo for some § > 0.

(1) Show that %= 5 0,

(2) Give counterexample to show that % need not converge to 0 a.s.

Problem 263. Let X, be i.i.d real valued random variables with common distribution u. For each
n, define the random probabilty measure pu,, as p, := % > r_10x,. Let F,, be the CDF of p,. Show
that

sup |Fp(z) — F(z)| 3 0 a.s.
z€R
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Problem 264. Let X, Xo,... be i.i.d. with distribution pu € P(R). Recall that the support of u
is the smallest closed set K with p(K) = 1. Show that {X1, Xo,...} = K a.s. (the left side is the
closure of the set {X,,})

Problem 265. Let X,, be independent and P(X,, = n?) = 3 = P(X,, = —n?) where a > 0 is
fixed. For what values of a does the series >  X,, converge a.s.? For which values of a does the

series converge absolutely, a.s.?

Problem 266. Let Uy, Uy, ... be i.i.d. Unif[0, 1] random variables. Let §; ; = 1y,<y,. Show that
0({&;}) = c({Ux}). [Note: That is, we can recover the actual values of Uys by just knowing the
relative ordering among them!]

Problem 267. (Random series) Let X,, be i.i.d N(0,1) for n > 1.
(1) Show that the random series > X, sin(nrt) converges a.s., for any t € R.

n

(2) Show that the random series Xn% converges for all t € R, a.s.
[Note: The location of the phrase “a.s” is all important here. Let A; and B, denote the event that
the series converges for the fixed ¢ in the first or second parts of the question, respectively. Then,
the first part is asking you to show that P(A;) = 1 for each t € R, while the second part is asking
you to show that P(MerB;) = 1. It is also true (and very important!) that P(MerA:) = 1 but
showing that is not easy.|

Problem 268. Suppose X,, are i.i.d random variables with finite mean. Which of the following

assumptions guarantee that > X,, converges a.s.?
(1) (i) E[X,,] =0 for all n and (ii) Y. E[X2 A 1] < co.
(2) (i) E[X,,] =0 for all n and (ii) Y, E[X2 A |X,|] < .

Problem 269. (Large deviation for Bernoullis). Let X,, be i.i.d Ber(1/2). Fix p > 3.
(1) Show that P(S,, > np) < e P> (GATH)TL for any A > 0.

(2) Optimize over A to get P(S, > np) < e ™ ®) where I(p) = —plogp — (1 — p)log(1 — p).
(Observe that this is the entropy of the Ber(p) measure introduced in the first class test).

(3) Recall that S,, ~ Binom(n,1/2), to write P(S,, = [np]) and use Stirling’s approximation
to show that .
P(S, > np) > —— e P,

2rnp(L —p)
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(4) Deduce that P(S, > np) ~ e ™®) for p > 3 and P(S,, < np) ~ e™™M®) for p < 3 where the
log an
log by,

notation a, ~ b, means — 1 as n — oo (i.e., asymptotic equality on the logarithmic

scale).

Problem 270. Carry out the same program for i.i.d exponential(1) random variables and deduce
that P(S, > nt) ~ e ™® for t > 1 and P(S,, < nt) ~ e ™® for t < 1 where I(t) :=t — 1 — logt.

Problem 271. Let V = %(Zl, oy Zn)t where Zy,...,Z, are i.i.d. N(0,1) random variables.
Show that

2
P{||[V]—1] >t} <2e%
for some ¢ > 0 and all ¢ > 0.

Problem 272. Let Y7, ...,Y, be independent random variables. A random variable 7 taking values
in {1,2,...,n} is called a stopping time if the event {r < k} € o (Y3,...,Y}) for all k (equivalently
{r=k}ecoM\,...,Yy) for all k).

(1) Which of the following are stopping times? 71 := min{k < n:S; € A} (for some fixed
ACR). m:=max{k <n:S € A}. 3 :=min{k < n:S = I?Sar}L(Sj}. In the first two
cases set 7 = n if the desired event does not occur.

(2) Assuming each X}, has zero mean, show that E[S;] = 0 for any stopping time 7. Assuming

that each X has zero mean and finite variance, show that E[S?] < E[S?] < E[S?] for any
stopping time 7.

(3) Give examples of random 7 that are not stopping times and for which the results in the
second part of the question fail.

Problem 273. For each of the following statements, state whether they are true or false, and

justify or give counterexample accordingly.
(1) If > X, converges a.s. and P(Y,, = X,,) =1— # Then )Y, converges a.s.
n n

(2) If {X,,} is an L? bounded sequence of random variables, and E[X,,] = 1 for all n, then X,
cannot converge to zero in probability.
(3) If X, % X, then X2 % Xx2.

(4) Suppose X,, are independent with E[X,] = 0 and > Var(X,,) = co. Then, almost surely
>~ X, does not converge.

(5) Suppose X,,,Y;, are random variables such that |X,| < |Y,| for all n. If > Y], converges

almost surely, then ) X,, converges almost surely.
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Problem 274. Let X, be independent random variables with zero mean and unit variance. Assume
that E[|X}|?*°] < M for some § < 0 and M < co. Show that S,, is asymptotically normal.

Problem 275. Let X, be independent random variables with X,, = 4+/n with probability 1/2.
Show that S, satisfies the central limit theorem but not the law of large numbers.

Problem 276. A manufacturer of nails packages them in boxes that say “1000 nails”. On average
5 out of 1000 nails are defective and customers complain if there are fewer than 1000 non-defective
nails in the box. To reduce the complaints to below 1% of the customers, the manufacturer puts
m extra nails in each box. What is the minimum vale of m?

(1) Do it using CLT.

(2) Do it using just Chebyshev inequality.

Problem 277. Fix o > 0.

(1) If X,Y are i.i.d. random variables such that ¥ 4 x , then show that X must have

2a
characteristic function @x(A\) = e~°** for some constant c.

(2) Show that for a = 2 we get N(0,0?) and for a = 1 we get symmetric Cauchy.

[Note: Only for 0 < a < 21is e~ a characteristic function. Hence a distribution with the desired

property exists only for this range of «].

s X4y 4
Problem 278. Suppose X,Y are i.i.d. and e = X-

(1) If 0 < Var(X) < oo, show that a = 2 and X ~ N(0,0?) for some o2 > 0.

(2) If X has characteristic function =" with o > 2, deduce that Var(X) < oo and conclude
that X =0 (i.e., Stable-a distributions do not exist for o > 2).

Problem 279. Let X be independent Ber(py) random variables. If Var(S,,) stays bounded, show
that S,, cannot be asymptotically normal.

Problem 280. Let X, be independent random variables with zero mean and unit variance. If
{X2} is uniformly integrable, show that % A N(0,1).

Problem 281. Let Uy, Uy, ... be i.i.d. uniform[0, 1] random variables. Fix 0 < ¢ < 1 and let
Mﬁq) be the gth quantile, i.e., the [ng|th largest of the X;s (e.g., if ¢ = 1/2, this is essentially the
median). Show that /n(M\” — q) % N (0, q(1 — q)).
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Problem 282. A simple model for grinding particles down: Start with a particle of size 1. After
one cycle of grinding, it breaks into two particles of sizes X and 1 — X, where X ~ p, a non-
degenerate probability measure on [0, 1]. Each particle of size s similarly breaks into two particles
of sizes Ys and (1 —Y)s, where Y ~ p. The random variables indicating the breaking proportion
are assumed independent.

If the particle sizes are X, ;, 7 < 2", after n cycles of grinding, show that the proportion of j for
which y/nlog X, ; <t converges to P{Z <t} where Z ~ N(0,1).

[Note: Perhaps easier, show the same for the ezpected proportion of j for which \/nlog X, ; <t.
This problem is a simplification of a model first proposed by Kolmogorov, where he allows each
particle to subdivide into an arbitrary number of particles.]

Problem 283. Out of the n! permutations of the set [n] = {1,2,...,n}, pick one at random and
call it II. Let C,, be the number of cycles in the cycle decomposition of II.

(1) Define Ay be the event that k is the lowest element in its cycle. Show that Ay, ..., A, are
independent and that P(Ax) = (n —k+1)/n.

(2) Show that (x5 1.

(3) Show that C2 8" 5 N/(0,1).

Problem 284. Out of the n! permutations of the set [n] = {1,2,...,n}, pick one at random and
call it II. Let Z,, denote the number of inversions of II, i.e., the number of pairs ¢ < j such that
I1(z) > II(j). Show that

T, — n(n—1)
4 N(0,1).

\/n3/36

Problem 285. Let X,, be independent, and let X,, ~ (% — 2e)041 + e ns, where g, | 0 and
M, T .
(1) Find a condition on M, e, that allows to apply Lindeberg-Feller theorem directly to prove

d
that % S N(0,1).

(2) If >°, en < 00, show that % 4 N(0,1) even if M,, are chosen to violate the condition in
the first part.

Problem 286. Produce an example of independent random variables X, so that % 4 N (0,1),

but Var(S,/v/n) — 2. Can you make Var(S,//n) — oo?

Problem 287. Suppose X,, are independent random variables taking values +1 with probability

n~% each and taking the value 0 with probability 1 — 2n~°. Here b > 0.
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[e.¢]
(1) Find the range of b for which ) X,, converges almost surely.

n=1

. . Sn d
(2) Find the range of b for which TNares — N(0,1).

Problem 288. Let X,, be i.i.d. random variables with zero mean and unit variance. Let ¢, be
independent of X;s and among themselves and P{e, = +1} = # and P{e, = 0} =1 — ;. Set
Yo=(1—-¢e,)X,, +enn.

(1) Show that % LN N(0,1) by comparing with S;X.

(2) Show that Var(%) — 2.

n

Problem 289. Let Uy, Vi be i.i.d Uniform([0,1]) random variable.
1

1 1
(1) Show that > U} — V,* converges a.s.
k

(2) Let S, = Uy + U2 + ...+ U". Show that S, satisfies a CLT. In other words, find a,, b,
such that S"T;“” 4 N(0,1).

Problem 290 (Weak law using characteristic functions). Let X} be i.i.d. random variables having

characteristic function ¢.

(1) If ¢/(0) = iu, show that the characteristic function of S, /n converges to the characteristic
function of §,,. Conclude that weak law holds for S, /n.

(2) If %Sn A p for some g, then show that ¢ is differentiable at 0 and ¢'(0) = ipu.

Problem 291. Find the characteristic functions of the distributions with the given densities.
(1) el for z € R, (2) 1 ( - '12‘)+

Problem 292. Find the distributions whose characteristic functions are (1) ¢ +— cos(t), (2) t —

1
144t ”

Problem 293. Show isech(Zf)dz is a probability measure whose characteristic function is sech(t).

1

Problem 294. Show that the characteristic function of the arcsine measure having density oy

—itsin 6 df
2

2

on [—1,1] is equal to the Bessel function Jo(t) = [7 e
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Problem 295. Use characteristic functions to show that the sum of independent Poisson random
variables is Poisson and other such statements for Binomial, Normal, Exponential/Gamma, Cauchy.

Problem 296. If z, € R and e**» — 1 for all t € R, then show that x,, — 0.

Problem 297. Suppose u € P(R). Suppose that |fi(a)| = 1 for some a # 0. Show that there is a
d > 0 such that u(6Z) = 1.

Problem 298. If ¢ is a characteristic function, show that the following are also characteristic

functions as a function of t. (1) [p(t)[?, (2) e#®=1, (3) L [T (s)ds, (4) p(t)p(2t), (5) lifw(t).
2

Problem 299. If ¢ is a smooth characteristic function, show that ¢”(0) < 0 (in particular it is
real-valued). Can equality hold?

Problem 300. If i is a probability measure, show that

: 1 r ~ —itxg
p{wo} —Tlgr;oﬂ/_Tu(t)e dz.

Problem 301. Suppose p,, it are probability measures on R with characteristic functions o, ¢.
If p,(t) = (t) for all t € Q, is it true that p, — p weakly?

Problem 302. If ¢ is a real-valued characteristic function, show that

1 —(2t) < 4(1 = (1))

Deduce that if ¢ is any characteristic function, then

L= [p(2t)] < 8(1 = |(t)])-

Problem 303. A random variable X has characteristic function

n
exp Z 0;(e™ —1 —itx;)
j=1

for some z; € R and 6; > 0. Describe/construct X in terms of familiar random variables.

Problem 304. Let ¢ be the characteristic function of X.

(1) Fix t1,...,t, and c1,...,c, and find E[|Y|?] where Y = c1e®X + ... + ¢, eftnX.
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(2) Use the first part to argue that ¢ is positive definite in the sense that the matrix (¢(tx —
tj))jk<n is positive semi-definite, for any ti,...t,.

Problem 305. Let € P(R) and suppose |fi(tg)| = 1 for some ¢y # 0. Then, x is supported on a
lattice, that is, pu(aZ + b) = 1 for some a,b € R.

Problem 306. Show that t(t) = e~/ is not a characteristic function if o > 2. [Hint: Use the
previous exercise with n = 3 and suitably chosen ¢;s]

Problem 307. Let ¢ : R — R be a characteristic function that satisfies (a) p(0) =1, (b) ¢(¢) =0
for t > 2, (c) ¢ is even, (d) ¢ is linear on [0,1] and on [1,2].If ¢, € [0, 1], show that the possible
values of ¢(tg) < 1 — .

Problem 308. Give another proof that t(t) = e~ !!* is not a characteristic function if o > 2.

(1) Assuming that v is a characteristic function of X, show that Var(X) < oc.

2) Show that &Y 4x , where Y is an independent copy of X.
21/

Get a contradiction using these two statements.

Problem 309. Let X ~ u be a random variable with characteristic function ¢. Show that the
following are equivalent.

(1) X 4 Y7 + Y5 for some i.i.d. random variables Y7, Y5.

(2) ¢ = 12 for a characteristic function 1.

Problem 310. Show that there are independent X, Y, Z such that X +V £ X+ Z but Y % Z (so

you cannot “cancel” X on both sides).

Problem 311. Let p be a probability measure with non-negative characteristic function g > 0.

(1) If p is supported on integers, show that u{0} > u{k} for all k € Z.

(2) If i is integrable, show that the density of u exists and attains its maximum at 0.

Problem 312. Let U ~ Unif[—1, 1]. Use your knowledge of its characteristic function and of its
binary digits to show the identity

sin(t) 1 "
— = }_[lcos(t/2 ).
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Problem 313. Let &, be i.i.d. Bery(1/2) and let X\ = 7, A", where 0 < A < 1.
(1) Show that X has characteristic function ¢ (t) = [],2, cos(tA").

(2) If d(A™",Z) — 0, show that ¢(27/A"™) /4 0 and hence deduce that X has no density.

(3) Check that A\ = 1+2\/5 (satisfies A™2 — A~! — 1 = 0) is one such number.

Problem 314. Here are some integral identities. Prove them using characteristic functions!
A _ Vol 12
1) [pe 2" =dt = 7 [ e 2 da.

smt
fR 12 dt = Tr.

flR 1+t2)2 dt =

Problem 315. Let p,, 1 be probability measures. If fi,, converges uniformly to /i, then F},, — F},
uniformly on R. The following steps are suggested.

(1) If F, is continuous, see Problem 55.

(2) If p is discrete (start with g = &), use Problem 300.

3) For general u, separate into the discrete and continuous parts.
g K

Problem 316. Let u be a probability measure with C' density f. Show that |z |i]*> < oo and
that [p A(t)%dt =7 [ f(z)f(—z)dz and [, |a(t)|2dt = 7 [ f(z)dz.

Problem 317. Let u be a probability measure on R. If 4(t) > 0 for all t and [ |4(¢)|dt < oo, then
show that p has a continuous density f and that sup f(z) = f(0).

Problem 318. Let X,, be i.i.d. random variables with a non-degenerate distribution. If S,, =
X1+ ...+ X,, show that P{|S,| < M} — 0 for any M < co.

Problem 319. Let Z ~ N(0,1).
(1) Show that E[e"Z sin(mmZ)] = 0 for all n,p € Z.

(2) Conclude that if X = eZ and Y = eZsin(rZ), then E[X"] = E[Y"] for all n € N.

(3) Show that X and Y do not have the same distribution.

[Note: It may be helpful to write sin in terms of complex exponential. The point is that there are

two random variables with different distributions that have identical moments]
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Remark (for the next three problems): The characteristic function of a R%valued random
vector X is the function u +— E[e!(®X)] from R? — C. Assume the following facts: If X and Y

e s d v orerilu X , :
have the same characteristic functions, then X =Y. If E[e{“Xn)] — E[¢!“X)] for all u € RY, then
1
X, = X.

Problem 320. Show that the measures of half-spaces (i.e., P{(X,v) < r}, where v € R%, r € R)
determine the distribution of X. Similarly, show that if (X,,v) A (X,v) for each v € RY, then
X, 5 X,

Problem 321. If X,, are independent random vectors in R? with E[X,] = 0 and E[X, X!] = ¥,
then show that % LN Ng(0,%), which is the defined as the distribution with the characteristic

. _ 1.t
function ¢ — e~ 2% %,

.. . . 1 _Lloty—1,
Problem 322. If ¥ is invertible, show that N;(0,X) has density —(zﬂ)dﬂ\/me 2 .

Problem 323. Let Z(™ = (Z{n), e Z,(Ln)) be a point sampled uniformly from the sphere S™~!
(this means that P(Z(™ € A) = area(A)/area(S™ ') for any Borel set A C S™1).

(1) Find the density of an).

(2) Using (1) or otherwise, show that \/ﬁan) KN N(0,1) as n — oo.
[Hint: One way to generate Z™ is to sample Xj, ~ N(0,1) i.i.d., and to set Z(") = m(Xl, ey X))
where || X|| = v/X? + X2 + ...+ X2. You may assume this fact without having to justify it].
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